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Abstract

Over the past decade deep learning has revolutionized the field of computer vision, with
convolutional neural network models proving to be very effective for image classification
benchmarks. Given their widespread adoption, several works have attempted to analyze
their expressiveness, and study the class of functions that they can realize. However, a
fundamental theoretical questions remain answered: why can CNNs express discrete image
classification functions that involve feature extraction? We address this question in this
paper by introducing a novel mathematical model for image classification, based on feature
extraction, that can be used to generate images resembling real-world datasets. We show
that convolutional neural network classifiers can express a class of functions based on our
simplified model of image classification datasets. In our proof, we construct piecewise linear
functions that detect the presence of features, and show that they can be realized by a
convolutional network.

1 Introduction

Over the past decade, convolutional neural network architectures have led to breakthroughs in a range of
computer vision tasks, including image classification (12), object detection and semantic segmentation (21).
Architectures such as AlexNet (6), VGG (22) and ResNet (13) have empirically shown that large convolutional
neural networks can perform well on complex benchmarks such as ImageNet (3). While there has been
theoretical research attempting to explaining their success in this context, fully understanding the underlying
principles that contribute to their widespread adoption and effectiveness remains an open question.

From a mathematical perspective, two lines of work have emerged to theoretically explain the empirical
success of neural networks. The first line focuses on their expressiveness, and examines the class of functions
they can approximate. The second line investigates their learning capabilities, particularly their ability to
learn these functions using stochastic gradient descent, and establishes bounds on their generalization error.
The current work fits into the first category, and introduces a class of functions based on a simplified model of
real-world vision data. A key result in this field is the universal approximation theorem for neural networks,
which shows that they can approximate continuous functions with arbitrary precision (2), (14). While this
result indicates that neural networks are suitable for regression problems, a key open problem is to establish
an analogous result showing convolutional neural networks are suitable for discrete image classification tasks,
that require the extraction of features from the input image.

It is well-known that convolutional neural networks with ReLu activations compute piecewise linear functions,
and the complexity of these function classes has been studied in recent work (27), (16), (4), (17). Since their
inception in the 1990s, it has also been empirically established that convolutional networks excel at feature
extraction tasks (12). From a theoretical perspective, it is unclear why piecewise linear functions are effective
for feature extraction. By answering this question, our key results bridge the gap between existing theoretical
work analyzing the expressiveness of neural networks using piecewise linear functions, and empirical results
on the success of convolutional neural networks for computer vision problems.

Our contributions. To address these problems, in this paper we present a rigorous mathematical framework
that serves as a simplified model for image classification problems, which can be used to generate images
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resembling real-world datasets. Our approach is based on the observation that an object corresponds to a
set of constituent features. Intuitively, an object is present in an image precisely if one of the constituent
features are present, though the location of these features can vary.

We analyze the expressiveness of convolutional network classifier, and construct networks can solve these
image classification tasks perfectly, i.e. with zero error. In the proof, we construct piecewise linear functions
that detect the presence of feature in an image, and show that these functions can be realized by convolutional
neural networks. These piecewise linear functions are constructed by taking the sum of functions defined
on patches in the input images; each function detects whether or not the patch contains a relevant feature.
Our networks have several convolutional layers and one fully connected layers. The number of convolutional
filters needed increases linearly with the complexity of the constituent features.

The paper is organized as follows. In Section 2, we introduce the convolutional neural networks that will be
used and sketch the main results. In Section 3, we present our mathematical framework for image classification,
with examples illustrating that it can be used to model real-world data. In Section 4, we present our main
results on expressivness, showing that convolutional networks can realize this function class corresponding
to image classification tasks, and outline the proof by constructing piecewise linear functions that extract
features. In Appendix A, we perform an experimental analysis with our image classification framework, using
features extracted from Fashion-MNIST. In Appendix B, we provide detailed proofs of the main results.

Related work.

Approximation theory. In the 1990s, it was shown that a neural network with a single one hidden layer can
approximate any continuous function provided that its width is sufficiently large (2), (14). More recently,
analogous results were established for deep neural networks; it was proven that fully connected ReLu networks
with bounded width and unbounded depth can approximate continuous functions with arbitrary precision
(8), (11), (15). Similar results were established for deep convolutional neural networks in (28). While these
results give valuable insights, they do not explain why the class of continuous functions is suited for image
classification tasks that involve feature extraction.

Expressiveness of neural networks. Another line of work analyzes the number of linear regions in the piecewise
linear function that is computed by a neural network with ReLu activations (16), (19). Using combinatorial
results, they derive lower and upper bounds for the maximal number of linear regions in a fully connected
ReLu network with L hidden layers and pre-specified widths (23), (1), (9), (10). These results show that deep
fully connected networks can express functions with exponentially more linear regions than their shallower
counterparts (18), (24). Analogous results for deep convolutional networks were established recently (27).
Our work complements the above paper, by demonstrating that piecewise linear functions can also be use to
extract features and solve image classification tasks.

2 Preliminaries

In this section we introduce notation, for convolutional neural networks and image classification tasks, that
will be used throughout the paper.

2.1 Convolutional network architectures

Definition 2.1. We define the ReLu function σ, and the softmax function σ as follows. Here x = (x1, · · · , xd)
for some d.

σ(x)i = max(xi, 0) for x ∈ Rd

σ(x)i = exi∑k
i=1 exi

for x ∈ Rd ■

Definition 2.2. A fully connected layer with n1 input neurons and n2 output neurons consists of matrix
A ∈ Matn1,n2(R) and biases B ∈ Rn2 ; we refer to the pair W = (A, B) as the weights of the layer. We define
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the map ϕW : Rn1 → Rn2 as follows (here v ∈ Rn1).

ϕW (v) = σ(Av + B) ■

Definition 2.3. A convolutional filter is a k × l matrix w ∈ Matk,l(R), which induces the following map.
Here x ∈ Matm,n(R) and 1 ≤ m′ ≤ m − k + 1, 1 ≤ n′ ≤ n − k + 1.

ϕw : Matm,n(R) → Matm−k+1,n−k+1(R)

ϕw(x)m′,n′ =
∑

1≤k′≤k,1≤l′≤l

wk′,l′xk′+m′−1,l′+n′−1 ■

Definition 2.4. A convolutional layer consists of a set of convolutional filters w = (w1, · · · , wf ) and biases
b = (b1, · · · , bf ). Here wi ∈ Matk×l(R) and bi ∈ R for 1 ≤ i ≤ f ; we refer to the pair (w, b) as the weights of
the convolutional layer. The induced map is as follows.

ϕc
w : Matm×n(R) → Matm−k+1×n−k+1(R)⊕f

ϕc
w(x) = (σ(ϕw1(x) + b1), · · · , σ(ϕwf

(x) + bf ))

In the sum ϕwi
(x) + bi, the bias term bi is added to each co-ordinate of the matrix ϕwi

(x). ■

Definition 2.5. A flattening layer is a linear isomorphism as follows, given by identifying Matm′,n′(R) with
Rm′n′ .

ϕfl : Matm′,n′(R)⊕f → Rm′n′f ■

Definition 2.6. A convolutional neural network N consists of L convolutional layers, a flattening layer, and
L′ fully connected layers. Denote the weights of the i-th convolutional layer by (wi, bi), and the weights of
the i-th fully connected layer by Wi = (Ai, Bi). The induced function fN as follows. Here m and n denotes
the height and width of the input image, and l denotes the dimension of the output.

fN :Matm,n(R) → Rl

fN (x) = ϕWL′ ◦ · · · ◦ ϕW1 ◦ ϕfl ◦ ϕc
(w

L
,b

L
) ◦ · · · ◦ ϕc

(w1,b1)(x)

= (f1
N (x), · · · , f l

N (x))

We denote by fN the classification function corresponding to the convolutional neural network N .

fN : Matm,n(R) → [1, 2, · · · , l]
fN (x) = argmax

1≤i≤l
f i

N (x) ■

2.2 Image classification

For image classification tasks, the input image is represented by rectangular matrices whose entries are scaled
so their values between 0 and 1. Visually, the input image is divided into a rectangular grid, and the value of
an entry in the matrix represents the color present in the corresponding portion of the rectangular grid (for
instance, 0 could represent a white pixel, and 1 represents a black pixel).
Definition 2.7. Denote the input space as follows.

Xm,n = {x = (xi,j) ∈ Matm×n(R) | 0 ≤ xi,j ≤ 1} ■

While color images are typically represented using multiple channels, for simplicity we only consider images
which can be represented with a single channel (such as black-and-white images). We note however that it is
straightforward to extend the results of this paper to the multi-channel setting.

We formalize the image classification problem below, using a pre-specified set of image labels L (such as "cat",
"dog", etc). We restrict ourselves to a subset of the input space Xm,n, consisting only of those matrices that
correspond to one of the image labels. The objective is to construct an image classification map with zero
error.
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Definition 2.8. Let L be the finite set consisting of all image labels. For each image label l ∈ L, let X l
m,n

denote the set of all input matrices that contain the image corresponding to l. We assume that the sets
X l

m,n, X l′

m,n are disjoint if l ̸= l′. Denote by X L
m,n the set of all image matrices containing one of the images

in L.
X L

m,n =
⊔
l∈L

X l
m,n ■

Definition 2.9. An image classification map is a function f : X L
m,n → L. We say that the map f has zero

error if the following holds.
x ∈ X L

m,n ⇒ f(x) = l ■

We now give a sketch of the main results in this paper. For each label l ∈ L, we formally define the set
X l

m,n ⊂ Xm,n, by specifying parameters that describe the features present in the corresponding image. We
then construct a convolutional network classifier f : X L

m,n → L which has zero error, and present an upper
bound on the number of neurons that it contains. The details of these constructions will be presented in the
next section.

3 A mathematical framework for image classification

In this section, we present a rigorous mathematical framework for image classification problems and state our
main results.

3.1 Image classification

We start with the observation that an image consists of a set of features that define it (4), (17), (25). For
instance, a face consists of four typical features: a mouth, ears, eyes and nose. We proceed to rigorously
define a feature.

For simplicity, our model stipulates that each feature can be characterized by a finite collection of fixed
images. In the above example, a mouth would be defined by a set of distinct images, each of which resembles
a human mouth. We introduce the notion of a “feature tile" to describe the constituent images.
Definition 3.1. Given a matrix m ∈ Matm,n(R), define its support supp(m) as follows.

supp(m) = {(i, j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n; mi,j ̸= 0} ■

Definition 3.2. A feature tile T with dimension k × l is a pair T = (t, ϵ) with t ∈ Xk,l and ϵ > 0. ■

Definition 3.3. Given a feature tile T = (t, ϵ) with dimension k × l and an image x ∈ Xk,l define the quantity
t(x) as follows.

t(x) =
∑

(i,j)∈supp(t)

|xi,j − ti,j | ■

The quantity t(x) is used to determine whether or not the image x contains the tile T , with the parameter
ϵ bounding the discrepancy between the two. The sum is taken over supp(t) in the case where the feature
that T contains is not a full rectangle, but rather a subset of pixels inside a rectangle (i.e. the non-zero
coordinates of t contain the relevant feature). Below, we define the space of images X T

m,n containing the tile
T ; the subscripts [i + 1, i + k] × [j + 1, j + l] specifies the region of the input image that contains it.
Definition 3.4. Given a feature tile T = (t, ϵ) with dimension k × l, define X T ⊂ Xk,l and X T

m,n ⊂
Xm,n as follows. Given x ∈ Xm,n, below x[i+1,i+m],[j+1,j+n] denotes the sub-matrix with rows indexed by
[i + 1, · · · , i + m] and columns indexed by [j + 1, · · · , j + n].

X T = {x ∈ Xk,l | t(x) ≤ ϵ}
X T

m,n = {x ∈ Xm,n | ∃ i, j such that x[i+1,i+k],[j+1,j+l] ∈ X T } ■

We say that an input image contains an image I if it contains any of the constituent tiles corresponding to
that image, so the corresponding subset of Xm,n is given by taking the union.
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Definition 3.5. An image I is a set of feature tiles, I = {T1, T2, · · · , Tq}, with Ti = (ti, ϵi) for 1 ≤ i ≤ q.
Note that the dimensions of the tiles Ti need not be the same. Define X F

m,n, the space of all images Xm,n

containing the image I, as follows.

X F
m,n :=

q⊔
i=1

X Ti
m,n

Let s(F) = q be the number of feature tiles in the feature F . Define the quantity c(F) below.

c(F) =
q∑

i=1
|supp(ti)| ■

Our image classification problem will be defined by a set of images. To avoid ambiguity, the corresponding
set of image matrices will exclude any which contain multiple images (so the set X Ij

m,n ∩ X Ij′
m,n is excluded).

In other words, we stipulate that any input matrix contains only one image.
Definition 3.6. An image class I consists of a set of images I = {I1, · · · , Il}. Define X I

m,n to be the set
of images which corresponds to exactly one of the images in I.

X I
m,n =

l⋃
j=1

X Ij
m,n −

⋃
1≤j<j′≤l

X Ij
m,n ∩ X Ij′

m,n ■

3.2 Examples

Here we use the above framework to model a real-world image classification task, with two labels: "cat" and
"dog". Below we describe the defining features in more detail, and present examples from the image class that
resemble real-world data.

Both of the image classes are defined by a single feature. For each feature, we specify two feature tiles of
differing dimensions corresponding to the object. The "cat" (respectively, "dog") tiles are non-rectangular
pictures that were extracted from real-world images of cats (resp. dogs). Both features are depicted below.

Figure 1: Features for "cat" and "dog"

Using the above features as building blocks, we present four examples from the the two image classes in
the below figures. These examples are generated by superimposing one of the feature tiles above onto a
background image. Note that our framework does not impose any restrictions on the background image.
These resulting images are very realistic, and show that our framework can model a broad class of image
classification tasks for a suitable choice of parameters.
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Figure 2: Images from the "cat" class

Figure 3: Images from the "dog" class

While the above images show that our framework can generate interesting data in the case where each image
consists of a single feature, more complex images can be generated by increasing the number of features.
For instance, each of the two classes above could be divided into "eyes", "nose", "mouth" and "ears" features,
resulting in a larger variety of images.

3.3 Main results

In order to solve the image classification problem presented in Section 3, we need to construct a convolutional
network classifier that accurately predicts the labels of input matrices from X I

m,n. Our key result below
constructs such a classifier.

Intuitively, we expect that each convolutional layer will be used to help identify the constituent feature tiles
appearing in regions of the input image. The fully connected layers will be able to use the information
extracted in the convolutional layers to solve the image classification task. See the discussion in Appendix
A for more details about the number of parameters in the convolutional and fully connected layers of the
network N [I], expressed in terms of the image class I.

Theorem 1. Let I = {I1, · · · , Il} be an image class, such that each image Ij contains at most r features.
There exists a network N [I] with one convolutional layer and one fully connected layers such that the induced
classifier fN [I] : X I

m,n → I has zero error.

It is widely understood that the success of deep convolutional networks is due to the principle of hierarchical
compositionality (see (17)), whereby complex structures are obtained by combining simpler ones in a
hierarchical fashion. Deeper layers in the network can recognize more complex features, building upon the
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simpler features that were detected by earlier layers. Theorem 2 below, which is a variant of Theorem 1,
highlights this concept.

Theorem 2. Let I = {I1, · · · , Il} be an image class, such that each image Ij has size less than 2r for some r.
There exists a network C[I] with r convolutional layers and one fully connected layers such that the induced
classifier fC[I] : X I

m,n → I has zero error.

Convolutional neural networks compute piecewise linear functions, which leads us to the question of why
these classes of functions can separate different image classes. The first key step in the proof is to construct
piecewise linear function that can extract features from image, and detect whether or not an input matrix
contains a given image. More precisely, we show the following.

Proposition 1. Given an image I ∈ I, there exists a piecewise linear function ϕI(x) such that the following
statement holds.

ϕI(x) : Xm,n → R
ϕI(x) > 0 ⇔ x ∈ X I

m,n ■

The second key step in the proof of Theorem 1 is to show that these piecewise linear functions can be realized
using convolutional neural networks. The functions ϕI(x) are constructed by defining functions that can
detect the presence of features. We show that the latter functions can be realized by a single convolutional
layer with multiple filters. We then use a fully connected layer to realize ϕI(x) using these simpler functions.
The proof gives us additional insight into the functions of individual neurons in the convolutional neural
network.

In Appendix A, we conduct experiments with our image classification framework, focusing on special cases
with features extracted from MNIST and Fashion-MNIST. We find that convolutional neural networks trained
with stochastic gradient descent can achieve near-perfect accuracies in this context, provided that there is
sufficient training data.

4 Proofs

In this section we outline the proofs of the main results; see Appendix B for details.

4.1 Proof of Proposition 1: constructing piecewise linear functions for feature extraction

The feature tile is the fundamental building block of an image class. As a first step towards the construction
of ϕI(x) needed for Proposition 1, we start by defining a piecewise linear function ϕT (x) for a given feature
tile T , and show that an analogous statement holds in this setting.
Definition 4.1. We define Rm,n

k,l , which indexes all sub-rectangles of size k × l inside a larger rectangle of
size m × n as follows.

Rm,n
k,l = {(i, j) | i + k ≤ m, j + l ≤ n} ■

Definition 4.2. Given a feature tile T = (t, ϵ) and an image x ∈ Xm,n, define ϕT (x) as follows.

ϕT (x) =
∑

(i,j)∈Rm,n
k,l

max(0, ϵ − t(x[i+1,i+k],[j+1,j+l])) ■

Lemma 4.3. The following inequality holds.

ϕT (x) > 0 ⇔ x ∈ X T
m,n ■

Proof. The inequality can be deduced as follows. Here x ∈ Xm,n.

ϕT (x) > 0 ⇔
t(x[i+1,i+k],[j+1,j+l])) < ϵ for some (i, j) ∈ Rm,n

k,l

⇔ x[i+1,i+k],[j+1,j+l] ∈ X T for some (i, j) ∈ Rm,n
k,l

7



Under review as submission to TMLR

By definition, this is equivalent to saying that x ∈ X T
m,n.

Using the above Lemma, now we are define the piecewise linear function ϕI(x) with the desired property
from Proposition 1.
Definition 4.4. Given an image I = {T1, · · · , Tq} and an input matrix x ∈ Xm,n, define ϕI(x) as follows.

ϕI(x) =
∑

1≤i≤q

ϕTi(x) ■

Proof of Proposition 1. This can be deduced from Lemma 4.3 using the following argument. Note that since
ϕTi

(x) ≥ 0,
ϕI(x) =

∑
1≤i≤q

ϕTi
(x) > 0

if and only if ϕTi
(x) > 0 for some i. This is true precisely when x ∈ X Ti for some i. In other words, it is true

precisely when x ∈ X I
m,n.

4.2 Proof of Theorem 1: realizing piecewise linear functions via convolutional networks

To prove Theorem 1, the key step is to construct convolutional neural networks that express the piecewise
linear functions ϕIj (x). The image classification problem can then be solved using Proposition 1, which
was proven in the previous section. Since these functions are built from the corresponding functions ϕT (x)
for feature tiles, we start by showing that these can be expressed by a convolutional neural network. See
Appendix B for complete proofs.
Lemma 4.5. Let T = (t, ϵ) be a feature tile with dimension k × l. There exists a convolutional neural network
N [T ] with one convolutional layer and one fully connected layer such that the following holds.

fN [T ](x) = ϕT (x)
The convolutional layer of N [T ] has 4(|supp(t)| + 1) filters with 2 × 2 kernels, and the fully connected layer
has less than mn neurons. ■

Outline of proof.
ϕT (x) =

∑
(i,j)∈Rm,n

k,l

max(0, ϵ − t(x[i+1,i+k],[j+1,j+l]))

In the definition of ϕT (x) above, t(x[i+1,i+k],[j+1,j+l]) is a sum of the terms ||xi′,j′ − tu,v||.

||y − c|| = max(y − c, c − y) = σ(2y − 2c) − σ(y) + c for y, c ∈ R

Using the above identity, t(x[i+1,i+k],[j+1,j+l]) can also be expressed as a linear combination of the quantities
σ(xi′,j′) and σ(2xi′,j′ − 2tu,v), with a constant term. The latter quantities can be realized the outputs of a
convolutional layer. The quantity ϕT (x) can be then realized by adding a fully connected layer.

It is straightforward to extend the above Lemma to features, and construct convolutional neural networks
that express the piecewise linear functions ϕF (x) (see the Appendix B for a precise statement and proof).
Now we are ready to construct convolutional neural networks that express the piecewise linear functions
ϕIj (x), and outline the proof of Theorem 1.

Outline of proof of Theorem 1. For each image Ij , denote the constituent feature tiles as follows. Ij =
{T j

1 , · · · , T j
rj

}. By Lemma 4.6 and Definition 4.4, there exists networks N ′ and N ′′ such that the following
holds.

fN ′(x) = [ϕT 1
1

(x), · · · , ϕT 1
r1

(x), · · · , ϕT l
1
(x), · · · , ϕT l

rl
(x)]

fN ′′ [ϕT 1
1

(x), · · · , ϕT 1
r1

(x), · · · , ϕT l
1
(x), · · · , ϕT l

rl
(x)] = [ϕI1(x), · · · , ϕIr

(x)]

By composing the two networks N ′ and N ′′, and adding a softmax layer at the end, we obtain the desired
network N [I], which has one convolutional layer and one fully connected layers.
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4.3 Proof of Theorem 2: hierarchical compositionality

To prove Theorem 2, the key step is to construct convolutional neural networks that express the piecewise
linear functions ϕIj

(x). The image classification problem can then be solved using Proposition 1, which was
proven in the previous section. We build these functions using the principle of compositionality, and show
that the functions Dt(x) defined below can be expressed by a deep convolutional neural network.
Definition 4.6. Given a matrix t ∈ Matp,q(R) and x ∈ Xm,n, define Dt(x) ∈ Matm−p+1,n−q+1(R) as follows.
Here we using the notation from Definition 3.3, and assume p < m and q < n.

Dt(x) =

 t(x1:p,1:q) t(x1:p,2:q+1) · · ·
t(x2:p+1,1:q) · · · · · ·

· · · · · · · · ·


Lemma 4.7. Given a ∈ R, there exists a convolutional neural network A with two convolutional layers that
has the following property. Below Da(x) denotes the matrix from the above definition, with a ∈ Mat1,1(R).

fA(x) = Da(x)

Both convolutional layers have 1 × 1 kernels; the former has two filters, and the latter has one filter.

Proof. We use the following identity.

||xi,j − a|| = max(xi,j − a, a − xi,j) = σ(2xi,j − 2a) − σ(xi,j) + a for y, c ∈ R

The first convolutional layer has two filters, and its weights and biases are chosen so that the corresponding
outputs are σ(2xi,j − 2a) and σ(xi,j). The second convolutional layer has one filter, and its weights are chosen
so that the output is ||xi,j − a|| (using the above identity).

Lemma 4.8. Let t ∈ Mat2k,2k(R) and x ∈ Xm,n be matrices (as in Definition 3.2-3.4). We divide t into four
smaller matrices as follows.

t11 = t1:k,1:k; t12 = t1:k,k+1:2k

t21 = tk+1:2k,1:k, t22 = tk+1:2k,k+1:2k

There exists a convolutional layer with weights w(t), satisfying the following property.

ϕc
w(t)(Dt11(x), Dt12(x), Dt21(x), Dt22(x)) = Dt(x)

The convolutional layer has one filter and k × k kernels.

Proof. We use the following identity, which follows from the definitions.

t(xi+1:i+2n,j+1:j+2n) = t11(xi+1:i+n,j+1:j+n) + t12(xi+1:i+n,j+n+1:j+2n)
+ t21(xi+n+1:i+2n,j+1:j+n) + t22(xi+n+1:i+2n,j+n+1:j+2n)

Let w(t) = (w1, w2, w3, w4), with the matrices w1, w2, w3, w4 ∈ Matk,k(R) defined below (here Ei,j ∈
Matk,k(R) denotes a matrix with a 1 in the (i, j)-th position, and zeroes elsewhere).

w1 = E11, w2 = E1,k, w3 = Ek,1, w4 = Ek,k

From the above expression for t(xi+1:i+2n,j+1:j+2n), it follows that the map ϕc
w(t) has the desired property.

Lemma 4.9. Let T = (t, ϵ) be a feature tile with dimension k × k, where k = 2r for some r ≥ 1, and let
x ∈ Xm,n. There exists a convolutional neural network N [t] with r + 1 convolutional layers such that the
following holds.

fN [t](x) = Dt(x)

The (i + 1)-st convolutional layer of N [T ] has 2i × 2i kernels. ■
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Outline of proof. We proceed by induction. The r = 1 case can be deduced from Lemma 4.7 as follows. As
in Lemma 4.7, we construct the first convolutional layer so that the outputs are σ(2xi,j − 2a) and σ(xi,j).
We choose the weights of the second convolutional layer so that the resulting output is Dt(x), by using the
identities in Lemma 4.7 and Lemma 4.8.

For the inductive step, we argue as follows. We divide t into four smaller matrices - t11, t12, t21 and t22 -
as in Lemma 4.8. By the inductive hypothesis, there exists convolutional neural networks N [tij ] such that
fN [tij ](x) = Dtij

(x) (here 1 ≤ i, j ≤ 2). By concatenating these four networks and adding the layer ϕw(t)
from Lemma 4.8, we obtain the desired convolutional network whose output is Dt(x).

Definition 4.10. Let T = (t, ϵ) be a feature tile with dimension k × l where k, l < 2r. Define the enlarged tile
T (r) = (t(r), ϵ) to be the feature tile where t(r) ∈ Mat2r,2r (R) is obtained by padding the matrix t ∈ Matk,l(R)
with zeroes (so that t

(r)
1:k,1:l = t). Given an image F = {T1, · · · , Tq}, define the enlarged image F (r) as follows:

F (r) = {T
(r)
1 , · · · , T (r)

q }

Now we are ready to construct convolutional neural networks that express the piecewise linear functions
ϕIj

(x), and outline the proof of Theorem 2.

Outline of proof of Theorem 2. Our convolutional neural network will consist of a padding layer p, r + 1
convolutional layers, and two fully connected layers. We start with a padding layer p which adds 2r pixels on
each of the four sides of the input.

For each image class Ij , denote by {tj
1, · · · , tj

rj
} the tiles appearing in the features that constitute Ij . Using

Lemma 4.9, there exists a convolutional neural networks N ′ such that the following holds.

fN ′(x) = [D
t

1(r)
1

(p(x)), · · · , D
t

1(r)
r1

(p(x)), · · · , D
t

l(r)
1

(p(x)), · · · , D
t

l(r)
rl

p(x)]

From Definition 4.6, it is easy to see that there exists a fully connected network N ′′ with two layers such that
the following holds.

fN ′′ [D
t

1(r)
1

(p(x)), · · · , D
t

1(r)
r1

(p(x)), · · · , D
t

l(r)
1

(p(x)), · · · , D
t

l(r)
rl

p(x)] = [ϕI(r)
1

(p(x)), · · · , ϕI(r)
l

(p(x))]

= [ϕI1(x), · · · , ϕIl
(x)]

By composing the two networks N ′ and N ′′, and adding a softmax layer at the end, we obtain the desired
network N [I], which has r convolutional layers and 2 fully connected layers.

4.4 Discussion and further directions

Are convolutional layers needed for feature extraction? One key advantage of convolutional layers is
that weight sharing reduces the number of parameters that are stored, thus lowering the memory requirements.
While it is possible to construct a network with the required properties in Theorem 1 using fully connected
layers alone, the number of parameters needed would grow by an order of magnitude. In our image classification
framework, one convolutional layer suffices as each features is represented by a discrete set of matrices. We
also note our framework does not account for various subtleties of real-world vision data - for instance, CNNs
are robust to wide range of distortions. These include scenarios where the image is rotated, and those where
part of the image is partially occluded or distorted.

How many convolutional layers are needed? The success of convolutional neural networks for computer
vision is predicated on the observation that deeper networks are better able to capture and represent more
nuanced features. Deeper CNN architectures, such as VGG(22) and ResNet(13), perform better on real-world
datasets (such as ImageNet(29)) than their shallower counterparts, like LeNet(12). The image classification
task from Section 3 can be solved with a network that has a single convolutional layer (see Theorem 1). It
would be interesting to generalize this, and construct a framework for image classification that can only
be solved efficiently with deeper convolutional networks, where the features corresponds to a continuous
spectrum of images.
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Stochastic gradient descent. In practice, convolutional neural networks are trained with stochastic gradient
descent on image classification tasks. This leads us to the question of whether the network constructed in
Theorem 1 can be learned using stochastic gradient descent. As a step towards answering this, in Appendix A
we conduct experiments using special cases of our image classification framework with features extracted from
MNIST and Fashion-MNIST, and find that convolutional neural networks can achieve near-perfect accuracies
in the large-data regime. It would be interesting to analyze this further from a theoretical perspective.

Sparsity. Empirically it has been observed that neural networks trained on computer vision datasets can
be sparsified without a drop in accuracy (5), (7). Our theoretical results aligns well with these empirical
observations. In the networks constructed in Theorem 1, most of the weights connecting the convolutional layer
to the fully connected layer, are zero. This can be seen in the proof of Lemma 4.4; when t(x[i+1,i+k],[j+1,j+l])
is expressed as a linear combination of the quantities σ(xi′,j′) and σ(2xi′,j′ − 2tu,v), most of the coefficients
are zero.

5 Conclusion

In this paper, we present a novel mathematical framework that can be used as a simplified model of real-world
computer vision tasks. We focus on the image classification task, using convolutional neural network models
that consist of convolutional layers and fully connected layers. In this context, we analyze the expressiveness
of convolutional networks and show that they can solve image classification tasks, by constructing piecewise
linear functions that extract features from the input image. We do not anticipate any negative societal impacts,
as the present work is theoretical. Our work provides some insight into the theoretical underpinnings of
computer vision, and we anticipate that our results can be generalized to provide a more detailed mathematical
explanation as to why deep learning models can solve computer vision tasks.
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A Appendix A: experimental results

In this section, we conduct extensive experiments on examples of our image classification frameworks that
we construct, by extracting features from MNIST (12) and Fashion-MNIST (26). We describe the dataset
generation process and the models used for experimentation in Section 1.1 and present our experimental
findings in Section 1.2.

A.1 Settings

Dataset. We generate image classes I as follows, with one class for each of the ten labels (in MNIST or
Fashion-MNIST). Each image I consists of a single feature, and each feature consists of k feature tiles. Each
of the feature tiles are obtained by randomly choosing a sample from the training set of Fashion-MNIST with
the corresponding label, and setting t to be the 28 × 28 matrix obtained. To generate images from X I , we
start by randomly generating an input image with dimension 40 × 40. We then randomly select a rectangular
subpatch with dimension 28 × 28, and replacing it with one of the k feature tiles.

This process is illustrated in the below figure for Fashion-MNIST. One feature tile is randomly chosen for
each of the ten classes in Fashion-MNIST. The two images directly underneath lie in X I , and are obtained
by pasting this feature tile in a random position onto a randomized background image.

(a) feature tiles

(b) Images from X I , for each of the ten classes

Figure 4: Images from X I

CNN architectures. We use two convolutional neural network architectures for this image classification
task. The first is a variant of LeNet (12) without the batchnorm layers. This network has a total of two
convolutional layers, two maxpool layers, two fully connected layers and one output layer. Both convolutional
layers have 5 × 5 kernels; the first has 6 convolutional filters, and the second has 12 convolutional filters.
Both maxpool layers have kernels of size 2 × 2, with stride 2. The first fully connected layer has 120 neurons,
and the second has 60 neurons.

The second is a simple convolutional neural network, which we refer to as the "simple ConvNet". It consists
of a single convolutional layer followed by a fully connected layer and an output layer. The convolutional
layer has 5 × 5 kernels, and 6 convolutional filters. The fully connected layer has 120 neurons.

Training setup. We use the same training setup for all experiments. The networks are trained using
stochastic gradient descent with the Adam optimizer with learning rate set to 0.01, batch size 100, and a
cross-entropy loss function. All layers are initialized using the Kaiming uniform initialization. We train the
models for 10 epochs and all reported accuracies are averaged over five separate training runs. All experiments
are conducted using PyTorch, with a single P100 GPU; see the supplementary sections for the code.

13
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A.2 Results

A.2.1 How does the size of the dataset affect the model’s performance?

In this set of experiments, we generate datasets using the above procedure, by starting with k random samples
from MNIST (resp. Fashion-MNIST). We generate a training dataset with n samples from each of the ten
classes, for each n ∈ {50, 100, 150, 200, 300, 400} and k = 2 . We train both of the above models on these
datasets; the below graphs depict how the performance changes as the size of the dataset is increased.

Dataset size
Dataset Model 500 1000 1500 2000 3000 4000

FashionMNIST Modified LeNet 0.92 ± 0.06 0.97 ± 0.02 0.99 ± 0.01 0.98 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
FashionMNIST Simple Convnet 0.83 ± 0.06 0.93 ± 0.03 0.98 ± 0.00 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.01

MNIST Modified LeNet 0.74 ± 0.30 0.98 ± 0.01 0.78 ± 0.34 0.89 ± 0.23 0.97 ± 0.04 0.99 ± 0.01
MNIST Simple Convnet 0.48 ± 0.17 0.81 ± 0.05 0.74 ± 0.30 0.87 ± 0.19 0.94 ± 0.11 0.98 ± 0.02

Table 1: Final accuracy of models with varying dataset sizes

(a) FashionMNIST - Modified LeNet (b) FashionMNIST - Simple Convnet

(c) MNIST - Modified LeNet (d) MNIST - Simple Convnet

Figure 5: Model performance vs Dataset size

A.2.2 How does the complexity of the dataset affect the model’s performance?

In this second set of experiments, we vary the complexity of the dataset (and not its size). We generate
datasets using the above procedure by starting with k random samples from MNIST (resp. Fashion-MNIST),
for each k ∈ [1, 2, 4, 8, 16, 32]. We generate a training dataset with 320 samples from each of the ten classes.

14
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We train both of the above models on these datasets; the below tables depict how the performance changes
as the complexity of the dataset increases.

k
Dataset Model 1 2 4 8 16 32

FashionMNIST Modified LeNet 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.92 ± 0.01 0.80 ± 0.04 0.80 ± 0.04
FashionMNIST Simple Convnet 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.88 ± 0.03 0.76 ± 0.02 0.76 ± 0.05

MNIST Modified LeNet 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.02 0.83 ± 0.05 0.80 ± 0.02 0.84 ± 0.04
MNIST Simple Convnet 0.99 ± 0.01 0.90 ± 0.14 0.88 ± 0.07 0.73 ± 0.12 0.63 ± 0.18 0.54 ± 0.27

Table 2: Final accuracy of models with varying k

A.2.3 Discussion.

In all four settings, the above experiments indicate that convolutional neural networks trained with stochastic
gradient descent can reach near-perfect accuracies on the image classification tasks that we analyze, provided
that there is sufficient training data. Our results show that the amount of training data needed is heavily
dependent on the complexity of the image classification task, which depends on the number of constituent
features in each image class (k). In the case where k = 2, the models require approximately 300 images for
each of the ten classes in order to reach near-perfect accuracies. As k increases, the number of images needed
per class also increases. On the other hand, a human classifier would be able solve these tasks with much
fewer than 300 images per class. This indicates that while stochastic gradient descent performs well in the
large-data regime, it would be interesting to develop alternative algorithms that are more effective when
there is limited data.

B Appendix B: proofs from Section 4.1

We start by presenting a constructive proof of Lemma 4.4. This Lemma will play a key role in the proof of
Theorem 1.

Proof of Lemma 4.4. Recall the definition of ϕT (x), as follows.

ϕT (x) =
∑

(i,j)∈Rm,n
k,l

max(0, ϵ − t(x[i+1,i+k],[j+1,j+l]))

To simplify the notation, given (i, j) ∈ Rm,n
k,l , define the following quantity.

ϕ(i,j)(x) = max(0, ϵ − t(x[i+1,i+k],[j+1,j+l]))

First we show that there exists a neural network N ′[T ] such that the following holds.

fN ′[T ] = [ϕ(i,j)(x)](i,j)∈Rm,n
k,l

Define the four binary matrices as follows.

w11 =
(

1 0
0 0

)
, w12 =

(
0 1
0 0

)
w21 =

(
0 0
1 0

)
, w22 =

(
0 0
0 1

)
Define the vectors w1 ∈ Mat2(R)4 and b0, b1 ∈ R4 as follows.

w1 = (w11, w12, w21, w22)
b0 = (0, 0, 0, 0); b1 = (1, 1, 1, 1)
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Define S, the set of all non-zero entries in the matrix t, as follows.

S = {tu,v | (u, v) ∈ supp(t)}

Let d = |S|. For convenience, we relabel the entries, so that S = {s1, · · · , sd}.

We specify the weights (w, b) of the convolutional layer below. Here w ∈ Mat2,2(R)4(d+1) denotes the
convolutional filters, and b ∈ R4(d+1) denotes the biases.

w = (w1, 2w1, · · · , 2w1)
b = (b0, −2s1b1, · · · , −2sdb1)

Let x′ be the image of the input image x under the map ϕ(w,b) induced by the convolutional layer composed
with a flattening layer.

x′ = ϕf (ϕ(w,b)x) ∈ R4(d+1)(m−1)(n−1)

By the above construction, it is clear that the quantities σ(xi′,j′) and σ(2xi′,j′ − 2sl) appear as coordinates of
x′ (for all 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n and 1 ≤ l ≤ d). We will need the following identity to obtain the quantities
||xi′,j′ − sl||.

||y − c|| = max(y − c, c − y)
= max(2y − 2c, 0) + (c − y)
= σ(2y − 2c) − σ(y) + c

Using the above equation and the definition, t(x[i+1,i+k],[j+1,j+l]) can be expressed as a linear combination of
the quantities σ(xi′,j′) and σ(2xi′,j′ − 2sl), with a constant term. It follows that there exists a fully connected
layer ϕ(w′,b′) with the following property.

ϕ(w′,b′)x
′ = [ϕ(i,j)(x)](i,j)∈Rm,n

k,l

The desired neural network N [T ] can be obtained by adding a fully connected layer with one output neuron to
the network N ′[T ], with all weights equal to 1. The resulting network N (T ) has 4(|supp(t)| + 1) convolutional
filters with dimension 2 × 2. The fully connected layer has |Rm,n

k,l | neurons, and |Rm,n
k,l | < mn. The conclusion

follows.

Next we extend Lemma 4.4, from functions corresponding to feature tiles to the analogous functions for
features.

Lemma 4.5 Let I be an image, consisting of feature tiles {T1, · · · , Tq}. There exists a neural network N [I]
with one convolutional layer and one fully connected layer such that the following holds.

fN [I](x) = ϕI(x)

Proof of Lemma 4.5. We construct the networks N (T1), · · · , N (Tq) from the above Lemma. Recalling the
definition of ϕF (x), it suffices to construct a network N (I) with the following property.

fN (I)(x) = fN (T1)(x) + · · · + fN (Tq)(x)

The convolutional (resp. fully connected) layer of N [I] is obtained by concatenating the convolutional (resp.
fully connected) layers of N (Ti), for 1 ≤ i ≤ q. The weights are chosen so that the above identity holds.

Theorem 1 now follows from Lemma 4.5 and Proposition 1, as described in Section 4.2.
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