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Abstract

Recent advances in large pretrained text-to-image
models have shown unprecedented capabilities for
high-quality human-centric generation, however,
customizing face identity is still an intractable
problem. Existing methods cannot ensure stable
identity preservation and flexible editability, even
with several images for each subject during train-
ing. In this work, we propose StableIdentity, which
allows identity-consistent recontextualization with
just one face image. More specifically, we employ
a face encoder with an identity prior to encode the
input face, and then land the face representation
into a space with an editable prior, which is con-
structed from celeb names. By incorporating iden-
tity prior and editability prior, the learned identity
can be injected anywhere with various contexts. In
addition, we design a masked two-phase diffusion
loss to boost the pixel-level perception of the input
face and maintain the diversity of generation. Ex-
tensive experiments demonstrate our method out-
performs previous customization methods. In addi-
tion, the learned identity can be flexibly combined
with the off-the-shelf modules such as ControlNet.
Notably, to the best knowledge, we are the first to
directly inject the identity learned from a single im-
age into video/3D generation without finetuning.
We believe that the proposed StableIdentity is an
important step to unify image, video, and 3D cus-
tomized generation models.

1 Introduction
With the boom in diffusion models [29, 28, 47], customized
generation has garnered widespread attention [31, 45, 18].
This task aims to inject new subject (e.g., identity) into the
text-to-image models and generate images with consistent
subjects in various contexts while aligning the input text
prompt. For example, users can upload their photos to ob-
tain interesting pictures, such as “wearing a Superman outfit”.

∗ Corresponding authors.

The success of customized generation can facilitate many ap-
plications such as personalized portrait photos [20], virtual
try-on [5] and art & design [26].

However, existing customization methods solve this task
by either finetuning the part/all parameters of the model
or learning a generic encoder. Parameter finetuning meth-
ods [12, 8, 30] take a long time to search optimal parame-
ters, but often return an inaccurate trivial solution for rep-
resenting the identity. Especially if only with a single im-
age, these methods tend to overfit the input, resulting in ed-
itability degradation. Alternatively, the encoder-based meth-
ods [43, 42] require large-scale datasets for training and strug-
gle to capture distinctive identity and details. Moreover, the
identity learned by current methods is susceptible to be incon-
sistent with the target identity in various contexts. Therefore,
there is an urgent need to propose a new framework to address
the enormous challenges (e.g., unstable identity preservation,
poor editability, inefficiency) faced by this task.

Here we are particularly interested in customized genera-
tion for human under one-shot training setting, and how to
store identity information into word embeddings, which can
naturally integrate with text prompts. We believe prior knowl-
edge can help for this task. On the one hand, face recognition
task [36] has been fully explored and the identity-aware abil-
ity of pretrained models can be exploited. On the other hand,
text-to-image models, which are trained on massive internet
data, can generate images with celeb names in various con-
texts, thus these names contain rich editability prior. Using
these priors can alleviate these challenges, and some meth-
ods [6, 45] have made preliminary attempts.

In this work, we propose StableIdentity which incorporates
identity prior and editability prior into the human-centric cus-
tomized generation. Specifically, an encoder pretrained on
face recognition task is introduced to capture identity rep-
resentation. Celeb names are collected to construct an em-
bedding space as a prior identity distribution for customized
generation. To encourage the target identity to perform like
celeb names in pretrained diffusion model, we further land the
identity representation into the prior space. Furthermore, to
learn more stable identity and fine-grained reconstruction, we
design a masked two-phase diffusion loss, which assigns spe-
cialized objectives in the early and late phases of denoising
process respectively. Extensive experiments show StableI-
dentity performs favorably against state-of-the-art methods
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Figure 1: Given a single input image, the proposed StableIdentity can generate diverse customized images in various contexts. Notably, we
present that the learned identity can be combined with ControlNet [48] and even injected into video (ModelScopeT2V [37]) and 3D (Lucid-
Dreamer [19]) generation.

and we further analyse our superiority over several baselines
of the same kind. The proposed method also shows stable
generalization ability, which can directly collaborate with the
off-the-shelf image/video/3D models as shown in Figure 1.

Our contributions can be summarized as follows:
• We propose StableIdentity, which incorporates identity

prior and editability prior to enable identity-consistent
recontextualization with just one face image.

• We design a masked two-phase diffusion loss to perceive
pixel-level details and learn more stable identity for di-
verse generation.

• Extensive experiments show that our method is effec-
tive and prominent. Remarkably, our method can not
only combine with image-level modules, but also unlock
the generalization ability that the identity learned from a
single image can achieve identity-consistent customized
video/3D generation without finetuning.

2 Related Work
2.1 Text-to-Image Diffusion Models
Diffusion models [15, 34] have exhibited overwhelming suc-
cess in text-conditioned image generation, deriving numer-
ous classical works [29, 24, 13]. Among them, Stable Dif-
fusion [29] is widely used for its excellent open-source envi-
ronment. In practice, Stable Diffusion can generate diverse

and exquisite images from Gaussian noises and text prompts
with DDIM sampling [34]. Since the training dataset contains
lots of celeb photos and corresponding names, Stable Diffu-
sion can combine celeb names with different text prompts to
generate diverse images. However, ordinary people cannot
enjoy this “privilege” directly. Therefore, to democratize Sta-
ble Diffusion to broader users, many studies [6, 45, 4] have
focused on the customized generation task.

2.2 Customized Generation
Currently, customized generation methods can be mainly di-
vided into optimization-based and encoder-based methods.
The former often require long time to optimize, while the
latter need large-scale data and struggle to learn a distinc-
tive identity. Given 3-5 images of the same subject, Textual
Inversion [12] optimizes a new word embedding to repre-
sent the target subject. DreamBooth [30] finetunes the en-
tire model to fit the target subject only. On the other hand,
ELITE [38], InstantBooth [33] and IP-Adapter [43] intro-
duce identity information into attention layers by learning
an encoder. FastComposer [40] trains its encoder with the
whole U-Net of Stable Diffsuion together to capture identi-
ties. There are also some methods that incorporate an en-
coder to assist the optimization-based methods [39], raising
the performance ceiling. Celeb-Basis [45] collects 691 celeb
names which are editable in Stable Diffusion to build a celeb
basis by PCA [25]. The weight of basis is optimized based
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Figure 2: Overview of the proposed StableIdentity. Given a single face image, we first employ a FR-ViT encoder and MLPs to capture
identity representation, and then land it into our constructed celeb embedding space to better learn identity-consistent editability. In addition,
we design a masked two-phase diffusion loss including Lnoise and Lrec for training.

on the output of ArcFace encoder [7], a new identity’s repre-
sentation can be obtained by weighting the basis. However,
the mentioned methods still perform imbalance on identity
preservation and editability.

In comparison, our method exploits identity and editabil-
ity prior to significantly ease the optimization process, and
learns more stable identity with the proposed loss. Since Sta-
ble Diffusion is fixed, plug-and-play modules such as Con-
trolNet [48] can be employed seamlessly. Furthermore, to
the best knowledge, we are the first work to enable the learn
identity from a single image injected into video [37] / 3D gen-
eration [19].

3 Method
Given a single face image, we aim to represent its iden-
tity via word embeddings as shown in Figure 2, to im-
plement identity-consistent recontextualization under various
text prompts. To achieve this, we incorporate identity prior
and editability prior (See Sec. 3.2) and propose a masked two-
phase diffusion loss (See Sec. 3.3).

3.1 Preliminary
In this work, we adopt the pretrained Stable Diffusion [29]
as our text-to-image model (denoted as SD). SD consists of
three components: a VAE (E , D) [11], a denoising U-Net
ϵθ and a CLIP text encoder etext [27]. Benefiting from the
high-quality reconstruction of VAE, the diffusion process of
input image x is performed in the latent space z (z = E(x)).
Specifically, at random timestep t (t ∈ [1, 1000)), zt can be
sampled as a weighted combination z0 and a random noise
ϵ (ϵ ∼ N (0, I)):

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where ᾱt is a predefined hyperparameter set. Meanwhile,
given text prompts p, the tokenizer of etext divides and en-
codes p into l integer tokens sequentially. Then, the embed-
ding layer in etext obtains a corresponding embedding group
g = [v1, ..., vl], vi ∈ Rd which consists of l word embeddings
by looking up the dictionary. After that, the text transformer
τtext of etext further represents g to guide model to generate
images conforming to the given text prompts p. With latent
zt, the training process is optimized by:

Lnoise = Ez,g,ϵ,t

[
∥ϵ− ϵθ(zt, t, τtext(g))∥22

]
(2)

3.2 Model Architecture
Identity Prior. Existing methods extract subject information
commonly with CLIP image encoder, which is pretrained for
learning high-level semantics, lacks detailed identity percep-
tion. Therefore, we employ a ViT [9] encoder finetuned for
face recognition task (denote as FR-ViT) to reap ID-aware
representation I from the input image.

To maintain the generalizability and editability of the
vanilla SD, we fix the FR-ViT encoder and SD. Follow-
ing [6, 45], we only project I into two word embeddings
[v′1, v

′
2] with MLPs:

[v′1, v
′
2] = MLPs(I) (3)

Benefiting the identity prior knowledge, we can inject fa-
cial features from the input image into diffusion model more
efficiently without additional feature injection.
Editability Prior. Since SD is trained on large-scale internet
data, using celeb names can generate images with prompt-
consistent identity. Therefore, we posit that the celeb names
constitute a space with editability prior. We consider 691
celeb names [45] as sampling points in this space and intend
to represent this space distribution with the mean and stan-
dard deviation of their word embeddings. However, in prac-
tice, the tokenizer decomposes unfamiliar word into multiple
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Figure 3: We present the predicted ẑ0 from zt at various timestep t.
ẑ0 at t = {100, 200}, similar to t = 300, are omitted for brevity.

tokens (e.g., Deschanel → [561, 31328, 832]), consequently
the number of tokens produced by different celeb names may
not be equal. To find an editable space with a uniform dimen-
sion, we select celeb names consisting only of first name and
last name, and each word corresponds to only one token (e.g.,
Tom Cruise → [2435, 6764]). Eventually we obtain 326 celeb
names and encode them into the corresponding word embed-
dings C ∈ R326×d.

To master the identity-consistent recontextualization abil-
ity like celeb embeddings, we employ AdaIN [10] to incorpo-
rate the editablity prior and land [v′1, v

′
2] into celeb embedding

space:

v∗i = σ(C)(
v′i − µ(v′i)

σ(v′i)
) + µ(C), for i = 1, 2 (4)

where µ(v′i), σ(v
′
i) are scalars. µ(C) ∈ Rd, σ(C) ∈ Rd

are vectors, since each dimension of C has a different dis-
tribution. With this editablity prior, the learned embeddings
[v∗1 , v

∗
2 ] are closer to the celeb embedding space than base-

lines as shown in Figure 7, which improves editablity ele-
gantly and effectively. In addition, it also constrains the opti-
mization process within the celeb embedding space and pre-
vents drifting towards other categories.

3.3 Model Training

Two-Phase Diffusion Loss. In addition to the architecture
design, we rethink the training objective of diffusion mod-
els. The vanilla training loss Lnoise excites the denoising
U-Net ϵθ to predict the noise ϵ contained in the input zt at
any time t, and the introduced ϵ is randomly sampled each
time. Therefore, such an objective function only implicitly
and inefficiently learns the identity in the input image.

DDIM [34] proposes a denoised observation predicted by
a variant of Eq. 1: ẑ0 = zt−

√
1−ᾱtϵθ√
ᾱt

. A naive idea is to
replace Lnoise with the mean squared error between the pre-
dicted ẑ0 and the real z0 [39]: Lrec = Ez,g,ϵ,t

[
∥ẑ0 − z0∥22

]
,

which can explicitly optimize the reconstruction for z0. How-
ever, we observe that as timestep increases, predicted ẑ0 be-
comes more difficult to approximate the true distribution of
z0 as shown in Figure 3. Therefore, for larger timestep, Lrec

becomes less meaningful and even misleads the model to fo-
cus excessively on pixel-level reconstruction. To this end, we

propose two-phase diffusion loss divided by timestep αT :

Ldiffusion =

{
Ez,g,ϵ,t

[
∥ϵ− ϵθ(zt, t, τtext(g))∥22

]
t ≥ αT,

Ez,g,ϵ,t

[
∥ẑ0 − z0∥22

]
t < αT.

(5)

Empirically, the division parameter α ∈ [0.4, 0.6] yields
good results that balance identity preservation and diver-
sity (α = 0.6 as default). Using Lnoise at the early phase
of denoising process that decides the layout of generated im-
age [21, 40, 23] can allow the learned identity to adapt to
diverse layouts, while using Lrec at the late phase can boost
the pixel-level perception for input image to learn more stable
identity.
Masked Diffusion Loss. To prevent learning irrelevant back-
ground, we also employ the masked diffusion loss [1, 39].
Specifically, we use a pretrained face parsing model [44] to
obtain the face mask Mf and hair mask Mh of the input im-
age. The training loss is calculated in the face area and hair
area respectively:

L = Mf ⊙ Ldiffusion + βMh ⊙ Ldiffusion. (6)

In our experiments, we set β = 0.1 as default.

4 Experiments
4.1 Experimental Setting
Implementation Details. Our experiments are based on Sta-
ble Diffusion 2.1-base. The FR-ViT is a ViT-B/16 encoder
finetuned for face recognition task. For an input single image,
we use color jitter, random shift, random crop and random
resize as data augmentations. The learning rate and batch
size are set to 5e − 5 and 1. The MLPs are trained for 450
steps (4 mins). The placeholders v∗1 v

∗
2 of prompts such as “v∗1

v∗2 wearing a spacesuit”, “latte art of v∗1 v∗2” are omitted for
brevity in this paper. The scale of classifier-free guidance [14]
is set to 8.5 by default. Our experiments are conducted on a
single A800 GPU.
Dataset. We randomly select 70 non-celeb images from the
FFHQ [16] and resize to 512×512 as our test dataset. To per-
form a comprehensive evaluation, we employ 40 test prompts
which cover actions, decorations, attributes, expressions and
backgrounds [18].
Baselines. We compare the proposed method with base-
lines including the optimization-based methods: Textual In-
version [12], DreamBooth [30], Celeb-Basis [45] and the
encoder-based methods: ELITE [38], FastComposer [40], IP-
Adapter [43]. We prioritize using the official model released
by each method. For Textual Inversion and DreamBooth, we
use their Stable Diffusion 2.1 versions for a fair comparison.
Evaluation Metrics. Following DreamBooth [30], we cal-
culate CLIP [27] visual similarity (CLIP-I) to evaluate high-
level semantic alignment and text-image similarity (CLIP-
T) to measure editablity. Besides, we calculate the Face
Similarity by ArcFace [7] and Face Diversity [18, 39] by
LPIPS [46] on detected face regions between the generated
images and real images of the same ID. However, some
baselines may generate completely inconsistent faces under
various text prompts, which incorrectly raise face diversity.
Therefore, we propose the Trusted Face Diversity by the
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Figure 4: We present the qualitative comparisons with six baselines for different identities (including various races) and diverse text
prompts (covering decoration, action, attribute, background, style). Our method achieves high-quality generation with consistent identity
and outstanding editability (Zoom-in for the best view). We provide more results in supplementary material.

product of cosine distances from face similarity and face di-
versity for each pair images, to evaluate whether the gener-
ated faces are both diverse and similar. To measure the qual-
ity of generation, we randomly sample 70 celeb names to
generate images with test prompts as pseudo ground truths
and calculate Fréchet Inception Distance (FID) [22] between
the generated images by the competing methods and pseudo
ground truths.

4.2 Comparison
Qualitative Comparison. As shown in Figure 4, given a
single image as input, we show the generation results with
various prompts. Textual Inversion is optimized only with
Lnoise, which leads to a trivial solution for identity in dif-
ferent contexts. DreamBooth finetunes the whole SD model
to fit the input face, but still fails to learn similar iden-
tities (row 1th, 5th) and tends to replicate the foreground
face (row 2th, 3th). The encoder-based methods ELITE and
IP-Adapter only learn rough shape and attributes of the in-

put face, perform mediocrely in both identity preservation
and editability. FastComposer finetunes a CLIP image en-
coder and the whole SD for learning identities, but suffers
from low quality and artifacts (row 4th, 5th, 6th). Celeb-
Basis also fails to learn accurate identity for recontextualiza-
tion (row 1th, 3th). Notably, when using “latte art of” as text
prompt, all baselines either produce inconsistent identity or
fail to get the desired style in row 6th. In comparison, bene-
fiting from the effectiveness of the proposed method, our re-
sults shows superiority both in terms of identity preservation
and editablity.
Quantitative Comparison. In addition, we also report the
quantitative comparison in Table 1. Some baselines like
ELITE and IP-Adapter learn only facial structure and at-
tributes, and are susceptible to generate frontal view, resulting
in better CLIP-I. This metric focuses on high-level seman-
tic alignment and ignores identity consistency. Therefore,
these methods obtain worse face similarity (-24.54, -15.39
than ours) and trusted face diversity (-9.66, -3.95 than ours).



Table 1: Quantitative comparisons with baselines. ↑ indicates higher is better, while ↓ indicates that lower is better. The best result is shown
in bold. Our method obtains the best results over the text consistency (i.e., CLIP-T), identity preservation (i.e., Face Similarity), diversity of
generated faces (i.e., Trusted Face Diversity), and generation quality (i.e., FID).

CLIP-I↑(%) CLIP-T↑(%) Face Sim.↑(%) Face Div.↑(%) Trusted Div.↑(%) FID↓
Textual Inversion 61.30 28.23 31.30 37.03 10.75 28.64
DreamBooth 67.01 28.91 35.80 36.79 5.89 48.55
ELITE 73.94 26.43 12.58 25.55 5.35 84.32
FastComposer 72.32 28.87 36.91 28.84 13.90 47.98
IP-Adapter 85.14 23.67 21.73 25.61 11.06 78.95
Celeb-Basis 63.69 27.84 25.55 37.85 13.41 33.72
StableIdentity (Ours) 65.91 29.03 37.12 35.46 15.01 24.92

Table 2: Ablation study. We also present results with various divi-
sion parameter α in the supplementary material.

CLIP-T↑ Face Sim.↑ Trusted Div.↑ FID↓
CLIP Enc. 28.03 35.73 14.81 25.66
w/o AdaIN 24.81 47.81 13.73 48.73
w/o Mask 28.15 34.98 14.47 25.12
Only Lnoise 28.81 36.55 14.97 25.76
Only Lrec 27.35 30.69 13.89 40.54
Ours 29.03 37.12 15.01 24.92

We also observe that the optimization-based methods Textual
Inversion and DreamBooth fail to learn stable identities for
recontextualization and tend to overfit to the input face, lead-
ing to poor trusted face diversity (-4.26, -9.12 than ours). Our
method achieves best performance on vision-language align-
ment (CLIP-T), identity preservation (Face Sim.), identity-
consistent diversity (Trusted Div.) and image quality (FID).

4.3 Ablation Study
We conduct a comprehensive ablation study across various
settings as shown in Table 2 and Figure 5, 6. We employ
the CLIP Image Encoder as a baseline which is commonly
adopted in encoder-based methods. Following [33, 40], we
use the CLS feature of CLIP encoder’s last layer to extract
identity information. In col 2 of Figure 5, it can be observed
that the CLIP image encoder is mediocre for identity preser-
vation (-1.39 than ours on Face Sim.). On the other hand, the
setting of “w/o AdaIN” cannot explicitly learn editability and
fails to limit the value range of the learned word embeddings.
It tends to generate the frontal faces and fails to align the de-
sired text prompt (col 3 in Figure 5), therefore it obtains high
face similarity but poor CLIP-T, Trusted Div., and FID (-4.22,
-1.28, -23.81 than ours).

Furthermore, we show the ablation results for the train-
ing loss. The masked diffusion loss has been proven ef-
fective [1, 39] and it does help focus foreground and pre-
vent background leakage. The reconstruction of the “Only
Lnoise” setting is inferior than ours and is prone to undesired
changes and artifacts (col 3 in Figure 6), resulting lower iden-
tity preservation and image quality (i.e., -0.60, -0.84 than ours
on Face Sim., FID). Due to the meaningless Lrec in the early
phase of denoise process, the “Only Lrec” setting only learns
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Figure 5: Ablation study for model architecture. We show the results
of using the CLIP image encoder and removing the AdaIN.
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Figure 6: Ablation study for training loss. We present the visualiza-
tion results of various loss settings.

mediocre identities with artifacts (col 4 in Figure 6) and leads
to unsatisfactory face similarity, trusted diversity, and FID (-
6.43, -1.12, -15.62 than ours). In comparison, the proposed
masked two-phase diffusion loss shows best results, and the
discussion of the division parameter α can be found in sup-
plementary material.

5 Discussion
5.1 Downstream Applications
Pose-controlled Customized Image Generation. Since the
pretrained Stable Diffusion is fixed, SD-based plug-and-play
modules can collaborate with our method. ControlNet con-
trols the pretrained SD to support additional input conditions
such as keypoints, edge maps, etc. In this paper, we obtain
pose images with human skeletons as condition by Open-
Pose [3], as an example. As shown in the row 2 of Figure 1,



Figure 7: 2-D visualization of word embeddings using t-SNE with
Celeb names, Textual Inversion, Celeb-Basis and our method.

we demonstrate the integration of StableIdentity and Control-
Net (SD2.1 version) which achieves simultaneous structure-
controlled and identity-driven generation.
Zero-shot Identity-driven Video/3D Generation. Our
method can be considered as introducing new identity for
the dictionary of CLIP text encoder. Therefore, we believe
that ideally, as long as the SD-based video and 3D generation
models do not finetune the CLIP text encoder, the learned
identity can be directly injected into these models.

ModelScopeT2V [37] is a text-to-video generation model
which brings some temporal structures into the U-Net of
SD2.1 and finetunes the U-Net on large-scale datasets [32,
2, 41]. We attempt to insert the learned identity into the un-
changed CLIP text encoder without finetuning as shown in
the row 3 of Figure 1. The generated video shows promising
identity preservation and text alignment.

LucidDreamer [19] is a text-to-3D generation pipeline
based on 3D Gaussian Splatting [17] and allows to sample
directly with the pre-trained SD2.1, like us. Therefore, it can
naturally collaborate with our method. In a similar way, we
insert the learned identity into this pipeline, as shown in the
row 4 of Figure 1. The generated results achieve stable iden-
tity, high fidelity and geometry consistency. The result of
“wearing a golden crown” exhibits precise geometric struc-
tures and realistic colors and the “as oil painting” obtains the
desired style, a 3D portrait oil painting that does not exist in
reality.

Overall, our method can effortlessly enable prompt-
consistent identity-driven video/3D generation with the off-
the-shelf text-to-video/text-to-3D models. We show more re-
sults of video/3D in the supplementary material.

5.2 Word-Embedding-Based Methods Analysis
Considering that Textual Inversion, Celeb-Basis and our
method are all optimized in the word embedding space, we
further analyze 70 embeddings learned by these methods
from different perspectives. To match the dimension of word
embeddings, Textual Inversion is conducted with 2-word ver-
sion and Celeb-Basis is implemented with SD2.1 for analysis.

To intuitively show the difference between the distributions
of learned embeddings and celeb embeddings, we use the t-

Table 3: Comparison with baselines optimized in the word em-
bedding space on training time, maximum and minimum values of
learned embeddings.

Training time Max Min

Celeb names − 0.0551 -0.0558
Textual Inversion 43mins 0.7606 -0.9043
Celeb-Basis 8mins 0.1592 -0.1499
StableIdentity (Ours) 4mins 0.0557 -0.0520

StableIdentity(Ours) Textual Inversion Celeb-BasisTom Cruise

𝑣1
∗ 𝑣2

∗

Input Image

Figure 8: Comparison of 3D generation based on LucidDreamer.
We show the result of a celeb name “Tom Cruise” (prompt) as a
standard and the results with the embeddings [v∗1 , v∗2 ] learned from
competing methods (Zoom-in for the best view).

SNE [35] to visualize word embeddings in Figure 7. “Celeb
names” denotes the word embeddings corresponding to the
collected 326 celeb names. It can be observed that the dis-
tribution of ours is more compact with fewer outliers and
closer to the real distribution of celeb names, achieving the
best identity-consistent editability. Besides, we compare the
max & min values of the learned embeddings and training
time in Table 3. Our method is faster than existing methods
of the same kind, and the value range is closest to real celeb
embeddings.

Furthermore, to examine the generalization ability of these
methods, we present 3D generation results with the learned
identity embeddings directly using the mentioned 3D gener-
ation pipeline LucidDreamer in Figure 8. And we show a
standard result using a celeb name “Tom Cruise” as a prompt.
Obviously, our method achieves celeb-like results in every 3D
view, which further demonstrates stable and strong general-
ization ability of our learned identity.

6 Conclusion

In this paper, we propose StableIdentity, a customized gen-
eration framework which can inject anybody into anywhere.
The model architecture that integrates identity and editability
prior allows the learned identity to master identity-consistent
recontextualization ability. Besides, the designed masked
two-phase diffusion loss enables the learned identity more
stable. Extensive quantitative and qualitative experiments
demonstrate the superiority of the proposed method. Sur-
prisingly, our method can directly work with the plug-and-
play SD-based modules such as ControlNet, and even can in-
sert the learned identity into off-the-shelf video/3D generated
models without finetuning to produce outstanding effects. We
hope that our work can contribute to the unification of cus-
tomization over image, video, and 3D generation tasks.
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Figure 9: More generated results with the proposed StableIdentity for different identities (including various races) under various contexts (cov-
ering decoration, action, attribute).

A More Visual Results
More Customized Results. As shown in Figure 9, it can be
observed that StableIdentity can handle different races in vari-
ous contexts. On the other hand, we also show the customized
results with diverse artistic styles in Figure 10. Overall, the
generated results have satisfactory identity preservation and
editability, which demonstrates the effectiveness of the pro-
posed method.
StableIdentity & Image/Video/3D Models. In addition,
as shown in Figure 12, 13, we show more image/video/3D
customized generation results with ControlNet [48], Mod-
elScopeT2V [37], and LucidDreamer [19]. As introduced
in Sec. 4.1, StableIdentity can be considered as introducing
new identity for the dictionary of CLIP text encoder. There-
fore, the learned identity can be naturally inserted into various
contexts or even into video/3D generated models for identity-
driven customized generation. Due to the limited perfor-
mance of 3D generation, following [19], we only generate
and edit in the head region, which can clearly demonstrates

whether the learned identity is successfully inserted or not.
Impressive experimental results show that our method can
be stably injected into image/video/3D generative models to
achieve identity-consistent recontextualization. Furthermore,
we also show more customized generation results using celeb
photos as input as shown in 14.
More Comparisons. As shown in Figure 15, we further com-
pare with baselines on decoration, action, background, style.
Obviously, we achieve the best results for identity preser-
vation, editability and image quality. DreamBooth, which
seems to perform well (row 1,3,4), either overfits to the input
image or fails to produce results similar to the target identity.

B Implementation Details
Filtering Celeb Names. As mentioned in Sec. 2, Celeb-
Basis [45] collects 691 celeb names which are editable in
Stable Diffusion [29]. We only filter out names consisting
of only two words and then count the number of the corre-
sponding tokens. The percentages of 2 words→{2,3,4,5,6}
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Figure 10: Additional customized results with StableIdentity for diverse artistic styles.

Figure 11: Parameter analysis for the division parameter α.

tokens are 56%, 27%, 13%, 3%, and 0.3% respectively. To
obtain a more accurate prior space, we choose the setting of
2 words→2 tokens, which has more sampling points.
Division Parameter α. As shown in Figure 11, we present
the effect of different α in [0, 0.1, · · ·, 1]. Empirically, α ∈
[0.4, 0.6] shows better identity preservation, editability and
image quality. When α is larger, meaningless reconstruction
will lead to performance degradation.

C Limitations
Although the proposed method achieves outstanding perfor-
mance for customization generation of new identities and can
collaborate with the off-the-shelf image/video/3D models, it
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Figure 12: Pose-controlled customized image generation (StableIdentity & ControlNet) and zero-shot identity-driven customized video gen-
eration (StableIdentity & ModelScopeT2V).

still faces some limitations. (1) Since we only act in the word
embedding space and fix the Stable Diffusion (SD), we in-
herit not only the excellent performance of SD, but also some
drawbacks, such as hand anomalies [49]. (2) Existing text-
to-video generation models can generate with diverse con-
texts, but is still immature for human-centric generation [37].
It leads to limited performance for the video customization
generation.
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Figure 13: Zero-shot identity-driven customized 3D generation (StableIdentity & LucidDreamer). As mentioned in Sec. 4.1, we omit the
placeholders v∗1 v∗2 of prompts such as “v∗1 v∗2 wearing glasses” for brevity. Here, we use “v∗1 v∗2 as the input prompt to show the 3D
reconstruction for the learned identities.
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Figure 15: More qualitative comparisons for different identities (including various races) with diverse text prompts (covering decoration,
action, background, style). Our method shows best performance for identity preservation and editability (Zoom-in for the best view).
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