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Figure 1: Our method enables the creation of 4D scenes from a text prompt by combining a diffusion
model that directly generates synchronized multi-view videos with a feedforward reconstruction
model that efficiently produces Gaussian-based representations.

Abstract

We propose the first framework capable of computing a 4D spatio-temporal grid of
video frames and 3D Gaussian particles for each time step using a feed-forward
architecture. Our architecture has two main components, a 4D video model and a
4D reconstruction model. In the first part, we analyze current 4D video diffusion
architectures that perform spatial and temporal attention either sequentially or
in parallel within a two-stream design. We highlight the limitations of existing
approaches and introduce a novel fused architecture that performs spatial and
temporal attention within a single layer. The key to our method is a sparse attention
pattern, where tokens attend to others in the same frame, at the same timestamp, or
from the same viewpoint. In the second part, we extend existing 3D reconstruction
algorithms by introducing a Gaussian head, a camera token replacement algorithm,
and additional dynamic layers and training. Overall, we establish a new state of the
art for 4D generation, improving both visual quality and reconstruction capability.

1 Introduction

Immersive visual experiences are becoming increasingly popular in fields such as virtual reality and
film production. This growing demand drives the need for technologies that enable the creation of
4D content, where users can interactively explore dynamic scenes. A key challenge in enabling
such capabilities is the limited availability of high-quality 3D and 4D data. This scarcity presents a
significant obstacle to training generative models that can directly produce 4D representations.
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Table 1: Comparison of recent 4D video generation methods. We use Modified to denote methods that
rely on sophisticated adjustments to the diffusion process for generating 4D videos. A question mark
(?7) indicates methods that are theoretically extendable to 4D video generation, but such extensions
were not explored in their original papers.

Category Method Model Output  Scene Type 4D Inference DiT-based ~ Temporal Compress
4DiM [1] Images Scene ?
4D-Aware CAT4D [2] Images Scene Modified
Image/Video Gen GenXD [3] Video Scene & Object Modified
DimensionX [4] Video Scene Modified v v
"7 3DPointCloud” ~ T GEN3C[5] ~ ~ 7 Video =~ = “Scemne [ S O T
Cond. Video Gen TrajectoryCrafter [6] Video Scene ? 4 v
"7 7 Video-Video ~ ~  Generative Camera Dolly [7] ~ Video ~ ~ ~ ~Scene [ S S
Gen ReCamMaster [8] Video Scene ? v v
77777777777 CVD[O] ~ ~ =~ 7 7 7 MVVideo = ~Scene  Natve2View) X " x T 7~
Human4DiT [10] MV Video Human Native v
VividZoo [11] MV Video Object Native
4D (Sychronized 4Diffusion [12] MV Video Object Native
Multi-View) Video Gen SVv4D [13] MV Video Object Native
SynCamMaster [14] MV Video Scene Native v v
4Real-Video [15] MV Video Scene Native v
Ours MYV Video Scene & Object  Native v 4
In contrast, video generation has made rapid progress in recent years [16, 17, 18, 19, 20], driven
by large-scale datasets and advances in diffusion models. Building on this progress, several recent
works [15, 2, 13, 12] extend video generation to the 4D domain by producing what we refer to as 4D

videos. These are synchronized multi-view video grids that can supervise reconstruction methods to
recover explicit 4D representations such as dynamic NeRFs [21] or Gaussian splats [22]. We also
adopt this two-stage approach because it leverages the strong priors of pretrained video models and
offers a promising path toward generalizable and photorealistic 4D generation.

In the first stage, as categorized in Tab. 1, some prior methods attempt to enhance 2D video models
with camera and motion control [2, 3, 4, 1], 3D point cloud condioning [6, 5], or reference-video
conditioning [8, 7]. However, these models do not natively generate synchronized multi-view outputs,
which often results in degraded quality and reduced efficiency.

Other approaches attempt to directly generate the complete multi-view video grid, where each row
corresponds to a specific freeze-time step and each column to a fixed viewpoint. Most of these
methods [13, 10, 11, 12] are designed for object-centric data and do not generalize to complex scenes.
Among the few general-purpose models, SynCamMaster [14] is trained to generate a sparse set of
diverse viewpoints, but often suffers from poor consistency across views. 4Real-Video [15] achieves
stronger multi-view alignment by training with dense viewpoints, but is only tested on a smaller
architecture that lacks features of modern video models, such as temporal compression and higher
resolution.

When scaling to modern architectures, it is important to consider their large number of parameters
(e.g., we use an 11B-parameter base model). Given the limited availability of 4D video training
data and the significantly increased number of tokens introduced by handling multiple viewpoints,
the design of a 4D video model becomes critically important. The two main current architectures
are the sequential architecture interleaving spatial and temporal attention [! |, 14], and the parallel
architecture that computes spatial and temporal attention in parallel and merges the results [15]. By
experimenting with multiple architecture variations, we believe that the most important criterion for
developing an architecture is to minimize the number of new parameters that need to be trained from
scratch and to minimize fine-tuning, so that each layer is used similarly to its pretraining. Building
on this analysis, our key contribution is a parameter-efficient design that introduces no additional
parameters to the base model. Specifically, we fuse cross-view and cross-time attention into a single
self-attention mechanism. In contrast to previous approaches that apply these attentions separately
and introduce new attention [ 14, 10, 12, 11] or synchronization modules [15], our unified formulation
enables us to leverage highly optimized sparse attention implementations. This results in minimal
computational overhead and enables effective fine-tuning of large pretrained video models.

In the second stage, traditional reconstruction methods often rely on iterative optimization to recover
4D representations from multi-view video inputs. Although accurate, these methods tend to be slow,
sensitive to camera estimation errors, and difficult to scale to dynamic scenes of longer duration. To
address this, we extend a state-of-the-art feedforward 3D reconstruction [23] to directly predict both
camera parameters and time-varying Gaussian splats from synchronized multi-view video frames.
This approach greatly improves efficiency while preserving visual quality.



In summary, our contributions are: 1) A novel two-stage 4D generation framework that produces
a grid of images and converts them into Gaussian ellipsoids. 2) A fused view and time attention
mechanism that enables parameter-efficient 4D video generation. 3) A feedforward model that jointly
recovers camera parameters and Gaussian particles from multi-view videos.

2 Related Work

Optlmlzatlon -based 4D generation. Score Distillation Sampling (SDS)[24, 25, 26, 27, ]
is a common method for creating 3D scenes. It uses gradients from pre-trained models like text to-
image [30, 31] and text-to-multi-view [32, 33] models. Recent 4D methods [34, 35, 36, 37,

, 41] extend this by using text-to-video models [42, 43, 44] to add motion. These methods usually
take hours to run because they rely on slow optimization. Most of them also use 3D priors from
diffusion models [32, 33] trained on synthetic object-centric datasets like Objaverse [45], which can
make the results look unrealistic and limited to single objects.

Camera-Aware video generation. Text-to-video models [46, 16, 19, 20, 47] have made significant
progress in generating realistic videos. To provide users with more control, some methods incorporate
camera motion by leveraging camera pose data [48, 49, 50, 1], while others fine-tune models using
videos annotated with camera labels [3, 51, 4]. CVD [9] and ReCamMaster [8] further enable
modifying camera motion of on existing footage. Another line of work introduces a 3D cache, such
as a point cloud, to store scene geometry. These representations are then projected into novel views
and completed using diffusion models [6, 5, 52]. These camera-aware techniques enable impressive
3D visual effects, such as dolly shots and bullet-time sequences. However, these methods do not
natively generate a complete set of frames across both time and viewpoints. Extending them to 4D
video requires substantial modifications to the diffusion process [2, 4], often leading to artifacts and
quality degradation.

4D video generation. We define 4D video (or synchronized multi-view video) as a grid of video
frames organized along both temporal and viewpoint dimensions. Several methods [13, 11, 12, 10]
are trained on 4D datasets derived from Objaverse [45] or human motion capture sequences. While
these models aim to generalize beyond single-object scenes, they are still limited by the lack of
diverse and scalable 4D training data. CVD [9] addresses this limitation by fine-tuning models to
generate synchronized video pairs using pseudo-paired samples from real-world datasets [53, 54].
SynCamMaster [14] and 4Real-Video [15] further extend this direction by generating synchronized
multi-view videos using a combination of synthetic 4D and real 2D datasets. SynCamMaster is trained
on sparsely sampled viewpoints, allowing for good view control but showing inconsistencies across
views. 4Real-Video, on the other hand, uses densely sampled, continuous camera trajectories to
improve view consistency. However, it is built on a relatively small pixel-based video backbone, which
limits visual quality and lacks temporal compression, making it inefficient for longer videos. Our
work improves upon 4Real-Video by introducing a more efficient architecture that scales effectively
with large video generation models.

Feed-forward reconstruction. Recent advances in 3D reconstruction increasingly use data-driven
priors to speed up the process [55]. Some methods use priors for guidance or initialization to enable
faster optimization [56, 57, 58], but still rely on few-shot optimization to refine results [59, 60]. To
avoid optimization, newer work explores fully feedforward models that infer 3D scenes from 2D
inputs. These models often focus on static scenes and represent geometry using triplanes [61], 3D
Gaussians [02, 63, 64, 65], sparse voxel grids [66], or learned tokens [07, 68]. They usually need
ground-truth camera calibration or rely on traditional methods to estimate camera parameters, which
can be slow and unreliable for generated assets. This has driven interest in pose-free, feedforward
reconstruction for static scenes [69, 70, 71, 72]. While these models work well for static scenes,
handling dynamic scenes is still a challenge. Current dynamic scene methods often assume dense,
temporally consistent video depth maps [73], which are hard to obtain. Others lack rendering
support [74, 75, 76, 23], or only work with object-centric data [77]. Some also assume known
camera poses and monocular video [78]. Another challenge is that even when RGB loss is used
for realistic outputs, many methods produce poor geometry, limiting novel view synthesis to small
camera movements [65, 78].

3 Method

Our 4D generation pipeline comprises two main stages. First, we introduce a novel 4D video diffusion
model that generates synchronized multi-view videos of dynamic scenes across time and viewpoints
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Figure 2: Our 4D video model supports input types including: (a) a fixed-view video, (b) a freeze-time
video showing multiple angles of a scene at a single timestep, and (c) a combination of both. Each
input can be generated from a text prompt using standard video models.
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Figure 3: We analyze three architectures for 4D video generation: (a) sequential cross-view and
cross-time attention, (b) parallel cross-view and cross-time attention with an extra synchronization
layer, and (c) our proposed architecture using fused view-time attention with masked self-attention.

(Sec. 3.1). Next, we apply a purpose-built feedforward reconstruction network to lift Gaussian
ellipsoids from the generated frames (Sec. 3.2). We detail each component below.

3.1 Synchronized Multi-view Video Diffusion

We aim to generate a structured grid of video frames {I,;}, where all frames in a row share a
viewpoint v, and all frames in a column share a timestep ¢. In other words, each row is a fixed-view
video, and each column is a freeze-time video.

Preliminary I: DIT-based Diffusion Transformer. The Diffusion Transformer (DiT) [79] architec-
ture has been widely adopted in modern video diffusion models [16, 17, 80, 19, 18] for denoising
latent video tokens. The model takes as input a set of latent tokens {x; o, € Rd}, where ¢, x, and
y index the temporal and spatial dimensions, and d is the latent dimension. These tokens represent
compressed versions of high-resolution videos, typically downsampled by a factor of 8 x spatially
and 4x or 8x temporally. The tokens are first embedded via a patch embedding layer and then
processed through a series of DiT blocks. Each block contains a 3D self-attention layer that jointly
attends the features across both spatial and temporal dimensions, followed by a cross-attention layer
that conditions the features on input context, such as text embeddings.

Preliminary II: Prior architectures for synchronized multi-view video diffusion. Standard video
diffusion models generate a single sequence of frames with entangled view changes and scene motion.
To extend pretrained video diffusion models for generating synchronized multi-view videos, prior
works introduce additional cross-view self-attention layers to enforce consistency across views. As
illustrated in Fig. 3, these methods can be categorized based on how the cross-view attention is
incorporated into the architecture.

Sequential architecture. These methods [11, 14, 10, 12, 13] sequentially interleave cross-view and
cross-time self-attention layers. The cross-view layers are typically initialized from multi-view image
models trained to synthesize static scenes from different viewpoints, while the cross-time layers are
initialized from pretrained video models. These attention layers are either jointly trained [10, 13], or
fine-tuned selectively by freezing one type while updating the other [14, 12].

Parallel architecture. An alternative strategy applies cross-view and cross-time self-attention in
parallel, rather than interleaving them sequentially [15, 81]. In this setup, each attention branch
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Figure 4: Overview of our feedforward reconstruction model. Built on top of [23], it

incorporates temporal attention layers, camera token replacement to ensure consistent cameras over
time, and a Gaussian head that predicts Gaussian parameters.

processes the video tokens independently—cross-view attention enforces spatial consistency across
viewpoints, while cross-time attention captures temporal dynamics. The outputs from both branches
are then fused through a synchronization module designed to align and integrate the two branches.
This decoupled design has two key advantages: (1) it avoids interference between the attention
branches, which are originally trained to operate in isolation, and (2) it enables reusing frozen
pretrained models for both branches, reducing training cost and preserving their generalization
capability. Only the lightweight synchronization module needs to be trained [15].

Fused view and time attention architecture. Parallel architectures introduce additional parameters
through the synchronization module. To mitigate overfitting on limited 4D data, these modules
are deliberately kept lightweight, typically implemented as a single linear layer [ 5] or a weighted
averaging operation [81]. In contrast, we propose a new design that requires no additional parameters
beyond a pretrained video model, and as a result, it naturally maintains strong generalization without
relying on manually crafted bottleneck layers.

Specifically, we propose to fuse cross-view and cross-time attention into a single self-attention
operation. For each latent token x, ; ., representing view v, time ¢, and spatial location (z,y),
features are computed by attending to all other tokens sharing either the same view or timestamp.
This is implemented using a masked self-attention layer that enforces the desired attention pattern:

1, iqu = Vg, Or tq =t
0, otherwise

SoftMax(M & Q7KT)V’ M(Idx(vg, tq, Zq, Yq), Idx(vk, tk, Tk, Yk)) = { (1)

Vd

where Q, K,V € RN >4 are the queries, keys and values of all tokens, N = VI'HW is the total
number of tokens, ® denotes element-wise multiplication, and M € RN*N jsa binary mask. The
function Idx() maps the view, temporal and spatial indices of a token to its corresponding flattened
index.

The masked self-attention is efficiently implemented using FlexAttention [82], which exploits the
sparsity of the attention mask to reduce memory and computation. With a high sparsity ratio of
£V

— TT—V, the approach scales efficiently to a large number of views and timestamps.

Positional embedding. For standard 2D video generation, each token is associated with a 3D
positional embedding (¢, z, y). In contrast, multi-view videos introduce an additional view dimension,
resulting in 4D indices (v,t,x,y). Directly using 4D positional embeddings would introduce
significant discrepancies with the pretrained video model. To address this, we map the 4D coordinates
to 3D by collapsing the view and time dimensions: (v,t,2,y) — (v % Tiax + t, @, y), where Tiay is
the maximum temporal length supported by the model. This is equivalent to flattening the multi-view
video into a single long sequence. A similar idea was independently adopted by ReCamMaster [&]
for the specific case of synchronizing two videos. We also explored alternative transformations (see
Supplementary), but found the above approach to be the most effective.

Temporally compressed latents. Each latent token compresses patches from 4 consecutive frames
of the same view points. We choose to compress along the temporal dimension rather than the view
dimension, as densely sampled viewpoints offer limited benefit to reconstruction quality in the second
stage. In contrast, temporal compression significantly improves generation throughput.



Table 2: Quantitative comparison of our architecture (fused view-time attention) with baselines.

Objaverse NVIDIA Dynamic Dataset [85]
Method PSNRT  SSIM{ LPIPS| PSNRT SSIMt  LPIPS)
_Svappiy 1965 083 oMy - - -
Sequential Arch. 5.935 0.444 0.583 22.74 0.743 0.147
Parallel Arch. 21.40 0.892 0.124 22.92 0.742 0.148

Fused View & Time Attn. 22.49 0.909 0.113 23.15 0.752 0.142

Grounded generation with reference videos. Inspired by prior works [15, 13], we enable the model
to condition on two types of reference videos: a fixed-view video, which specifies the content and
object motion of the dynamic scene from a single viewpoint, and a freeze-time video, which captures
the scene from multiple views at a single timestamp (see illustration in Fig. 2). The model then
generates all other frames corresponding to unseen view-time combinations. The conditioning is
implemented by adding the patch embeddings of the reference frames to the noised latent tokens
before feeding them into the denoising transformer. Unlike prior works that rely on explicit camera
pose embeddings, our model learns to infer viewpoints directly from the input reference videos.

This design choice improves usability for 3D scene animation tasks, as it avoids the need for explicit
pose estimation and scale alignment, which are often technically challenging for non-expert users.

Training. The model is trained using the same rectified flow objective [83] as the base video
model, following a progressive schedule that gradually increases the temporal duration. Only the
self-attention layers are fine-tuned, while the rest of the model remains frozen. Training is efficient,
and we report results after 4k iterations with a batch size of 96. Additional model details are provided
in the supplementary. The training data includes: 1) Synthetic multi-view videos, rendered using
animated 3D assets [45] and physics-based simulations [84]. 2) 2D transformed videos, created by
applying random 2D homographic transformations to each video frame to simulate synchronized
multi-view captures. This data is a key augmentation for the limited real 4D data. 3) 3D videos,
depicting static scenes or objects recorded along continuous camera trajectories. These are temporally
duplicated to simulate multi-view sequences without dynamic motion.

3.2 Feedforward Reconstruction

Our 4D video generator synthesizes visual content, which is then passed to our Gaussian-based [22]
feedforward reconstruction model. This model operates on RGB frames only, since camera parameters
are not provided. To recover geometry and camera parameters, we use a pretrained VGGT model [23].
VGGT is a transformer-based neural network for 3D scene understanding that processes multi-view
images using DINO-encoded tokens and learnable camera tokens. It predicts camera parameters
and dense 3D outputs such as depth maps and point clouds, all in a canonical frame aligned to the
first camera. We unproject depth maps into 3D point clouds, which serve as Gaussian centroids. A
DPT-based head, called the Gaussian head, is trained to estimate the remaining Gaussian parameters:
opacities, scales, and rotations. Colors are derived from rays in RGB space and refined with residuals
predicted by the Gaussian head. An overview of this process is shown in Figure 4.

Camera Token Replacement. To extend the model to dynamic scenes, applying it independently
to each frame causes inconsistent camera predictions. To enforce temporal consistency, we replace
the camera tokens of all views at each timestep with those from the first timestep, after the VGGT
transformer blocks. This ensures that all frames share the same predicted camera parameters and
improves consistency over time.

Gaussian Head. The Gaussian head predicts opacities, rotations, and scales from refined image
tokens. Centroids are derived from unprojected depth maps, with a predicted 3-dimensional pose-
refinement which is added to the unprojected depths (following Splatt3r [69]). We train this module
using a reconstruction loss composed of MSE and LPIPS: L econ = Lmse + ALpips LLpips, Where the
perceptual loss encourages photometric fidelity [86].

Temporal Attention. The VGGT backbone uses Alternating-Attention layers to mix global and
frame-wise information. After each frame and global attention layer, we add a temporal attention
layer to connect tokens across timesteps. This helps the model share information across time in
dynamic scenes. The temporal attention layer is zero-initialized so the model’s initial predictions
match the original VGGT outputs.

Training. The first training stage uses both synthetic and real-world static datasets. We include
RealEstate 10K [54], DL3DV [87], MVImageNet [88], Kubric [84] (only single-timestep samples),



Table 3: Quantitative comparison with baselines on the generated video dataset.

Cross-View Cross-Time (VBench [20])
Method Met3R| [91] Flickeringf  MotionT  Subjectf  Background t  Image?
TrajectoryCrafter [6] 0.324 97.1 98.5 95.3 96.8 67.6
SynCamMaster [14] 0.530 99.3 99.5 97.2 96.6 65.7
ReCamMaster-V1 [8] 0.530 98.6 99.4 96.6 96.1 66.0
ReCamMaster-V2 [8] 0.194 94.7 91.2 90.7 93.6 65.4
4Real-Video [15] 0.192 J 98.7 99.2 94.4 96.5 64.4
" W/0 2D Trans. Videos ~ 0.196  [IO93N T N99S @80 esmyw 639
Full Method 0.173 99.1 99.5 97.7 98.4 66.2

and ACID [89]. Each iteration samples scenes and views, predicts Gaussian parameters, renders
the scene, and computes the loss. The VGGT backbone stays frozen to reduce memory use and
allow larger batch sizes. This setup simplifies training by letting VGGT handle geometry and color,
while the Gaussian head learns only residual parameters. We then train on dynamic Kubric to tune
the temporal attention layers, while continuing to finetune the Gaussian head. We also reuse static
datasets at this stage by copying multi-view samples across timesteps to create static 4D datasets,
which helps prevent forgetting. In both stages, we use 4 source views. For dynamic training, we
sample 4 views at 4 timesteps each. The rest of the training hyperparameters follow BTimer [78].
More details are provided in the supplementary.

4 Experiments
4.1 Synchronized Multi-View Video Generation Evaluation

Evaluation datasets. We evaluate the 4D video generation capability across a combination of datasets:
1) Generated videos. We run Veo 2 [20] to create 30 fixed-view videos, each prompted by a unique
caption. To enforce a static viewpoint, we append the phrase “static shot. The camera is completely
static and doesn’t move at all.” to each caption. We then extract the first frame of each generated
video and duplicate it to create a static video. This static video is passed to ReCamMaster [8] to
produce a freeze-time video (reference freeze-time) of the scene. This process establishes the first
column and first row of our 4D grid, which we keep consistent across all baselines that utilize it.
2) Objaverse. Following SV4D, we collect 19 animated 3D assets from Objaverse [45] that are not
included in the training set. 3) Nvidia Dynamic Dataset. This dataset [85] contains 9 dynamic scenes
captured by 12 synchronized cameras, offering real-world multi-view data.

Baselines. We compare against state-of-the-art video generation methods that either natively support
synchronized multi-view generation or can be adapted to do so: 1) TrajectoryCrafter [0] is a
representative baseline for point cloud-conditioned methods. As a 2-view model, it generates fixed
target views conditioned on the reference fixed-view video. We use it to produce 8 distinct views
per scene. 2) ReCamMaster [8] generates a video with a modified camera trajectory, conditioned
on a reference video that shares the first frame with the output. Since it is not directly suitable for
multi-view generation, we adapt it in two variants: ReCamMaster-VI: We construct a pseudo-static
reference video by repeating the first frame for the first half, followed by the original freeze-view
video. The target camera trajectory moves during the first half and remains static in the second. We
retain only the second half of the output, yielding an approximately fixed-view rendering from a
new viewpoint. ReCamMaster-V2: We generate independent freeze-time videos for each timestep by
conditioning on static reference videos, created by repeating the corresponding frames of the input
fixed-view video. 3) SynCamMaster [14] & 4Real-Video [15] are both multi-view models. Since
the released SynCamMaster code does not support frame conditioning, we evaluate it using text
conditioning. 4) SV4D [13] is a multi-view generation model trained on object-centric data.

Evaluation protocal. For all datasets, we prepared fixed-view videos as reference inputs and freeze-
time videos to condition the view points for generation. For methods that do not support frame-level
conditioning, we instead provide camera poses. On datasets with ground truth frames (Objaverse and
NVIDIA Dynamic), we evaluate reconstruction quality using standard metrics: PSNR, SSIM, and
LPIPS. For the generated video dataset, we subsample outputs into fixed-view and freeze-time videos.
We assess multi-view consistency using Met3R [91], and evaluate visual quality of the fixed-view
videos using the widely adopted VBench [90] metrics.

Comparing model architectures. We compare three model architecture variants (see Fig.3): sequen-
tial, parallel, and our proposed fused view-time attention. All models are trained under identical
settings for 4,000 iterations with a batch size of 96.
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Figure 5: Visual comparison of 4D video generation methods. Each image includes a temporal slice
(right) along the red line to reveal temporal flickering. ReCamMaster-V2 shows strong flickering;
ReCamMaster-V1 has inconsistent backgrounds across views. TrajectoryCrafter exhibits artifacts
from noisy point clouds. 4Real-Video misses thin structures, and SynCamMaster produces inconsis-
tent synthetic-style results. Our method achieves the best visual quality and consistency.

Table 4: Computation efficiency comparison of multi-view video generation architectures, profiled on
an A100 GPU (float32) for a single forward pass with 8 views and 61 frames at 288x512 resolution.

Sequential Sequential Parallel Fused V& T Attn.  Fused V & T Attn.

(Cross-View Attn.) (Interleave Existing Layers) (wo Block Mask) (with Block Mask)
Parameters 17B 11B 11B 11B 11B
Peak Memory (GB) OOM 54.9 55.9 549 54.9
Runtime (s) OOM 9.3 13.9 20.5 11.7

Generation quality. We evaluate their performance quantitatively on the Objaverse and NVIDIA
Dynamic datasets (see Tab.2). Our proposed fused view-time attention consistently outperforms the
other variants. The parallel architecture shows a noticeable drop in performance, suggesting that
the introduction of bottleneck (synchronization) layers may limit model capacity. The sequential
architecture learns significantly slower and fails to generate proper white backgrounds for Objaverse
scenes (See Fig.S1 for visualizations). We have identified the issue as an instability that occurs when
the sequential model is trained on our mixed dataset. Its loss curve fluctuates more and converges
to a higher value, reflecting less reliable/stable learning. Although the model performs reasonably
well on real scenes (NVIDIA Dynamic dataset), it often misidentifies the white background which
appears in about one-third of the training sequences, producing visible artifacts in the results. These
background artifacts are simply the most obvious out of multiple failures; a closer inspection also
reveals subtler issues such as blurred edges and temporal flickering. The sequential design exhibits
an effective capacity that is lower than that of the fused model, making it harder to reconcile the
differing background statistics.

Computation efficiency. We measured the runtime and peak memory consumption across different
architectural designs. Profiling was performed on an A100 GPU using float32 precision, evaluating
a single forward pass with 8 views and 61 frames at a resolution of 288x512 (corresponding to
8x16x36x64 tokens after tokenization and patchification). The results reveal the following: (1) a se-
quential architecture that introduces cross-view attention layers (as in SynCamMaster [ 14]) increases
the total parameter count by approximately 50%, leading to out-of-memory errors given the already
substantial 11B-parameter base video model; (2) a variant sequential model that reuses existing
DiT blocks but interleaves cross-view and cross-time attention achieves faster runtime at the cost of
degraded quality (see Tab. 2); (3) a parallel architecture (similar to 4Real-Video [ 5]) incurs higher
peak memory usage and longer runtime; and (4) the proposed fused View-Time attention, when
applied without block masking, runs significantly slower compared to its block-masked counterpart.

Training data sensitivity. We analyzed the sensitivity of multi-view video generation to different
training datasets. Tab. 5 summarizes an ablation study across various training set combinations,
evaluated on the object-centric Objaverse dataset and the dynamic-scene Nvidia dataset. All models
were trained under identical conditions (batch size of 128, 2k iterations). Our findings are as follows:
Data efficiency: Our method demonstrates strong data efficiency. For example, a model trained
solely on Objaverse generalizes reasonably well to the out-of-distribution Nvidia dataset. Importance
of 2D-transformed video datasets: These datasets play a crucial role in dynamic scene generation,



Table 5: Analysis of training data sensitivity in multi-view video generation.

Train Datasets Objaverse NVidia Dynamic Dataset
Objaverse Kubric 2D Trans. Vid. PSNR1T SSIM?T LPIPS| PSNRT SSIM? LPIPS|
v DBIOOBIO0IE 2277 0729 | 0130
4 17.99 0.858 0.172 21.95 0.706 0.165
4 19.52 0.881 0.125 23.02 0.736 0.130
v v 2238 0.914 0.086 22.74 0.727 0.136
v v 4 22.09 0.911 0.084

- i .‘
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Figure 6: Color and depth renderings of Gaussians produced by inputting our generated 4D video
grids into the reconstruction model.

producing the second-best results on Nvidia when used in isolation. Removing this data source leads
to a noticeable degradation in video generation quality, as shown in Tab. 3. Combined datasets:
Training with all datasets combined yields consistently strong performance across both scenarios.

Comparing baselines. On Objaverse, our method produces noticeably higher-quality results com-
pared to SV4D, as shown in Tab. 2 (see the supplement for visuals). SV4D often generates blurry
frames. We attribute this to limitations of its base model and exclusive training on synthetic data.

On the generated dataset, our method consistently outperforms all baselines in both video quality
and multi-view consistency (see Tab.3 and Fig.5). The publicly released SynCamMaster model
shows noticeable inconsistencies across views and exhibits a bias toward synthetic-style outputs.
ReCamMaster-V1 struggles to maintain a static camera trajectory, and because each fixed-view
video is generated independently, it lacks multi-view consistency. ReCamMaster-V2 achieves better
multi-view alignment but suffers from temporal flickering. TrajectoryCrafter produces consistent
outputs overall, but artifacts often emerge due to outliers in the conditioned point clouds, reducing
visual fidelity. Lastly, 4Real-Video is constrained by its low-resolution, pixel-based model, resulting
in degraded visual quality and frequent failure to render fine details, such as the fingers of the skeleton.

4.2 Feedforward Reconstruction Evaluation

We evaluate our feedforward reconstruction model independently, comparing it to state-of-the-art
methods for static and dynamic scenes. See the supplement for details on the baselines, datasets, and
metrics.

NVS for static scenes. Table 6 shows quantitative results comparing our method with the baselines
(See the supplement for visualizations). GSLRM and BTimer lack scene-scale standardization, so
their performance can vary if camera parameters are manually scaled for each test scene (using a
tedious grid search). To ensure fairness, we report results for GSLRM/BTimer with and without
per-scene manual scale tuning (see the “Manual Scale" column). Even with tuning, these methods do
not match our performance. Our method does not use manual tuning, nor does it rely on input/output
camera parameters. Instead, it predicts all camera parameters. This adds difficulty, as it can affect
both Gaussian predictions and camera accuracy. We use VGGT [23] to predict the output camera
parameters by taking the first input frame and the target frames. These predictions are made in the
coordinate system of the first input, which is also the frame of reference for our Gaussians. Despite
these challenges, our method still outperforms the baselines, even when they are manually tuned.

NVS for dynamic scenes. We compare our model to baselines on novel view synthesis for dynamic
scenes using the Neural3DVideo [94] dataset, on which none of the baselines were trained. Figure 7
shows a visual comparison. GSLRM is designed for static scenes and is applied here by processing



Table 6: Quantitative comparison with baselines on static scene novel view synthesis.

Tanks & Temples [92] LLFF [93]
Method #Inputs  Input Cams.  Manual Scale  PSNRfT  LPIPS|  SSIMt PSNRT  LPIPS|  SSIM?T
GSLRM [65] 4 Yes Yes 15.78 0.3896 0.3385 14.42 0.4465 0.2980
GSLRM [65] 16 Yes Yes 16.21 0.4236 0.3528 14.85 0.4919 0.3222
BTimer [78] (Static) 4 Yes Yes 20.62 0.1498 0.5762 16.40 0.2789 0.3669
BTimer [78] (Static) 16 Yes Yes 20.45 0.1633 0.5771 16.60 0.3225 0.3971
T GSLRM[65] ~ T T ' No ~ — 7 71241 T 703933 03038  10.69 ~ 0.6182 ~ 0.2785
GSLRM [65] 16 Yes No 12.40 0.6138 0.3244 12.15 0.6323 0.2946
BTimer [78] (Static) 4 Yes No 16.48 0.2781 0.3933 14.24 0.3958 0.2830
BTimer [78] (Static) 16 Yes No 17.13 0.2883 0.4477 14.63 0.4231 0.3142
Splatt3r [69] 2 No No 12.50 0.4547 0.3363 12.64 0.4599 0.3055
Ours 4 No No 18.52 0.1699 0.5178 15.12 0.2778 0.3024

Ours 16 No No

Table 7: Comparison with baselines for dynamic NVS on the Neural3DVideo [94] dataset.

Method Input Cams. Manual Scale PSNR?T LPIPS| SSIM*
GSLRM [65] Yes Yes 20.54 0.1934 0.6346
BTimer [78] (monocular) Yes Yes 9.65 0.4310 0.3907
BTimer [78] (multi-view) Yes Yes 21.55 0.1213

TGSLRM 651~ T T 7 T Yes © T T T No T T 1231 05866  0.3553
BTimer [78] (monocular) Yes No 9.40 0.5898 0.3006
BTimer [78] (multi-view) Yes No 19.56 0.1693 0.6312
Ours No No [21.63 01200 | 0.6375

Figure 7: Qualitative comparison of our feedforward reconstruction model with the baselines on
novel view renderings of dynamic scenes from the Neural3DVideo [94] dataset.

each timestep separately. BTimer [78] claims to support monocular video input but can also take
a 4D grid. For fairness, we evaluate both versions: monocular and multi-view. The monocular
version cannot generate views outside the input trajectory and struggles with large camera motions.
As in static scenes, our method faces a harder task. It predicts both the Gaussians and the camera
parameters for input/output views. Still, it produces sharper, more accurate results. Table 7 confirms
this with better metrics, even when the baselines are manually tuned per scene. In this experiment, we
use four views as input for each scene and the rest as targets. We also perform an ablation study by
removing the camera token replacement and the temporal attention components, as shown in Table 8.
The results indicate that both components contribute to improved quality in the rendered novel views.

5 Conclusion

We presented a two-stage framework for 4D video gener- Table 8: Ablation of our feedforward
ation that leverages large-scale 4D video diffusion mod- .
els and a feedforward reconstruction network to produce
dynamic Gaussian splats from synchronized multi-view

reconstruction model on the test set of
the dynamic Kubric [84] dataset.

videos. While our method achieves state-of-the-art perfor- Method PSNR
mance across multiple benchmarks, several limitations

. . . w/o cam. token replacement ~ 22.48
remain. First, the current design does not support ful] wlo temporal attention 22.60
360-degree scene generation. Second, although multi- Full model 12339

view consistency is improved over prior methods, some

layering artifacts can still appear in the reconstructed Gaussian splats. Third, inference remains
computationally expensive, requiring approximately 4 minutes to generate 8 views and 29 frames
on a single A100 GPU. Future work may explore model distillation to improve inference speed and
expand scene coverage.
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Appendix

A Visual results for comparing architectures for 4D video generation

Figure S1 presents a qualitative comparison of outputs from various model architectures: SV4D [13],
sequential, parallel, and our proposed fused view-time attention architecture. Each example showcases
a frame from a 4D video. The fused view-time attention model produces the most consistent and
realistic results, closely resembling the ground truth in both shape and appearance. In contrast, the
sequential architecture exhibits lighting artifacts and fails to maintain a clean background, particularly
in the Objaverse scenes. The parallel architecture performs better but still shows noticeable temporal
instability and degradation in fine details. SV4D suffers from significant blurriness and structural
distortions, underscoring the advantages of joint view-time modeling in our proposed approach.
Please refer to Table 2 from the main paper for a quantitative comparison. The results for the
sequential and parallel architectures stem from our own reimplementation of these architectures, so
that all architectures use the same video model as backbone for a fair comparison (besides SV4D).

B Additional details on 4D video diffusion model

Architecture details. The base video model is a latent diffusion model built on a DiT backbone,
consisting of 32 DiT blocks with a hidden size of 4096, and a total of 11B learnable parameters. We
use rotary positional embedding (RoPE) for its relative encoding properties and strong generalization
across varying resolutions and durations. The model employs a convolutional autoencoder similar to
that in CogVideo [ 6], achieving 8 x compression in the spatial dimensions and 4x in the temporal
dimension. We fine-tune our 4D model using videos at a resolution of 144x256, and observe that
it generalizes well to higher resolutions (e.g., 288x512) and longer durations without additional
training.

Training data composition. Training Data Composition. Our training set comprises a combination
of synthetic 4D data from Objaverse and Kubric, 2D transformed videos, and videos of static scenes.
Each training batch consists of 40% Objaverse data, 20% Kubric, 20% 2D transformed videos, and
20% static scene videos. For the static scenes, we duplicate and stack frames to construct a 4D
video structure, although no actual object motion is present. To prevent the model from learning a
trivial solution that simply replicates the first frame across all views, we find it necessary to remove
frame conditioning when using freeze-time videos. Otherwise, the model tends to ignore viewpoint
variation and fails to capture meaningful temporal dynamics. In addition, we observe that randomly
reversing the order of viewpoints serves as an effective augmentation strategy that improves the
model’s generalization capability.

Training details. Training Setup. We train the model on 48 A100 GPUs with a batch size of 96, using
sequences of 8 views and 29 frames. The learning rate is set to 1e — 4 with a warm-up schedule. The
model converges quickly and begins producing plausible results after approximately 2000 iterations.
We switch to fine-tuning the model on sequences with 8 views and 61 frames at 4000 iterations and
the finetuning continues for an additional 2000 iterations. This costs around 2 days, or roughly 96
GPU days. We observe that the trained model generalizes well to sequences with varying numbers of
frames, even when they differ from the configuration used during training.

Sequential Parallel Fused View & GT SV4D Sequential Parallel Fused View &
Arch. Arch. Time Attn Arch. Arch. Time Attn
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Figure S1: Qualitative comparison of the outputs of our proposed architecture (fused view-time
attention) with our implementation of sequential and parallel architectures and SV4D [13].



Table S1: Compare with learnable view positional embedding for multi-view video generation.

Objaverse NVidia Dynamic Dataset
Positional Embedding PSNRT SSIMt LPIPS| PSNRT SSIM{  LPIPS|
Learnable View PE 19.50 0.899 0.161 23.45 0.751 0.113

(v, t,2,y) = (VTman + t,7,y)) 2249 0.909 0.113 23.15 0.752 0.142

Sampling Strategy and Classifier-Free Guidance. We adopt a rectified flow sampler consistent
with our base video model. In the setting where both freeze-time and fixed-view videos are provided
as input, we find that classifier-free guidance (CFG) yields marginal improvements in output quality.
Under this configuration, our model is capable of generating high-quality results with a small number
of diffusion steps—for example, as shown in Tab. S2, using only 4 steps already produces temporally
consistent outputs, particularly in background regions. Further refinement of the foreground, espe-
cially in areas with larger motion, occurs with additional steps. This suggests that our model could
potentially benefit from distillation techniques aimed at reducing the number of inference steps.

However, when only a single video is used as input, CFG remains essential. In this case, the model
relies more heavily on the input text to resolve ambiguities during generation.

Other variants of positional embedding for 4D video In addition to the design proposed in the
main paper, we explored alternative formulations for converting 4D coordinates into 3D positional
embeddings. Notably, we experimented with the transformation (v, ¢, z,y) — (v + ¢, z,y), based on
the intuition that temporal indices are consecutive across rows and columns of the frame matrix. This
mapping preserves the structural assumptions of the pretrained base video model.

Empirically, this variant performs comparably to our proposed embedding scheme when both freeze-
time and fixed-view videos are used as input. However, when only one of the two input types is
provided, the results become less stable. We attribute this to the ambiguity introduced by the (v +
t, z,y) formulation, which leads to duplicated or symmetric positions in the frame grid. Specifically,
positions become indistinguishable along the diagonal of the view-time plane, making it difficult for
the model to differentiate between the temporal and view dimensions. As a result, the model must
rely more heavily on the input frames themselves to infer the underlying structure.

Comparing to learnable view positional embedding. We implemented a baseline that incorporates
a learnable positional embedding for the view dimension. Specifically, for each token indexed
by (v,t,z,y), we compute separate positional embeddings for the view v and the spatiotemporal
coordinates (¢, x,y). For the view dimension, we apply sinusoidal encoding with 16 learnable
frequencies, followed by a two-layer MLP to produce the final view embedding. For (¢, z,y), we
adopt the 3D RoPE (Rotary Positional Embedding) used in the original base video model. To integrate
both positional embeddings into the attention mechanism, we first add the view embedding to the
key and query vectors, and then apply the 3D RoPE. This ensures that the RoPE is applied correctly
while still incorporating view-specific information.

We compare this baseline against our proposed embedding under identical training and testing settings
(see Tab. S1). We observe that the model with learnable view embeddings converges more slowly
during training. While it achieves comparable performance on dynamic-scene datasets such as the
NVIDIA dataset, it fails to produce correct backgrounds (e.g., white backgrounds in the Objaverse
dataset) resulting in catastrophic failures. We hypothesize that this may be due to confusion arising
from the mixed nature of the training data. Further investigation, such as tuning the training schedule
or dataset composition, may help address this issue. In conclusion, the proposed embedding is
empirically more stable to train, achieves competitive or superior quality, and introduces no additional
parameters.

C Additional details on the feedforward reconstruction model

Training details Static and dynamic training use batch sizes of 14 and 1, respectively, and learning
rates of 0.0002 and 0.00002. We sample uniformly across datasets in both stages. Static training
runs for 20K iterations, and dynamic training runs for 15K iterations. The training is done on 32
A100 GPUs for around a day. We use the same hyperparameters for temporal attention as for global
attention in VGGT [23]. The same hyperparameters as VGGT’s depth head are also used for the



Table S2: Cross-view consistency and Cross-time quality assement for generation with different
diffusion steps. Runtime is estimated for generating 4D videos with 8 views and 61 timestamps, in
total 488 frames.

Cross-View Cross-Time (VBench [90])
#Step  Time (s) Met3R] [91] Flickering?  MotionT  Subjectf  Background T  Image?
4 472 0.187 94.6 97.8 96.3 97.7 64.7
8 89.4 0.184 94.5 97.7 96.5 97.7 65.6
16 173.8 0.183 94.4 97.7 96.6 97.7 65.7
40 472.0 0.173 99.1 99.5 97.7 98.4 66.2

Gaussian head, except the output dimension is set to 14: 3 for position refinement, 1 for opacity, 3 for
scales, 4 for rotation (quaternion), and 3 for color offsets. Color and pose offsets are added following
Splatt3r [69].

Computational efficiency. Table S3 provides an overview of the time and GPU memory usage
required to run our feedforward reconstruction model on both dynamic and static datasets. Our model
is capable of producing Gaussians for static and dynamic scenes within seconds. These metrics are
calculated on an Nvidia A100 GPU. This experiment is conducted using inputs with a resolution of
350 x 518, following the standard input dimensions of VGGT.

Visual results for static scene novel view synthesis Figure S2 supports the quantitative results
in Table 6 from the main paper. We compare our method with GSLRM [65] and BTimer [78] on
LLFF [93] and Tanks & Temples [92] scenes. The baselines need ground-truth camera poses and a
per-scene scale search, while our method predicts all camera parameters and uses no manual tuning.
GSLRM and BTimer are trained with a photometric loss only, so their per-view Gaussians do not stay
aligned when the input set grows. With 16 input views the misalignment causes layering artifacts
on fine details, such as the fern leaves, and on thin parts like the back leg of the Horse statue. Our
model avoids these artifacts, matching the gains in PSNR, SSIM, and LPIPS reported in the table. In
Fig S3, we also compare our method to PixelSplat [62] and MV Splat [63] on the RealEstate10K [54]
dataset. Our method produces visuals that more closely match the ground truth. Note that PixelSplat
and MV Splat are trained specifically on RealEstate10K, so we compare on this dataset for fairness.

The difference between our renderings and those from the baselines is especially apparent when
the target camera differs significantly from the input trajectory. Figure S4 shows renderings from
our model compared to the baselines when the camera is moved backward and far from the set of
input frames. Notably, our model is much better suited for view extrapolation, in part because it
incorporates superior geometric priors, whereas the baselines rely solely on photometric losses.

Dataset details Table S4 provides an overview of the datasets used to train our models, summarizing
key characteristics such as the presence of dynamic content, the type of content (object-centric or
scene-level), the domain (real or synthetic), the approximate number of scenes, and the associated
licenses. These datasets span a range of scenarios and content types, offering a diverse foundation for
training models in our experiments.

Training data sensitivity analysis. Table S5 evaluates how training data affects the feedforward
reconstruction model. The original model is trained on five datasets: RealEstate10K, DL3DV,
MVImageNet, ACID, and static cuts of Kubric. The accompanying table shows performance when
the model is trained on each dataset individually. For Neural3DVideo, we fine-tune a dynamic variant
derived from each baseline. Training on all datasets results in a noticeable improvement. With more

Table S3: Runtime (seconds) and peak GPU memory (GBs) required by our feed-forward reconstruc-
tion network during inference on static and dynamic scene sequences, reported for varying numbers
of input camera views and timesteps. OOM means the model has ran out of memory.

1 Timestep (Static) 4 Timesteps 8 Timesteps 16 Timesteps
# Input Views Time (s) Mem. (GB) Time (s) Mem. (GB) Time (s) Mem. (GB) Time (s) Mem. (GB)
2 0.1779 7.204 0.4313 10.282 0.6850 13.709 1.2317 20.571
4 0.2044 7.885 0.6467 13.192 1.1712 18.528 2.1725 32213
8 0.2742 9.319 1.3009 18.933 2.4204 31.011 5.6977 60.172
16 0.5566 10.817 2.7396 24.989 5.2527 43.123 ooM ooM




GT GSLRM BTimer Ours

‘t-o’

-

# Input Views 4 16 4 16 4 16

Models require input camera parameters and manual scene scale tuning!

Figure S2: Qualitative comparison of our renderings with the baselines GSLRM [65] and BTimer [78]
on the task of novel view synthesis for static scenes. Each method includes two variations, using 4
and 16 input views. Note that all variations of GSLRM and BTimer require input camera parameters
and manual scene scale tuning.
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Figure S3: Qualitative comparison of our renderings with the baselines PixelSplat [62] and MV S-
Plat [63] on the task of novel view synthesis for static scenes. Note that the baselines require input
camera parameters, whereas our method infers the camera parameters from the input images.
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Figure S4: Qualitative comparison of our results with the baselines for novel view synthesis of static
scenes, where the target camera deviates significantly from the input trajectory.

computing power, one could possibly search over all possible subsets of these datasets to find the
best possible results.

System diagnosis of the two stage generation pipeline. Finally, in Table S6 we present a quantitative
diagnosis of the full pipeline on the Nvidia Dynamic Scene dataset, holding out views 1, 4, 7, and 10
at every timestep for evaluation. The optimization-based baseline, 4DGS [95], is run on the first view
at all timesteps plus the first timestep of every view (first row and first col of the 4D grid); in a second
setting, we first complete the grid with the 4D video generator (while using the first column and the
first row as input) and then optimize with 4DGS; in a third setting, we feed the generated grid to our
feedforward reconstruction model, thereby applying the complete two-stage pipeline. Our pipeline
outperforms the baselines in quality and reduces reconstruction time from over an hour (4DGS) to
under 3 seconds. Even if this or another optimization-based method could produce better visual
results, it would not be an option due to their prohibitive runtime for every scene. To avoid potential
issues with baseline depth/optical-flow priors failing on generated content, we utilized 4DGS as the
standard prior-free method for dynamic scene reconstruction.



Table S4: Specification and licenses for the datasets used to train our models.

Dataset Dynamic  Content Domain #Scenes  License

RealEstate10K [54] Scene Real 80K CC-BY (per video)
MVImageNet [88] Object Real 220K Custom (password-protected)
DL3DV [87] Scene Real 10K NonCommercial (custom terms)
Kubric [84] v Object+Scene  Synthetic 3K Apache 2.0

Dynamic Objaverse [45] v Object Synthetic ODC-By v1.0 (mixed per object)

Table S5: Analysis of training data sensitivity in feedforward reconstruction.
Train Dataset Eval Dataset ~ Neural3DVideo (Dynamic) Tanks & Temples (Static) LLFF (Static)

RealEstate10K 20.11 20.37 18.03
DL3DV 20.17 20.48 18.41
MVImageNet 19.97 20.03 18.33
ACID 18.31 18.28 17.23
Kubric 17.14 17.73 17.16
All 21.63 20.85 18.95

Table S6: System diagnosis of the two stage generation pipeline.
4DGS [95] MV-Video Gen. + 4DGS MV-Video Gen. + Feedforward Recon.
PSNR 17.60 19.05 19.14

Broader impact By supporting 4D content creation, our method opens new possibilities in animation
and visual effects. Nonetheless, careful consideration is required to prevent its exploitation for
deceptive or harmful purposes, such as identity forgery.
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