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ABSTRACT

Random feature methods and neural network models are two popular nonparametric
modeling methods, which are regarded as representatives of shallow learning and
Neural Network, respectively. In practice random feature methods are short of the
capacity of feature learning, while neural network methods lead to computationally
heavy problems. This paper aims at proposing a flexible but computational efficient
method for general nonparametric problems. Precisely, our proposed method is a
feed-forward two-layer nonparametric estimation, and the first layer is used to learn
a series of univariate basis functions for each projection variable, and then search
for their optimal linear combination for each group of these learnt functions. Based
on all the features derived in the first layer, the second layer attempts at learning
a single index function with an unknown activation function. Our nonparametric
estimation takes advantage of both random features and neural networks, and can
be seen as an intermediate bridge between them.

1 INTRODUCTION

Kernel methods are one of the most powerful methods for nonlinear statistical learning problems
attributed to their excellent statistical theories and flexible modeling framework. Using the randomized
algorithms for approximating kernel matrices, random feature (RF) models attract increasing attention
due to that they significantly reduce the extensive hand tuning form the user for training, but obtain
similar or better prediction accuracy with limited data size compared to neural network models
(Du et al., 2022; Zhen et al., 2020). The RF model can be traced back to the work of (Rahimi &
Recht, 2007), and was successfully developed by (Li et al., 2019b). To be specific, for observations
(yi, xi)ni=1,xi ∈ Rp, yi ∈ R , RF models consider a linear combination over a set of prespecified
nonlinear functions on a relatively low-dimensional randomized feature space to predict y. That is,

yi = f(xi) + εi :=

N∑
j=1

αjσ(〈xi, θj〉/
√
p) + εi, i = 1, · · · , n, (1)

where N → ∞, 〈α, x〉 =
∑p
j=1 αjxj , and σ(·) is a pre-specified function, like Relu or the

Sigmoid function. Here, θj is chosen randomly from a prespecified distribution, say, a unit ball, i.e.,
θj ∼ Unif(Sp−1(

√
p)), where S(d−1)(r) denotes the sphere of radius r in d dimensions, and r =

√
d.

Model equation 1 involves unknown parameters αj , j = 1, · · · , N only. The coefficients α in the RF
model can be estimated using the following ridge regression:

α̂(λ) = arg min
α∈RN

 1

n

n∑
i=1

yi − N∑
j=1

αjσ(〈θj , xi〉)

2

+
Nλ

p
‖α‖22

 . (2)

Let FRF (Θ) =
{
f(x) =

∑N
i=1 αiσ(〈θi, x〉) : αi ∈ R ∀i ≤ N

}
, where Θ ∈ RN×p is a matrix whose i-th

row is the vector θi. When the number of random features, N , goes to infinity, under a suitable
bound on the `2 norm of the coefficients, FRF reduce to certain Reproducing Kernel Hilbert Space
(RKHS) (Liu et al., 2020). Specifically, the ridge regression over the function class converges
to kernel ridge regression (KRR) with respect to the kernel: HRF

p (x1, x2) := hRFp (〈x1, x2〉p) =
E [σ(〈θ, x1〉)σ(〈θ, x2〉)] . Here, the expectation is with respect to θ. Clearly, distinct distributions
generating θj and different activation functions induce different RKHS spaces. For examples, when θ
follows a standard multivariate normal distribution, and the activation function is the ReLU activation
σ(x) = max(0, x), the kernel corresponds to the first order arc-cosine kernel. Another example
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is, if the activation function is σ(x) = [cos(x), sin(x)]>, the kernel corresponds to the Gaussian
kernel (Rahimi & Recht, 2007; Liu et al., 2020). According to Bochner’s theorem, the spectral
distribution µk of a stationary kernel k is the finite measure induced by a Fourier transform, i.e.,
k(x − x′) =

∫
exp

(
iθ>(x− x′)

)
µk(dθ). However, it is known that the distribution and the

activation function may meet misspecification issues on the function space leading to inefficient or
even wrong estimation(Sinha & Duchi, 2016; Derakhshani et al., 2021).

Note that general kernel k(x,x′) describes the distance ‖x − x′‖ who converges to a constant
quickly as the dimension increases (Liu et al., 2020). Such kind of locality in terms of stationary
and monotonic properties result in that they can not reveal more important information in the feature
spaces, which largely restricts the performance of kernel methods in complex tasks (Xue et al., 2019).
The RF models overcome this issue with the induce of the coefficients θ and its associated spectral
distribution. In specific, the RF model learns a kernel function based on the fixed activation function
σ(·) indexed by (approximately) infinite random parameters from a prespecified distribution. In
terms of the algorithm and implementation, the RF model improves the quality of approximation and
reduces the requirement on time and space compared with traditional kernel approximation methods
(Liu et al., 2020). This is because that the RF model is able to map features into a new space where the
dot product can approximate the kernel accurately, thus improving the quality of the approximation
(Yu et al., 2016). Comparing to other kernel methods that mapping x to a high dimensional space,
RF uses a randomized feature map to map x to a low-dimensional Euclidean inner product space.
Consequently, we can simply use linear learning methods to approximate the result of the nonlinear
kernel machine (Rahimi & Recht, 2007), which saves computation time and reduces computation
complexity. Also, unlike Nystrom methods or other data dependent methods, RF is a typical data-
independent method with an explicit feature mapping. Data-independent implies that RF does not
need large samples to guarantee its approximation property(Liu et al., 2020). However, it still fails
to provide satisfactory performance for complex tasks due to its representing of a simple stationary
kernel only. In contrast, sampling θ from a mixture distribution would bring in extra computational
complexity (Avron et al., 2017). On the other hand, recently, some work have been done via the
kernel Neural Network (KDL), a combination of kernel methods and Neural Network, to overcome
the limitation of the locality (Xue et al., 2019), and adopt the kernel trick to make computation
tractable. In particular, KDL methods incorporate Neural Network methods to kernel functions, i.e.,
k(g(x,θ), g(x′,θ)), where g(x,θ) is a non-linear mapping given by a deep architecture. KDL trains
a deep architecture g(·;θ) indexed by finitely many fixed parameters and then plugs it into a simple
kernel function such as a Gaussian kernel. In this way, KDL adaptively estimates basis functions
with finitely many parameters at the price of requiring lots of hand tuning work (lack of a principled
framework to guide parameter choices), and thus a large number of data size is needed. In this paper,
following a similar spirit of KDL, we develop a novel supervised RF method (SRF) to overcome the
local kernel’s limitation by first adaptively estimating basis functions through (approximately) infinite
tuning-free kernel techniques based on low-dimensional variables in the form of 〈x,θ〉 with θ from a
simple distribution, and then adaptively estimating the corresponding weights and the unknown link
in a supervised way. Most importantly, with the incorporation of the information from the outcome to
learn the basis functions, the proposed SRF has excellent predictive performance with the limited
data size, in addition to the advantage of being interpretable, and hand-tuning free. It is worth noting
that standard RF only has one single layer, which may not thoroughly express the complexity of the
data. Instead, SRF includes two layers, which makes it have stronger ability of expression. Moreover,
unlike KDL, which only introduces the information of y at the last layer, SRF incorporates the
information of y at each layer, leading to a higher prediction power without abundant layers. This
idea is very similar to the idea of Conditional Variational Autoencoders(CVAE), which is also known
for good performance on limited data size and being energetic efficient (Kingma & Welling, 2013;
Sohn et al., 2015). Energetic efficiency is an important aspect of the SRF approach. Compared to
CVAE, the proposed SRF method enjoys easier interpretation benefit via its flexible semi-parametric
structure.

The proposed SRF has the following contributions: First, computational simplicity. Conventional
RF models including training the random features in the implicit kernel learning (Li et al., 2019a),
choosing random features via kernel alignments in kernel allegement method (Sinha & Duchi, 2016;
Cortes et al., 2010), choosing random features by score functions in the kernel polarization method
(Shahrampour et al., 2018), among others, require a huge computational burden. Instead, the SRF
model generates the random features randomly from a simple pre-specified distribution. In comparison
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to single hidden-layer neural networks (NN-1,(Rumelhart et al., 1986)): f(x) =
∑k
j=1 σ(w>j x + bj),

where k is the number of units in the hidden layer. NN-1 requires to estimate pk parameters
{wj}kj=1, while RF models estimateN linear coefficients {αj}Nj=1. The Projection Pursuit Regression
([PPR,(Friedman & Stuetzle, 1981)) combines GAM and NN-1 by estimating nonlinear functions fj
and projected directions wj simultaneously, that is, f(x) =

∑k
j=1 fj(w>j x), which requires extensive

computations when p and/or k are large. Furthermore, it is known that we usually require large
N to obtain a good approximation on the function space. However, when the number of random
features, N , is large, directly estimating the combination coefficients of supervised random features
using the ridge regression equation 2 is computationally burdensome. The proposed SPF divide
all random features into K � N blocks. For each block, the ridge regression is adopted to obtain
initial predictions on the outcome y. Then, PPR is used on the low-dimensional (K) predictors
to obtain the final prediction. This step further improves the prediction accuracy by adaptively
estimating the combination schemes, in addition to save computational time by avoiding directly
running large dimensional ridge regression but in a scalable way. Second, model flexibility and
automatic calibration(Wilson et al., 2016). Similarly to generalized additive models (GAM,(Hastie,
2017)), i.e, f(x) =

∑p
j=1 fj(xj), RF models overcome the curse of dimensionality by mapping

p-dimensional covariates into one dimensional random feature, i.e., 〈θ, x〉. Different from GAM, the
RF model has the capacity to model interactions between covariates using the projected direction θ.
The proposed SRF estimates the activation functions in a supervised way for each random feature,
which avoids any subjective pre-specified fixed kernel space. It adaptively estimate each function
and thus allows different function spaces on each random feature. Therefore, the proposed SRF
allows a more complex function space on the variables x without knowing the true space they
belong to. Consequently, the proposed SRF model has a more stable prediction errors in comparison
to conventional RF models. Third, model simplicity. Different from multi-layer neural network,
the SRF model needs two layers only to achieve good prediction accuracy. As described in the
following section, the first layer is a ’nonparametric’ random feature through the nonparametric
regression method, and the second layer is the projection pursuit, a universal approximator in terms
of theoretically approximating any continuous function in Rp very well, which is extremely useful
for regression forecasting due to its semi-parametric structure. More importantly, the estimation
of these two layers can be easily solved by using common statistical methods without the need
for extensive manual tuning from the users. Finally, model interpretability. As is known to all,
neural network is lack of a principled framework to guide choosing parameters, such as architecture,
activation functions or optimizers (Wilson et al., 2016). This, combining with unidentification of
parameters, leads to the uninterpretability of neural network. Fortunately, our SRF model enjoys good
interpretability to some extent. For instance, as we mentioned before, RF model uses linear learning
methods to replace nonlinear kernel methods. The biggest advantage of linear learning methods is its
interpretability in terms of the coefficient. Significant coefficients implies important directions 〈θ,x〉
(Liu et al., 2020), which facilitates the interpretation and understanding the underlying important
features.

The rest of the paper is organized as follows. Section 2 introduces proposed SRF with details and
algorithm. Section 3 compares the proposed SRF method with other statistical methods under various
types of simulated data. Section 4 considers five RWD(Real World Data) examples to evaluate the
performance of the proposed SRF method. In Section 5, we summarize this paper with concluding
remarks.

2 SUPERVISED RANDOM FEATURE

Consider the problem:

Yi = f0(xi) + εi, (3)

where xi ∈ Rp is a p-dimensional vector, and the function f0 is unknown. The random errors
εi, 1 ≤ i ≤ n, are independent of each other and of xi. Assume E(εi) = 0 and E(ε2

i ) = σ2 < ∞.
When the dimension p is larger than 3, the curse of dimensionality in the nonparametric regression
occurs. We now introduce the proposed supervised random feature model, denoted as SRF. Firstly,
for each random feature, 〈θj , x〉, we calculate its prediction on the outcome Y . That is,

Yi = fj(〈θj , xi〉) + εi, i = 1, · · · , n, (4)
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where fj(·) is an unknown univariate non-parametric function. Denote its estimator as f̂j ,
an initial prediction, which can be obtained easily using any nonparametric tools, such as K-
NearestNeighbor(KNN), and Kernel density estimation or Kernel regression from Python package
statsmodels.nonparametric. It is worthy of pointing out that for each RF 〈θj , x〉, we estimate the
activating function in a supervised way. By doing this way, we avoid the misspecification issue
on the kernel space. Second, the adaptive way on the kernel space relaxes the restriction on the
distribution of the random index parameter θj . In other words, we can simply sampling θj from
a unit ball, and then adaptively estimate the corresponding activating function with the outcome
information incorporated. Third, for each RF, the underlying kernel space may not be the same. Thus,
with each function estimated independently, we actually obtain a multi-kernel mixed space, which
largely improve the prediction power compared to the single-kernel space especially for complex
task. Secondly, we further refine the prediction in an aggregated way by minimizing the following
ridge-type objective similar to conventional RF models:

1

n

n∑
i=1

Yi − N∑
j=1

αj f̂j(〈θj , xi〉)

2

+
Nλ

p
‖α‖22. (5)

Denote the prediction as

f̂SRF−I :=

N∑
j=1

α̂j f̂j(〈θj , xi〉).

By treating each initial prediction f̂j as a candidate model, the SRF method shares similar idea as
the stacking methods in model averaging literature (Yao et al., 2018). That is, we aggregate each
predictions f̂j through the weights αj , obtained by minimizing a least-square type criterion. Clearly,
weights αj’s could be positive or negative. Instead of all positive weights in conventional modeling
averaging methods, allowing positive and negative weights improves prediction power especially
when candidate models do not cover the underlying true model (Arce, 1998). Different from stacking
methods, SRF involves random features θj leading to a clear identification on important features
whose corresponding coefficient αj is usually large, as show in Simulation-Part three.

To avoid the computation complexity with large N , we further divide N into K blocks with equal
dimension in each without loss of generality. Then within each block, we run equation 5 to obtain
raw predictions f̂ (1)

k (xi) =
∑Nk
j=1 α̂

k
j f̂j(〈θj , xi〉). Base on K predictors, f̂ (1)

k (·), k = 1, · · · ,K, we
obtain a further refined prediction by minimizing the following objective

1

n

n∑
i=1

[
Yi − g

(
K∑
k=1

β
(1)
k f̂

(1)
k (xi)

)]2

, (6)

where g is an unknown nonparametric function. This step further improves prediction accuracy
through the non-parametric aggregation link function g and additional weight parameters βk. Specifi-
cally, the non-parametric aggregation link function g extracts interaction information for each features,
and the product term αkj × βk enjoys the ability of extracting hierarchical information from each
feature, which is similar to the two-layer NN. Different from the two-layer NN, who prespecifies an
activation function and the final link function, the proposed SRF estimates each activating function
fj and the final link function g with the outcome information incorporated. Thus, it has higher
prediction power due to the use of multi-kernel mixed space and flexible interaction expression with
the non-parametric form, in a supervised way. The estimator can be obtained by PPR. The final
prediction is defined as

f̂SRF−II = ĝ

(
K∑
k=1

β̂
(1)
k f̂

(1)
k (xi)

)
.

The entire procedure is given in the following Algorithm 1.
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Algorithm 1 Algorithm for SRF-II
1: SRF{yi, xi}ni=1, N , K {Input}
2: Randomly generate N directions θj , j = 1, · · · , N : θj ∼ Unif(Sp−1(

√
p)).

3: Obtain supervised random features f̂j , j = 1, · · · , N using equation 4.
4: Obtain initial K raw esitmators f̂ (1)

k , k = 1, · · · ,K by minimizing equation 5.

5: Obtain f̂(x) = ĝ
(∑K

k=1 β̂
(1)
k f̂

(1)
k (x)

)
by minimizing the objective equation 6.

6: return f̂ . {Output}

3 SIMULATION STUDIES

This section evaluates the performance of the proposed SRF method based on various
types of simulated data. We compare the prediction results with other statistical meth-
ods including Basic Random Feature Regression (Relu-I), One Layer Kernel Regression
(SRF-I), Advanced Basic Random Feature Regression (Relu-II), Two Layers Kernel Re-
gression - Projection Pursuit (SRF-II), Random Forest, One Layer Neural Network (NN-1)
and Two Layers Neural Network (NN-2). We consider four settings for the regression
function f0(·): (a) Linear: f0(X) = 2X1 + X2 + 3X3 ; (b) Composite: f0(X) =
cos
{
X1 + cos(X1) +X2

2 + eX2/3 +X5X3X4 + cos(X5) + 2X6 +X2
7 +X8X9 +X10

}
;

(c) Nonlinear: f0(X) = (X1 + X2 + X3)2 + 1; (d) More complex: f0(X) =
cos
{
X1 + 2X1X2 +X2

3 + sin(X4) + exp(X5)
}

+ exp(X6 + X7) + cos(X8 + X9 + X2
10) +

sin(X1 +X5)2. Here, Xi represents the ith dimension ofX ∈ Rp.

Under all settings, we generate n = 300 data with p = 100 covariates. We generate covariates X
from a multivariate normal distribution, N(0,Σ), with three correlation structures: (I) Independence,
i.e., Σ = I . (II) Fixed correlation structure, i.e., all off-diagonal component of Σ equals to 0.5. (III)
Random correlation structure, that is, each off-diagonal component of Σ is randomly generated from
a uniform distribution Unif(−1, 1).The random error ε in the regression function Y = f0(X) + ε, is
generated from a normal distribution, i.e., ε ∼ N(0, 0.1). We replicate each simulation 100 times.

To determine the number of random features N , extensive simulation results show that when N =
12000 andN = 24000 for independent and correlated covariates, respectively, the prediction accuracy
keeps steady and larger N does not bring significant improvement, as show in the Figure 4 (See
Appendix A). Thus, for computational simplicity, we take N = 12000 and N = 24000 for simplicity.
The larger N required for the correlated covariates is understandable, since randomly generated RF’s
may be correlated and share similar information due to the correlation among covariates leading to a
larger N to thoroughly capture covariates information. The regularization parameter λ is determined
by the model complexity. Basically, in order to ensure the stability of the model and the accuracy
of the estimation, larger λ is used as the model complexity increased. We compare the prediction
performance in terms of predicted mean square error (MSE) ,i.e 1

n

∑n
i=1(ŷi − yi)2 and Scaled MSE,

i.e
√

1
n

∑n
i=1( ŷi−yiyi/2

)2 , with additional data with size 100. To ensure visualization of simulation
results, we exclude 5%−10% outliers, and the number 2 in the denominator of Scaled-MSE amplifies
the results and is more conducive to observing the difference in visualization.

The results for models (a)-(d) are showed in Table 1 and Figure 1 under independent covariates (I).
Particularly, Table 1 summarizes the average of the Scaled-MSE and MSE based on 100 replications,
and Figure 1 shows the box-plot for the Scaled-MSE. Based on Table 1 and Figure 1, we can see
that when the model is simple, as linear model in scenario (a), two-layer type methods does not have
better prediction accuracy than their corresponding one-layer counterparts. Interestingly, Scaled-MSE
and MSE have different preferences on models. SRF-I, SRF-II and NN-1 have smaller Scaled-MSEs,
while Relu-II and Random Forest have smaller MSEs. The reason for this problem may be that the
linear model is too simple, and kernel regression and projection pursuit are prone to over-fitting.
SRF shows its advantage as the model complexity increased. For models (b) and (c), SRF-I and
SRF-II have better performance than others in terms of both Scaled-MSE and MSE. Also, because
of the complexity of the composite function, all the two layers models perform better than their
corresponding one layer counterparts. However, Neural Network do not show their advantages under
models (b) and (c). Further, for more complex data as model (d), Neural Network works well. SRF-I
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and SRF-II defeat Relu-I and Relu-II in terms of Scaled-MSE. Random Forest still remains stable.
It is worth noting that under this scenario, the two-layer models have significantly better and more
stable prediction performance than one-layer models besides Neural Network.

Table 1: Scaled-MSEs and MSEs for models (a)-(d) of various methods including Relu-I, SRF-I, Relu-
II, SRF-II, Random Forest, NN-1 and NN-2. Two-layer type methods have no obvious advantages
for linear models. As model complexity increases, for composite and non-linear models, SRF-I and
SRF-II perform better than others for both Scaled-MSE and MSE. Further, for more complex model ,
SRF-I and SRF-II work well on Scaled-MSE. NN-1 and NN-2 has comparable performance under
model (d) setting.

Model Linear Composite Non-Linear More Complex
Scaled MSE MSE Scaled MSE MSE Scaled MSE MSE Scaled MSE MSE

Relu-I 16.75 3.20 13.37 0.57 3.78 19.56 2.33 20.11
SRF-I 5.22 12.89 4.97 0.49 2.61 17.18 1.73 19.07

Relu-II 7.28 2.77 8.66 0.57 3.53 19.09 3.81 20.80
SRF-II 6.35 13.70 3.75 0.48 1.65 17.59 1.04 21.84

Random Forest 9.20 1.82 6.02 0.51 3.11 15.60 1.15 10.87
NN-1 4.50 6.52 15.21 0.85 4.49 23.64 1.51 33.64
NN-2 7.93 8.16 8.08 0.56 4.53 27.14 1.53 22.01

Figure 1: Box-plot of Scaled-MSEs for models (a)-(d) under independent covariates (I). Clearly,
except under linear model setting (a), SRF-II has smallest Scaled-MSEs under all other models.

To show the effects of various correlation among covariates, we further compare the results under
model (c) for both random and fixed covariance matrices (II) and (III). The results are shown in
Figure 5 (See Appendix B) . Obviously, SRF-II still has the best performance. Compared to Figure
1 (independent scenario), both Scaled-MSEs and MSEs are larger because of the effects of various
correlation. Except that, all the models have similar performance under correlated covariates.

In order to show the interpretability, we consider the following two criterions under model (c). For
the first criterion, we calculate the difference of sum of absolute weights ω on the three important
covariates between the maximum absolute αmax = maxj |αj | and the minimum absolute αmin =
minj |αj |. Ideally, a large absolute value of αj implies the more importance of the feature. Thus,
we compare the proportion of the differences larger than 0 out of 50 replicates for 20 α’s at a time,
termed as Maxmin. For comparison, we also compare the difference between randomly chosen
αj and αmin, termed as Ranmin. For the second criterion, we compare the significant ω elements
(the first three elements) with the non-significant ω elements. For comparison, we consider three
non-significant ω at prespecified fixed positions (Fixpos) or randomly chosen positions (Ranpos).
Also, we compare the difference between randomly chosen three covariates and randomly chosen
covariates (Ranran). Similarly, we calculate the proportions of the differences larger than 0 out of 50
replications for 20 α’s at a time. The results are show in Figure 2. From Figure2 we can see that,
Ranpos and Fixpos have significantly larger proportions, up to 56% improvement on average, than
Ranran, indicating that important features do have larger values on ω. Maxmin also has significantly
larger proportion than Ranmin, up to 80% improvement on average, implying that larger αj does
represent an important direction. Therefore, SRF-II is meaningful to determine important directions
with large value of αj .
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Figure 2: The average times of differences larger than 0 out of 50 replicates under five different
indexes, Maxmin, Ranmin, Fixpos, Ranpos, and Ranran, respectively. Compared to Ranran and
Ranmin, Larger times in Maxmin, Fixpos and Ranpos show that larger α values are related to
important features.

4 REAL DATA EXAMPLES

List of datasets. Our real data experiments consider the following datasets. All the datasets are
publicly available. More details about these datasets, including the size of the data and the number of
features, are provided in Table 2.

• Abalone was collected form UCI (University of California-Irvine) Machine Learning
Repository with data size n= 800. Its objective is to predict the age of abalone (Number
of rings) based on individual abalone measurements. It contains seven features including
length, diameter, height, whole weight, shucked weight, viscera weight, and shell weight.

• Boston was collected from Sklearn Machine Learning Repository with data size n = 478.
This data set is about Boston House Prices and is one of the most famous regression task
datasets. It contains thirteen features, which are CRIM, ZN, INDUS, CHAS, NOX, RM,
AGE, DIS, RAD, TAX, PTRATIO, B and LSTAT(See Appendix C for details). The objective
is to predict how those aforementioned features affected the house price, MEDV(Median
value of owner-occupied homes in $ 1000’s ).

• Wine was also collected from UCI Machine Learning Repository with data size n =1000.
The white wine quality data set contains eleven features, which are fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density,
PH value, sulphates, and alcohol. These eleven independent variables are used to predict the
quality(based on sensory data) of each white wine.

• Auto MPG was collected from Kaggle.com. This MPG data is about n = 393 automobile
fuel consumptions in miles per gallon with three multi-valued discrete attributes and five
continuous attributes. These eight attributes are MPG(miles per gallon), number of engine
cylinders, engine displacement, horsepower, vehicle weight, acceleration, model year, and
origin. The objective is to predict MPG based on the other seven features.

• Song Popularity was collected from Kaggle.com. Recently, there has been increasing
research work into the relationship between the popularity of a song and its certain factors.
The main goal is to predict a song’s popularity based on several factors. In this dataset,
thirteen factors including song duration, acousticness(electronic music or not, 0 to 1),
danceability, energy, instrumentalness(pure music or not, 0 to 1), key, liveness, loudness,
audio mode, speechiness, tempo, time signature and audio valence(positive or negative
psychological feelings, 0 to 1), were collected. For ease of illustration, the data with key 4
is considered leading to n= 1307 data size.

In the data preprocesses, min-max normalization for each continuous variable is applied for all
datasets except Auto MPG and Song Popularity, in which, z-score normalization is used.
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Prediction results. All predicted MSEs and Scaled-MSEs (with standard deviation) are reported
in Table 2. It can be seen from Table 2 that, SRF-II has the best performance in terms of both
Scaled-MSEs and MSEs, with the reduction in Scaled-MSEs and MSEs compared to Relu-I ranges
from 9− 34% and 2− 28%, respectively, for all datasets. With limited data size, NN-2 and NN-1
have instability issues. Particularly, for dataset Abalone, conventional RF models and the proposed
SRF have comparable performance, and two-layer models do not show there advantages compared
with one-layer counterparts. This is probably due to the underlying simple structure of the data. For
the other four datasets, two-layer models have smaller prediction errors than their corresponding
one-layer counterparts.

Table 2: Prediction results including Scaled-MSEs (with standard deviation) and MSEs for all five
datasets as well as data size, number of features, and publicly available or not. In data Abalone,
Proposed SRF methods do not show obvious advantage. For the other four datasets, two-layer
models defeat their corresponding one-layer counterparts. The proposed SRF performs best on the
dataset Boston,Auto MPG, and Song Popularity. For all the five datasets, the proposed SRF-II works
particularly well. (?: Due to the extreme instability of two-layers Neural Network, part of the error
data was deleted. )

Dataset Abalone Boston Wine MPG Song
Data size 800 478 1000 393 1307

Number of features 7 13 11 8 12
Available (YES/No) YES YES YES YES YES

Results Scaled MSE MSE Scaled MSE MSE Scaled MSE MSE Scaled MSE MSE Scaled MSE MSE
Relu-I 0.48± 0.032 6.29 0.62± 0.030 18.94 0.39± 0.017 0.93 2.63± 0.372 0.23 6.62± 1.020 1.12
SRF-I 0.44± 0.050 6.57 0.60± 0.038 14.25 0.37± 0.011 0.96 2.42± 0.372 0.20 6.01± 1.049 1.11

Relu-II 0.44±0.016 6.82 0.48±0.020 14.18 0.36± 0.008 0.98 2.21± 0.550 0.22 4.70± 0.615 1.07
SRF-II 0.44± 0.020 6.32 0.47± 0.026 13.55 0.35± 0.011 0.89 1.73± 0.608 0.25 4.35± 0.615 1.09

Random Forest 0.67± 0.001 12.18 0.79± 0.001 34.62 0.33± 0.001 0.85 1.97± 0.001 0.24 5.84± 0.001 0.64
NN-1 ? 0.50± 0.007 7.62 0.61± 0.003 19.77 0.39± 0.002 0.98 3.29± 0.026 0.22 5.37± 0.677 0.99
NN-2 ? 0.51± 0.018 7.93 0.57± 0.040 24.86 0.36± 0.005 0.88 3.31± 0.238 0.28 6.89± 0.043 0.95

Interpretability results. In the previous simulation section, we have confirmed that SRF-II is mean-
ingful to determine important directions with large value of αj . Thus, for the real data examples, we
identify the significant variables according to the magnitude of the absolute values of ω. Particularly,
we identify significant variables by integrating a ranking of 50 times for every dataset. The proportion
of each variable in the first few ranks (depending on the number of features) in each dataset is reported
in Figure 3.

• Abalone Due to the characteristic of the dataset itself, there are no significant and non-
significant variables, which means that each variable has a certain effect on abalone age.

• Boston RM,LSTAT and B are three significant variables in this dataset. The significance
of INDUS and AGE were moderate. According to the analysis from github.com, LSTAT
and RM have the biggest correlation coefficient with MEDV. Persons tend to have a lower
proportion of low status people around their houses, and more rooms imply a bigger house.
Interestingly, we found that B is also an important factor for MEDV unlike what others have
found. Other variables have less obvious effects on MEDV.

• Wine In this dataset, alcohol, volatile acidity, and chlorides are relatively significant com-
pared to the others. Because of the nature of wine, the best quality is achieved by a balance
of all variables, so there are no particularly significant variables in this dataset. First of all, it
is often said that the higher the alcohol content, the better the wine. Then, too much volatile
acidity can cause the wine to smell pungent. At last, the right amount of chloride can extend
the life of a wine, but too much can produce an unpleasant taste.

• Auto MPG For this dataset, weight and displacement have obvious significant characteristic,
and year and horsepower are kind of significant. Other variables are less likely to affect the
value of MPG. Based on other people’s correlation analysis of this dataset on Kaggle.com,
the largest absolute correlation coefficients with MPG are weight and displacement. This
conclusion is consistent with our results. Through common sense, we clearly know that the
heavier the car, the bigger the MPG, and then the bigger the displacement, the bigger the
MPG. It is worth mentioning that the year will also have an effect on the value of MPG,
because the higher the year, the more serious the aging of auto parts, which will lead to the
increase of MPG.The other variables are not significant because their correlation coefficients
with weight, displacement and horsepower are too high.
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• Song Popularity Our results are not exactly the same as other people’s correlations conclu-
sion on Kaggle.com, but they are roughly the same. Audio valence and loudness are two
significant variables in this dataset. Also, acousticness, danceability and instrumentalness
are kind of significant. Everyone loves to listen to songs with positive psychological feeling,
so it is easy to understand that audio valence has a great influence on song popularity. And,
few people like loud songs, so loudness is also a significant variable. Electronic music,
dance music and pure music have unique audiences, so they have some influence on song
popularity. However, for other variables, such as liveness or tempo, the audience doesn’t
pay much attention to those. Therefore, they are non-significant variables.

Figure 3: The proportion of each variable in the first few ranks (depending on the number of features)
in each dataset is shown. A Longer color bar in the histogram represents a higher proportion, implying
the significant level of the feature. It’s easy to see that Abalone and Wine don’t have obviously
significant variables. For Boston data, RM,LSTAT and B are three significant variables. For Auto
MPG, weight and displacement have obvious significant characteristic. Audio valence and loudness
are two significant variables in the data Song Popularity.

5 CONCLUDING REMARKS

This paper proposed a novel and computational efficient method for general nonparametric problems.
To the best of our knowledge, we are the first to propose combining the advantages of random
features and neural networks to come up with a new feed-forward two-layer nonparametric estimation
method. Extensive simulation results and experimental data show that SRF-II has excellent prediction
performance and good interpretation. More specifically, the proposed SRF-II improved the prediction
error compared to Relu-I ranges from 9− 34% and 2− 28% across five datasets. More importantly,
SRF-II performs well with limited data size and thus is energetic efficient. However, there are still
three limitations in this paper. At first, for computational simplicity, we take N = 12000 and N =
24000 in these cases. However, optimal choices or clear criterions are not clear yet. Secondly, in
this paper, we only consider the regression problem, not the classification problem. Classification
problems based on RF require extra computational burden due to the non linear structure compared
to least squares. Nevertheless, extending SRF-II to classification problems, especially for image
classification problems, are very meaningful. In the end, we did not yet consider variable selection
methods to generate a more simplified model, which well deserved further studies to improve the
prediction accuracy and computational efficiency further.
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kernel learning. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
2007–2016. PMLR, 2019a.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random
fourier features. In International conference on machine learning, pp. 3905–3914. PMLR, 2019b.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens. Random features for kernel
approximation: A survey on algorithms, theory, and beyond. arXiv preprint arXiv:2004.11154,
2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Shahin Shahrampour, Ahmad Beirami, and Vahid Tarokh. On data-dependent random features
for improved generalization in supervised learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Aman Sinha and John C Duchi. Learning kernels with random features. Advances in neural
information processing systems, 29, 2016.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Hui Xue, Zheng-Fan Wu, and Wei-Xiang Sun. Deep spectral kernel learning. In IJCAI, pp. 4019–4025,
2019.

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Using stacking to average bayesian
predictive distributions (with discussion). Bayesian Analysis, 13(3):917–1007, 2018.

10



Under review as a conference paper at ICLR 2023

Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice,
and Sanjiv Kumar. Orthogonal random features. Advances in neural information processing
systems, 29, 2016.

Xiantong Zhen, Haoliang Sun, Yingjun Du, Jun Xu, Yilong Yin, Ling Shao, and Cees Snoek. Learning
to learn kernels with variational random features. In International Conference on Machine Learning,
pp. 11409–11419. PMLR, 2020.

11



Under review as a conference paper at ICLR 2023

A APPENDIX

Figure 4: The box figures of scaled predicted mean square error under model (c) for independent
covariates generated from (I) with N = 6000, 12000, 18000 and correlated covariates generated from
(III) with N = 12000, 24000, 36000.

B APPENDIX

Figure 5: Box figures for Random and Fixed correlated Non-linear Data. SRF-II continues to perform
well in both cases. Both Scaled-MSEs and MSEs are larger because of the correlation of covariates.

C APPENDIX

Boston House Prices Dataset Attribute Information (in order):

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
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- MEDV Median value of owner-occupied homes in $ 1000’s
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