

000 001 002 003 004 005 TRAJFLOW: NATIONWIDE PSEUDO GPS TRAJECTORY 006 GENERATION WITH FLOW MATCHING MODELS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

028 Paper under double-blind review
029
030

ABSTRACT

031 The importance of mobile phone GPS trajectory data is widely recognized across
032 many fields, yet the use of real data is often hindered by privacy concerns, lim-
033 ited accessibility, and high acquisition costs. As a result, generating pseudo-GPS
034 trajectory data has become an active area of research. Recent diffusion-based ap-
035 proaches have achieved strong fidelity but remain limited in spatial scale (small
036 urban areas), transportation-mode diversity, and efficiency (requiring numerous
037 sampling steps). To address these challenges, we introduce *TrajFlow*, the first
038 flow-matching-based generative model for GPS trajectory generation. *TrajFlow*
039 leverages the flow-matching paradigm to improve robustness across multiple
040 geospatial scales, and incorporates a trajectory harmonization & reconstruction
041 strategy to jointly address scalability, diversity, and efficiency. Using a nation-
042 wide mobile phone GPS dataset with millions of trajectories across Japan, we
043 show that *TrajFlow* consistently outperforms diffusion-based and deep generative
044 baselines at urban, metropolitan, and nationwide levels. As the first nationwide,
045 multi-scale GPS trajectory generation model, *TrajFlow* demonstrates strong pot-
046 tential to support inter-region urban planning, traffic management, and disaster
047 response, thereby advancing the resilience and intelligence of future mobility sys-
048 tems.
049

1 INTRODUCTION

050 Human mobility data—particularly the rapidly growing mobile phone GPS data—has been widely
051 applied across diverse domains, including urban studies (Chen et al., 2023; Jin et al., 2023), epi-
052 demiological prediction and control (Bao et al., 2020; Zhang et al., 2022), and transportation and
053 travel planning (Torre-Bastida et al., 2018). However, the use of real personal mobility data poses
054 several challenges, such as privacy concerns, limited accessibility, and substantial financial or time
055 costs. Privacy is especially critical, as data collection and utilization may reveal sensitive personal
056 details, which in turn makes human mobility datasets difficult to access and share.

057 Consequently, recent years have witnessed a growing number of studies on GPS trajectory gener-
058 ation (Zhu et al., 2023b; Jiang et al., 2023; Wei et al., 2024a; Zhu et al., 2023a). Notably, several
059 research gaps remain even in state-of-the-art (SOTA) models for this task: **Multi-scale capabil-**
060 **ity:** Existing models primarily focus on urban-level data and struggle to generalize to regional or
061 nationwide scales. This limitation significantly constrains the practical applicability of generated
062 trajectories, as real-world deployment often requires modeling across multiple spatial levels. In
063 particular, maintaining a stable signal-to-noise ratio (SNR) becomes increasingly challenging when
064 extending trajectory generation from block-level movements to citywide or nationwide patterns, un-
065 derscoring the need for models with robust multi-scale capability. **Transportation-mode diversity:**
066 Current approaches are largely confined to taxi trajectory data. While taxi GPS traces are val-
067 uable, real human mobility involves a much broader range of transportation modes (e.g., train, car,
068 bike and walk), which are not adequately represented in existing models. **Training and inference**
069 **efficiency:** Most SOTA methods rely on diffusion-based frameworks. Although methods such as
070 DDIM (Denosing Diffusion Implicit Model) can accelerate sampling, they remain computationally
071 expensive. Furthermore, the reliance on evidence lower bound (ELBO)-based optimization intro-
072 duces additional complexity during training (Kingma & Gao, 2023), making large-scale trajectory
073 generation inefficient and difficult to scale in practice.

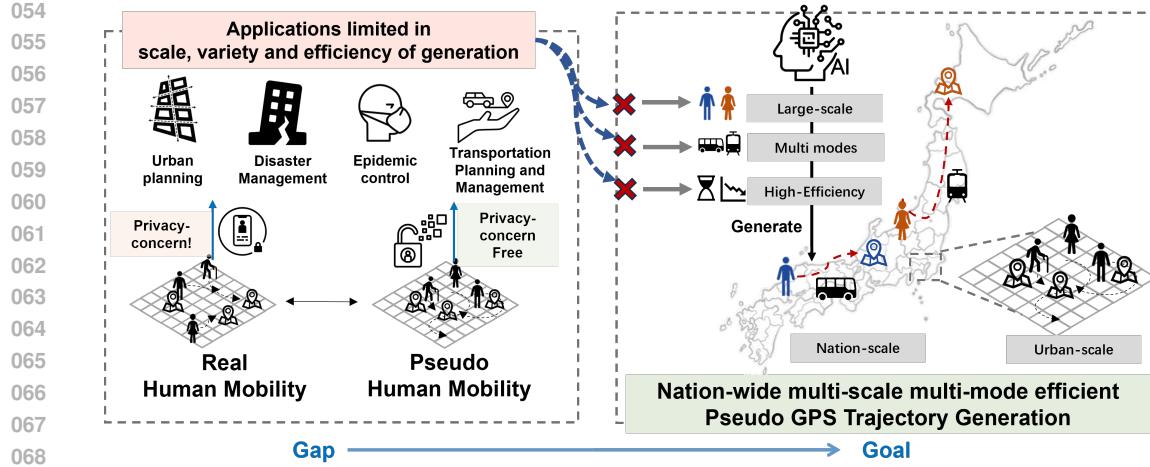


Figure 1: In pseudo-human mobility generation, three key challenges remain to be addressed: multi-scale capability, transportation-mode diversity, and training & inference efficiency.

To address these limitations, we propose **TrajFlow**, a flow-matching-based GPS trajectory generation model designed to produce nationwide, multi-scale pseudo-GPS trajectories. The main contributions of this study are summarized as follows:

- **Novel paradigm:** We present the first flow-matching-based generative framework for GPS trajectory modeling, and show that the flow-matching paradigm improves robustness and stability across multi-scale scenarios.
- **Methodological design:** We integrate trajectory harmonization, OD-conditioned normalization, and flow-based training into a unified framework that jointly addresses scalability, diversity, and efficiency in mobility generation.
- **Empirical validation:** Using a nationwide mobile phone GPS dataset with millions of users, we demonstrate that **TrajFlow** achieves state-of-the-art performance across urban, metropolitan, and nationwide settings, highlighting its value for large-scale human mobility modeling.

2 RELATED WORKS

Human Mobility Generation. Human mobility generation has attracted growing attention across both computer science and social science domains (Feng et al., 2020; Simini et al., 2021; JIAWEI et al., 2024). In the early stages, before the widespread availability of mobile phone positioning data, research primarily relied on mechanism-based approaches. Travel survey data—often referred to as travel diaries—were commonly used. Such surveys typically record an individual’s daily travel activities, providing detailed information including the sequence of mobility activities and the modes of transportation. These rich datasets enabled the development of activity-based models for human mobility sequence generation (Karamshuk et al., 2011; Hess et al., 2015; Barbosa et al., 2018). With the growing demand for large-scale mobility data, researchers began to explore alternative sources such as GPS trajectories and call detail records (CDR). For example, TimeGeo (Jiang et al., 2016) extended activity-based modeling by leveraging GPS and CDR data. Different from TimeGeo, studies leveraging mobile phone GPS and CDR data have investigated the generation of more realistic activity patterns by combining deep learning models. For instance, Act2Loc (Liu et al., 2024) focuses on activity-to-location generation, while GeoAvatar (Li et al., 2022; 2025) achieves individualized trajectory generation, reflecting both temporal regularity and personal heterogeneity. More recently, advances in large language models (LLMs) have allowed for interpretable mobility generation at a relatively higher computation cost (JIAWEI et al., 2024; Feng et al., 2025; Beneduce et al., 2025).

GPS trajectory generation. As one of the most widely used data sources for representing human mobility, GPS trajectories have become a central focus in generative modeling. A variety of approaches have been proposed for GPS trajectory generation, ranging from model-based models to

learning based frameworks(Yin et al., 2017; Hsu et al., 2024; Zhu et al., 2023b; Wang et al., 2021). Early work often adopted sequence modeling techniques such as Hidden Markov Models (HMMs) and Recurrent Neural Networks (RNNs), including their variants like LSTMs and GRUs (Yu et al., 2019). For example, Song et al. (Liu et al., 2018) applied an HMM-based model to predict and simulate large-scale human mobility patterns following natural disasters. Beyond Markovian models, deep generative model such as Variational Autoencoders (VAEs) or generative adversarial networks (GANs) have been introduced to capture latent mobility representations (Huang et al., 2019; Chen et al., 2021b). More recently, the rapid proliferation of denoising diffusion probabilistic models (DDPM) have further advanced GPS trajectory generation. DiffTraj (Zhu et al., 2023b) and its extensions (Zhu et al., 2024; Wei et al., 2024b) have shown strong performance in generating urban-scale taxi trajectories.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

Definition 1 (Human Mobility (GPS Trajectory)). A human mobility record is represented as a tuple (lat, lon, t) , indicating that user u visits a geographic location l (specified by latitude and longitude) at time t . A mobility trajectory is then defined as an ordered sequence of such records, $\text{traj} = \{(lat_0, lon_0, t_0), (lat_1, lon_1, t_1), \dots, (lat_n, lon_n, t_n)\}$. In our setting, anonymized data are used, and user identifiers u are replaced with random tokens to ensure privacy.

Definition 2 (GPS Trajectory Generation). Given a ground-truth dataset of GPS trajectories $X = \{\text{traj}_x^1, \text{traj}_x^2, \dots, \text{traj}_x^m\}$, the goal of GPS trajectory generation is to synthesize a pseudo-dataset $Y = \{\text{traj}_y^1, \text{traj}_y^2, \dots, \text{traj}_y^m\}$, such that Y closely matches the distributional characteristics of X while preserving user privacy.

3.2 FLOW MATCHING MODEL

Flow Matching is a powerful class of generative models designed to learn continuous transformations between probability distributions. Unlike diffusion models that rely on a fixed noising process, flow matching models learn a vector field $v_t(x)$ that directly models the "flow" of particles from a simple base distribution p_0 (e.g., a standard Gaussian) to a complex target data distribution p_1 (e.g., the distribution of real GPS trajectories).

The core idea is to define a probability path $p_t(x)$ and a corresponding time-dependent vector field $v_t(x)$ such that a sample $x_0 \sim p_0$ can be transformed into a sample $x_1 \sim p_1$ by solving the [ordinary differential equation \(ODE\)](#)(Lipman et al., 2022), $\frac{dx_t}{dt} = v_t(x_t)$, where x_t is the state of a particle at time $t \in [0, 1]$. The goal is to train a neural network $v_\theta(x, t)$ to approximate this ground-truth vector field $v_t(x)$.

A key innovation in flow matching is the objective function. Instead of directly regressing on the often-intractable vector field of the marginal probability path p_t , Conditional Flow Matching (CFM) defines a conditional probability path $p_t(x | x_1)$ and a corresponding conditional vector field $u_t(x | x_1)$ that are much simpler to compute. A common choice for the conditional path is a simple linear interpolation between a noise sample x_0 and a data sample x_1 : $p_t(x | x_1) = \mathcal{N}(x | (1-t)x_0 + tx_1, \sigma^2 I)$. However, the simplest and most common formulation, which we adopt, regresses the model directly on the vector field defined by a straight path between x_0 and x_1 : $u_t(x | x_1) = x_1 - x_0$. The model $v_\theta(x, t)$ is then trained to predict this vector field u_t given the point x_t on the path. The flow matching objective is a simple regression loss:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t, p(x_1), p(x_0)} \left[\|v_\theta((1-t)x_0 + tx_1, t) - (x_1 - x_0)\|^2 \right], \quad (1)$$

where t is sampled uniformly from $[0, 1]$, x_1 is sampled from the real data distribution, and x_0 is sampled from the prior noise distribution. This objective allows the model to learn the complex data distribution stably and efficiently. Once trained, we can generate new data by sampling a point $x_0 \sim p_0$ and solving the learned ODE $\frac{dx}{dt} = v_\theta(x, t)$ from $t = 0$ to $t = 1$ using an ODE solver.

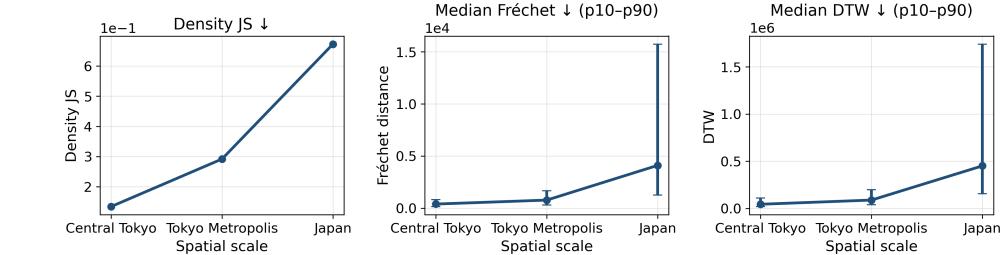
162

4 TRAJFLOW

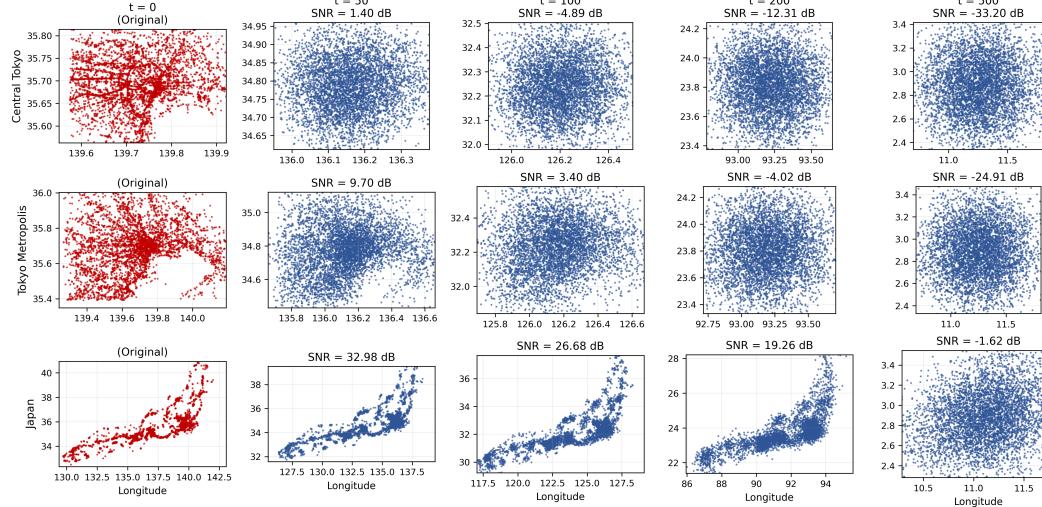
163

4.1 MOTIVATION

166 Diffusion-based models (e.g., DiffTraj) have achieved high-fidelity GPS trajectory generation at the
 167 *urban* scale, but when the spatial scale grow up, e.g., from urban scale, metropolis scale, and to
 168 nationwide scale, we observe a sharp degradation of accuracy across multiple metrics (see Fig. 2a).



178 (a) The performance of the DiffTraj degrades during multi-scale generation. Each subplot shows one metric
 179 across spatial scales (e.g., Central Tokyo → Tokyo Metropolis → Japan).

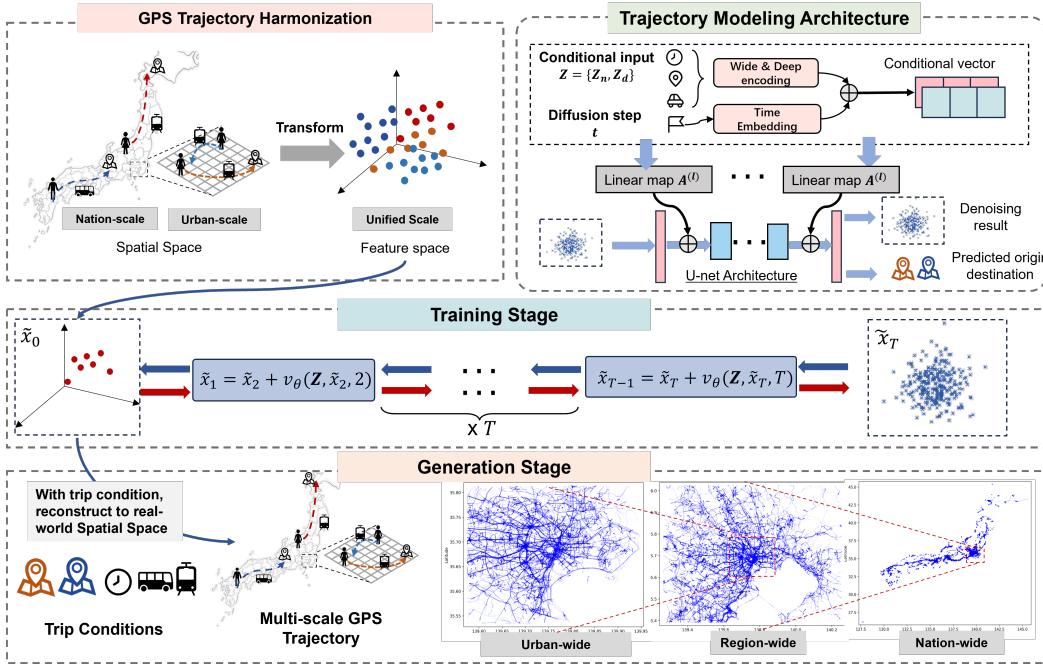


197 (b) SNR collapses during the diffusion noising procedure. A noise parameter suitable for a nationwide scale is
 198 not suitable for smaller regions (e.g., Tokyo Metropolis).

200 Figure 2: (a) shows the accuracy degradation of DiffTraj at increasing spatial scales. (b) shows the
 201 SNR collapses when applying a fixed noising parameter across scales.

203 We suggest that there are two key reasons why diffusion-based SOTA models fail to generalize
 204 across different geographical regions. First, when expanding to larger geographical regions, the subsets of fine-grained local
 205 trajectories become small in magnitude, resulting in an extremely low SNR. In these cases, the weak
 206 signal is easily overwhelmed, forcing the reverse process to reconstruct fine-grained structures from
 207 highly noisy inputs. Standard mean squared error (MSE) objectives further intensify this challenge
 208 by prioritizing absolute rather than relative error, thereby aggravating the imbalance across scales.
 209 To address this, *data harmonization becomes essential*: by curating and rescaling data distributions
 210 across different spatial scales, we can explicitly compensate for this imbalance and provide a more
 211 balanced learning signal (see Sec. 4.2). Second, diffusion models rely on a stepwise denoising
 212 process that gradually transforms Gaussian noise into samples. In conditional settings where subsets
 213 of data span vastly different numerical ranges—for example, micro-scale local trips versus macro-
 214 scale long-distance journeys—the forward noising process injects noise of nearly fixed magnitude
 215 regardless of scale. This scale-invariant noise injection leads to a fundamental mismatch that reduces
 model robustness. To overcome this limitation, *flow matching is necessary*: by directly learning the
 continuous probability flow between a simple prior and the target distribution, it sidesteps the fixed-

216 step denoising chain and provides a more flexible and scale-adaptive generative mechanism (see Sec
 217 . 4.3 & 4.4). In the following, we detail how our proposed framework, TrajFlow, addresses the
 218 critical challenges of urban mobility modeling and generates reliable pseudo-GPS trajectories.
 219



220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269

Figure 3: The overview of the proposed TrajFlow.

4.2 MULTI-SCALE GPS TRAJECTORY HARMONIZATION AND RECONSTRUCTION

To address the SNR imbalance across scales, we adopt a trajectory harmonization & reconstruction strategy in conjunction with the flow matching framework (see the upper-left panel of Fig. 3). Rather than working directly on raw GPS coordinates, which vary across orders of magnitude, we normalize each trajectory individually, rescaling all points to lie in a common bounded range (approximately $\mathcal{N}(0, 1)$). The model thus operates in this normalized space, predicting OD and waypoints under flow matching; afterward, we invert the normalization back to real geographic coordinates. This prevents tiny local displacements from being overwhelmed by large-scale variations, stabilizes gradient magnitudes during optimization, and accelerates convergence (Ioffe & Szegedy, 2015).

In addition, to enhance the efficiency and stability of model learning, we apply a trajectory *trajectory-feature transformation* step that simplifies each trajectory while preserving its essential geometric structure. This kind of trajectory-feature transformation reduces the length of the raw trajectories from L to D , where $D \ll L$, thereby lowering computational overhead and improving training stability. In practice, the process involves recursively removing points that fall within a tolerance ϵ of the line segment formed by their neighbors, retaining only those points that contribute to the overall geometric shape. As a result, long straight segments are compressed into a few representative points, while turning points or areas of high curvature are preserved. In this study, we experiment with multiple harmonization methods and find that the *Ramer–Douglas–Peucker* (RDP) algorithm (Ramer, 1972) provides the best trade-off between compression and fidelity. Details of this algorithm are presented in the Appendix. A.2.

The proposed strategy can be interpreted as analogous to the normalization–denormalization procedure in feature preprocessing: trajectories are first compressed into a compact representation to facilitate efficient model training, and subsequently expanded back to their original scale for deployment. To the best of our knowledge, we are the first to explore the integration of RDP-based processing with a flow matching framework for trajectory generation, and we will demonstrate its advantages in terms of computational efficiency and practical fidelity through experimental studies.

270
271

4.3 GPS TRAJECTORY MODELING ARCHITECTURE

272

As shown in the upper-right panel of Fig. 3), we adopt the Wide & Deep module (Zhu et al., 2023b) to embed the input condition of a trajectory, including departure time, OD zone, and transportation mode. Concretely, the conditional vector e_c is formed by fusing a linear wide projection of numeric motion/context characteristics with a non-linear deep projection of discrete context characteristics, and the result e_c is injected into every block of the vector field network $v_\theta(x_t, t, e_c)$ that parameterizes our probability flow:

277
278
279

$$\frac{dx_t}{dt} = v_\theta(x_t, t, e_c). \quad (2)$$

280
281
282
283

Inputs and feature partition. The first part of the input is numeric features Z_n : segment-level or trajectory-level scalars such as instantaneous speed, inter-point distance, elapsed time, cumulative distance/steps (all standardized). The other part is the discrete features Z_d , including departure time of a day, transportation mode.

284
285
286
287

Wide&Deep encoding. Firstly, an MLP layer is employed to map numeric features Z_n to n -dimension vector. Then, each categorical field is embedded into n -dimension (n is defined by hyper-parameter) as e_{wide} ; the embeddings are concatenated and passed through two MLP layers with nonlinearity as e_{deep} . Finally, we fuse the e_{wide} and e_{deep} as the conditional vector:

288
289

$$e_c = \text{LayerNorm}(e_{wide} + e_{deep}). \quad (3)$$

290
291
292

Time embedding. The continuous flow time $t \in [0, 1]$ is encoded by a sinusoidal/Fourier mapping followed by a small MLP to yield a time vector $e_t \in \mathbb{R}^{d_e}$. We combine it with the condition as a single control signal $\tilde{e} = e_c + e_t$.

293
294
295

Conditional control into the backbone. Let $h^{(\ell)}$ denote the hidden state of block ℓ . We broadcast \tilde{e} to all blocks and inject it as an additive, learnable bias as:

296
297

$$h^{(\ell)} \leftarrow f^{(\ell)}(h^{(\ell)}) + A^{(\ell)}\tilde{e} \quad (\ell = 1, \dots, L), \quad (4)$$

298
299

where $f^{(\ell)}$ is the block’s transformation and $A^{(\ell)}$ is a learned linear map. This keeps the conditioning pathway lightweight and consistent with the ODE parameterization of the vector field.

300
301

4.4 FLOW-MATCHING TRAINING AND INFERENCE

302
303
304
305
306
307
308
309
310

At the training stage (i.e., the middle panel of Fig. 3), we use mini-batches of ground-truth trajectories that are first harmonized with RDP and then padded to a common length using a validity mask. For each trajectory, we compute the numeric and discrete conditions, obtain the condition embedding e_c through the Wide&Deep module (Eq. 3), and sample a flow time t with a noise endpoint x_0 . The straight-path point x_t and the corresponding target conditional vector field are then constructed according to the flow-matching objective (Eq. 1). In addition, we introduce an auxiliary supervised loss between the predicted and ground-truth OD pairs to enhance spatial and semantic awareness. Model parameters are optimized with a masked regression loss over valid tokens, optionally augmented by smoothness and bounded-support regularizers, followed by standard optimizer updates.

311
312
313
314
315
316
317

At the inference stage (i.e., the last panel of Fig. 3), given a trajectory condition (e.g., departure time, OD pair, transportation mode), we first compute e_c using the Wide&Deep encoder and prepare the time-embedding schedule. We then initialize x_0 from the base distribution (e.g., standard Gaussian noise). The synthetic trajectory is obtained by numerically integrating the learned flow ODE on $[0, 1]$ (Eq. 2), injecting e_c at each solver step as in Eq. 4. The final state x_1 is subsequently post-processed (e.g., uniform resampling, mapping back to geographic coordinates, and trimming or interpolating to satisfy length priors), yielding the generated trajectory under the specified condition.

318
319

5 EXPERIMENTS

321
322
323

In this section, we comprehensively evaluate **TrajFlow** to answer the following research questions: **Q1:** Does TrajFlow outperform baseline methods on key evaluation metrics? **Q2:** How well does TrajFlow perform in multi-scale trajectory generation? **Q3:** To what extent can TrajFlow reproduce transportation-mode diversity? **Q4:** How efficient is TrajFlow in terms of training and inference?

324 5.1 SETTINGS
325

326 **Dataset** We employed the Japan nationwide Blogwatcher Dataset in 2023. This private dataset
327 contains fine-grained GPS records from users in Japan, collected from Blogwatcher Inc. This data is
328 obtained with the use of multiple applications on mobile devices, comprising millions of trajectories,
329 which include anonymized user IDs, latitude, longitude, timestamps, and transportation modes.

330 **Baselines** Diffusion methods represent the current SOTA in urban mobility generation - we adopt
331 *DiffTraj* (Zhu et al., 2023b) as a representative diffusion-based baseline. In addition, we include
332 *TrajVAE* (Chen et al., 2021a) and *TrajGAN* (Rao et al., 2020) as two representative baselines to
333 evaluate the effectiveness of deep learning and adversarial learning approaches for urban mobility
334 generation tasks. To disentangle the contributions of each key component in *TrajFlow*, we evaluate
335 three ablated variants. *w/o-FM*: The CFM objective and ODE solver are replaced with the standard
336 DDPM denoising procedure. *w/o-OD*: The OD prediction head and the per-trajectory processing
337 pipeline are removed, which means harmonization/reconstruction is not conducted - the trajectory
338 will be directly generated in geographic space. *w/o-RDP*: The RDP trajectory-harmonization step
339 is omitted, and raw trajectories (up to 120 points) are fed into the model. These ablations isolate
340 the effects of the flow-matching objective, harmonization/reconstruction method, and trajectory-
341 compression strategy on model fidelity and scalability.

342 **Evaluation Metrics** We evaluate generation quality from two perspectives. **Aggregated-level**:
343 The *Jensen–Shannon divergence of spatial density* (*density JS*) measures how well synthetic data
344 reproduces the population-level geo-distribution of movements. **Trajectory-level**: We assess path
345 similarity using *Dynamic Time Warping* (*DTW*) and the continuous *Fréchet distance* (*Fr*), which is
346 sensitive to overall shape rather than temporal alignment. For both metrics, we report the median,
347 mean, and 10th/90th percentiles (P10/P90) to capture central accuracy and dispersion. Details are
348 provided in Appendix A.1.

349 5.2 EVALUATION
350

351 **Overall Performance (Q1)** Across spatial scales—Center Tokyo (urban), Tokyo Metropolis
352 (metro), and Japan (nationwide)—*TrajFlow* and its variants consistently outperform *DiffTraj* on
353 all metrics. The advantage is modest at the urban and metro levels but becomes pronounced na-
354 tionwide, highlighting stronger cross-scale generalization. **At the urban-wide scale, while *TrajFlow*
355 achieves satisfactory performance, *TrajFlow-w/o RDP & OD* performs better as it directly generates
356 raw coordinates. This indicates that smoothing details at a small scale is not always necessary.** At the
357 metropolitan scale, part of the best indicators transferred from *TrajFlow-w/o-RDP&OD* to *TrajFlow-
358 w/o-RDP*, showing that the OD prediction-based harmonization and reconstruction component starts
359 to show the benefit as the range increases at the urban scale. And the *TrajFlow* successfully main-
360 tains similar performance as the urban scale. At the nationwide scale, the advantage is substantial:
361 $DTW_{med} = 10.977$, $Fr_{med} = 0.192$, tight IQR/P90, and the lowest density JS, while alternatives
362 yield larger medians and heavier tails. Although *TrajFlow* is not strictly best on every metric at
363 smaller scales, it is the only method that balances shape fidelity, stability (IQR/P90), and spatial
364 distribution (density JS) across all scales, and it dominates in the nationwide setting. Geographic
365 visualizations are provided in Fig. 4. This is consistent with the analysis in the Sec. 4.1 - while
366 trajectories keep a smaller scale (urban), the SNR issue of DDPM is not serious, but when it comes
367 to nation-wide - mixing of urban-scale, metropolis-scale, and nation-wide scale - SNR issue hinders
368 the performance of DDPM across scales, a limitation that flow matching addresses effectively.

369 **Multiscale-scale robustness (Q2)** From city-level to metropolitan-level to nationwide, *TrajFlow*
370 maintains low median DTW/Fréchet and narrow dispersion, while keeping the JS divergence of
371 density controlled. In conditional settings where subsets of data span vastly different numerical
372 ranges—for example, micro-scale local trips versus macro- scale long-distance trips — the forward
373 noising process injects noise of nearly fixed magnitude regardless of scale. This scale-invariant
374 noise injection leads to a fundamental mismatch that reduces model robustness. This advantage
375 over multi-scale is consistent owing to the conditional flow matching: a deterministic vector field
376 transports probability mass in a single flow, avoiding accumulation of error along long sampling
377 chains and generalizing better when regions and transport modes are diverse.

378 **Transportation-mode diversity (Q3)** Preserving the diversity of transportation
379 modes is as important as maintaining spatial fidelity in generative mobility models.

378
379
380 Table 1: Evaluation grouped by region (unit = km). Best metric in **bold**.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Method	Density JS ↓	DTW _{med} ↓	Fr _{med} ↓	DTW _{IQR} ↓	DTW _{P10} ↓	DTW _{P90} ↓	Fr _{IQR} ↓	Fr _{P10} ↓	Fr _{P90} ↓
<i>Central Tokyo</i>									
TrajFlow (ours)	0.0674	20.350	0.304	13.392	10.574	39.119	0.174	0.200	0.674
TrajFlow-w/o-OD	0.3560	916.436	13.862	708.183	432.567	1,740.890	7.313	7.064	20.858
TrajFlow-w/o-RDP	0.0642	22.088	0.340	16.491	11.149	47.959	0.238	0.209	0.873
TrajFlow-w/o RDP & OD	0.0323	8.179	0.184	4.586	4.994	14.159	0.118	0.110	0.363
DiffTraj	0.1340	44.321	0.651	40.713	19.399	109.349	0.544	0.341	1.774
TrajGAN	0.3087	292.430	4.442	448.839	119.230	1,288.929	7.660	1.606	21.477
TrajVAE	0.1041	32.874	0.469	36.387	14.000	103.232	0.679	0.258	1.842
<i>Tokyo Metropolis</i>									
TrajFlow (ours)	0.1239	18.167	0.335	16.892	7.678	44.316	0.333	0.130	0.933
TrajFlow-w/o-OD	0.1064	16.466	0.307	10.189	9.307	32.126	0.192	0.180	0.683
TrajFlow-w/o-RDP	0.1197	18.417	0.298	24.152	6.637	67.674	0.473	0.121	1.339
TrajFlow-w/o RDP & OD	0.0800	14.416	0.303	7.684	8.659	23.978	0.188	0.176	0.592
DiffTraj	0.2918	88.559	1.220	78.339	38.663	199.501	0.982	0.586	3.035
TrajGAN	0.3821	604.399	10.224	1,184.077	155.401	2,854.060	20.627	2.290	51.389
TrajVAE	0.1930	46.363	0.765	54.484	16.234	122.556	1.006	0.250	2.299
<i>Japan nationwide</i>									
TrajFlow (ours)	0.2270	10.977	0.192	18.221	3.984	55.964	0.361	0.072	1.119
TrajFlow-w/o-OD	0.4888	100.271	1.522	75.774	50.877	216.168	1.177	0.774	3.145
TrajFlow-w/o-RDP	0.2734	24.690	0.400	27.928	9.047	92.641	0.511	0.156	1.699
TrajFlow-w/o RDP & OD	0.4865	105.011	1.662	89.509	53.549	280.092	1.380	0.870	3.802
DiffTraj	0.6727	451.042	5.329	635.120	157.379	1,741.025	6.973	1.915	18.924
TrajGAN	0.5278	403.282	6.653	999.210	79.556	2,853.557	17.703	1.134	48.838
TrajVAE	0.5228	135.377	2.216	236.143	28.394	577.139	3.884	0.435	9.919

We evaluate this by comparing per-mode trip distance distributions of ground-truth and generated trajectories in Tokyo. As shown in Fig. 5, the generated data matches the characteristic profiles of four representative modes, maintaining realistic differences in trip lengths. This indicates that *TrajFlow* not only captures spatial fidelity but also preserves transportation-mode diversity (see additional results in Appendix C).

Training and inference efficiency (Q4) *TrajFlow* is optimized with the CFM objective, which requires only a single time step per sample, and generates trajectories by integrating the learned ODE with a small fixed budget of about 10 steps. In contrast, DDPM performance is highly sensitive to the number of denoising steps (see Appendix B): among the tested settings (10, 50, 100, 200, 300), the best trade-off between Jensen–Shannon divergence and trajectory-shape fidelity typically appears near 200 steps, while 300 steps provide only marginal or inconsistent improvements at significantly higher cost. Notably, even with 300 steps, DDPM fails to reach the performance of *TrajFlow*. These results highlight that competitive fidelity can be achieved by *TrajFlow* with far fewer steps (10 steps only) in both training and inference.

5.3 ABLATION STUDIES

w/o-FM: Replacing the CFM objective with a DDPM-style denoising procedure yields monotonic but limited gains as steps increase, and consistently underperforms *TrajFlow* in DTW, Fréchet, and density JS—even with large step budgets. This confirms flow matching as the main driver of fidelity and stability. **w/o-RDP:** Removing trajectory harmonization retains micro-jitter and redundant points, increasing Fréchet/DTW medians and tail metrics; on the Japan split, it also raises density JS. Thus, RDP improves not only efficiency but also accuracy by suppressing noise and harmonizing sampling. **w/o-OD:** Dropping the OD predictor sometimes lowers density JS in small regions but consistently worsens DTW/Fréchet and dispersion, and degrades both shape and density metrics nationwide. **w/o-RDP & OD:** Combining both removals produces the greatest deterioration, underscoring their critical role, particularly on a nationwide scale.

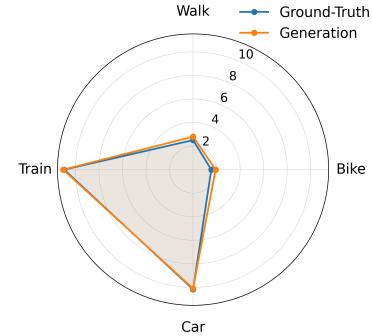


Figure 5: Per-mode average trip distance in Tokyo: ground truth vs. generated.

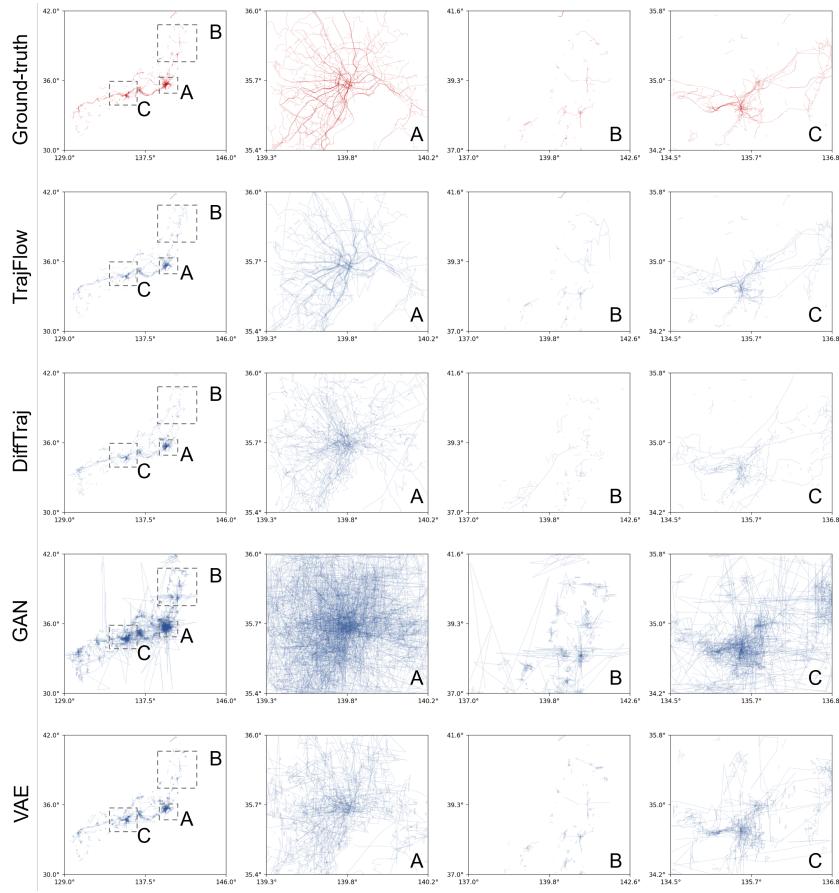


Figure 4: Visualization of trajectory samples. Ground-truth and generated nationwide trajectories are shown with zoomed views highlighting three representative regions: (A) Tokyo Metropolis, (B) Tohoku Area, and (C) Kansai Area, across all generative models.

6 CONCLUSION REMARKS

We introduce **TrajFlow**, a flow-matching-based framework for generating pseudo-GPS trajectories. By integrating trajectory harmonization and reconstruction into a conditional generative framework, TrajFlow addresses the longstanding challenges of multi-scale and multi-modal trajectory generation. Evaluated on a nationwide mobile-phone GPS dataset from Japan, TrajFlow outperforms various baselines. Particularly, it balances trajectory-shape fidelity, stability, and population-level spatial consistency across scales, while maintaining accuracy under fewer ODE steps.

Due to privacy rules and data access, we focus on GPS trajectory generation and do not use any per-user attributes (e.g., age, gender, home-work identifiers) or persistent pseudonymous IDs, and thus the current model does not capture individual preferences. As future work, we aim to extend TrajFlow from GPS trajectory generation to broader human mobility modeling.

LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on LLM usage, we disclose that LLMs (specifically OpenAI’s ChatGPT) were employed as a general-purpose writing assistant. The usage was limited to improving grammar, clarity, and LaTeX formatting of the manuscript.

486 REFERENCES
487

488 H. Bao, X. Zhou, Y. Zhang, Y. Li, and Y. Xie. Covid-gan: Estimating human mobility responses
489 to covid-19 pandemic through spatio-temporal conditional generative adversarial networks. In
490 *Proceedings of the 28th ACM SIGSPATIAL International Conference on Advances in Geographic
491 Information Systems*. ACM, 2020. doi: 10.1145/3397536.3422261.

492 Hugo Barbosa, Marc Barthélemy, Gourab Ghoshal, C. R. James, Maxime Lenormand, Tristan
493 Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini, and Marc Tomasini. Human mobility:
494 Models and applications. *Physics Reports*, 734:1–74, 2018. doi: 10.1016/j.physrep.2018.01.001.

495 Ciro Beneduce, Bruno Lepri, and Massimiliano Luca. Large language models are zero-shot next
496 location predictors. *IEEE Access*, 2025.

497 Xinyu Chen, Jiajie Xu, Rui Zhou, Wei Chen, Junhua Fang, and Chengfei Liu. Trajvae: A variational
498 autoencoder model for trajectory generation. *Neurocomputing*, 428:332–339, 2021a.

499 Xinyu Chen, Jing Xu, Rui Zhou, Wei Chen, Jian Fang, and Chao Liu. Trajvae: A variational
500 autoencoder model for trajectory generation. *Neurocomputing*, 428:332–339, 2021b. doi: 10.
501 1016/j.neucom.2020.03.120.

502 Z. Chen et al. Using mobile phone big data to identify inequity of aging groups in transit-oriented
503 development station usage: A case of tokyo. *Transport Policy*, 132:65–75, 2023. doi: 10.1016/j.
504 tranol.2022.12.010.

505 Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. Learning to simulate hu-
506 man mobility. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge
507 discovery & data mining*, pp. 3426–3433, 2020.

508 Jie Feng, Yuwei Du, Jie Zhao, and Yong Li. Agentmove: A large language model based agentic
509 framework for zero-shot next location prediction. In *Proceedings of the 2025 Conference of
510 the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
511 Language Technologies (Volume 1: Long Papers)*, pp. 1322–1338, 2025.

512 Andrea Hess, Karin Anna Hummel, Wilfried N. Gansterer, and Günter Haring. Data-driven human
513 mobility modeling: A survey and engineering guidance for mobile networking. *ACM Computing
514 Surveys*, 48(3):38:1–38:39, 2015. doi: 10.1145/2840722.

515 Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khurram Shafique. Tra-
516 jgpt: Controlled synthetic trajectory generation using a multitask transformer-based spatiotempo-
517 ral model. In *Proceedings of the 32nd ACM International Conference on Advances in Geographic
518 Information Systems*, pp. 362–371, 2024.

519 Dong Huang et al. A variational autoencoder based generative model of urban human mobility. In
520 *2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)*, pp. 425–
521 430, 2019. doi: 10.1109/MIPR.2019.00086.

522 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
523 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
524 pmlr, 2015.

525 Shan Jiang, Yingxiang Yang, Shounak Gupta, Daniele Veneziano, Siddharth Athavale, and Marta C.
526 González. The timegeo modeling framework for urban mobility without travel surveys. *Pro-
527 ceedings of the National Academy of Sciences*, 113(37):E5370–E5378, 2016. doi: 10.1073/pnas.
528 1524261113.

529 Wenjun Jiang, Wayne Xin Zhao, Jingyuan Wang, and Jiawei Jiang. Continuous trajectory gener-
530 ation based on two-stage gan. In *Proceedings of the AAAI conference on artificial intelligence*,
531 volume 37, pp. 4374–4382, 2023.

532 WANG JIAWEI, Renhe Jiang, Chuang Yang, Zengqing Wu, Ryosuke Shibasaki, Noboru Koshizuka,
533 Chuan Xiao, et al. Large language models as urban residents: An llm agent framework for
534 personal mobility generation. *Advances in Neural Information Processing Systems*, 37:124547–
535 124574, 2024.

540 Y. Jin et al. Understanding railway usage behavior with ten million gps records. *Cities*, 133:104117,
 541 2023. doi: 10.1016/j.cities.2022.104117.

542

543 Dmytro Karamshuk, Chiara Boldrini, Marco Conti, and Andrea Passarella. Human mobility models
 544 for opportunistic networks. *IEEE Communications Magazine*, 49(12):157–165, 2011. doi: 10.
 545 1109/MCOM.2011.6094021.

546 Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
 547 augmentation. *Advances in Neural Information Processing Systems*, 36:65484–65516, 2023.

548

549 Peiran Li et al. Iiot based trustworthy demographic dynamics tracking with advanced bayesian
 550 learning. *IEEE Transactions on Network Science and Engineering*, 10(5):2745–2754, 2022.

551

552 Peiran Li et al. Geoavatar: A big mobile phone positioning data-driven method for individualized
 553 pseudo personal mobility data generation. *Computers, Environment and Urban Systems*, 119:
 554 102252, 2025. doi: 10.1016/j.compenvurbsys.2025.102252.

555

556 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Tal Le. Flow matching
 557 for generative modeling. *arXiv*, 2022.

558

559 Kun Liu, Xin Jin, Shihong Cheng, Song Gao, Lu Yin, and Feng Lu. Act2loc: a synthetic trajectory
 560 generation method by combining machine learning and mechanistic models. *International Journal
 561 of Geographical Information Science*, 38(3):407–431, 2024. doi: 10.1080/13658816.2023.
 562 2292570.

563

564 Xia Liu, Hexuan Chen, and Clio Andris. trajgans: Using generative adversarial networks for geo-
 565 privacy protection of trajectory data (vision paper). In *Proceedings of the 2018 Location Privacy
 566 and Security Workshop (LPS’18), co-located with ACM SIGSPATIAL*, pp. 1–7, 2018.

567

568 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. *Computer
 569 graphics and image processing*, 1(3):244–256, 1972.

570

571 Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang. Lstm-trajgan: A deep learning approach
 572 to trajectory privacy protection. *arXiv preprint arXiv:2006.10521*, 2020.

573

574 Filippo Simini, Gianni Barlauchi, Massimilano Luca, and Luca Pappalardo. A deep gravity model
 575 for mobility flows generation. *Nature communications*, 12(1):6576, 2021.

576

577 Ana I. Torre-Bastida, Javier Del Ser, Ibai Lafía, Maitena Ilardia, Miren Nekane Bilbao, and Sergio
 578 Campos-Cordobés. Big data for transportation and mobility: recent advances, trends and chal-
 579 lenges. *IET Intelligent Transport Systems*, 12(8):742–755, 2018. doi: 10.1049/iet-its.2018.5188.

580

581 Xingrui Wang, Xinyu Liu, Ziteng Lu, and Hanfang Yang. Large scale gps trajectory generation
 582 using map based on two stage gan. *Journal of Data Science*, 19(1):126–141, 2021.

583

584 Tonglong Wei, Youfang Lin, Shengnan Guo, Yan Lin, Yiheng Huang, Chenyang Xiang, Yuqing Bai,
 585 and Huaiyu Wan. Diff-rntraj: A structure-aware diffusion model for road network-constrained
 586 trajectory generation. *IEEE Transactions on Knowledge and Data Engineering*, 2024a.

587

588 Tonglong Wei, Youfang Lin, Shengnan Guo, Yan Lin, Yiheng Huang, Chenyang Xiang, Yuqing Bai,
 589 and Huaiyu Wan. Diff-rntraj: A structure-aware diffusion model for road network-constrained
 590 trajectory generation. *arXiv*, 2024b. Accepted to IEEE TKDE (per arXiv note).

591

592 Mogeng Yin, Madeleine Sheehan, Sidney Feygin, Jean-François Paiement, and Alexei Pozd-
 593 noukhov. A generative model of urban activities from cellular data. *IEEE Transactions on Intel-
 594 ligent Transportation Systems*, 19(6):1682–1696, 2017.

595

596 Yong Yu, Xishi Si, Chunyan Hu, and Jianxun Zhang. A review of recurrent neural networks: Lstm
 597 cells and network architectures. *Neural Computation*, 31(7):1235–1270, 2019. doi: 10.1162/
 598 neco_a_01199.

599

600 H. Zhang et al. Epidemic versus economic performances of the covid-19 lockdown: A big data
 601 driven analysis. *Cities*, 120:103502, 2022. doi: 10.1016/j.cities.2021.103502.

594 Y. Zhu et al. Controltraj: Controllable trajectory generation with topology-constrained diffusion
595 model. *arXiv*, 2024.
596

597 Yuanshao Zhu, Yongchao Ye, Ying Wu, Xiangyu Zhao, and James Yu. Synmob: Creating high-
598 fidelity synthetic gps trajectory dataset for urban mobility analysis. *Advances in Neural Informa-*
599 *tion Processing Systems*, 36:22961–22977, 2023a.

600 Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James J. Q. Yu.
601 Difffraj: Generating gps trajectory with diffusion probabilistic model. In *Ad-*
602 *vances in Neural Information Processing Systems 36 (NeurIPS 2023)*, 2023b.
603 URL https://proceedings.neurips.cc/paper_files/paper/2023/cd9b4a28fb9eebe0430c3312a4898a41-Paper-Conference.pdf.
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A APPENDIX**649 **A.1 EVALUATION METRICS**

650 To quantify the fidelity of the generated trajectories, besides the use of density JS-divergence, we
 651 also employed two trajectory(line)-level evaluation metrics: DTW and Fréchet distance. DTW
 652 aligns trajectories in time and is robust to local temporal shifts, highlighting point-wise spatiotem-
 653 poral fidelity. Fréchet distance, in contrast, evaluates the closest continuous matching of two curves
 654 and is more sensitive to global path geometry. Using both metrics provides a comprehensive view:
 655 DTW captures fine-grained temporal accuracy, while Fréchet complements it by emphasizing over-
 656 all spatial shape consistency. The definitions are shown as follows:

657 **Aggregated-level: Jensen–Shannon (JS) Divergence of Spatial Density.** Let $p(\mathbf{s})$ and $q(\mathbf{s})$ be
 658 the normalized 2-D spatial density maps (kernel–smoothed or mesh–count histograms) of the real
 659 and generated trajectories, respectively. The JS divergence is the symmetrized and smoothed version
 660 of the Kullback–Leibler divergence:

$$661 \text{JS}(p \parallel q) = \frac{1}{2} \text{KL}(p \parallel \frac{p+q}{2}) + \frac{1}{2} \text{KL}(q \parallel \frac{p+q}{2}), \quad (5)$$

662 where $\text{KL}(p \parallel m) = \sum_{\mathbf{s}} p(\mathbf{s}) \log \frac{p(\mathbf{s})}{m(\mathbf{s})}$. This metric measures how well the synthetic data reproduces
 663 the population-level geographical distribution of movements; lower values indicate closer global
 664 density.

665 **Trajectory-level: Dynamic Time Warping (DTW).** Given two trajectories $A = \{a_1, \dots, a_m\}$
 666 and $B = \{b_1, \dots, b_n\}$, where $a_i, b_j \in \mathbb{R}^2$ are latitude–longitude points, DTW finds an alignment
 667 path $\pi = \{(i_k, j_k)\}_{k=1}^K$ with $i_1 = j_1 = 1$ and $i_K = m, j_K = n$, that minimizes the cumulative
 668 Euclidean distance

$$669 \text{DTW}(A, B) = \min_{\pi} \left\{ \sum_{k=1}^K \|a_{i_k} - b_{j_k}\|_2 \right\}. \quad (6)$$

670 The alignment allows non-linear warping in the time dimension, making DTW robust to local speed
 671 or sampling differences and highlighting fine-grained spatiotemporal fidelity.

672 **Trajectory-level: Continuous Fréchet Distance.** For the same curves A and B interpreted as
 673 continuous functions $\alpha, \beta : [0, 1] \rightarrow \mathbb{R}^2$, The Fréchet distance is

$$674 \text{Fr}(A, B) = \inf_{\phi, \psi} \max_{t \in [0, 1]} \|\alpha(\phi(t)) - \beta(\psi(t))\|_2, \quad (7)$$

675 where ϕ and ψ range over all continuous, non-decreasing re-parameterizations of $[0, 1]$. Intuitively,
 676 it is the minimum leash length required for a person and a dog to walk along the two curves without
 677 backtracking. Unlike DTW, Fréchet does not explicitly align discrete time stamps; it captures overall
 678 geometric similarity and is sensitive to global path shape.

679 **Summary of Usage.** For every generated trajectory we compute DTW and Fréchet distances to its
 680 nearest ground-truth neighbor and report the **median**, **mean**, and **10th/90th percentiles (P10/P90)**
 681 to capture both typical accuracy and dispersion of errors across the distribution.

682 Fréchet distances capture geometric deviations, whereas DTW captures temporal misalignment.
 683 DTW explicitly aligns sequences in the time dimension - it penalizes trajectories that are spatially
 684 similar but temporally mismatched. Computing these metrics enables us to capture both geometry
 685 and temporal mismatching.

686 In addition, we report P10 and P90 alongside the median to capture the model’s robustness across the
 687 long-tailed complexity of human mobility: human mobility is usually long-tail, reporting only the
 688 Median (Central Accuracy) may mask model failures on complex outliers. By reporting P10/P90
 689 (extreme/long-tail case), we demonstrate that TrajFlow remains stable and accurate even for the
 690 long-tail part trajectories, rather than just fitting the easy majority.

691 Together, JS divergence evaluates aggregated-level spatial consistency, while DTW and Fréchet
 692 jointly measure individual-path fidelity from complementary temporal and geometric perspectives.

702 A.2 DATA COMPRESSION ALGORITHMS
703704 A.2.1 CANDIDATE ALGORITHMS
705706 We evaluate seven representative parameterization (data–harmonization) methods implemented in
707 our codebase:

708 a) **direct_k**: Arc–length reparameterization followed by uniform sampling of K points along
709 $[0, 1]$.
710
 b) **dct**: Discrete Cosine Transform (DCT-II) of the arc–length–uniform curve for $x(t)$ and
711 $y(t)$; keep the first DCT_M coefficients.
712
 c) **rdp_k**: Ramer–Douglas–Peucker harmonization with a binary search on the tolerance so
713 that the simplified polyline contains approximately K vertices; if necessary, linearly inter-
714 polate to exactly K points.
715
 d) **anchor**: Least–squares spline fitting with automatically detected “anchors” (including end-
716 points) that receive a large weight w_{anchor} in the fitting.
717
 e) **spline_lsq**: Least–squares spline fitting with uniform weights (no anchors).
718
 f) **dct_deviation**: Take the straight line connecting start and end points as a baseline; apply
719 DCT to the perpendicular deviation sequence and retain $2K - 4$ coefficients together with
720 the endpoints.
721
 g) **fft_complex**: Represent the curve as $z = x + iy$, apply FFT, and keep the first K complex
722 coefficients.
723

725 The RDP algorithm simplifies a trajectory by recursively removing points that lie within a distance
726 threshold ϵ of the line segment connecting their neighboring points, while preserving the essential
727 geometric shape of the trajectory. Formally, given the ground-truth GPS trajectory dataset $\mathcal{X} =$
728 $\{\text{traj}_x^1, \text{traj}_x^2, \dots, \text{traj}_x^m\}$, each trajectory $\text{traj} = (l_0, l_1, \dots, l_n)$ is processed as follows:
729

730 **Algorithm 1** Ramer–Douglas–Peucker (RDP) Algorithm
731

```

1: function RDP( $\text{traj}, \epsilon$ )
2:    $d_{\max} \leftarrow 0$ 
3:    $\text{index} \leftarrow 0$ 
4:    $\text{end} \leftarrow \text{length}(\text{traj}) - 1$ 
5:   for  $i = 1$  to  $\text{end} - 1$  do
6:      $d \leftarrow \text{perpendicularDistance}(\text{traj}[i], \text{line}(\text{traj}[0], \text{traj}[\text{end}]))$ 
7:     if  $d > d_{\max}$  then
8:        $\text{index} \leftarrow i$ 
9:        $d_{\max} \leftarrow d$ 
10:      end if
11:    end for
12:    if  $d_{\max} > \epsilon$  then
13:       $\text{results1} \leftarrow \text{RDP}(\text{traj}[0 \dots \text{index}], \epsilon)$ 
14:       $\text{results2} \leftarrow \text{RDP}(\text{traj}[\text{index} \dots \text{end}], \epsilon)$ 
15:      return  $\text{concatenate}(\text{results1}[0 \dots -1], \text{results2})$ 
16:    else
17:      return  $[\text{traj}[0], \text{traj}[\text{end}]]$ 
18:    end if
19:  end function

```

751 A.2.2 EXPERIMENTS WITH DIFFERENT PARAMETERS
752753 To evaluate the influence of trajectory–harmonization granularity, we compared seven parame-
754 terization methods—`direct_k`, `dct`, `rdp_k`, `anchor`, `spline_lsq`, `dct_deviation`, and
755 `fft_complex`—under four target point budgets ($K \in \{5, 10, 20, 30\}$) — while the original length
is 120, representing compression ratios of approximately $\{4.2\%, 8.3\%, 16.7\%, 25.0\%\}$ respectively.

756 For each configuration we report the mean Dynamic Time Warping (DTW) and Fréchet distance
 757 (Table 2), and visualize qualitative differences in Figures. 6 & 7 & 8 & 9.
 758

759 Overall, RDP-based simplification (`rdp_k`) consistently achieves the lowest trajectory-level errors,
 760 with average DTW decreasing from ≈ 2.77 at $K=5$ to ≈ 0.59 at $K=30$, and Fréchet distance
 761 dropping from ≈ 0.058 to ≈ 0.015 . The closely related spline least-squares (`spline_lsq`) and
 762 DCT methods follow as the next best performers. Fourier-based `fft_complex` and deviation-only
 763 DCT are markedly worse, reflecting their sensitivity to high-frequency noise.
 764

765 Increasing the point budget unsurprisingly improves accuracy for all algorithms, but the gains taper
 766 beyond $K=20$: DTW and Fréchet for `rdp_k` improve only marginally from $K=20$ to $K=30$.
 767 Visual inspection (Figures. 6 & 7 & 8 & 9) confirms that $K=10$, i.e., 16.7% compression rate, already
 768 captures the salient geometry of typical trajectories while preserving the strong compression
 769 benefits required for efficient training. Based on this analysis, we adopt RDP with $K=10$ as the
 770 default harmonization setting for TrajFlow, striking a practical balance between trajectory fidelity
 771 and computational cost.
 772

773 We highlight two necessities of RDP in our tasks:
 774

- 775 • RDP is used only as a dimensionality-reduction method. We compress each raw trajectory
 776 (often around 120 points) into a smaller set of keypoints (around 10). This compact
 777 representation greatly improves flow-matching training efficiency and stability, especially
 778 across multiple spatial scales.
- 779 • RDP provides the best balance between compression ratio and reconstruction accuracy. As
 780 shown in our ablation study, RDP achieves lower DTW and Fréchet distances than alternatives
 781 such as DCT, spline fitting, or FFT. This ensures that the simplified representation
 782 maintains high spatial fidelity before the interpolation step.

783 Table 2: Reconstruction Performance (Avg DTW/Fréchet, unit=km). Best (lowest) values in **bold**.
 784

Method	Param 5		Param 10		Param 20		Param 30	
	DTW	Fréchet	DTW	Fréchet	DTW	Fréchet	DTW	Fréchet
direct_k	3.78	0.0908	1.54	0.0430	0.79	0.0205	0.66	0.0155
dct	3.23	0.0814	1.24	0.0326	0.69	0.0150	0.61	0.0137
rdp_k	2.77	0.0580	0.95	0.0219	0.61	0.0143	0.59	0.0150
anchor	16.42	0.3333	1.75	0.0405	0.76	0.0191	0.61	0.0138
spline_lsq	3.11	0.0665	1.22	0.0271	0.68	0.0150	0.61	0.0136
dct_deviations	4.66	0.0951	4.06	0.0874	4.15	0.0842	5.17	0.1025
fft_complex	28.32	0.4655	24.11	0.5120	25.59	0.6054	25.43	0.6363

791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

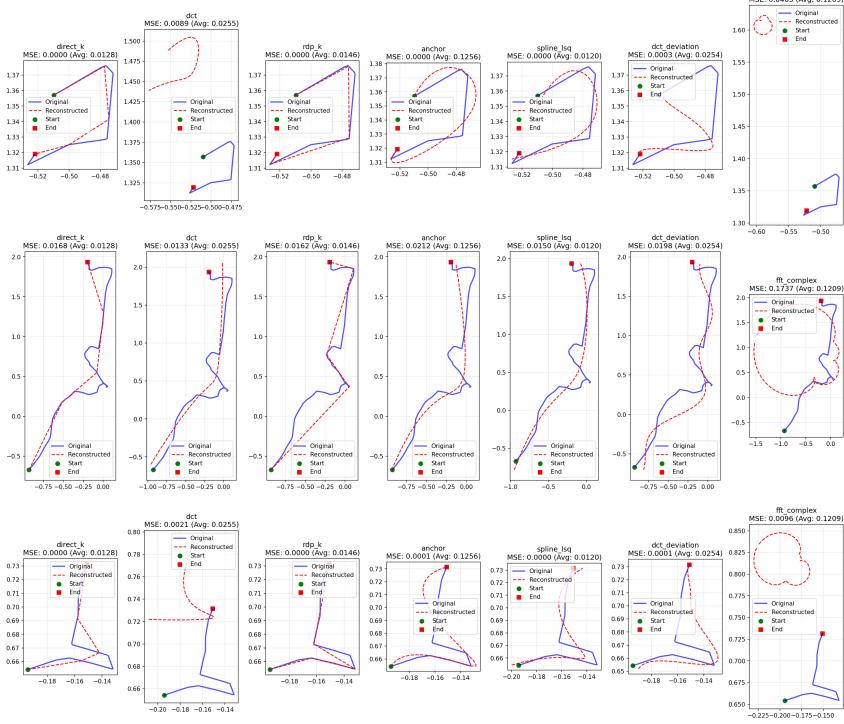


Figure 6: Parameter Number = 5

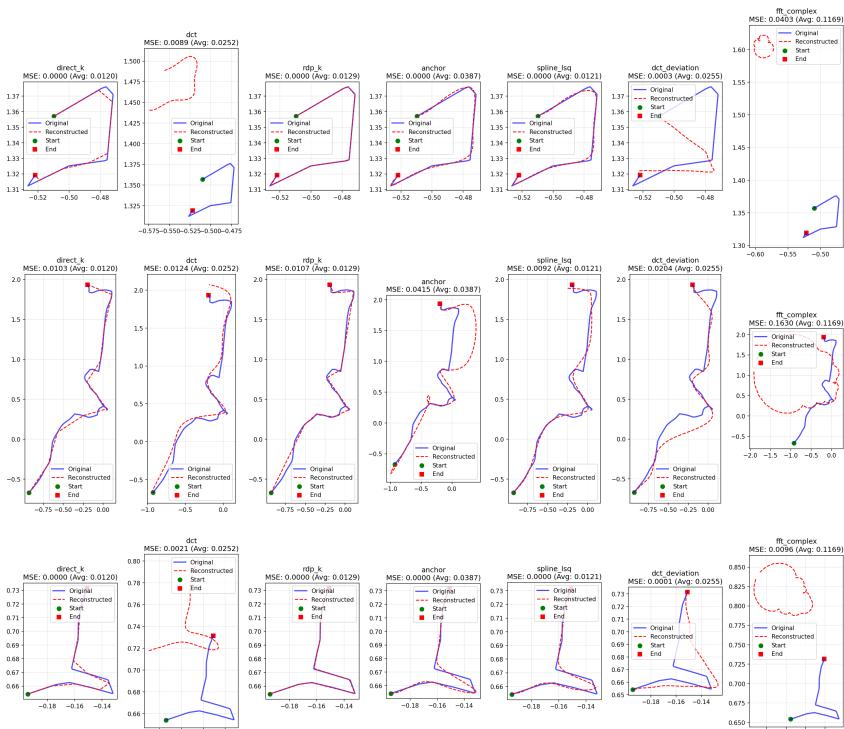


Figure 7: Parameter Number = 10

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

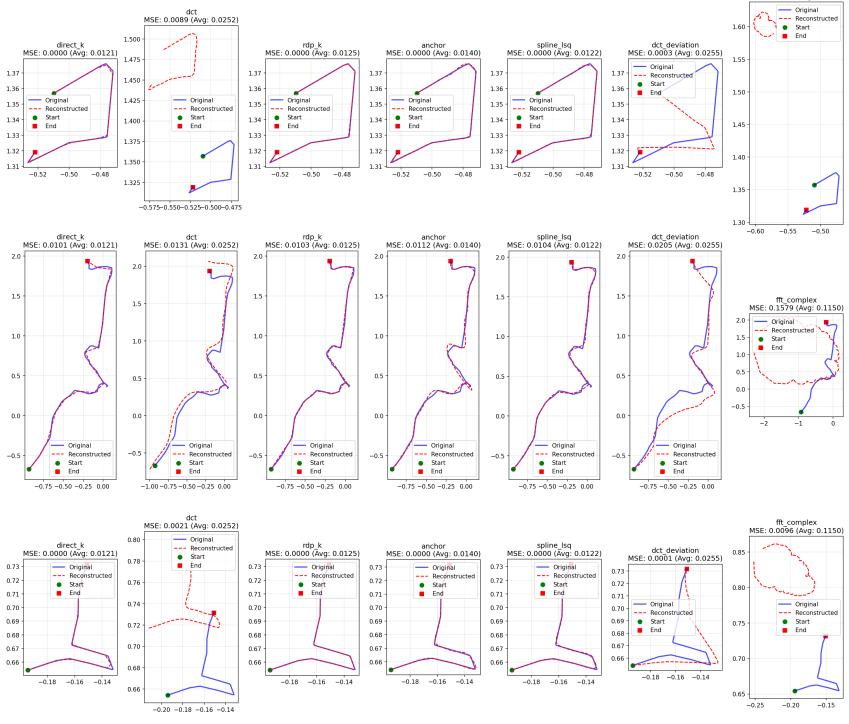


Figure 8: Parameter Number = 20

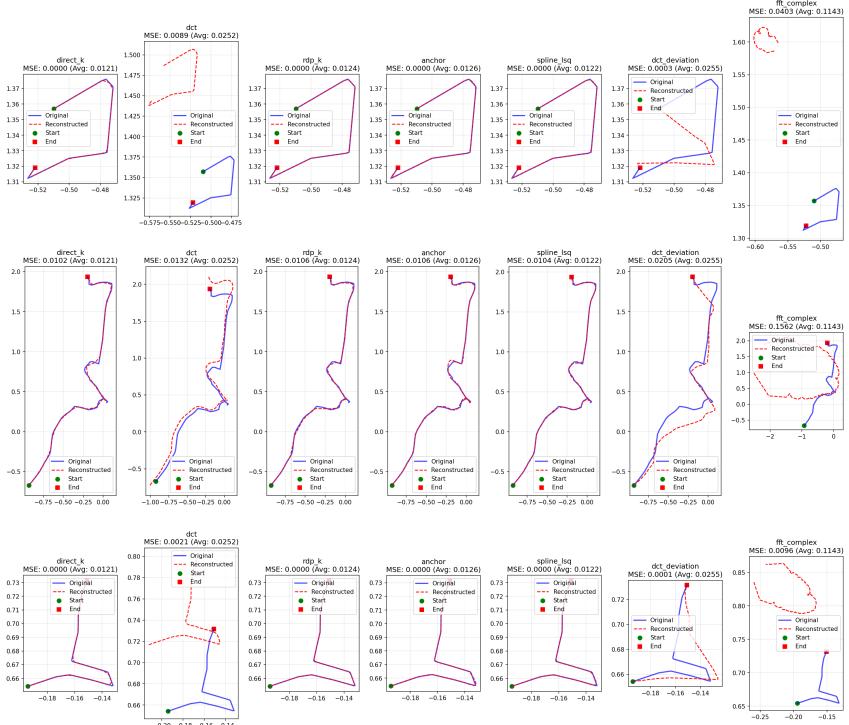


Figure 9: Parameter Number = 30

918 **B ADDITIONAL COMPARISON WITH DENOISING DIFFUSION MODELS**
919

920 One possible concern is that diffusion models might achieve comparable performance to *TrajFlow*
 921 if trained or sampled with a larger number of steps, rather than using the same limited steps as
 922 in flow matching. Our experiments confirm that increasing the number of steps indeed improves
 923 performance; for instance, with 300 steps, diffusion models approach the performance of the pro-
 924 posed method, although they remain slightly inferior (Table 3). Notably, while further increasing
 925 the number of steps might eventually surpass *TrajFlow*, this underscores the key advantage of our
 926 flow-matching-based approach: it achieves high fidelity while maintaining superior efficiency.

927 Table 3: *TrajFlow-w/o-FM* performance with different training/sampling steps (unit: km). Best
 928 metric in **bold**.
 929

Method	Density JS ↓	DTW _{med} ↓	Fr _{med} ↓	DTW _{IQR} ↓	DTW _{P10} ↓	DTW _{P90} ↓	Fr _{IQR} ↓	Fr _{P10} ↓	Fr _{P90} ↓
<i>Central Tokyo</i>									
TrajFlow (ours)	0.0674	20.350	0.304	13.392	10.574	39.119	0.174	0.200	0.674
TrajFlow-w/o-FM (steps=10)	0.3213	362.611	5.844	794.886	86.305	2096.804	14.045	1.149	37.590
TrajFlow-w/o-FM (steps=50)	0.2923	263.889	4.390	694.411	64.512	1827.793	12.156	0.855	32.903
TrajFlow-w/o-FM (steps=100)	0.2269	142.836	2.363	303.280	38.252	749.346	5.244	0.519	12.811
TrajFlow-w/o-FM (steps=200)	0.1208	36.434	0.583	49.489	15.035	130.881	0.975	0.247	2.437
TrajFlow-w/o-FM (steps=300)	0.0807	24.303	0.349	19.773	11.768	57.728	0.331	0.211	1.049
<i>Tokyo Metropolis</i>									
TrajFlow (ours)	0.1239	18.167	0.335	16.892	7.678	44.316	0.333	0.130	0.933
TrajFlow-w/o-FM (steps=10)	0.3833	470.857	7.668	994.283	154.963	3179.940	17.724	2.069	54.807
TrajFlow-w/o-FM (steps=50)	0.3657	429.968	6.866	951.462	115.913	2935.618	16.754	1.555	50.237
TrajFlow-w/o-FM (steps=100)	0.3351	344.806	5.774	781.324	84.420	2006.533	13.825	1.118	36.338
TrajFlow-w/o-FM (steps=200)	0.2600	139.901	2.423	163.029	45.480	416.262	3.040	0.644	7.104
TrajFlow-w/o-FM (steps=300)	0.1690	33.035	0.546	34.456	11.806	84.754	0.653	0.186	1.527
<i>Japan</i>									
TrajFlow (ours)	0.2270	10.977	0.192	18.221	3.984	55.964	0.361	0.072	1.119
TrajFlow-w/o-FM (steps=10)	0.5808	495.961	7.901	969.032	166.495	3267.659	17.900	2.276	56.966
TrajFlow-w/o-FM (steps=50)	0.5632	367.991	5.821	738.327	117.033	2585.896	13.551	1.512	45.142
TrajFlow-w/o-FM (steps=100)	0.5220	210.646	3.344	407.453	70.677	1332.320	7.386	0.996	23.968
TrajFlow-w/o-FM (steps=200)	0.3856	55.417	0.847	88.626	19.797	263.442	1.619	0.311	4.622
TrajFlow-w/o-FM (steps=300)	0.3047	26.125	0.412	36.912	9.376	113.981	0.700	0.151	2.094

948 Beyond the accuracy performance, we also compared the inference efficiency (time cost) between
 949 the proposed method and diffusion-based version (*TrajFlow-w/o-FM*). As Figure. 10 and Table. 4
 950 shows, the flow matching-based approach has a much higher efficiency than the diffusion-based
 951 approach. Specifically, the diffusion-based version requires over 30x more inference time-cost while
 952 achieving accuracy levels that are comparable yet still lower than *TrajFlow*.
 953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

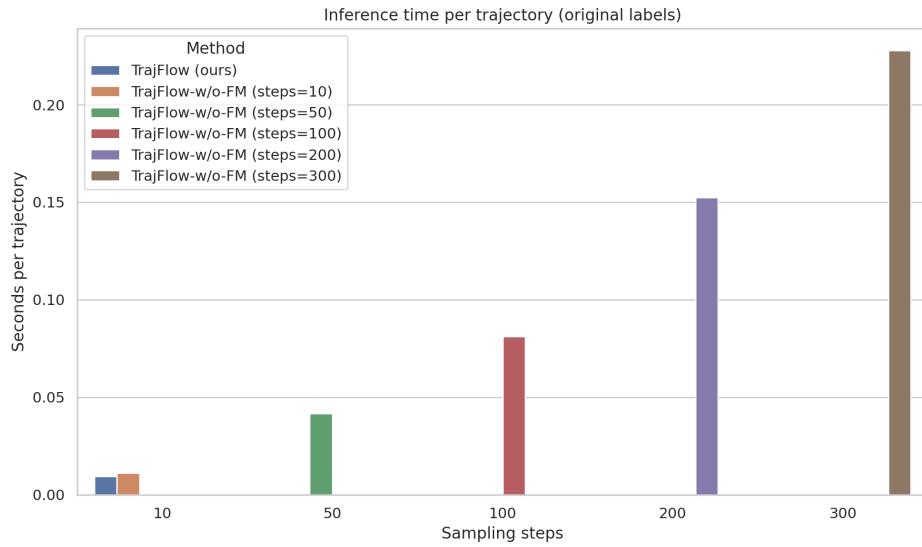


Figure 10: Bar plot for time cost comparison in inference stage.

Table 4: Comparison table for time cost in inference stage.

Region	Method	Steps	Sec/Sample	Sampling Sec	Total Sec
Central Tokyo	TrajFlow	10	0.0097	0.9696	4.8912
Central Tokyo	TrajFlow-w/o-FM (steps=10)	10	0.0100	1.0039	4.9646
Central Tokyo	TrajFlow-w/o-FM (steps=50)	50	0.0382	3.8235	7.7105
Central Tokyo	TrajFlow-w/o-FM (steps=100)	100	0.0761	7.6105	11.5326
Central Tokyo	TrajFlow-w/o-FM (steps=200)	200	0.1585	15.8546	19.8442
Central Tokyo	TrajFlow-w/o-FM (steps=300)	300	0.2237	22.3682	26.3010
Tokyo Metropolis	TrajFlow	10	0.0097	0.9735	4.8695
Tokyo Metropolis	TrajFlow-w/o-FM (steps=10)	10	0.0135	1.3465	5.7994
Tokyo Metropolis	TrajFlow-w/o-FM (steps=50)	50	0.0474	4.7377	8.6324
Tokyo Metropolis	TrajFlow-w/o-FM (steps=100)	100	0.0816	8.1608	12.1447
Tokyo Metropolis	TrajFlow-w/o-FM (steps=200)	200	0.1474	14.7445	18.6668
Tokyo Metropolis	TrajFlow-w/o-FM (steps=300)	300	0.2356	23.5593	27.5961
Japan	TrajFlow	10	0.0086	0.8575	4.7650
Japan	TrajFlow-w/o-FM (steps=10)	10	0.0095	0.9466	4.8438
Japan	TrajFlow-w/o-FM (steps=50)	50	0.0391	3.9072	7.8493
Japan	TrajFlow-w/o-FM (steps=100)	100	0.0860	8.6031	12.5301
Japan	TrajFlow-w/o-FM (steps=200)	200	0.1515	15.1521	19.0516
Japan	TrajFlow-w/o-FM (steps=300)	300	0.2240	22.4007	26.6460

1026
1027

C TRANSPORTATION-MODE DIVERSITY

1028
1029
1030
1031
1032
1033

Figures 11 and Figure 12 compare the generated trajectories of our model with the ground truth in four modes of transport. Mode diversity is much more pronounced within Tokyo, where travelers frequently switch among walking, cycling, buses, subways, private cars, and multiple rail systems. In contrast, on nationwide trips, mobility patterns are dominated by a much smaller set of modes (primarily long-distance trains), while local segments are typically sparse or not captured at the same granularity.

1034
1035

C.1 URBAN-WIDE(TOKYO)

1036
1037
1038
1039
1040
1041

In the ground-truth data, distinct patterns emerge: train trips typically span larger spatial scales and extend to the outskirts of Tokyo; car trips are also long but more concentrated in central areas; bike and walk trips both cluster within local communities, though with different levels of continuity. These diverse modal behaviors are well reproduced by our model, demonstrating its ability to capture transportation-mode heterogeneity.

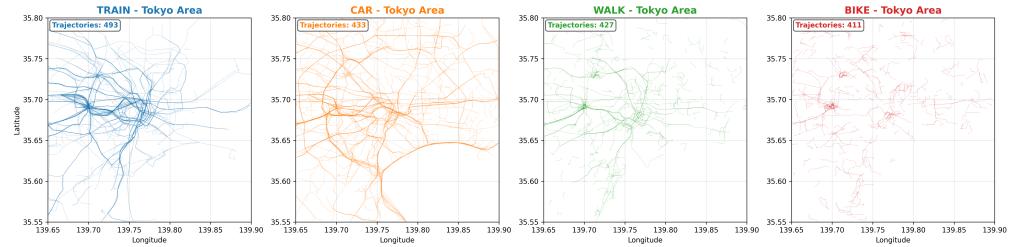
1042
1043

C.2 NATION-WIDE (JAPAN)

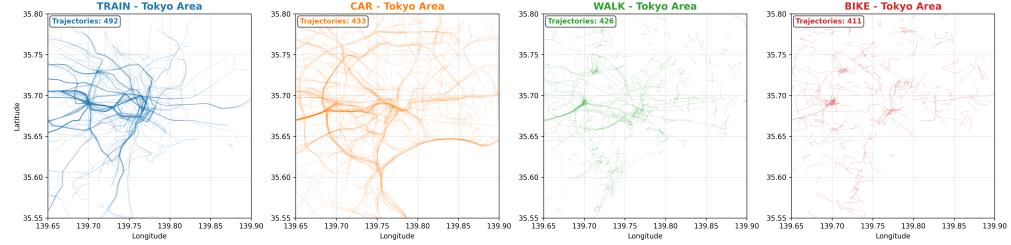
1044
1045
1046

In the ground-truth data, we find that the train trajectories show more concentrate which is reasonable - the choices for long-distance railway network is limited, and car trajectories show more diverse routes. Most walk and bike trajectories are limited in local area.

1047



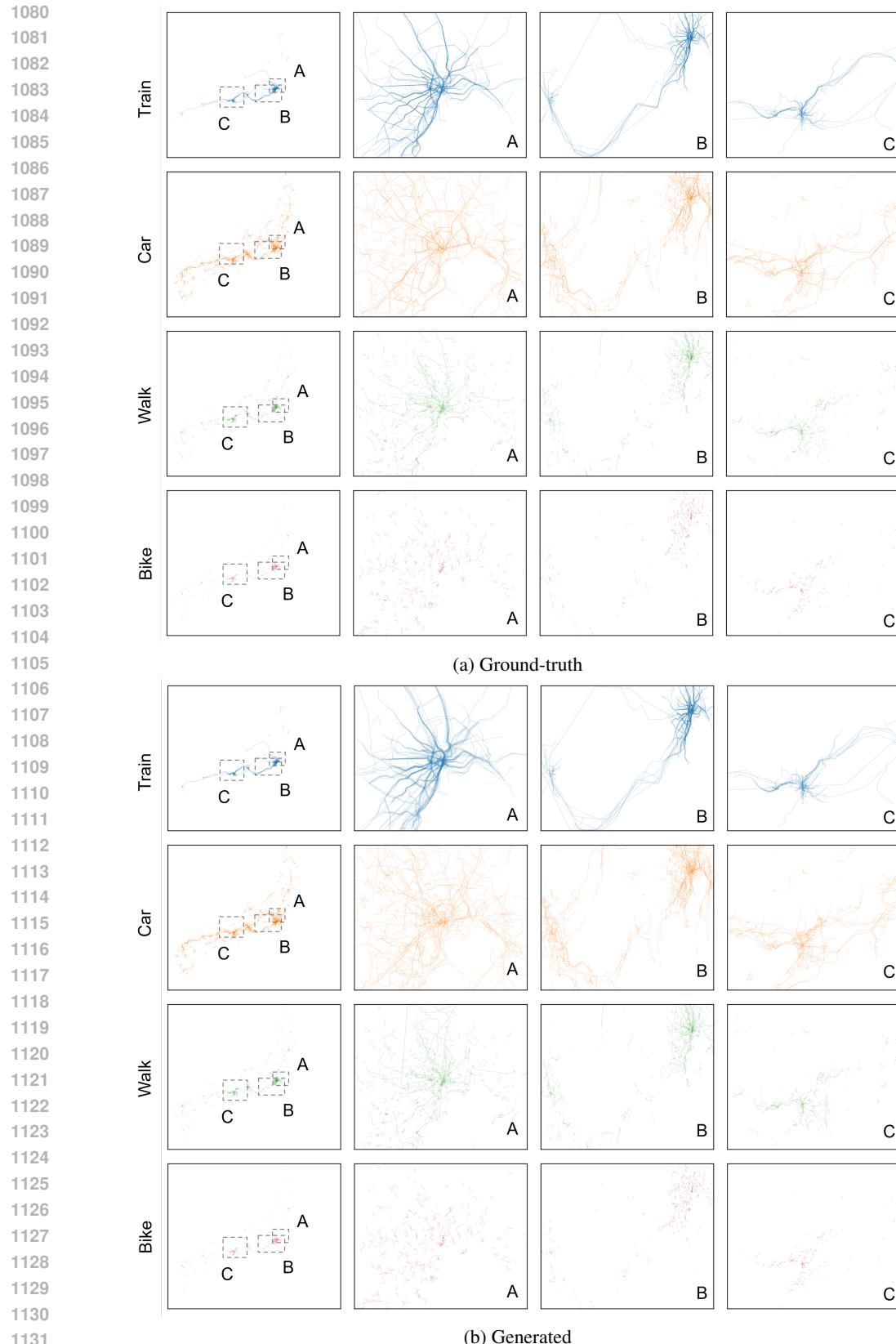
(a) Ground truth (Tokyo).

1048
1049
1050
1051
1052
1053
1054
1055

(b) Generated (Tokyo).

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 11: Transportation-mode diversity visualization: GT vs. Gen in Tokyo.



1131
1132
1133 Figure 12: The capability to generate GPS trajectories under given transportation mode conditions. Ground-truth nation-wide trajectories shown with zoomed views highlighting three representative regions: (A) Tokyo Metropolis, (B) Tokaido Area, and (C) Kansai Area, across various transportation modes: Train, Car, Walk, Bike **(a)** shows the ground-truth trajectories. **(b)** shows the generated.

1134
1135

D REPRODUCIBILITY

1136

D.1 DATASET INFORMATION

1138 In accordance with the data policy of Blogwatcher Inc., the complete ground-truth BlogWatcher
 1139 dataset can only be accessed through a strict application process. *Although the dataset used in our*
 1140 *study originates from a single data provider, it is sourced from over 140 independent mobile applica-*
 1141 *tions (as noted on <https://www.blogwatcher.co.jp/>), ensuring substantial diversity in data collection.*
 1142 *Because comparable multi-scale datasets are not publicly available, we are unable to benchmark*
 1143 *TrajFlow on alternative nationwide or multi-level datasets. The dataset we used spans the period*
 1144 *from January 2023 to December 2023 and contains approximately 3,000,000 (3 million) trajectories*
 1145 *across Japan. For our experiments, we derive three subsets of different spatial scales: (1) Tokyo*
 1146 *City, (2) Tokyo Metropolis, and (3) Nationwide.*

uid	segment_id	trans_mode1	trans_mode2	time	lat	lon
...	1	STAY	STAY	2023/2/6 0:00	35.9497	139.5576
...	1	STAY	STAY	2023/2/6 0:15	35.9497	139.5576
...
...	2	MOVE	TRAIN	2023/2/6 0:36	36.2269	114.1721
...
...	3	MOVE	WALK	2023/2/6 0:59	36.7236	114.4598

1137
1138 Table 5: Example rows of the dataset we used. (Note: this example data is only for showing data
 1139 format without real lat/lon values.)

1140 Each trajectory is pre-segmented according to transportation mode. The data fields relevant to this
 1141 study are summarized in Table 5. Here, `uid` denotes an anonymized user identifier; however, we
 1142 do not utilize any user-level identifiers in this work to avoid potential privacy concerns. The field
 1143 `segment_id` indexes individual trajectory segments; `trans_mode1` distinguishes between `STAY`
 1144 and `MOVE` states, and we use only the `MOVE` segments. The field `trans_mode2` provides fine-
 1145 grained transportation modes such as `TRAIN`, `CAR`, `WALK`, and `BIKE`. Within movement segments,
 1146 GPS points are recorded at an average interval of at least one minute.

1147 To validate our method in open source dataset, we additionally evaluate on two open-source datasets
 1148 in Chengdu and Xi'an, see Section E in the Appendix. In addition, a portion of the processed demo
 1149 data, together with the implementation and generated results, will be made publicly available upon
 1150 acceptance of this work.

1151

D.2 MODEL ARCHITECTURE

1152 **Backbone:** We employ a U-Net Architecture as the vector field estimator.

- 1153 **Dimensions:** Base channels = 128. Channel multipliers = [1, 2, 2, 2].
- 1154 **Structure:** Two residual blocks per stage with SiLU activation. Attention mechanisms are
 1155 applied at resolution 16.
- 1156 **Embeddings:** Timestep embedding dimension is 512 (4× base channels). Hidden dimension
 1157 for condition embeddings is 512.

1158 **Conditioning (Wide & Deep):** We utilize a "Wide & Deep" architecture to encode heterogeneous
 1159 inputs:

- 1160 **Wide Component:** Linear projection of continuous features (e.g., speed, distance).
- 1161 **Deep Component:** Categorical embeddings for Departure Time (288 bins), Origin/Destination
 1162 IDs, and Transportation Modes (5 classes).
- 1163 **Fusion:** The outputs are fused into a 128-dimensional condition vector, which is injected
 1164 into the U-Net residual blocks via cross-attention or additive projection.

1165

D.3 TRAINING CONFIGURATION

- 1166 **Optimizer:** Adam optimizer ($\beta_1 = 0.9, \beta_2 = 0.999$) with no weight decay.

- **Learning Rate:** Initial learning rate set to 1×10^{-4} . We use a ReduceLROnPlateau scheduler (factor=0.5, patience=200) monitoring validation loss.
- **Batch Size:** 256 trajectories per GPU.
- **Training Budget:** Up to 500 epochs with Early Stopping (patience=5000 steps, delta= $1e^{-6}$).
- **Regularization:** We apply random condition dropout (Classifier-Free Guidance) during training to prevent overfitting and enable guidance during inference.

D.4 ALGORITHM SETTINGS

- **Trajectory Harmonization (RDP):** We use the Ramer-Douglas-Peucker (RDP) algorithm for compression.
 - Target keypoints $M = 10$.
 - Epsilon tolerance determined via binary search ($\epsilon_{tol} = 1e^{-5}$).
 - Max sequence length $L_{max} = 120$.
- **Flow Matching Solver:**
 - **Method:** Euler ODE integrator.
 - **Inference Steps:** 10 steps (step size = 0.1). This setting was chosen to balance fidelity and efficiency (approx. 0.01s per sample).
- **Diffusion Baseline (for comparison):** Linear β schedule ($1e^{-6}$ to $5e^{-2}$). DDIM sampler used with steps ranging from 10 to 300 for efficiency benchmarking.

D.5 COMPUTING ENVIRONMENT

All experiments were implemented in **PyTorch** and executed on a cluster of four **NVIDIA RTX 6000 Ada GPUs** (40GB memory each). The software environment includes CUDA 12.6 and Python 3.9.

E VALIDATION ON OPEN-SOURCE DATA

We report the results based on 1,000,000 trajectory samples for each city. For reference, the previous *DiffTraj* paper reported using 3,493,918 trajectories from Chengdu and 2,180,348 trajectories from Xi'an. Across both cities, *TrajFlow* maintains strong performance and exhibits trends consistent with our main results (see Table. 6).

Table 6: Evaluation grouped by region (unit = km). Best metric in **bold**.

Method	Density	JS ↓	DTW _{med} ↓	Fr _{med} ↓	DTW _{IQR} ↓	DTW _{P10} ↓	DTW _{P90} ↓	Fr _{IQR} ↓	Fr _{P10} ↓	Fr _{P90} ↓
<i>Chengdu</i>										
TrajFlow (ours)	0.211	35.911	0.547	29.418	15.839	72.048	0.392	0.279	0.959	
TrajFlow-w/o-OD	0.0809	3.696	0.123	2.847	2.180	8.904	0.117	0.0614	0.362	
TrajFlow-w/o RDP	0.206	34.687	0.540	30.020	14.650	69.999	0.383	0.266	0.957	
TrajFlow-w/o RDP & OD	0.0140	2.158	0.0525	0.896	1.519	3.278	0.0243	0.0354	0.0880	
TrajFlow-w/o Flow	0.208	36.457	0.561	30.017	15.948	73.523	0.397	0.278	0.975	
TrajFlow-w/o OD & Flow	0.0811	3.724	0.123	2.800	2.142	8.844	0.119	0.0618	0.365	
TrajFlow-w/o RDP & Flow	0.203	36.166	0.561	30.311	15.213	73.719	0.388	0.276	0.985	
DiffTraj (baseline)	0.0224	3.524	0.0944	1.563	2.312	5.460	0.0482	0.0606	0.161	
<i>XiAn</i>										
TrajFlow (ours)	0.284	43.457	0.564	35.390	16.948	79.586	0.379	0.277	0.897	
TrajFlow-w/o-OD	0.0820	2.565	0.0842	2.009	1.530	8.488	0.116	0.0453	0.395	
TrajFlow-w/o RDP	0.278	40.859	0.549	34.013	15.547	75.445	0.380	0.259	0.875	
TrajFlow-w/o RDP & OD	0.0056	1.111	0.0279	0.401	0.805	1.611	0.0120	0.0192	0.0443	
TrajFlow-w/o Flow	0.284	43.572	0.567	35.941	17.259	79.985	0.379	0.276	0.895	
TrajFlow-w/o OD & Flow	0.0819	2.354	0.0833	2.115	1.387	8.162	0.119	0.0448	0.395	
TrajFlow-w/o RDP & Flow	0.278	40.328	0.555	33.247	15.592	75.524	0.382	0.257	0.872	
DiffTraj (baseline)	0.0070	1.154	0.0284	0.494	0.773	1.750	0.0132	0.0193	0.0466	

1242 F DISTINCTION FROM EXISTING APPROACHES

1243 Our work introduces several key contributions that differentiate TrajFlow from existing trajectory-
 1244 generation approaches:

- 1245 • **First flow-matching model for GPS trajectory generation (methodological novelty).** Prior trajectory-generation methods—including recent diffusion-based models—rely on stochastic reverse-time SDE sampling and require tens to hundreds of denoising steps. In contrast, TrajFlow is the first model to apply the flow-matching paradigm to GPS trajectory generation. Moreover, we introduce a trajectory normalization scheme and a specialized architecture tailored for flow matching, enabling the model to better handle spatial heterogeneity and further improve generation performance.
- 1246 • **First nationwide-scale, multi-geospatial-level GPS generator (problem-level novelty).** Existing models are restricted to small urban or single-city settings due to spatial heterogeneity and instability. TrajFlow is the first model evaluated at urban, metropolitan, and nationwide scales, trained on millions of mobile-phone GPS trajectories across Japan, demonstrating robust generalization across heterogeneous regions.

1259 G PRACTICAL APPLICATION

1260 TrajFlow handles variable-length trajectories through a conditioning–reconstruction strategy rather
 1261 than asking the generative model to infer sequence length implicitly.

- 1262 • Fixed-length representation during training (Section 4.4). For stable batch training under flow matching, all trajectories are represented using a fixed maximum length with padding and validity masks. This allows the model to learn continuous spatial dynamics without being affected by sequence-length variability.
- 1263 • Explicit duration conditioning (Section 4.3). The model is conditioned on Travel Time and Departure Time, which provide explicit temporal context. Because trajectory duration is given as a conditioning variable, the model does not need to guess or estimate the temporal length.
- 1264 • Length-consistent reconstruction at inference. At generation time, the model predicts the spatial shape of the trajectory (via harmonized RDP points). The final trajectory is then reconstructed to the target duration using the provided Travel Time condition, ensuring that generated samples match the desired temporal length—whether 10 minutes or 2 hours.

1275 This strategy enables TrajFlow to robustly generate trajectories with diverse and accurate temporal
 1276 lengths while retaining a stable training process.

1296 **H PRIVACY ISSUE**
12971298 The inputs to our model are limited to departure time, origin–destination (OD) zones, and trans-
1299 portation mode, all of which are high-level, aggregated attributes that do not include or reveal any
1300 user-level identifiers (e.g., user IDs, device IDs, or fine-grained personal metadata). Therefore, the
1301 model is not exposed to information that could directly compromise individual privacy.
13021303 **I MEMORIZATION RISKS**
13041305 TrajFlow is designed to learn underlying mobility patterns (e.g., road network constraints, route
1306 choice) rather than memorizing specific coordinate sequences. Similar to diffusion/flow-matching
1307 models in computer vision—which learn the concept of an object rather than copying specific training
1308 images—our model generates trajectories by transforming Gaussian noise under OD and time
1309 conditions. The flow-matching process injects noise and learns a continuous probability flow from
1310 noise to data, making the generation inherently stochastic. As a result, each sample starts from a dif-
1311 ferent noise seed, and even with identical OD/time conditions, the model produces diverse and novel
1312 trajectories rather than retrieving or replicating any stored instance. This stochasticity, as in models
1313 like Stable Diffusion, ensures diversity and prevents deterministic copying of training trajectories.
13141315 In addition, to explicitly prevent the model from "memorizing" specific conditional mappings (over-
1316 fitting), we apply Classifier-Free Guidance (CFG) and dropout trick, which consists of a training
1317 regularization and an inference mechanism: Training (Condition Dropout): During training, we ran-
1318 domly mask the input conditions (OD/Time/Mode/etc.,) with a probability. This acts as a strong reg-
1319 ularizer, forcing the model to learn the general, unconditional distribution of human mobility rather
1320 than relying on specific conditions to retrieve stored instances. Inference (Guidance Formula): Dur-
1321 ing generation/inference, we compute a guided update using a weighted linear combination of the
1322 conditional and unconditional vector fields. This is the standard classifier-free guidance formula,
1323 which increases the model's sensitivity to the conditioning signal without causing the model to
1324 memorize specific condition–trajectory pairs. By adjusting the guidance weight, we can strengthen
1325 or relax condition adherence, enabling higher-quality and non-deterministic trajectory samples un-
1326 der the same conditions.
13271328 Third, empirically, we observed that the minimum DTW distances between generated samples and
1329 the training set are consistently non-zero. And even with the same condition, various routes could
1330 be generated.
13311332 **J ETHICS STATEMENT**
13331334 This work adheres to the ICLR Code of Ethics. All experiments were conducted on anonymized,
1335 large-scale mobile phone GPS trajectory data, which was used strictly in aggregated form and under
1336 strict privacy rules. No personally identifiable information (PII) or user-level attributes (e.g., age,
1337 gender, home–work identifiers, or persistent pseudonymous IDs) were accessed or utilized. Conse-
1338 quently, the model does not attempt to capture or infer individual preferences.
13391340 The proposed methods are designed to generate pseudo-GPS trajectories for research on mobility
1341 modeling and transportation systems, not to reconstruct or deanonymize individual user behavior.
1342 The use of RDP-based harmonization and OD-prediction modules is focused on improving compu-
1343 tational efficiency and trajectory-level fidelity, without compromising privacy.
13441345 We acknowledge that trajectory data can be sensitive, and inappropriate applications may raise con-
1346 cerns around surveillance or discriminatory use. To mitigate this, we limit our study to method-
1347 ological contributions and evaluation on aggregated data. Our scope is restricted to GPS trajectory
1348 generation (sequences of locations over time), rather than full human mobility modeling that would
1349 include activity semantics, trip-chain structure, or purpose-specific constraints.
13501351 We believe this research can benefit society by enabling scalable simulation tools for urban planning,
1352 transportation analysis, and disaster response, while respecting user privacy. All legal, ethical, and
1353 research integrity requirements have been followed in the preparation of this work.
1354