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Abstract
Despite growing interest in incorporating feed-
back to improve language models, most efforts
focus only on sequence-level annotations. In
this work, we explore the potential of utilizing
fine-grained span-level annotations from offline
datasets to improve model quality. We develop
a simple finetuning algorithm, called Training
with Annotations (TWA), to directly train ma-
chine translation models on this annotated data.
TWA utilizes targeted span-level error informa-
tion while also flexibly learning what to penal-
ize within a span. Moreover, TWA considers
the overall trajectory of a sequence when decid-
ing which non-error spans to utilize as positive
signals. Experiments on English-German and
Chinese-English machine translation show that
TWA outperforms baselines such as supervised
finetuning on sequences filtered for quality and Di-
rect Preference Optimization on pairs constructed
from the same data.

1. Introduction
Language models have advanced to the point where it
is often difficult to improve them substantially via super-
vised finetuning on high-quality human-written examples
alone; instead, recent efforts to improve language model or
sequence-to-sequence model performance have largely re-
lied on annotations of model generations, from preferences
to per-sequence scores (Bai et al., 2022; Ethayarajh et al.,
2022; Lambert et al., 2023; Kopf et al., 2023). Such data,
coupled with techniques to learn from it (Christiano et al.,
2017; Rafailov et al., 2023; Gulcehre et al., 2023; Dong
et al., 2023), have yielded impressive results for many top
language models.
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Most efforts, however, consider only sequence-level labels,
usually in the form of a scalar score assigned to the en-
tire output. In contrast, this work investigates the poten-
tial of using fine-grained span-level annotations from of-
fline datasets to enhance language model training. Unlike
sequence-level annotations, span-level annotations provide
information about specific segments within a sequence, of-
fering more detailed information for model learning. More-
over, in many situations, collecting fine-grained information
is similar effort to collecting sequence-level labels (Wu et al.,
2023), making the former a practical form of data for im-
proving model performance given a method that can take
advantage of the information.

To explore the potential of fine-grained annotations, we fo-
cus on the setting of machine translation, an application
where substantial amounts of fine-grained information is
already readily available, namely Multidimensional Quality
Metrics (MQM) data from previous Workshop on Machine
Translation (WMT) Shared Tasks (Freitag et al., 2021a).
This data, used to evaluate the quality of machine trans-
lation systems, contains span-level annotations of the er-
rors present in a given translation as well as their category
(e.g., fluency, accuracy) and severity (e.g., major and mi-
nor). While MQM data has previously been used to develop
auxiliary reward or metrics models (Juraska et al., 2023; Rei
et al., 2022), it has not been directly employed for training
machine translation (MT) models. Positive results in this set-
ting can motivate the collection of fine-grained annotations
to improve text generation tasks in other settings.

To directly utilize these translations and their span-level
annotations to finetune an MT model, we introduce a new
algorithm called Training with Annotations (TWA). TWA
utilizes span-level information from the annotations to treat
error and non-error spans differently. For error spans, the
TWA loss seeks to decrease the probability of the span given
the context while allowing the model to learn which tokens
in the span to penalize to do so. For non-error tokens, TWA
takes into account the overall sequence trajectory when
deciding which spans should be treated as positive signals.
A high-level summary of TWA can be found in Figure 1.

Experiments on English-German and Chinese-English ma-
chine translation demonstrate that TWA yields significant
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Figure 1. Overview of Training with Annotations (TWA). TWA proceeds by tokenizing the output text and its annotations. Then, a
weighted span-level unlikelihood loss is applied to each error span to allow the model to learn what parts of the error span to penalize and
non-error tokens following an error span are ignored as they are off-trajectory. All other tokens (i.e., non-error tokens preceding an error
span) are trained with cross entropy loss.

improvements over baselines which either do not consider
annotation information or only utilize the information at the
sequence level. Specifically, TWA can outperform meth-
ods such as supervised finetuning on sequences filtered for
quality and Direct Preference Optimization (DPO) on pref-
erence pairs constructed from the same data. These results
highlight the effectiveness of taking advantage of span-level
annotations to improve model performance.

First, we describe the MQM data and the information pro-
vided in the span-level annotations (Section 2). Then, we
discuss existing work which either utilizes the MQM data or
the fine-grained annotations (Section 3). Then, we introduce
our method, Training with Annotations (TWA), in Section 4.
We outline our experimental setup in Section 5 and present
the results in Section 6. Finally, we conclude with a discus-
sion of our findings and future work in Section 7.

2. MQM data
Each year, the Workshop on Machine Translation (WMT)
hosts a shared task competition to assess general machine
translation capabilities across different domains and genres.
Submitted MT systems are scored and evaluated by humans,
with top systems annotated via the Multidimensional Qual-
ity Metrics (MQM) scheme (Freitag et al., 2021b; Rei et al.,
2022). Namely, given the source text and MT output, pro-
fessional translators annotate any error spans in the output
translation. Each error span is annotated with the category
of the error as well as the severity of the error. Each error
span is assigned a score of 25 for a non-translation, 5 for a
major error, 0.1 for a minor punctuation error, and 1 for any
other minor error. The overall MQM score of an example
sequence is the sum of the MQM scores of the annotated
error spans in the sequence.

MQM annotations have been used to evaluate MT systems,
as described above, but not as additional training signal to
finetune MT models. Utilizing these annotations during
training requires developing a method that can take this
information into account. We describe our proposed method,
Training with Annotations, in Section 4.

3. Related Work
Utilizing MQM data. TWA is the first method to use
span-level MQM data to directly finetune machine trans-
lation models, but there exist other methods which utilize
MQM data to train other models, including automated met-
rics and instruction-tuned language models. Namely, exist-
ing automated metrics in machine translation such as Met-
ricX (Juraska et al., 2023) utilize MQM scores as labels for
training data, so methods which utilize these neural-based
automated metrics indirectly benefit from MQM data. Such
approaches include QE reranking (Fernandes et al., 2022)
or MBR decoding (Freitag et al., 2022) with neural quality
metrics. Both methods can be used in tandem with TWA, as
one could always decode a TWA-trained model with either
of these approaches. One could also use the results of such
decoding methods to directly finetune a model, commonly
known as MBR or QE finetuning (Finkelstein & Freitag,
2024). However, given the models powering automated met-
rics such as Metric-X are trained on multiple sources of data
beyond that of MQM data alone, MBR and QE finetuning
are not directly comparable with TWA. Jiao et al. (2023);
Zeng et al. (2023) reformat MQM data as an instruction
following task, e.g., “Translate the following sentence. . .
with major accuracy errors. . . ”, and find that supervised fine
tuning in this manner can improve translation quality, e.g.,
via “Translate the following sentence. . . with no errors. . . ”.
However, the instructions incur additional computational
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and memory costs relative to direct translation, and TWA
differs in its direct use of error signal as negative information
rather than as an example for the task of mistranslation.

Utilizing fine-grained annotations. There exist other
methods which consider fine-grained annotations, but they
consider a different setting than TWA. Fine-grained RLHF
(FG-RLHF) (Wu et al., 2023) adapts RLHF to reward mod-
els which provide finer-grained feedback than a single
sequence-level score. Such fine-grained feedback could
even come from an automated metric trained with MQM
data, such as xCOMET as in Ramos et al. (2024). Similar
to our work, Wu et al. (2023) achieve better performance
using fine-grained RLHF with span-level rewards than using
RLHF with sequence-level rewards. The difference between
FG-RLHF and TWA is that the former is a reinforcement
learning method that requires an auxiliary fine-grained re-
ward model to annotate model generations online, while the
latter is a finetuning method that can work directly with of-
fline annotated data without the need for additional models
during training. The performance of FG-RLHF depends
on the quality of the fine-grained annotator model, which
can be difficult to develop (see Pang et al. (2023) and Ap-
pendix D). Moreover, accuracy of the annotations aside,
a reinforcement learning approach which only takes into
account online data misses out on the opportunity to learn
from offline examples themselves, not just their annotations.

Next, Targeted Negative Training (TNT) (Zhang et al., 2024)
is a method for training on token-level annotations of neg-
ative examples, but its motivation is to achieve a targeted
update, i.e., reducing unwanted behavior while minimally
changing the model otherwise. TWA, on the other hand,
is not concerned with making precise updates but rather
improving overall quality as much as possible. Finally,
FUDGE (Yang & Klein, 2021) is an alternative decod-
ing technique which utilizes a token-level auxiliary reward
model to sample from the model conditioned on a given at-
tribute a; namely, given reward model which approximates
p(a|y≤t, x), FUDGE samples from p(yt|y<t, x, a) using the
original model p(yt|y<t, x) and reward model p(a|y<=t, x).
TWA, on the other hand, is a finetuning-based approach that
does not alter the test-time behavior of the model and does
not require an auxiliary reward model.

4. Training with Annotations
Training with annotations (TWA) is a finetuning algorithm
that takes into account example outputs and their span-level
error annotations. TWA proceeds as follows: first, the ex-
ample is tokenized and given weights corresponding to its
annotations: tokens which contain any characters within an
error span are given a negative weight, and tokens outside
an error span are given a non-negative weight. Then, during

training, the TWA loss for a given sequence is a sum of the
losses from the error spans and the non-error tokens. Below,
we describe and motivate the choices for the constituent
losses.

4.1. Handling error spans

An annotated error span provides information to the model
that such a continuation is undesirable given the preceding
context (and thus should be unlikely under the model). To
decrease the probability of error spans given their context,
TWA utilizes the unlikelihood loss, − log(1− p). The loss
is high when the probability p is high and 0 when p is zero.
In Section 6, we consider alternative choices of loss for
error tokens and find that the unlikelihood loss outperforms
other choices. Moreover, the unlikelihood loss is efficient
to compute as it only requires access to the current model
being trained.

Applying unlikelihood to each token in an error span may
not be desirable, however. Take the output in Figure 1, for
example. Imagine the correct translation was “Give me an
example of a blessing in adversity”, but the submitted trans-
lation was “Give me a story about a blessing in disguise”,
as shown in the figure. Moreover, say the sequence was
tokenized in the way shown in the figure, with “disguise”
being tokenized into “dis” and “guise”. First, even though
“disguise” is an inaccurate translation of “adversity”, “guise”
is perhaps the most reasonable continuation of the sequence
given the prefix ends with “blessing in dis”. Penalizing
“guise” given its prefix does not necessarily reflect the inten-
tion of the error span; rather, it is probably more appropriate
to assign a low probability to “dis” given its prefix while
maintaining a high probability for “guise” given a prefix
ending in “a blessing in dis”. Second, the error annotation
around “a story about” does not necessarily mean that the
article ‘a’ and the preposition “about” should be assigned
a low probability given their prefixes. The above examples
are just a few instances of the broader idea that not all tokens
in an error span should be penalized.

Given these examples and others, one might be able to come
up with a series of heuristics to transform the resulting span-
level errors into corresponding token-level losses. However,
as is common in natural language, manually creating rules
can be difficult and error-prone (whether due to low preci-
sion or recall). Instead, we choose to let the model learn
what to penalize within a span by utilizing a span-level un-
likelihood term instead of a token-level one. We additionally
take into account the severity of the error by scaling the loss
by the absolute value of the severity weight w assigned to
the span, equal to the error span’s negative MQM score: -0.1
for minor punctuation, -1 for all other minor errors, and -5
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for major errors.1 The loss for an error span is the following:

LTWA(error span) = −|w| log(1− pspan)

= −|w| log(1− exp
∑
t∈span

log pt).

Rather than forcing the model to push down probability
over all tokens in a span given their prefixes, the span-level
unlikelihood loss allows the model to learn which tokens to
penalize in order to decrease the overall probability of the
span.

4.2. Handling non-error spans

When the overall quality of the data is high relative to the
base model, using supervised finetuning (SFT) to maximize
the likelihood of the translations in the data can improve
the model. On the other hand, when the overall quality of
the data is low relative to the model, SFT can hurt perfor-
mance, by teaching the model to reproduce errors. Thus,
to optimize model quality, most efforts seek to filter out
low-quality examples and train just on high-quality ones.
However, in reality, there is likely often a spectrum of trans-
lation quality even within an example itself. Fine-grained
annotations provide extra information about this variation
in quality by pinpointing exactly where errors exist. Then,
for all other tokens, we can proceed with typical maximum
likelihood training via cross entropy loss, without worrying
about maximizing the likelihood of errors.

However, all the subsequent tokens after an error are out-
of-support since their prefixes contain an error that should
be low or zero probability under the intended new model.
We call these subsequent tokens off-trajectory. Generaliza-
tion aside, off-trajectory tokens at best are irrelevant to the
model distribution and at worst could provide noisy signal.
While there is an argument that high-quality off-trajectory
tokens could provide signal that generalizes to trajectories
the model will actually sample, we find empirically that
ignoring these tokens in the overall loss can greatly im-
prove performance in some settings (see Table 4). TWA on
non-error spans is thus as follows:

LTWA(non-error span) =

{
0 if span after first error
− log pspan otherwise.

Note that this is equivalent to employing per-token cross
entropy loss on non-error tokens before an error span, as
log pspan =

∑
t∈span log pt.

1Under the MQM rating system, some major errors are given
a score of -25 (namely those categorized as non-translations), but
we use a weight of -5 for these errors as well.

4.3. Overall method

Combining the insights from the above two sections, we
have a simple finetuning algorithm for TWA as depicted in
Figure 1. First, we tokenize the output sequence and its cor-
responding annotations. The latter become weights which
are negative values for tokens with characters contained
in an annotated error span, zero for all tokens following
the first error span, and one for all other non-error tokens.
Then, we group tokens into spans based on weight (i.e., all
contiguous tokens with the same weight are in the same
span) and employ either the TWA error span loss or the
TWA non-error span loss. The overall TWA loss for a given
sequence is the sum of all the span losses.

5. Experiments
5.1. Data

Pretraining. We pretrain En→De and Zh→En models us-
ing the parallel WMT’23 training data (Kocmi et al., 2023),
which consists of 296 million sentence-level examples. For
En→De, we additionally construct multi-sentence examples
from a subset of this data where the overall documents can
be recovered and partitioned into longer blocks than those
of individual sentences. The multi-sentence examples have
a max length of 1024 tokens, with 512 tokens each for the
input source and output target.

Finetuning. For both language pairs, we then apply TWA
on top of the pretrained model, using MQM data from
WMT’20 (Barrault) and WMT’21 (Akhbardeh) for train-
ing. In total, the training dataset contains roughly 2,900 and
3,100 source texts, with around 28,000 and 31,000 submis-
sion outputs for En→De and Zh→En, respectively (around
ten submissions per source on average).

5.2. Base Model

For both language pairs (En→De and Zh→En), we use a
602-million-parameter Transformer encoder-decoder archi-
tecture implemented in Pax2. The model has 8 encoder and
8 decoder layers (rather than 6), but otherwise is similar to
the transformer-big setting in Vaswani et al. (2017), with
model dimension of 1024, hidden dimension of 8192, and
16 multi-attention heads. For each language pair, we use a
bilingual vocabulary of 32k subword units trained on the
WMT’23 training dataset (Kocmi et al., 2023). We pretrain
with the standard cross entropy loss.

See Table 1 for a comparison of the quality of our base
model relative to the average quality of the WMT’20-’21
submissions, and Table 2 for the range of quality across
submissions (best and worst systems). On average, the

2https://github.com/google/paxml
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Table 1. Quality of original base model and submissions data, all
systems in aggregate.

En→ De Zh→ En

Metric-X ↓ COMET ↑ Metric-X ↓ COMET ↑
model 2.132 0.406 4.529 0.326
data 1.301 0.525 3.414 0.376

Table 2. Quality of best and worst system submissions.

En→ De Zh→ En

Metric-X ↓ COMET ↑ Metric-X ↓ COMET ↑
best 0.194 0.641 2.258 0.517
worst 2.043 0.192 3.573 0.193

submissions are higher quality than our starting base model.

See Appendix A for additional statistics between the base
model and submissions data, including error token distri-
butions (Figure 5) and histograms per-sequence of quality
scores between model generations and data (Figure 6).

5.3. Baselines

We compare TWA with Supervised FineTuning (SFT) and
Direct Preference Optimization (DPO) (Rafailov et al.,
2023) as baselines. SFT on the MQM annotated data is anal-
ogous to distilling the outputs of other MT systems, without
taking into account the annotations. DPO is a preference
learning algorithm which operates on pairs of responses to
the same input given the knowledge that one response in the
pair is preferred to another. Many alternatives to DPO exist
which also contrast pairs of responses, e.g., (Meng et al.,
2024; Xu et al., 2024; Hong et al., 2024; Xu et al., 2025),
and to compare against this pairwise setting, we construct
response pairs for DPO from the same MQM data using
the sequence-level MQM scores (i.e., the sum of the MQM
scores of all the error spans), creating pairs from all com-
binations of system translations to the same source input
where the MQM score is distinct. We arrived at this setting
after testing multiple variations; see Appendix C for details.
In other words, DPO utilizes the annotations as additional
information, but only at a sequence level.

When using both submissions and references for finetuning,
we treat references as error-free for TWA and TWA-seq, and
treat them as better than all submissions for constructing
DPO pairs; the resulting dataset for DPO thus contains all
the pairs constructed from submissions only, plus additional
(reference, submission) pairs for every submission. We also
consider two additional baselines. First, given the quality
of the data makes a big difference in the efficacy of SFT,
we construct a dataset of only the references and error-free

submissions and run SFT on this filtered dataset. We call
this baseline Filter + SFT. Second, we also run a sequence-
level analogue to TWA, where we apply a sequence-level
unlikelihood loss to an output if it contains any error and
cross entropy loss otherwise. We call this baseline TWA-
seq.

For all the methods, we use a batch size of 8192 (4096 pairs
for DPO), a learning rate of 2e-6 with a constant schedule,
and no label smoothing. Greedy decoding is used through-
out the experiments.

5.4. Evaluation

For evaluation, we use MetricX-23 (Juraska et al., 2023),
COMET-20 (Rei et al., 2020), and BLEURT (Sellam et al.,
2020) as quality metrics. MetricX-23 and BLEURT are both
reference-based metrics which score a translation based on a
reference and a hypothesis, without taking into account the
source text. COMET-20 takes into account the source text,
hypothesis, and reference translation. MetricX-23 has been
finetuned on MQM WMT’20-’21 data, while COMET-20
and BLEURT have not. Given their differences, considering
all three automated quality metrics together in the evalu-
ation helps guard against overfitting to the idiosyncrasies
of any one in particular. Lower is better for MetricX-23,
while higher is better for COMET-20 and BLEURT. For
checkpoint selection, we average the values of MetricX-23
and the negative COMET-20 on the validation set every 500
steps and select the checkpoint with the lowest (i.e., best)
score. We then report all three evaluation metrics on the test
set, employing BLEURT as a held-out evaluation. Through-
out the rest of the paper, we use MetricX and COMET to
denote MetricX-23 and COMET-20, respectively.

We use the generalMT2022 test set (Kocmi et al., 2022)
as our validation set for checkpoint selection, and report
all results on the WMT’23 (Kocmi et al., 2023) test set.
The validation set contains roughly 2, 000 and 1, 900 source
texts (along with their corresponding reference translations)
for En→De and Zh→En, while the test set contains 600
and 2, 000 examples for En→De and Zh→En, respectively.
Note that the WMT’23 En→De test set is paragraph-level.

6. Results
6.1. Main Results

First, we compare TWA to the baselines described in Sec-
tion 5.3. We perform experiments using the submissions
data alone, as well as in tandem with the human-written
reference translations (one per source). Within each quality
metric, we also report performance clusters based on sta-
tistically significant performance differences between pairs.
For each language pair and data source (i.e. submissions
only vs. submissions+references), we verify whether the
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Table 3. Results aggregated by language pair and automatic metric. We also indicate the data sources used for each result. Models with
statistically significant performance improvements are grouped in quality clusters. We highlight the best ranked models in bold.

En→ De Zh→ En

Submissions References Metric-X ↓ COMET ↑ BLEURT ↑ Metric-X ↓ COMET ↑ BLEURT ↑
Base model 4.203 0.429 0.6412 4.938 0.066 0.6079
SFT X 3.573 2 0.481 2 0.658 2 4.253 2 0.255 2 0.650 1
DPO X 3.792 2 0.455 3 0.664 1 4.072 1 0.113 3 0.615 2
TWA X 2.944 1 0.507 1 0.668 1 4.091 1 0.277 1 0.651 1
SFT X X 3.159 3 0.491 2 0.662 2 4.094 3 0.271 2 0.652 1
DPO X X 3.564 4 0.442 3 0.660 2 4.063 2 0.113 3 0.614 2
Filter + SFT X X 2.950 2 0.499 2 0.670 1 4.004 2 0.289 1 0.652 1
TWA-seq X X 3.158 3 0.485 2 0.663 2 3.993 1 0.284 1 0.652 1
TWA X X 2.882 1 0.513 1 0.672 1 3.965 1 0.290 1 0.653 1

measured differences between each system pair is statisti-
cally significant via a paired permutation test3 using 1000
re-sampling runs and a significance level of p = 0.05. We
then group systems with similar performance by following
the clustering procedure from (Freitag et al., 2023). Namely,
given significance results (p-values) for all pairs of systems,
we assign ranks as follows. Starting with the highest-scoring
system, we move down the list of systems in descending
order by score, and assign rank 1 to all systems until we
encounter the first system that is significantly different from
any that have been visited so far in the latter cluster. That
system is assigned rank 2, and the process is repeated until
all systems have been assigned a rank. This clustering is
done independently for each automated metric.

Table 3 summarizes the results. We find that TWA is consis-
tently the most performant: it is within the top-performing
cluster for all settings, a feat shared by no other method
(the next most consistently in the top cluster is TWA-seq,
its sequence-level counterpart). TWA’s differential perfor-
mance over baselines is most pronounced for Metric-X,
likely due to the metric’s sensitivity to the quality captured
across MQM data, and least pronounced for BLEURT, likely
given its generally more concentrated range of values and
the fact that the metric that was fully held out from the
checkpoint selection process; even so, TWA still yields the
highest BLEURT score in every setting, highlighting the
generalizability of the results with respect to quality metrics.

All methods improve quality over the base model, which is
in line with the fact that the submissions data are of higher
quality overall than the base model’s generations. TWA’s

3Considering each system as its distribution of the MetricX
or COMET scores for each source-translation pair, we test
how likely a given result between pairs of systems would
be if their underlying distribution of scores were the same.
In code, we use scipy.stats.permutation test(*,
statistic=np.mean, permutation type=’samples’)

consistent improvement over SFT suggests that even when
the data is overall of better quality than the current model
being finetuned (i.e., training on all the data still improves
performance), it can still be beneficial to treat some spans
differently than others. The fact that sequence-level base-
lines that take into account negative information (i.e., DPO,
TWA-seq) do not necessarily improve performance over
SFT highlights the challenge of attribution when utilizing
sequence-level information. Namely, both DPO and TWA-
seq utilize more information than SFT (i.e., DPO takes into
account that one sequence is preferred over another, while
TWA-seq knows which sequences have errors and which
ones are error-free), but they are not able to effectively
utilize this information to gain a systematic improvement
over a baseline that ignores this information. These results
suggest that even when extra information is available, it is
non-trivial to develop a method which can effectively take
advantage of this information. TWA, on the other hand,
is able to take advantage of span-level annotation informa-
tion to outperform SFT and Filter+SFT, highlighting the
effectiveness of the method. TWA’s improvement over Fil-
ter + SFT (significant for En→De) demonstrates that it is
able to utilize useful signal that is otherwise thrown away
with sequence-level filtering. Moreover, TWA is able to
improve quality with more fine-grained modifications than
other approaches, with a higher sacre-BLEU of 34.24 and
25.30 on En→De and Zh→En submissions and references
vs. 30.71 and 15.66 for DPO, indicating that its use of
negative information is more precise.

TWA yields the best score for all metrics across the board,
with the exception of DPO on Zh→En using submissions
data only. While DPO may seem better on Metric-X (though
not significantly so), it is substantially and significantly
worse on COMET (less than half the COMET score of
TWA) and BLEURT, suggesting that DPO has exploited an
idiosyncracy of the Metric-X model without truly improv-
ing in overall performance. Although other methods will
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occasionally also occupy the rank-1 cluster alongside TWA
for a given metric and setting, no baseline does so across
metrics within a setting except TWA-seq on Zh→En using
references and submissions data.

To further test the robustness of TWA, we compare it to
baselines on an additional language pair, En→Zh, following
the same experimental setup as described in Section 5 but
using WMT-’22 MQM data for finetuning due to the lack
of MQM data for the language pair from WMT-’20-21.
We find that TWA significantly outperforms baselines in
this experiment as well. Strikingly, TWA achieves not just
top cluster results but significantly better performance than
baselines even on the held-out metric BLEURT, which was
not used for checkpoint selection. See Appendix B for
details.

6.2. TWA Ablations

Next, we isolate the effect of the individual components
of TWA in Table 4. Starting from the base model, we
note first that training on all the submissions (+ SFT on
submissions) improves results. Then, given knowledge of
span-level errors, the most obvious next step is to treat the
tokens with and without errors differently. Absent a method
to deal with errors, the most straightforward next step is
to include only the non-error tokens in the loss, ignoring
the error tokens to prevent the model from maximizing the
likelihood of them given their context. We see that this
step (+ on non-error tokens only) improves results over
training on all error tokens, confirming our hypothesis that
training on error tokens negatively contributes to model
quality. Then, we incorporate the TWA loss on error spans,
whose tokens make up on average 11.0% and 13.6% of the
total tokens in a given translation (see Figure 5 for additional
statistics on the error- vs. non-error makeup of the data).
This results in further improvements, demonstrating that
it is possible to improve model quality by learning from
negative information over ignoring errors entirely. Finally,
we ignore off-trajectory tokens, which results in substantial
gains in En→De but not in Zh→En. To understand the
gains in En→De, we compare the translations between the
TWA variant that ignores off-trajectory tokens and the one
that includes them in the loss, and we find that the former
results in more fluent translations in contrast the latters more
literal and sometimes awkward ones; see Appendix F for
further details, including example generations. A possible
explanation for the lack of gains in the latter could be that
there is less room to differentially improve performance
with fine-grained information, as evidenced by the fact that
TWA is better than TWA-seq in Zh→En but not significantly
so. Regardless, both versions of TWA (ignore off-trajectory
vs. not) still outperform baselines.

6.3. Negative Losses for TWA

A key component of TWA is how to utilize error spans
as negative information. In Table 5, we compare the un-
likelihood loss used in TWA with the negative likelihood
loss also on the span level, i.e., LNL(span) = log pspan.
Table 5 shows that unlikelihood greatly outperforms neg-
ative likelihood. This is likely due to the fact that the
negative likelihood only grows in its contribution to the
loss and corresponding gradient as the probability of an
error span goes to zero (i.e., limp→0 log pspan = -∞ and
limp→0

∂
∂p log pspan =∞) and can thus outweigh likelihood

terms as the probability of positive spans moves towards
1 (i.e., limp→1 - log pspan = 0 and limp→1

∂
∂p- log pspan =

-1). In contrast, unlikelihood mirrors the loss and gradi-
ent of likelihood as the span probability moves towards
the desired result (i.e., limp→0 - log(1 − pspan) = 0 and
limp→0

∂
∂p- log(1− pspan) = -1

6.4. Analyzing TWA

Next, we visualize how TWA changes the model distribution.
For each submission output in the training data, we obtain
its per-token log probabilities. Moreover, for each token
we record its log probability rank under the model relative
to all other tokens in the vocabulary. Both can be obtained
through a single forward pass. We obtain log probability
ranks for both the original base model as well as the TWA-
trained model and compute the change in rank for each token
from the base model to the TWA-trained model. Note that
since the model is decoded via greedy decoding, changes in
rank are more indicative of behavior shifts than changes in
log probability. We visualize the changes in rank for four
different sample training examples in Figure 2. Notably,
the configuration of tokens penalized within the error span
varies across different samples, demonstrating the flexibility
of span-level error loss in enabling the model to learn which
tokens to penalize—an outcome that would be challenging
to encode manually with a set of heuristics. Quantitatively,
we also find that utilizing a span-level error loss substantially
outperforms using a token-level loss on each token in a span
(3.325/0.495 MetricX/COMET vs. 3.433/0.470 for token-
level on En→De submissions only).

6.5. TWA with on-policy samples

While the aforementioned experiments all utilize off-policy
data generated from MT systems other than the one be-
ing finetuned, next we test the efficacy of TWA in an on-
policy setting. Concretely, we obtain MQM annotations of
the base model’s translations and run TWA with this an-
notated data. We see substantial improvements in quality,
from 4.203/0.429 Metric-X/COMET to 3.710/0.456 Metric-
X/COMET. While these improvements from online data are
not as large as those with the off-policy data, where the
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Table 4. A breakdown of the components of TWA and their isolated effect on model quality. Models with statistically significant
performance improvements are grouped in quality clusters, and the best ranked scores are shown in bold.

En→ De Zh→ En

Metric-X ↓ COMET ↑ Metric-X ↓ COMET ↑
Base model 4.203 0.429 4.938 0.066
+ SFT on submissions 3.573 4 0.481 4 4.253 2 0.255 3
+ on non-error tokens only 3.488 3 0.487 3 4.120 1 0.283 1
+ span-level loss on errors 3.325 2 0.495 2 4.088 1 0.284 1
+ ignore off-trajectory tokens 2.944 1 0.507 1 4.091 1 0.277 2
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Figure 2. Change in the rank of each token in the vocabulary from the base model to the TWA-trained model. Dashed red lines indicate
annotated errors. Red bars show a worsening in rank, while green bars indicate improvement. TWA learns diverse patterns for penalizing
specific token conditionals within an error span—patterns that would be challenging to capture with heuristics.

Table 5. Comparison of negative losses for use on error spans. We
compare unlikelihood (UL), the choice in TWA, with negative
likelihood (NL).

En→ De Zh→ En

Loss Metric-X ↓ COMET ↑ Metric-X ↓ COMET ↑
UL 2.944 0.507 4.091 0.277
NL 3.477 0.491 4.730 0.108

submissions data is on average better quality than the base
model’s translations (see Table 1), the fact that TWA still
significantly improves over the base model in this setting
speaks to the ability of the method to take advantage of anno-
tation information alone, even when there is no difference in
translation quality between the model and data. This result
provides positive signal in favor of the promise of utilizing
TWA to improve upon already very high-quality models,
without the need for even higher quality translations (just
good error annotations).

7. Discussion
In this work, we introduce Training with Annotations
(TWA), a method for finetuning a language model on data
with span-level error annotations. While most existing
efforts have focused on utilizing sequence-level annota-
tions, TWA can take advantage of finer-grained information
for more effective learning. Our experiments on English-
German and Chinese-English machine translation highlight
the performance gains TWA offers compared to methods
that focus solely on sequence-level information.

As model capabilities continue to improve, it will be increas-
ingly difficult to rely on the collection or construction of
high-quality examples as training signals. In fact, many of
the MT system submissions in WMT’24 were found to sur-
pass the quality of human-constructed reference translations,
highlighting the need to move beyond demonstration data
for improving existing models. MQM annotations of model
generations offer a valuable alternative source of informa-
tion for model training, and TWA unlocks the potential to
utilize such rich information directly and simply.

8



Learning from others’ mistakes: Finetuning machine translation models with span-level error annotations

Yet while the experiments focus on MQM data for the task
of machine translation, TWA can be used for span-level
annotations broadly, paving the way for other applications
of fine-grained annotations. While fine-grained informa-
tion may be more expensive to collect than sequence-level
information for some tasks, Wu et al. (2023) find that for
long-form question-answering, the time required for hu-
mans to annotate span-level errors is comparable to the time
required to label the sequence overall. Many other tasks
likely fall into this same category: for instance, one needs
to locate the hallucination in order to label a sequence as
“has hallucination”; similarly, identifying specific spans of
bias or misinformation is necessary before assigning a label
such as “biased” or “inaccurate”.

There exist multiple ways to build upon TWA. One avenue
for future work would be to apply TWA in settings beyond
machine translation or to language models in general. An-
other would be to additionally take into account the fine-
grained annotation information in other ways—for instance,
given fine-grained information provides a natural ranking of
inputs, one could consider directly providing the model with
this relative quality information as well. Other interesting
questions to investigate include assessing TWA on online
data, analyzing the impact of the quality of the generations
and annotations on resulting model performance, and ex-
ploring the repeated use of TWA for iterative refinement
of a model. Finally, the fact that ignoring off-trajectory
tokens was highly beneficial in one language pair but not
in the other, provides an opportunity to further refine TWA
to better handle off-trajectory tokens since the latter might
contain additional useful information for training.

In summary, TWA offers a straightforward method to cap-
italize on existing span-level annotation data as well as a
reason to begin collecting span-level information in appli-
cations which currently do not. By taking advantage of
previously overlooked sources of supervision, methods such
as TWA can help unlock new avenues for pushing the fron-
tier of model development.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Additional Dataset & Model Statistics
While Table 1 and Table 2 present average quality scores for the system submissions and base model, here we present
additional statistics for both.

Table 6. Average length and percentage of error tokens for En-De and Zh-En translation pairs. Standard deviations are shown in
parentheses.

Average length (tokens) Percentage of error tokens

En→ De 38.8 (24.6) 11.0 (19.6)
Zh→ En 40.4 (27.0) 13.6 (19.2)

Figure 3. Proportion of tokens within error spans in each output sequence.

Figure 4. Number of error tokens in each output sequence.

Figure 5. Histograms of the proportion and number of errors in the training data. Left is En-De, right is Zh-En.
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Figure 6. Histogram of COMET scores across the submissions and base model generations. Source inputs come from the training data.

Table 7. TWA versus baselines on a third language pair, En→Zh. Results in bold are significantly better than others in the same column.

Submissions References Metric-X↓ COMET↑ BLEURT↑
TWA X 2.342 0.517 0.696
DPO X 2.349 0.503 0.693
SFT X 2.470 0.504 0.692

TWA X X 2.324 0.521 0.697
DPO X X 2.325 0.510 0.694
SFT X X 2.409 0.509 0.694
Filter + SFT X X 2.373 0.513 0.693

B. Additional results
We test TWA versus baselines on an additional language pair, En→Zh, below. We used WMT-’20 and ’21 MQM data for
finetuning En→De and Zh→En, but these are the only language pairs with MQM data from those years. Instead, we use
MQM from WMT-’22 for finetuning En→Zh, then WMT-’21 for validation, and WMT’23 as the test set. As in Section 5, we
use the parallel WMT’23 training data for pretraining from scratch. All other experimental details match those of Section 5.
and find that TWA significantly outperforms baseline methods. Table 7 showcases the results.

C. DPO hyperparameter sweeps
To ensure a fair comparison with baseline methods, we test many settings of DPO, varying the construction of the preference
pairs and the method for scoring sequences to determined preferred vs. dispreferred in a pair. We set β = 0.1. Table 8
summarizes the results. As the DPO loss seeks to increase the probability of the preferred sequence relative to its probability
under the original model and decrease the probability of the dispreferred sequence relative to its probability under the
original model, we first constructed pairs where the reference was always the preferred sequence in a pair. As the dispreferred
sequence, we tested using the best submission (by MQM score), worst submission, or all submissions and found that using
the worst submission yielded the best results. However, the performance in all these settings paled in comparison to the
setting where we constructed as many pairs of distinct score submissions as possible, even without access to the reference
data. Adding additional pairs using the reference data improved results further, so we chose this setting for constructing
pairs. With this setting, we find that using the sum of the span-level MQM scores performs better than the mean MQM score
when both references and all submissions are applied; given that sequence-level MQM scores are generally computed using
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the sum, we choose it over the mean.

Table 8. DPO En→De results (test set) for different configuration settings.

Setting preferred dispreferred score Metric-X ↓ COMET ↑
Default reference best submission mean 6.259 0.083
Default reference worst submission mean 5.540 0.174
Default reference all submissions mean 5.575 0.157
Default all submissions all submissions mean 3.753 0.455
Default reference, all submissions all submissions mean 3.739 0.442
Default all submissions all submissions sum 3.792 0.455
Default reference, all submissions all submissions sum 3.564 0.442

D. Fine-grained Annotator Model
Here, we consider the endeavor of developing a model to output fine-grained annotations of a sequence. We consider two
approaches, direct finetuning and in-context learning (Brown, 2020) with Gemini Pro-1.5 (Team, 2024). For the former,
we use the WMT’20-’22 MQM datasets. For the latter, we use the MQM submissions data matching a given source input
as in-context examples for annotating a given output translation for that same source. We utilize the following prompt
preceding the ICL examples: “You are an annotator for the quality of machine translation. Your task is to identify errors and
assess the quality of the translation”. We test both approaches on the WMT’23 test set and find that the latter (ICL) yields
better results than the former (direct finetuning). Thus, we use the latter to annotate our base model generated translations.

We then ran a MQM human evaluation to collect the ground-truth annotations for these same translations and report the
character-level F1 meta-evaluation metric (Blain et al., 2023). In comparison to ground-truth annotations from the human
MQM evaluation, ICL with Gemini achieves a character-level F1 meta-evaluation metric (Blain et al., 2023) of only 19.14.
These results highlight the loss in annotation accuracy incurred when utilizing model-based annotation of online data
(required for reinforcement learning approaches). See 9 for the performance of our fine-grained annotator model on the
WMT’20-’21 test sets.

Table 9. Character-level F1, precision, and recall of our fine-grained annotator model when annotating outputs from our base translation
model, computed with respect to human MQM annotations collected for the same translations.

Character-Level F1 Precision Recall

19.14 14.34 28.76

E. Sample translations
Below, we present candidate translations from the Zh→En experiment. Examples were chosen to emphasize differences
between methods while representing a diversity of translation lengths. Concretely, we subsetted to examples where the edit
distance between any pair of methods was at least 15. Then, we stratified examples into equal-sized bins based on the length
of the TWA translation and chose one example from each bin. Within each strata, the example was chosen qualitatively
based on ease of understanding and diversity in content.

We additionally asked Gemini Pro 2.5 to summarize the differences between all the outputs rather than just the few we
pasted into the appendix, and this is a summary:

Literalness vs. Fluency: TWA, SFT, and Base tend towards more literal translations, preserving source structure.
DPO aims for higher fluency, sometimes sacrificing strict fidelity or introducing errors.
Reliability: TWA and SFT are the most reliable, rarely producing complete nonsense. Base and DPO are
significantly less reliable, with instances of hallucination or total failure.
Technical Data Handling: Translating highly specific technical standards is challenging for all models, but
TWA and SFT maintain better accuracy and detail compared to Base and DPO. TWA demonstrates an edge in
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Table 10. Example comparing TWA with SFT and DPO.

Base I was tired of waiting for the phone to ring, and when I saw the order was still in the state of delivery, I
immediately contacted the customer service to request that the order be cancelled.

Reference So I simply waited patiently, when I checked my phone at midday, the order was still in the status and had
not been delivered, I immediately contacted the customer service and requested that the order be canceled as
quickly as possible, customer service responded that the operation was well.

TWA Well, I waited patiently, and when I looked at the phone at noon, the order was still in the state of delivery, so I
immediately contacted the customer service to request that the order be cancelled as soon as possible, and the
customer service responded that it was OK.

SFT Well, I waited patiently, and when I looked at the phone at noon, the order was still in the state of delivery, and
immediately contacted the customer service to ask for the order to be cancelled quickly, and the customer
service responded that it was OK.

DPO I was nervous about the timing of the delivery, but when I saw the order was still in the order and the order
had not been shipped, I immediately contacted the customer service to request that the order be cancelled.

Table 11. Example comparing TWA with SFT and DPO.

Base Opioid shortages caused by new coronary pneumonia restraints may lead users to substitute more readily
available substances such as alcohol or benzodiazepines or mix opioids with synthetic drugs.

Reference 5 Users may substitute more readily available substances, such as alcohol or benzodiazepines, or combine
opioids with synthetic narcotics as a result of opioid shortages brought on the COVID-19 regulations.

TWA The shortage of opioids caused by the new coronavirus restrictions may cause users to replace them with more
readily available substances such as alcohol or benzodiazepines, or mix opioids with synthetic drugs.

SFT The shortage of opioids caused by the new coronary pneumonia restriction measures may lead users to replace
them with more readily available substances such as alcohol or benzodiazepines, or mix opioids with synthetic
drugs.

DPO Opioid shortages caused by new coronavirus restrictions may lead users to be replaced with more readily
available substances such as alcohol or benzodiazepines or to mix opioids with synthetic drugs.

consistently rendering the most intricate technical specifications with higher fidelity compared to SFT, which
occasionally displays deviations in complex cases.

F. Comparing TWA on En→De when ignoring off-trajectory tokens vs. not
To understand the effect of ignoring off trajectory tokens on the improved quality of En→De, we compare translations from
the model trained with TWA (which ignores off-trajectory tokens) with that of an ablation which includes off trajectory
tokens in the loss. Tables 15 to 17 for example translations, as well as explanation by Gemini-2.5-Pro for which setting is
preferred and why.

We additionally asked Gemini-2.5-Pro to compare all the test translations of both variants, by passing the csv of all En→De
translations between ignoring and not ignoring and asking you to describe the difference. Gemini-2.5-Pro states that the
translations from ignoring off-trajectory tokens are “slightly more fluent, natural-sounding, and sometimes grammatically
refined German translations,” compared to translations that are sometimes “literal or slightly more awkward in its phrasing
or word choice.”
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Learning from others’ mistakes: Finetuning machine translation models with span-level error annotations

Table 12. Example comparing TWA with SFT and DPO.

Base The ears are folded into a rectangular shape, so that the ears are slightly larger than the head.

Reference Ear covers come with the earphones, use earbuds and bottom text if uncomfortable.

TWA The headphones themselves are equipped with medium-sized ear sails, if you feel discomfort to ask the text to
blend in small though the outside.

SFT The headphones themselves are equipped with medium-sized ear sails, if they feel unwell to ask the text to
merge small though outside the machine.

DPO The headphones themselves are fitted with medium-sized sails, which can be used if the wearer feels unwell
and needs to be externally fitted.

Table 13. Example comparing TWA with SFT and DPO.

Base It doesn’t matter what the smell is.

Reference It makes no difference if the seller’s company has already collected the money and does not follow up.

TWA It doesn’t matter if the seller company has also received money anyway and doesn’t follow up.

SFT It doesn’t matter if the seller company has also received money and doesn’t follow up anymore.

DPO It doesn’t matter if the seller has taken the money or not followed up.

Table 14. Example comparing TWA with SFT and DPO.

Base Press about 1 second to boot

Reference To turn on, press and hold for roughly 1 second

TWA Press long about 1 second to start the machine

SFT Start up in about 1 second

DPO Press on for about 1 seconds to boot

Table 15. Example comparing TWA (which ignores off-trajectory tokens) with an ablation which includes off trajectory tokens in the loss.

Source If we did, we’d see these mass gun shootings go down.

Ablation Wenn wir das täten, würden wir sehen, wie diese Massenschießereien untergehen.

TWA(ignore) Wenn wir das täten, würden wir sehen, wie diese Massenschießereien abflauen.

LLM preference The second translation (TWA(ignore)) is better because “abflauen” more accurately conveys the idea
of a decline or reduction in frequency, which aligns with the intended meaning of “go down” in this
context. The first translation (Ablation) uses “untergehen,” which typically means “to perish” or “to
go under,” making it sound like the shootings themselves are disappearing in a more absolute or even
unnatural way rather than decreasing in occurrence.
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Learning from others’ mistakes: Finetuning machine translation models with span-level error annotations

Table 16. Example comparing TWA (which ignores off-trajectory tokens) with an ablation which includes off trajectory tokens in the loss.

Source We are still looking for ways to improve our services and this will be noted as a feedback to one of our
valued customer.

Ablation Wir suchen immer noch nach Möglichkeiten, unsere Dienstleistungen zu verbessern, und dies wird als
Feedback an einen unserer geschätzten Kunden gemerkt.

TWA(ignore) Wir suchen immer noch nach Möglichkeiten, unsere Dienstleistungen zu verbessern, und dies wird als
Feedback an einen unserer geschätzten Kunden gewertet.

LLM preference The second translation (TWA(ignore)) is better because “gewertet” (evaluated/considered) more
naturally conveys the idea that the feedback is being taken into account or acknowledged. In contrast,
“gemerkt” (noted/remembered) sounds more like someone is simply taking a mental note, which is less
formal and may not fully capture the intended meaning of acting on the feedback.

Table 17. Example comparing TWA (which ignores off-trajectory tokens) with an ablation which includes off trajectory tokens in the loss.

Source I’ll share a couple of steps to perform into your eReader, okay?

Ablation Ich werde ein paar Schritte in Ihrem eReader ausführen, okay?

TWA(ignore) Ich gebe Ihnen ein paar Schritte mit, die Sie in Ihrem eReader ausführen können, okay?

LLM preference The second translation (TWA(ignore)) is better because “Ich gebe Ihnen ein paar Schritte mit, die Sie in
Ihrem eReader ausführen können” correctly conveys that the speaker is providing steps for the listener
to follow. The first translation (Ablation) “Ich werde ein paar Schritte in Ihrem eReader ausführen”
incorrectly implies that the speaker themselves will perform the steps directly on the listener’s eReader,
which changes the meaning of the sentence.
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