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Abstract

This paper investigates the potential of quantum
acceleration in addressing infinite horizon Markov
Decision Processes (MDPs) to enhance average
reward outcomes. We introduce an innovative
quantum framework for the agent’s engagement
with an unknown MDP, extending the conven-
tional interaction paradigm. Our approach in-
volves the design of an optimism-driven tabu-
lar Reinforcement Learning algorithm that har-
nesses quantum signals acquired by the agent
through efficient quantum mean estimation tech-
niques. Through thorough theoretical analysis, we
demonstrate that the quantum advantage in mean
estimation leads to exponential advancements in
regret guarantees for infinite horizon Reinforce-
ment Learning. Specifically, the proposed Quan-
tum algorithm achieves a regret bound of O(1)",
a significant improvement over the O(v/T') bound
exhibited by classical counterparts.

1. Introduction

Quantum Machine Learning (QML) has garnered remark-
able interest in contemporary research, predominantly at-
tributed to the pronounced speedups achievable with quan-
tum computers as opposed to their classical analogs (Bia-
monte et al., 2017; Bouland et al., 2023). The fundamental
edge of quantum computing arises from the unique nature of
its fundamental computing element, termed a qubit, which
can exist simultaneously in states of 0 and 1, unlike classical
bits that are restricted to either O or 1. This inherent distinc-
tion underpins the exponential advancements that quantum
computers bring to specific computational tasks, surpassing
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the capabilities of classical computers.

In the realm of Reinforcement Learning (RL), an agent
embarks on the task of finding an efficient policy for Markov
Decision Process (MDP) environment through repetitive
interactions (Sutton & Barto, 2018). RL has found notable
success in diverse applications, including but not limited
to autonomous driving, ridesharing platforms, online ad
recommendation systems, and proficient gameplay agents
(Silver et al., 2017; Al-Abbasi et al., 2019; Chen et al.,
2021; Bonjour et al., 2022). Most of these setups require
decision making over infinite horizon, with an objective of
average rewards. This setup has been studied in classical
reinforcement learning (Auer et al., 2008; Agarwal et al.,
2022b; Fruit et al., 2018), where (’j(\/T) regret across T'
rounds has been found meeting the theoretical lower bound
(Jaksch et al., 2010). This paper embarks on an inquiry into
the potential utilization of quantum statistical estimation
techniques to augment the theoretical convergence speeds of
tabular RL algorithms within the context of infinite horizon
learning settings.

A diverse array of quantum statistical estimation primitives
has emerged, showcasing significant enhancements in con-
vergence speeds and gaining traction within Quantum Ma-
chine Learning (QML) frameworks (Brassard et al., 2002;
Harrow et al., 2009; Gilyén et al., 2019). Notably, (Hamoudi,
2021) introduces a quantum mean estimation algorithm that
yields a quadratic acceleration in sample complexity when
contrasted with classical mean estimation techniques. In this
work, we emphasize the adoption of this particular mean es-
timation method as a pivotal component of our methodology.
It strategically refines the signals garnered by the RL agent
during its interaction with the enigmatic quantum-classical
hybrid MDP environment.

It is pertinent to highlight a fundamental element in the anal-
ysis of conventional Reinforcement Learning (RL), which
involves the utilization of martingale convergence theorems.
These theorems play a crucial role in delineating the inherent
stochastic process governing the evolution of states within
the MDP. Conversely, this essential aspect lacks parallelism
within the quantum setting, where comparable martingale
convergence results remain absent. To address this dispar-
ity, we introduce an innovative approach to regret bound
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analysis for quantum RL. Remarkably, our methodology cir-
cumvents the reliance on martingale concentration bounds,
a staple in classical RL analysis, thus navigating uncharted
territories in the quantum realm.

Moreover, it is important to highlight that mean estimation
in quantum mechanics results in state collapse, which makes
it challenging to perform estimation of state transition prob-
abilities over multiple epochs. In this study, we present a
novel approach to estimating state transition probabilities
that explicitly considers the quantum state collapsing upon
measurement.

To this end, the following are the major contributions of this
work:

1. We introduce Quantum-UCRL (Q-UCRL), a model-
based, infinite horizon, optimism-driven quantum Re-
inforcement Learning (QRL) algorithm. Drawing in-
spiration from classical predecessors like the UCRL
and UC-CURL algorithms (Auer et al., 2008; Agarwal
et al., 2022b; Agarwal & Aggarwal, 2023), Q-UCRL
is designed to integrate an agent’s optimistic policy ac-
quisition and an adept quantum mean estimator, and is
the first quantum algorithm for infinite horizon average
reward RL with provable guarantees.

2. Employing meticulous theoretical analysis, we show
that the Q-UCRL algorithm achieves an exponential
improvement in the regret analysis. Specifically, it
attains a regret bound of O(1), breaking through the
theoretical classical lower bound of Q(+/T) across T
online rounds. The analysis is based on the novel
quantum Bellman error based analysis (introduced in
classical RL in (Agarwal et al., 2022b) for optimism
based algorithm), where the difference between the
performance of a policy on two different MDPs is
bounded by long-term averaged Bellman error and the
quantum mean estimation is used for improved Bell-
man error. Further, the analysis avoids dependence on
martingale concentration bounds and incorporates the
phenomenon of state collapse following measurements,
a crucial aspect in quantum computing analysis.

3. We design a momentum-based estimator in equa-
tions (21)-(25) that fuses each epoch’s fresh quantum
mean estimate with all past estimates using counts-
based weights. The resulting algorithm preserves in-
formation that would otherwise be lost to quantum
collapse, enabling accuracy to accumulate epoch-by-
epoch and marking the first reuse-of-information tech-
nique fully compatible with quantum-measurement
constraints. This method is essential for integrating
quantum speedups into model-based RL frameworks
and represents a core technical novelty of our work.

To the best of our knowledge, these are the first results for
quantum speedups for infinite horizon MDPs with average
reward objective.

2. Related Work and Preliminaries

Infinite Horizon Reinforcement Learning: Regret analy-
sis of infinite horizon RL in the classical setting has been
widely studied with average reward objective in both model-
based settings and model-free settings (Wei et al., 2020; Bai
et al., 2024; Hong et al., 2025; Ganesh et al., 2025a;b). In
model-based methods, a prominent principle that underpins
algorithms tailored for this scenario is the concept of “opti-
mism in the face of uncertainty” (OFU). In this approach, the
RL agent nurtures optimistic estimations of value functions
and, during online iterations, selects policies aligned with
the highest value estimates (Fruit et al., 2018; Auer et al.,
2008; Agarwal et al., 2022b). Additionally, it’s noteworthy
to acknowledge that several methodologies are rooted in the
realm of posterior sampling, where the RL agent samples
an MDP from a Bayesian Distribution and subsequently
enacts the optimal policy (Osband et al., 2013; Agrawal
& Jia, 2017; Agarwal et al., 2022a; Agarwal & Aggarwal,
2023). In our study, we follow the model-based approach
and embrace the OFU-based algorithmic framework intro-
duced in (Agarwal et al., 2022b), and we extend its scope to
an augmented landscape where the RL agent gains access
to supplementary quantum information. Furthermore, we
render a mathematical characterization of regret, revealing a
@(1) bound, which in turn underscores the merits of astutely
processing the quantum signals within our framework.

Quantum Mean Estimation: The realm of mean esti-
mation revolves around the identification of the average
value of samples stemming from an unspecified distribution.
Of paramount importance is the revelation that quantum
mean estimators yield a quadratic enhancement when juxta-
posed against their classical counterparts (Montanaro, 2015;
Hamoudi, 2021). The key reason for this improvement is
based on the quantum amplitude amplification, which al-
lows for suppressing certain quantum states w.r.t. the states
that are desired to be extracted (Brassard et al., 2002). In
Appendix B, we present a discussion around Quantum Am-
plitude Estimation and its applications in QML.

In the following, we introduce the definition of key elements
and results pertaining to quantum mean estimation that are
critical to our setup and analysis. First, we present the
definition of a classical random variable and the quantum
sampling oracle for performing quantum experiments.

Definition 1 (Random Variable, Definition 2.2 of (Cornelis-
sen et al., 2022)). A finite random variable can be repre-
sented as X : @ — F for some probability space (92, P),
where ( is a finite sample set, P : Q — [0, 1] is a probability
mass function and £ C R is the support of X. (2, P) is
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frequently omitted when referring to the random variable
X.

To perform quantum mean estimation, we provide the def-
inition of quantum experiment. This is analogous to the
classical random experiments

Definition 2 (Quantum Experiment). Consider a random
variable X on a probability space (€2, 2, P). Let Hq, be a
Hilbert space with basis states {|w) },cq and fix a unitary
Up acting on Hg such that

= > VPW)lw)

weN

assuming 0 € Q). We define a quantum experiment as the
process of applying the unitary Up or its inverse Uy, ! on any
state in Hg,.

The unitiary Up provides the ability to query samples of
the random variable in superpositioned states, which is the
essence for speedups in quantum algorithms. To perform
quantum mean estimation for values of random variables
(Cornelissen et al., 2022; Hamoudi, 2021; Montanaro, 2015),
an additional quantum evaluation oracle would be needed.

Definition 3 (Quantum Evaluation Oracle). Consider a fi-
nite random variable X : 2 — E on a probability space
(92,29, P). Let Hq and H  be two Hilbert spaces with ba-
sis states {|w) }weo and {|z) }zc g respectively. We say that
a unitary Ux acting on Hq ® H g is a quantum evaluation
oracle for X if

Ux  [w)|0) = [w) | X (w))
for all w € (2, assuming 0 € F.

Unlike a classical sample, which discloses only one succes-
sor state, the quantum oracle stores the entire distribution
in coherent superposition, offering far greater information
richness per query. We note that this above form of quantum
oracle, where the agent performs a quantum experiment
to query the oracle and obtain a superpositioned quantum
sample, is widely adopted in theoretical quantum learn-
ing literature, including optimizations (Sidford & Zhang,
2023), searching algorithms (Grover, 1996), and episodic
RL (Zhong et al., 2024). These quantum experiment frame-
works are key mechanisms that enable quantum speedups
in sample complexity and regret analysis. We now present a
key quantum mean estimation result that will be carefully
employed in our algorithmic framework to utilize the quan-
tum superpositioned states collected by the RL agent. One
of the crucial aspects of Lemma 1 is that quantum mean
estimation converges at the rate O( ) as opposed to clas-
sical benchmark convergence rate O( =) for n number of
samples, therefore estimation efﬁ01ency quadratically.

Lemma 1 (Quantum multivariate bounded estimator, The-
orem 3.3 of (Cornelissen et al., 2022)). Let X be a d-
dimensional bounded random variable such that || X ||2 < 1.
Given three reals Ly € (0,1], 6 € (0,1) and n > 1
such that E[||X||2] < Lo, the multivariate bounded esti-
mator OBoundedy(X, Lo, n, d) obtained by Algorithm 1

performs f(n,d) = (’)(n logl/z(n\/a)> quantum experi-

ments and outputs a mean estimate [i of 1 = E[X] such
that,

>1-46. (1)

P{Ilﬂullmg\/leong(d/@}

Algorithm 1 OBoundedy(X, La,n,d) (Algorithm 1 in
(Cornelissen et al., 2022))

1: ifn < lof/(ﬂ‘s) then
2: Output i = 0.
3: end if
. 71 =
4: Set « s @00mnva) and m
s (vt )1
5:Set G = {L-14.L.jefo,... m-1}}" C
11
(~5.3)"
6: fork=1,...,[181og(d/d)] do

7:  Compute the uniform superposition |G) :=

\/ﬁ Y wec |u) over G.

8:  Compute the state |¢) := }5X7L27m7a,6|G> in Hg ®
H ..., where ng, Lo,m,a,e 18 the directional mean or-
acle constructed by the quantum evaluation oracle
in Proposition 3.2 (Cornelissen et al., 2022) with

e =1/25.
9:  Compute the state |¢) = (QFT5"' @ Iuuz)t)
where the unitary QFTg lu)y

27mi{u,v)
\/m Y ovec € |v) is the quantum Fourier

transform over G.
10:  Measure the H register of |¢) in the computational

basis and le(tkz))(k) € (G denote the obtained result. Set
(k) _ 2mv
M =

[e%

11: end for
12: Output the coordinate-wise median ji =
median(u(V, ..., u(M18108(d/5)]).

Quantum Reinforcement Learning: Within the realm
of QRL, a prominent strand of previous research show-
cases exponential enhancements in regret through amplitude
amplification-based methodologies applied to the Quantum
Multi-Armed Bandits (Q-MAB) problem (Wang et al., 2021;
Casalé et al., 2020; Wan et al., 2023; Wu et al., 2023). Never-
theless, the theoretical underpinnings of the aforementioned
Q-MAB approaches do not seamlessly extend to the QRL
context since there is no state evolution in bandits.
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A recent surge of research interest has been directed towards
Quantum Reinforcement Learning (QRL) (Jerbi et al., 2021;
Dunjko et al., 2017; Paparo et al., 2014). It is noteworthy to
emphasize that the aforementioned studies do not provide an
exhaustive mathematical characterization of regret. (Zhong
et al., 2024; Ganguly et al., 2023) demonstrated that QRL
can provide logrithmic regret in the episodic MDP settings.
Ours is the first study of infinite horizon MDP with average
reward objective.

3. Problem Formulation

We consider the problem of Reinforcement Learning (RL)
in an infinite horizon Markov Decision Process character-
ized by M £ (S, A, P,r, D), wherein S and A represent
finite collections of states and actions respectively with
|S| = S and |A| = A, pertaining to RL agent’s interaction
with the unknown MDP environment. P(s'|s,a) € [0, 1]
denotes the transition probability for next state s’ € S for
a given pair of previous state and RL agent’s action, i.e.,
(s,a) € S x A. Further, 7 : § x A — [0, 1] represents the
reward collected by the RL agent for state-action pair (s, a).
D is the diameter of the MDP M. In the following, we first
present the additional quantum transition oracle that the
agent could access during its interaction with the unknown
MDP environment at every RL round. Here, we would like
to emphasize that unknown MDP environment implies that
matrix P which encapsulates the transition dynamics of the
underlying RL environment is not known beforehand.

Quantum Computing Basics: In this section, we give a
brief introduction to the concepts that are most related to our
work based on (Nielsen & Chuang, 2010) and (Wu et al.,
2023). Consider an m dimensional Hilbert space C™, a
quantum state |z) = (1, ..., 2,,)7 can be seen as a vector
inside the Hilbert space with Y, |z;|> = 1. Furthermore,
for a finite set with m elements & = {1, ...,&n }, we can
assign each &; € ¢ with a member of an orthonormal basis
of the Hilbert space C'™ by

& |&) = e 2)

where e; is the ith unit vector for C™. Using the above
notation, we can express any arbitrary quantum state |z) =
(21, ..., 7m) T by elements in ¢ as:

) = wnlén) 3)
n=1

where |z) is the quantum superposition of the basis
|€1), ..., [€m) and we denote x,, as the amplitude of |&,).
To obtain a classical information from the quantum
state, we perform a measurement and the quantum state

would collapse to any basis |£;) with probability |z;|%. In
quantum computing, the quantum states are represented by
input or output registers made of qubits that could be in
superpositions.

Quantum transition oracle: We utilize the concepts and
notations of quantum computing in (Wang et al., 2021;
Wiedemann et al., 2022; Ganguly et al., 2023; Jerbi et al.,
2022) to construct the quantum sampling oracle of RL
environments and capture agent’s interaction with the un-
known MDP environment. We now formulate the equivalent
quantum-accessible RL environments for our classical MDP
M. For an agent at step ¢ in state s; and with action a;, we
construct the quantum sampling oracles for variables of the
next state P(-|ss, at). Specifically, suppose there are two
Hilbert spaces S = CI°l and A = Cl4l containing the
superpositions of the classical states and actions. We repre-
sent the computational bases for S and A as {|s)}scs and
{|a)}ac.a. We assume that we can implement the quantum
sampling oracle Up of the MDP’s transitions as follows:

The quantum evaluation oracle for the transition probability
(quantum transition oracle) //p which at step ¢, returns the
superposition over s’ € S according to P(s'|s¢, at), the
probability distribution of the next state given the current
state |s;) and action |a;) is defined as:

Up : |st) ® lar) @ [0) — [)°
Where ) = [s¢) @ |a¢) @ Yoses V(S st ag)ls’).

0 (7
)"

Quantum Transition
Oracle for Environment

Quantum Mean
Estimator

P($t+1|5t,at)

-

St, Gt

St, At

Environment with

RL Agent with Policy 7 Unknown MDP

St+1,Tt

Figure 1. Agent’s interaction at round ¢ with the MDP Environ-
ment and accessible quantum transition oracle

As described in Fig 1, at step ¢, the agent plays an action a,
based on current state s; according to its policy 7 : S — A.
Consequently, the unknown MDP Q-environment shares
the next state information and reward i.e., {sty1,7¢}.
Additionally, the quantum transition oracle first encodes s;
and a; into the corresponding basis of the quantum Hilbert
spaces, producing basis |s;) and |a;), then it encodes the
superpositioned quantum state |))® from the quantum
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transition oracle Up. |1))* would be used for the Quantum
Mean Estimator, QBounded, which in turn improves
transition probability estimation and leads to exponentially
better regret. We note that one copy of [¢))® is obtained
at each (s¢, a;). Given that a measurement collapses the
state, we can only perform one measurement on it. So, the
quantum mean estimator will only perform measurements
at epoch ends, as will be described in the algorithm.

RL regret formulation: Consider the RL agent follow-
ing some policy 7 : S — A on the unknown MDP Q-
environment M. Then, as a result of playing policy , the
agent’s long term average reward is defined next according
to (Agarwal et al., 2022b).

1 T—1
I'? = lim Eﬂ,p[f > (s an)], 4)
t=0

T—o0

where E, p[-] is the expectation taken over the trajectory
{(s¢,a¢) }1efo,r—1) by playing policy 7 on M at every time
step. In this context, we state the definitions of value func-
tion for MDP M next:

Vﬂ'P(S; ’7) = Egmr [Qf(sv a; ’V)} ) 5
= Eonr[r(s,0) +7 Y P(s'|5.0)V(5'57)]
s'es
©)

Then, according to (Puterman, 2014), I‘f can be represented
as the following:

I'2 = lim (1 - )V} (s;7), Vs €S, @)
~y—1
=> > pE(s,a)7(s,a), (8)
seES acA

wherein, V(-;-) is the discounted cumulative av-
erage reward by following policy =, pf is the
steady-state occupancy measure (i.e., pL(s,a) €
[0,1], D ses Yaea PR (s,a) = 1), 7(s,a) is the steady-
state long-term average reward of pair (s,a). In the fol-
lowing, we introduce key assumptions crucial from the per-
spective of our algorithmic framework and its analysis. In
this context, we introduce the notations { P ., Ty s« } to
denote the ¢ time step probability distribution obtained by
playing policy 7 on the unknown MDP M starting from
some arbitrary state s € S; and, the actual time steps to
reach s’ from s by playing policy 7 respectively. Next, we
state an assumption pertaining to ergodicity of MDP M.

Assumption 1 (Finite MDP mixing time). We assume that
unknown MDP environment M has finite mixing time,
which mathematically implies:

A
Thix = max

E[T‘n', s—>s’] < 00, (9)
7,(s,s")ESXS

where T3 ,_, implies the number of time steps to reach a
state s’ from an initial state s by playing some policy .

Assumption 2. The reward function r(-, -) is known to the
RL agent.

We emphasize that Assumption 2 is a commonly used as-
sumption in RL algorithm development owing to the fact
that in most setups rewards are constructed according to the
underlying problem and is known beforehand (Azar et al.,
2017; Agarwal et al., 2019). Next, we define the cumulative
regret accumulated by the agent in expectation across 1T’
time steps as follows:

T-1
R 2 TTE —E[ Y rlsna))],  (10)

t=

where the agent generates the trajectory {(s¢, as }1e[0,7—1]
by playing policy = on M, and 7* is the optimal policy that
maximizes the long term average reward defined in Eq. (4).
Finally, the RL agent’s goal is to determine a policy m which
minimizes Ro7—1]-

4. Algorithmic Framework

In this section, we first delineate the key intuition behind our
methodology followed by formal description of Q-UCRL
algorithm. If the agent was aware of the true transition
probability distribution P, then it would simply solve the
following optimization problem for the optimal policy.

max E

r(s,a)p(s,a)  (11)
{r(5,0)}(s,a)es%x A (5,0)e8 x A

With the following constraints,

> p(s,a)=1,p(s,a) >0 Y(s,a)eSx A (12)

s,a

> p(sha) =Y P(s']s,a)p(s,a),¥s' €S (13)

acA s,a

Note that the objective in Eq. (11) resembles the defi-
nition of steady-state average reward formulation in Eq.
(4). Furthermore, Eq. (12), (13) preserve the properties
of the transition model. Consequently, once it obtains
{p*(5,a)}(s,a)esx.4 by solving Eq. (11), it can compute
the optimal policy as:

p*(s,a)
ZaeA p*(s,d)

However, in the absence of knowledge pertaining to true P,
we propose to solve an optimistic version of Eq. (11) that
will update RL agent’s policy in epochs. Specifically, at the
start of an epoch e, the following optimization problem will
be solved:

Vs, a (14)

7 (als) =
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r(s,a)p(s,a), (15)

>

max
10),Pe(-[5,0)}(s,a
{pls.0)PeClos)} wmesa (L2

With the following constraints,

> p(s,a) =1,p(s,0) >0 ¥(s,a) €Sx A (16)

> Po(s|s,a) = 1,P(-]s,a) > 0V(s,a) € S x A
s'eS

a7y
S o)=Y Pusls,a)p(s,a).vs €S
acA (s,a)eSxA
(18)
2
1P.(ls,a) — Bulls,a)] < —o108(57Ak) g

max{1l, N.(s,a)}

Observe that Eq. (15) increases the search space for policy
in a carefully computed neighborhood of certain transition
probability estimates P via Eq. (19) at the start of epoch
e. Also in Eq. (19), recall that S = |S] is the number of
states, A = |.A| is the number of actions, N, (s, a) is the
number of visitations of state-action pair (s, a) upto the end
of epoch e. Note that, solving Eq. (15) is equivalent to ob-
taining an optimistic policy as it extends the search space of
original problem Eq. (11). Furthermore, the computation of
P, is key to our framework design. Since performing quan-
tum mean estimation to quantum samples would require
measuring and results in quantum samples collapsing, each
quantum sample can only be used once. We emphasize that
the quantum mean estimator will only run at the end of the
epoch, performing measurements to update the transition
probability for the next epoch.

Details on Quantum Mean Estimator: At the end of
the epoch, we use all (s;,a;) observed in the samples,
and perform quantum mean estimation on all the samples
1)t obtained for that (s;, a;). More precisely, P, (-|s;, a;)
is the quantum mean estimation for the random variable
P.(+|s;, a;) performed by OQBounded (Algorithm 1) using
the quantum samples {|¢) }¢ observed in the previous epoch
with the total number being v, _1(s;, a;):

{l0)} = {l) [ty <t <27 =1, (sy, 00) = (56,4)}

(20)
where t5997 is the starting step of epoch e. Using these
samples, the transition probability is obtained as

Pe(-\si, a;) = QBoundedg ({ P.(+]8;,a;), La,n3"% §,)
21

For a specific state-action pair (s;,a;), we construct an
estimator P.(-|s;,a;) used in epoch e that consists of a
weighted average of the estimator P,_1(+|s;,a;) and the

estimator obtained using the quantum samples in the latest
completed epoch P.(-|s;, a;) as follows:

0 ife=1
P@('|si)ai): Pe("si,a:j,) 1f€:2
WP._1(-|s5,a;) + WP.(-|s;,a;) ife>3
(22)
where
. Ne—1(84,a5)
w = 23
Ne—1(8i,0;) + Ve—1(5i,a;) 3
o= Ve—1(8s, ;) (24)

Ne—1(84,0:) + Ve—1(8i, a4)

In particular, given that v, (s;, a;) is the maximum num-
ber of quantum experiments we can perform in Eq. (21), we

set
s Ve—1(8i,a;)
¢ clog'/?(TV/S)

for ¢ € R satisfying cnlog'/?(nv/S) > f(n, S) Vn where
f(n,S) is defined in Lemma 1. Such choice of ¢ would
allow v, (s, a) samples to be used for analysis of our pro-
posed algorithm. Note that the choice of ¢ is achievable
because cnlog'/?(ny/S) and f(n, S) are the same order.
Since E[||P.(+]s:, ai)|]2] < 1, we set Lo = 1. Different
from the works in classical approaches based on (Jaksch
et al., 2010), our algorithm utilizes each quantum sample
only once for estimating all P, throughout the entire pro-
cess. This strategy fits with our quantum framework since
quantum samples would collapse once being measured. In
Appendix A, we show that Eq. (15) is a convex optimiza-
tion problem, therefore standard optimization solvers can
be employed to solve it. Finally, the agent’s policy at the
start of epoch e is given by:

(25)

pe(s, a)

—_ 26
S pe(5d) (20

me(als) =

Next, we formally present Q-UCRL in Algorithm 2.

Algorithm 2 proceeds in epochs, and each epoch e contains
multiple rounds of RL agent’s interaction with the envi-
ronment. At each ¢, by playing action a, for insantaneous
state s; through current epoch policy 7., the agent col-
lects next state configuration consisting of classical signals
s¢41,7(5¢, ar) and a quantum sample [¢))(*). Additionally,
the agent keeps track of its visitations to the different states
via the variables {v; 4, /5,4, - Note that a new epoch is
triggered at the “if” block of Line 15 in algorithm 2, which
in turn is aligned to the widely used concept of doubling
trick used in model-based RL algorithm design. Finally, the
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Algorithm 2 Q-UCRL
1: Inputs: S, A, r(-,-).

2: Sett <1, e« 1, §. + 0,t, < 0,507 1
3: Set u(s,a,s") < 0V(s,a,8') € Sx AxS.
4: Set P.(-|s,a) « 0¥(s,a) € S x A.
5: for (s,a) € S x Ado
6:  Setve(s,a) « 0, Ne(s,a) < 0.
7: end for
8: Obtain 7. by solving Eq. (15) and Eq. (26).
9: fort=1,2,... do
10:  Observe state s; and play action a; ~ 7e(+|s¢)-
11:  Observe s;.1,7(s;,a;) and quantum samples |1))*.
12:  Update v. (s, at) < ve(st, ar) + 1.
13:  Update pu(s¢, at, St41) < Ve(St, at, St41) + 1.
14:  Sett. + t.+ 1.
15: ifl/e(St7CLt) = max{l,Ne(st,at)} then
16: for (s,a) € S x Ado
17: Neyi1(s,a) < Ne(s,a) + ve(s, a).
18: end for
19: Sete < e+ 1, ve(s,a) < 0, 55<_S+AtZ'
20: Set te < 0, t5197 « ¢ 4 1.
21: Obtain P,(-|s,a) by Eq. (22) ¥(s,a) € S x A
22: Obtain 7, by solving Eq. (15) and Eq. (26).

23:  endif
24: end for

empirical visitation counts and probabilities up to epoch e,
i.e., {Net1(s,a), Pey1(s'|s,a)} attributes are updated (line
15-21), and the policy is updated via re-solving from Eq.

(15) - (19) and using Eq. (26).

5. Theoretical Results

In this section, we characterize the cumulative regret for
T rounds by running Q-UCRL in a unknown MDP hybrid
Q-Environment. In the following, we first present a crucial
result bounding the error accumulated till e epochs between
the true transition probabilities { P(+|s, a)} and the agent’s
estimates {P,(-|s,a)}.

Lemma 2. Execution of Q-UCRL (Algorithm 2) up to the
beginning of epoch e + 1 with total e completed epochs

comprising t = 1,2,...,t. rounds, guarantees that the
following holds for P,y 4:

C'log(S/9d)

PPy (s — P(s <
|Peta(s']s,a) — P(s'[s, a)] )

>1-0
27

V(s,a,8') € S x Ax 8, where C = clog'/*(TV/S) for
some ¢ € R defined in Eq. (25) and {v.(s,a)} are the
state-action pair visitation counts up in epoch e, as depicted
in Line 12 of Algorithm 2, and {P(s'|s,a), Poy1(s'|s,a)}
are the actual and estimated transition probabilities by Eq.

21).

Proof. Forall (s,a) € S x A, since P, is obtained by
Eq. (21), we obtain using Lemma 1:

. log(S/d
L N
ne+1
(28)
By switching ni* with v,(s,a)/C, Eq. (28) gives:
- C'log(S/96)
. _ . < —72| >1-
P|lIPessls.a) = Plls.alll < SED] 212
(29)

Eq. (29) can be transformed into Eq. (27) by taking the
entry-wise expression.

O

Note that the choice of C' in Eq. (27) is to ensure that the
samples v, (s, a) are sufficient for performing Algorithm 1.

Lemma 3. Execution of Q-UCRL (Algorithm 2) up to the
beginning of epoch e + 1 with total e completed epochs
comprising t = 1,2, ..., t. rounds, guarantees that the
following holds for }56+1.'

eC'log(eS/9)

>1-96
Net1(sya) | —

P ‘pe+1(5/|55a) - P(S/|Saa)| <
(30)

V(s,a,8') € 8 x Ax 8, where C = clog'/*(TV/S) for
some ¢ € R and {v.(s, a)} are the state-action pair visita-
tion counts up in epoch e, as depicted in Line 12 of Algo-
rithm 2, and {P(s'|s,a), Poy1(s'|s,a)} are the actual and
weighted average of transition probabilities by Eq. (22).

Proof. Please refer to Appendix C. O

Lemma 2 and Lemma 3 provide the acceleration for mean
estimation, which further improve global convergence rate.

Lemma 4. Execution of Q-UCRL (Algorithm 2) up to total e
epochs comprisingt = 1,2, ..., t. rounds, guarantees that
the following holds for confidence parameter §. = ﬁ

with probability at least 1 — 1/t5:
[Pe(-[s,a) = P(|s, a)ll1,

< 7S(1 + Ce)log(S?AT) + SCelog(eS)
- max{1, Ne(s,a)} ’

(3D

V(s,a) € S x A, where {Nés_’f)} is the cumulative state-
action pair visitation counts up to epoch e, as depicted in
Line 17 of Algorithm 2, and {P(-|s,a), P.(-|s,a)} are the
actual and estimated transition probabilities.
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Proof. Please refer to Appendix D. O

Remark 1. Note that for P.(-|s,a), P(-|s,a) we have the
bound: ||P.(+|s,a) — P(:|s,a)|l1 < 25, in the worst case
scenario. However, the probability that a bad event (i.e.,
complementary of Eq. (31)) happens is at most %

Lemma 5 (Regret Decomposition). Regret of Q-UCRL de-
fined in Eq. (10) can be decomposed as follows:

E
R < 3 T.(T5 -1 ). (32)

e=1
Proof. Please refer to Appendix E. [

Regret in terms of Bellman Errors: Here, we introduce
the notion of Bellman errors B (s, a) at epoch e as fol-
lows:

BE (s,0) £ lim [QF (s, 1) — r(s.0)

—v > P(s|s,a)ViI (7)), (33)
s'eS

which essentially captures the gap in the average rewards
by playing action « in state s accordingly to some policy 7
in one step of the optimistic transition model P, w.r.t. the
actual probabilities P. This leads us to the next result that
ties the regret expression in Eq. (32) and the Bellman errors.

Lemma 6 (Lemma 5.2, (Agarwal et al., 2022b)). The dif-
ference in long-term expected reward by playing optimistic
policy of epoch e, i.e., w, on the optimistic transition model
estimates, i.e., Ffj, and the expected reward collected by
playing . on the actual model P, i.e., pr is the long-term
average of the Bellman errors. Mathematically, we have:

Tl —T2 =3 pf (s,a)BEe(s,a), (34

s,a

where BFe (s, a) is defined in Eq. (33).

With Eq. (34), it necessary to mathematically bound the
Bellman errors. To this end, we leverage the following result
from (Agarwal et al., 2022b) which is stated as Lemma 10
from Appendix F characterizing the Bellman errors in terms
of iL() a quantity that measures the bias contained in the
optimistic MDP model.

BT (s,0) < |

Pu(ls,0) = PCIs,0) | [1RC), (35)

where iL() (defined in (Puterman, 2014)) is the bias of the
optimistic MDP P, for which the optimistic policy 7, ob-
tains the maximum expected reward in the confidence inter-
val. Using the bound of the error arising from estimation of

transition model in Lemma 4 into Eq. (35), we obtain the
following result with probability 1 — 1/t5:

BTePe (s,a)

< 75(1 + Ce)log(S?AT) + SCelog (eS)
- max{1, N.(s,a)}

Q][
(36)

Consequently, it is necessary to bound the model bias error
term in Eq. (36). We recall that the optimistic MDP P,
corresponding to epoch e maximizes the average reward in
the confidence set as described in the formulation of Eq.
(15). In other words, Ffj > Ff:; for every P’ in the confi-
dence interval. Specifically, the model bias for optimistic
MDP can be explicitly defined in terms of Bellman equation
(Puterman, 2014), as follows:

W(6) 2 9) = N+ (Pem (1)) RO, 67)

where the following simplified notations are used:
Tre (S) = ZaeA We(als)r<sva)’ 13(:',7\'e (S,|S) =
> acaTe(a|s)Pe(s'|s,a). Next, we incorporate the
following result from (Agarwal et al., 2022b) stated as
Lemma 11 in Appendix F correlating model bias h(-) to the
mixing time 7T};;, of MDP M.

h(s) — h(s") < Thnix,Vs,s' € S. (38)

Using bound of bias term A(-) into Eq. (36), we get the final
bound for Bellman error with probability 1 — 1/7° as:

S(14 Ce)log(S2AT) + SCelog (eS)
max{1, Ne(s,a)}

x 7
B 67Pe(57a) < Tmix~

(39

Note that Q-UCRL obtains a quadratic improvement for the
Bellman error over the classical UC-UCRL (Agarwal et al.,
2022b). We next present the final regret bound of Q-UCRL.

Theorem 1. In an unknown MDP environment M =

(S, A, P,r, D), the regret incurred by Q-URL (Algorithm 2)
across T rounds is bounded as follows:

Rio,r—1 = O <S5A4Tmixlog3 <s%) log2 (TV/S) 1og(52AT)> )
(40)

Proof. Please refer to Appendix G. O

Remark 2. We reiterate that our characterization of regret
incurred by Q-UCRL in Theorem 1 is a martingale-free
analysis and thus deviates from its classical counterparts
(Fruit et al., 2018; Auer et al., 2008; Agarwal et al., 2022b).
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6. Conclusions

This paper demonstrates that quantum computing helps pro-
vide significant reduction in the regret bounds for infinite
horizon reinforcement learning with average rewards. This
paper not only unveils the quantum potential for bolster-
ing reinforcement learning but also beckons further explo-
ration into novel avenues that bridge quantum and classical
paradigms, thereby advancing the field to new horizons.

A promising future direction is parameterized quantum RL,
which has recently shown speedups for discounted settings
(Xu & Aggarwal, 2025); achieving similar gains for average-
reward problems, where the state-of-the-art in non-quantum
RL is given by (Ganesh et al., 2025b), remains an open
challenge.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix A: Convexity of Optimization Problem

In order to solve the optimistic optimization problem in Eq. (15) - (19) for epoch e, we adopt the approach proposed in
(Agarwal et al., 2022b; Rosenberg & Mansour, 2019). The key is that the constraint in (18) seems non-convex. However,
that can be made convex with an inequality as

Z p(s' a) < Z P.(s'|s,a)p(s,a), Vs' € S (41)

acA (s,a)ESx A

This makes the problem convex since zy > c is convex region in the first quadrant.

However, since the constraint region is made bigger, we need to show that the optimal solution satisfies (18) with equality.
This follows since

Z Z P.(s'|s,a)p(s,a) =1 = Z Z p(s',a) (42)

s'€S (s,a)ESXA s’€eSacA

Thus, since we have point-wise inequality in (41) with the sum of the two sides being the same, thus, the equality holds for
all s'.
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B. Appendix B: A brief overview of Quantum Amplitude Amplification

Quantum amplitude amplification stands as a critical outcome within the realm of quantum mean estimation. This pivotal
concept empowers the augmentation of the amplitude associated with a targeted state, all the while suppressing the amplitudes
linked to less desirable states. The pivotal operator, denoted as (), embodies the essence of amplitude amplification:
Q = 2|v) (| — I, where |1)) signifies the desired state and I represents the identity matrix. This operator orchestrates a
double reflection of the state |¢) - initially about the origin and subsequently around the hyperplane perpendicular to | -
culminating in a significant augmentation of the amplitude of |v).

Moreover, the application of this operator can be iterated to achieve a repeated amplification of the desired state’s amplitude,
effectively minimizing the amplitudes of undesired states. Upon applying the amplitude amplification operator a total of ¢
times, the outcome is Q*, which duly enhances the amplitude of the desired state by a scaling factor of \/N /M, where N
corresponds to the overall count of states and M signifies the number of solutions.

The implications of quantum amplitude amplification extend across a diverse spectrum of applications within quantum
algorithms. By bolstering their efficacy and hastening the resolution of intricate problems, quantum amplitude amplification
carves a substantial niche. Noteworthy applications encompass:

1. Quantum Search: In the quantum algorithm for unstructured search, known as Grover’s algorithm (Grover, 1996),
the technique of amplitude amplification is employed to enhance the amplitude of the target state and decrease the
amplitude of the non-target states. As a result, this technique provides a quadratic improvement over classical search
algorithms.

2. Quantum Optimization: Quantum amplification can be used in quantum optimization algorithms, such as Quantum
Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014), to amplify the amplitude of the optimal solution
and reduce the amplitude of sub-optimal solutions. This can lead to an exponential speedup in solving combinatorial
optimization problems.

3. Quantum Simulation: Quantum amplification has also been used in quantum simulation algorithms, such as Quantum
Phase Estimation (QPE) (Kitaev, 1995), to amplify the amplitude of the eigenstate of interest and reduce the amplitude
of other states. This can lead to an efficient simulation of quantum systems, which is an intractable problem in the
classical domain.

4. Quantum Machine Learning: The utilization of quantum amplification is also evident in quantum machine learning
algorithms, including Quantum Support Vector Machines (QSVM) (Lloyd et al., 2013). The primary objective is to
amplify the amplitude of support vectors while decreasing the amplitude of non-support vectors, which may result in
an exponential improvement in resolving particular classification problems.

In the domain of quantum Monte Carlo methods, implementing quantum amplitude amplification can enhance the algorithm’s
efficiency by decreasing the amount of samples needed to compute the integral or solve the optimization problem. By
amplifying the amplitude of the desired state, a substantial reduction in the number of required samples can be achieved
while still maintaining a certain level of accuracy, leading to significant improvements in efficiency when compared to
classical methods. This technique has been particularly useful in (Hamoudi, 2021) for achieving efficient convergence rates
in quantum Monte Carlo simulations.
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C. Appendix C: Proof of Lemma 3

Lemma 7 (Lemma 3 in the main paper). Execution of Q-UCRL (Algorithm 2) up to the beginning of epoch e + 1 with total
e completed epochs comprisingt = 1,2, ... ,t. rounds, guarantees that the following holds for P, :

eC'log(eS/9)

P[|P.y1 (s —P(s <
[|[Pey1(s]s,a) — P(s']s,a)| < N1 (s5.0)

>1-6 (43)

V(s,a,5') € S x Ax S, where C = clog"*(T/S) for some ¢ € R and {ve(s,a)} are the state-action pair visitation
counts up in epoch e, as depicted in Line 12 of Algorithm 2, and { P(s'|s,a), P.11(s'|s,a)} are the actual and weighted
average of transition probabilities by Eq. (22).

Proof. Forall (s,a,s') € S x Ax S, P.y1(s|s,a) could be equivalently expressed as:

Zle vi(s, a)pi(s’|s, a)

Poii(s]s,a) = i (44)
+1( ‘ ) ijl Vj(57 a)
Denote event | P;(s'|s,a) — P(s'|s,a)| < %ﬁ/)‘s) as event E;. Thus if events Fj, ..., E. all occur, we would have:
|Poyi(s]s,a) — P(s']s,a))| (45)
> iy vils, a)(Pi(s'[s,a) — P(s'|s, a))
: G ) (46)
Zj:l Vj (87 a’)
e ) D.( _ /
< Ziz1 Vz(Saa)lfz(S |s,a) — P(s |«97a)|’ 47
Zj:l vi(s,a)
¢ 1
L Sy Clog(S/9) s
2 j=1vi(s,a)
1
— LLoa®/0) (49)
Zj:l Vj (S? a)
eC'log(S/9)
= e 50
Net1(s,a) (50)

Where Eq. (47) is the result of triangle inequality and Eq. (48) is by Lemma 2. The probability of events F1, ..., E. all
occurring is:

PlE1N...NE], (51D

=1-P[ECU...UEY, (52)

>1- Y PEC), (53)
=1

>1—ed 54

Where Eq. (54) is by Lemma 2. By combing Eq. (50) and Eq. (54) and substituting ed with §, we would obtain Eq. (43) O
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D. Appendix D: Proof of Lemma 4

Lemma 8 (Lemma 4 in the main paper). Execution of Q-UCRL (Algorithm 2) up to total e epochs comprisingt = 1,2, ... t.
rounds, guarantees that the following holds for confidence parameter 6, = ﬁ with probability at least 1 — 1/t5:

[Pe(-]s; a) = P(s, a)ll1,
< 7S(1 + Ce)log(S?AT) + SCelog(eS)
- max{1, Ne(s,a)} ’

(55)

V(s,a) € § x A, where {N, P(if)} is the cumulative state-action pair visitation counts up to epoch e, as depicted in Line 17
of Algorithm 2, and { P(|s, a), P.(+|s, a)} are the actual and estimated transition probabilities.

Proof. To prove the claim in Eq. (55), note that for an arbitrary pair (s, a) we have:

[Pe(-]s;,a) = P(|s; a)lx

< I1PCls,a) — PCls, )l
LB s.a) — P(Js,a)a, (56)
751 SQAe A

< B Ale) 15 (1s,a) - P(]s,a)l, (57)

max{1, N.(s,a)}

7S log(S? At.)
max{1, N.(s,a)}

+ Z | B,(s|s,a) — P(s|s,a) |, (58)
s’eS @)

where Eq. (57) is a direct consequence of constraint Eq. (19) of optimization problem Eq. (15). Next, in order to analyze (a)
in Eq. (58), consider the following event:

£ = {Pe(s’|s,a) — P(s|s,a)

7log(S?%At,)
~ max{1, No(s,a)}

,V(s,a,s’)ESxAxS}, (39)

For a tuple (s, a, s'), by replacing § = e~<Ne(*:%) into Eq. (1) from Lemma 1, we get:

R 1
P |12 1s.0) = Pl sl < o) el
>1— e Neloa), (60)
By plugging in € = % into Eq. (60), we get:

2 £47
P [|Pe(s'|s,a)  P(s]s,a)] > Celog (eS) + Celog(S Ate)]

Nc(s,a)
1

<
< S 1)

Finally, we sum over all possible values of N, (s, a) as well as tuples (s, a, s") to bound the probability in the RHS of (61)
that implies failure of event &:

te

1 1
> > @ A7 <7 (62)

(s,a,8")ESXAXS Nc(s,a)=1
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Here, it is critical to highlight that we obtain this high probability bound for model errors by careful utilization of Lemma 1
and quantum signals |1)* via Eq. (55) - (62), while avoiding classical concentration bounds for probability norms that use
martingale style analysis such as in the work (Weissman et al., 2003). Finally, plugging the bound of term (a) as described
by event £, we obtain the following with probability 1 — 1/t5:

[ Pe(-]s,a) = P(|s, a)llx
7S log(S? At,) N Z Celog (eS) + Celog(S?At7)

~ max{l, Ne(s,a)} = £ max{1, Ne(s,a)} ’ (63)
7S log(S? At.) Celog (eS) + 7Celog(S? At.)
< > : (64)
max{1l, Nc(s,a)} i max{1l, N.(s,a)}
7S(1 + Ce)log(S? At.) + SCelog(eS)
= ) (65)
max{1, N.(s,a)}
< 7S(1 + Ce)log(S?AT) + SCelog(eS) 6)
- max{1l, N.(s,a)}
This proves the claim as in the statement of the Lemma. O
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E. Appendix E: Proof of Lemma 5

Lemma 9 (Regret Decomposition, Same as Lemma 5 in the main paper). Regret of Q-UCRL defined in Eq. (10) can be
decomposed as follows:

E
Ripr1y < D T.(T5 -T2 ). (67)
e=1
Proof.
T-1
Rz =T xTE. — E[ 3 T(st,at)}, (68)
t=0
E E T—-1
=TxTL -y 1rk + S Trl - E[ 3 T(st,at)},
e=1 ‘ e=1 ‘ t=0
E E T—-1
=S T(TF TR+ YT —E[ Y r(sia))], (69)
e=1 — e=1 t=0
(a)
E T-1
-y rrk - E[ r(se, at)} : (70)
e=1 t=0
E T—-1
<> T -E[ D risna), (7n
e=1 / t=0
E E E T—-1
=Sk -3 TrE 3L —E[Y (s a)], (72)
e=1 e=1 e=1 t=0
E E E te
=Y 1S Tnrl 4 [Z T2 —E[r(s;, ar)] } (73)
e=1 e=1 e=1 t:te,1+lT
E ~
-3 (rf:; - rf;). (74)

O

Firstly, (a) in Eq. (69) is 0 owing to the fact that the agent would have gotten 7} exactly as the true 7* in epoch e solving
for original problem Eq. (11), had it known the true transition model P. Next, Eq. (71) is because { P., 7. } are outputs
from the optimistic problem Eq. (15) solved at round e, which extends the search space of Eq. (11) and therefore always
upper bounds true long-term rewards. Finally, term (b) in Eq. (73) is 0 in expectation, because the RL agent actually collects
rewards by playing policy 7. against the true P during epoch e.
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F. Appendix F: Some Auxiliary Lemmas used in this Paper

Lemma 10 (Lemma 5.3, (Agarwal et al., 2022b)). The Bellman errors for any arbitrary state-action pair (s, a) correspond-
ing to epoch e is bounded as follows:

B”“Pﬂ(s,a) < ‘

P.(|s.a) = P(ls,a)|| 1A, 75)

where ?L() (defined in (Puterman, 2014)) is the bias of the optimistic MDP P, for which the optimistic policy 7. obtains the
maximum expected reward in the confidence interval.

Lemma 11. [Lemma D.5, (Agarwal et al., 2022b)] For an MDP with the transition model P, that generates rewards r(s, a)
on playing policy 7., the difference of biases for states s and s’ are bounded as:

h(s) = h(s') < Thpix, Vs, s € S. (76)

18



Quantum Speedups in Regret Analysis of Infinite Horizon Average-Reward MDPs

G. Appendix G: Proof of Theorem 1

Theorem 2 (Theorem 1 in main paper). In an unknown MDP environment M = (S, A, P, r, D), the regret incurred by
Q-URL (Algorithm 2) across T rounds is bounded as follows:

R[O,T_l]—o<55A4TmiX10g3< )1og1/2(Tf ) 1og(52AT)) (77)

SA

Proof. Using the final expression from regret decomposition, i.e., Eq. (74), we have:

E ~
Ror-y = T (I%: =17 (78)
E
Z Z > ok BT (s, a), (79)

e=1t=te_1+1 s,a
te

Z 75(1 + Ce)log(S?AT) + SCelog(eS)

max{1, Ne(st,a:)}

IN

Tmix; (80)

t

Ze Z (1[st =s,a; = al-

t=te_1+1 s,a

E
e=1t=te_1+1
E

e=1

7S(1 + Ce)log(S?AT) + SCelog(eS)

Toix ), (81)
max{1l, N.(s,a)}
E
= Z Z Ve(s,a):
e=1 s,a
2
75(1 + Ce)log(S*AT) + SCelog(eS) T 82)

max{1, N.(s,a)}
= T (7S(E + CE?)log(S*AT) + SCE” log (ES))

E

Ve(s,a)
' ; max{1, N.(s,a)}’ (83)

<Y T (7S(E + CE?)log(S?AT) + SCE® log (ES))E
= T E(7TS?A(E + CE*)1og(S?AT) + S?ACE?log (ES)),

— O<S5A4Tmixlog3 < 3 A) log'/3(TV'S) 1og(52AT)> (84)

where in Eq. (79), we directly incorporate the result of Lemma 6. Next, we obtain Eq. (80) by using the Bellman error
bound in Eq. (39), as well as unit sum property of occupancy measures (Puterman, 2014). Furthermore, in Eq. (80) note

that we have omitted the regret contribution of bad event (Remark 1) which is atmost @) % as obtained below:

= a le 2STmix
Z Z Z = (85)

lt=te_1 e=1

‘n M%
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Subsequently, Eq. (82) - (83) are obtaining by using the definition of epoch-wise state-action pair visitation frequencies
Ve (s, a) and the epoch termination trigger condition in Line 13 of Algorithm 2. Finally, we obtain Eq. (84) by the using
Proposition 18 in Appendix C.2 of (Auer et al., 2008). O
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