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ABSTRACT

Large Multimodal Models (LMMs) have shown great promise in complex reasoning
by incorporating images as intermediate steps, a paradigm known as “thinking
with images”. However, most current “thinking with images” techniques are
training-based, incurring significant computational costs, limiting model versatility,
and risking catastrophic forgetting. To bridge this gap, we propose SiTu, a
simple, training-free framework for “thinking with images” that leverages an
LMM’s inherent uncertainty to achieve test-time scaling for multimodal reasoning.
The core of our approach is the discovery of a stable, entropy-based uncertainty
estimation native to LMMs, which reliably guides the dynamic combination of
diverse perception enhancement paths. We implement three simple perceptual
actions, categorized as visual highlighting and irrelevant information suppression,
and demonstrate a notable scaling phenomenon: as the number and diversity of
these actions increase, the LMM’s reasoning ability improves consistently. Our
extensive experiments on fine-grained visual understanding benchmarks like V∗,
HR-Bench 4K, HR-Bench 8K, and MME-realworld show that SiTu significantly
outperforms existing training-free perception enhancement methods. Surprisingly,
SiTu even surpasses the performance of current state-of-the-art training-based
“thinking with images” methods, highlighting the immense potential of test-time
scaling for multimodal reasoning.

1 INTRODUCTION

Large Multimodal Models (LMMs) have advanced rapidly, enabling complex multimodal reasoning.
A promising paradigm, “thinking with images” (Su et al., 2025b; Zheng et al., 2025b; Zhang et al.,
2025c; Zhu et al., 2025; Su et al., 2025a; Huang et al., 2025; Liu et al., 2025; Zhang et al., 2025b; Zhou
et al., 2025; Zhang et al., 2025a; Wang et al., 2025a; Bai et al., 2025b; Ni et al., 2025), has recently
emerged, where LMMs generate and incorporate images as intermediate steps to enhance multimodal
reasoning. This novel approach empowers models to iteratively refine their visual understanding,
ultimately yielding more precise and reliable results. However, most current “thinking with images”
techniques are training-based, relying on specialized datasets and intensive fine-tuning. This pipeline,
while effective, presents several significant limitations. First, it imposes a considerable computational
cost; for example, the high-performing method by Zhang et al. (2025d) required 1,200 GPU hours
on 32 NVIDIA H800 GPUs. Second, the fine-tuning process can narrowly specialize a model’s
capabilities, limiting its versatility. An example is the approach by Ni et al. (2025), where fine-
tuning on a point-prompting dataset restricted the model to this singular reasoning strategy. Lastly,
fine-tuning risks catastrophic forgetting, may leading to the degradation of the model’s fundamental
perception and reasoning abilities developed during massive pre-training.

In contrast, the field of Large Language Models (LLMs) has seen a different promising paradigm:
training-free test-time scaling (Muennighoff et al., 2025; Fu et al., 2025). Methods such as Chain-
of-Thought (CoT) (Wei et al., 2022), Best-of-N sampling (Freitag & Al-Onaizan, 2017), and self-
consistency (Wang et al.) dramatically improve reasoning accuracy without requiring additional
training or external tools by just generating extra tokens at inference time. Their low-cost and
high-transferability make them a compelling choice for a wide range of downstream tasks.

However, we find that these highly effective training-free test-time scaling methods unexpectedly fail
when applied to LMMs, particularly on fine-grained visual understanding tasks (Wu & Xie, 2024;
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Wang et al., 2024) that demand focused attention on specific visual subregions to answer detailed
questions. As depicted in Figure 1, these methods only show slow, small-scale improvements, and
Zero-shot CoT even exhibits performance degradation as it scales. This uniform underperformance
reminds us to consider the fundamental differences between LMMs and LLMs and their respective
tasks. Prior work has highlighted that, unlike text, which is a discrete input space, visual information
exists in a continuous space, making the task of grounding continuous visual signals into discrete
semantic tokens significantly more challenging for LMMs (Yang et al., 2024). Furthermore, inaccurate
perception in multimodal tasks can lead to catastrophic and often unrecoverable errors in subsequent
reasoning (Su et al., 2025b). We argue that the limitations of existing training-free methods in
the multimodal domain arise from their failure to improve the fundamental perceptual abilities of
LMMs and, at times, from their propensity to impair them. Another line of training-free methods
attempts to enhance LMM perception through agent-like workflows (Li et al., 2025; Shen et al., 2024;
Wang et al., 2025b). However, these approaches are with two main limitations: First, their fixed
workflows require meticulous, task-specific design and prompt engineering to be effective across
different LMMs. Second, their predetermined steps can be restrictive, sometimes even hindering a
model’s capabilities on unsuitable tasks and leading to performance degradation. Motivated by these
observations, we pose the following question: Can we find a common training-free test-time scaling
method for the multimodal domain through enhancing LMM perceptual ability?

Figure 1: Comparison of existing training-free test-
time scaling methods on fine-grained visual un-
derstanding benchmark HR-Bench 8K. The x-axis
represents the number of tokens generated, and the
y-axis shows the accuracy change.“Naive Answer”
represents a direct, unassisted LMM response.

To address this question, we propose SiTu, a
simple training-free thinking-with-image frame-
work that leverages an LMM’s inherent uncer-
tainty to achieve test-time scaling for multi-
modal domain, especially for challenging fine-
grained visual understanding tasks. The cor-
nerstone of our approach is the discovery of
a stable, entropy-based uncertainty estimation
method that is native to LMMs. This method
does not require multiple forward passes or a
separate prediction set, yet it can reliably eval-
uate the confidence of an LMM’s response to a
given input. Furthermore, we found this uncer-
tainty metric is not only effective for assessing
the final answer but also for guiding optimal per-
ceptual paths during the reasoning process. This
finding makes it possible to integrate a wide va-
riety of perceptual enhancement operations into
a single, unified framework. We also observe a
notable scaling phenomenon within our frame-

work: as the number and diversity of these perceptual operations increase, the overall multimodal
reasoning ability of the LMM shows a consistent and stable improvement.

To validate our framework, we defined and implemented three simple perception actions categorized
into visual highlighting and irrelevant information suppression. For Visual Highlighting, we utilize
the LMM’s grounding ability to pinpoint and emphasize key objects relevant to the question. For
Irrelevant Information Suppression, we employ three distinct strategies to remove irrelevant visual
regions, thereby focusing the model’s attention on the most critical information. Our experiments
on three fine-grained visual understanding datasets demonstrate that our simple SiTu method
outperforms not only existing LMM perception enhancement methods but also all current open-
source training-based “thinking with images” approaches. This remarkable result underscores the
significant potential of training-free test-time scaling for LMMs, proving that enhanced performance
can be unlocked directly from the models themselves without costly fine-tuning.

Our primary contributions are summarized as follows: 1) We propose SiTu, a simple but effective
training-free paradigm for “thinking with images” that achieves significant performance gains without
costly fine-tuning or architectural modifications. 2) We discover and validate a universal, LMM-
native uncertainty metric, which serves as a robust guidance signal for dynamically selecting optimal
perceptual enhancement paths. 3) Experiments demonstrate SiTu’s state-of-the-art performance
on fine-grained visual understanding benchmarks, where it outperforms all existing training-based
“thinking with images” and training-free perception enhancement methods.
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Where is the position

of the man to the car?
② Grouding Crop

③ Grid Crop

① Draw Boxes

Perception Action Space / Multi-strategy Exploration

The man is on the

hood of the car.

Question

Answer

LMM ①: The man is in front of the car.

②: The man is on the hood of the car.

③: The man is on the driver side

Uncertainty-guided Selection

u(A)=0.31 | rank 2

u(A)=0.25 | rank 1

u(A)=0.44 | rank 3

The man is on the driver side

Perception answers:

Naive answer by LMM:

u(A)=0.45 | rank 4

Uncertainty: 0.25

Simple Thinking-with–image  via Uncertainty Guidance

Figure 2: Overview of SiTu. Our approach explores multiple perceptual actions through Perception
Action Space and Multi-strategy Exploration. Then through Uncertainty-guided Selection, identifies
and returns the optimal answer with lowest uncertainty metric (the starred answer in the figure).

2 METHODS

2.1 PARADIGM FORMULATION

Thinking with images paradigm models multimodal reasoning as a sequential process where an
LMM dynamically generates interleaved visual and textual intermediate outputs. At each reasoning
step t, the evolving state history is captured by the sequence of previous multimodal outputs St =
(z1, . . . , zt−1). The next reasoning step, zt, is generated by the LMM, conditioned on this history, the
initial input image I , and the user query Q. Formally, we define the set of all possible intermediate
states as the union of textual outputs Ttext and visual artifacts Ivis. The model then samples the next
state zt from its conditional probability distribution:

zt ∼ P (·|St, I, Q; ΘLMM), where zt ∈ Ttext ∪ Ivis. (1)

2.2 UNCERTAINTY-GUIDED SELECTION

The most critical component of our framework is the Uncertainty-Guided Selector, which evaluates
the quality of reasoning paths and plays a crucial role in eliminating incorrect answers. To handle
open-ended questions and compare confidence across different strategies, we quantify the uncertainty
of a generated answer using token-based Shannon Entropy.

The uncertainty U(A) for an answer candidate A is the average entropy of its tokens. This is
calculated as:

U(A) =
1

N

N∑
i=1

H(ti) = − 1

N

N∑
i=1

V∑
j=1

pi,j log pi,j , (2)

where ti is the i-th token, N is the total number of tokens in the answer, and pi,j is the probability
of the j-th token in the vocabulary for the i-th token position. A lower uncertainty score indicates a
more confident and potentially more accurate answer. The final answer Afinal is selected by choosing
the strategy with the minimum uncertainty:

Afinal = arg min
A∈A

U(A), (3)

Crucially, the token probabilities pi,j are derived from the same conditional probability distribution
P (·|St, I, Q; ΘLMM) defined in Equation (1). This design ensures that our uncertainty metric is
context-aware, incorporating the full multimodal history and input image. Thus, this method provides
a promising way to evaluate the effectiveness of our perception-enhancing operations.

Theoretical Justification: Entropy vs. Confidence. While related to sequence confidence, Entropy
offers a stricter optimization objective for multimodal ambiguity. Mathematically, the Shannon
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Table 1: Comparison of our SiTu with existing works on fine-grained visual understanding bench-
marks. Open-source models with the best performance in each task are shown in bold, the second-best
performance is underlined.

Method V ∗ Bench HR-Bench 4K HR-Bench 8K
Attribute Spatial Overall FSP FCP Overall FSP FCP Overall

Closed-source MLLMs
O3 (Hurst et al., 2024) - - 95.7 - - - - - -
GPT 4o (Hurst et al., 2024) - - 66.0 70.0 48.0 59.0 62.0 49.0 55.5
QWen-VL-max (Bai et al., 2023b) - - - 65.0 52.0 58.5 54.0 51.0 52.5

Open-source MLLMs
LLaVA-v1.6-7B (Liu et al., 2024b) 60.9 63.2 61.8 49.0 46.8 47.9 37.3 44.3 40.8
LLaVA-v1.6-13B (Liu et al., 2024b) 60.0 64.5 61.8 49.8 41.3 45.5 38.0 38.3 38.1
LLaVA-HR-X-7B (Luo et al., 2024) 51.3 64.5 56.5 57.8 46.3 52.0 42.0 41.3 41.6
InternVl-1.5-26B (Chen et al., 2024b) - - - 69.5 51.8 60.6 69.3 48.5 57.9
Yi-VL-34B (Young et al., 2024) - - - 46.0 42.8 44.4 39.5 38.5 39.0
Qwen2.5-VL-7B (Bai et al., 2025a) 73.9 67.1 71.2 85.2 52.2 68.8 78.8 51.8 65.3

Training-based Thinking with Image
SEAL (Wu & Xie, 2024) 74.8 76.3 75.4 - - - - - -
Pixel Reasoner (Su et al., 2025a) - - 84.3 - - - - - -
Chain-of-Focus (Zhang et al., 2025c) - - 88.0 - - - - - -
Simple O3 (Wang et al., 2025c) - - 90.4 - - 76.2 - - -
DeepEyes (Fu et al., 2025) 91.3 88.2 90.1 91.3 59.0 75.1 86.8 58.5 72.6
Thyme (Zhang et al., 2025d) 83.5 80.3 82.2 91.0 63.0 77.0 86.5 57.5 72.0

Training-free methods
DyFo (Li et al., 2025) 80.0 82.9 81.2 - - - - - -
RAP (Wang et al., 2025b) 80.0 84.2 81.7 80.3 42.3 61.3 81.8 45.3 63.5
ZoomEye (Shen et al., 2024) 93.9 85.5 90.6 84.3 55.0 69.6 88.5 50.0 69.3
SiTu (Our methods) 94.8 88.3 92.1 95.0 64.0 79.5 92.0 58.0 75.0
∆ (vs Qwen2.5-VL-7B) +20.9 +20.9 +20.9 +9.8 +11.8 10.7 +13.2 +6.2 +9.7

Entropy H(p) decomposes into two terms:

H(p) = −p(ŷ) log p(ŷ)︸ ︷︷ ︸
Inverse Confidence

+
∑
y′ ̸=ŷ

−p(y′) log p(y′)︸ ︷︷ ︸
Distraction / Ambiguity

(4)

Standard metrics like MaxProb only optimize the first term. However, in fine-grained perception,
LMMs often suffer from Inter-Class Conflict (e.g., assigning 51% probability to “sedan” and 49% to
“coupe”). Entropy explicitly captures this “distraction” (the second term), serving as a more sensitive
proxy for perceptual hallucinations.

2.3 MULTI-STRATEGY EXPLORATION

To validate the importance of enhanced perception for test-time scaling method in multimodal tasks,
our framework explores a set of diverse perception operation. Each reasoning path consists of a
sequence of perception operations followed by a final reasoning step. The core idea is that different
paths, by enhancing perception in distinct ways, will provide the LMM with a wider range of possible
candidates. We formally define a perception operation as a function π ∈ Π that takes the current
multimodal context—the image I and the query Q—and generates an enriched context for subsequent
reasoning.

(I ′, D) = fπ(I,Q), (5)
where I ′ is a new visual artifact (e.g., a cropped image or a highlighted region) and D is a textual
description. A key advantage of our approach is that these operations do not rely on external expert
models or specialized tools; instead, they leverage the intrinsic visual understanding of the LMM
itself to create the new context.

A complete reasoning path is a sequence of these operations, culminating in a final reasoning step ρ
that generates the answer. We represent a path as:

Pathi = ⟨π1, π2, . . . , πn, ρ⟩, (6)

The simplest path is the naive one, which consists only of the final reasoning step ρ, corresponding to
a direct answer from the LMM without any perceptual manipulation. More complex paths involve one
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Table 2: Comparison of the SiTu against the baseline LMM on the MME-RealWorld benchmark.
MO: Monitoring; AD: Autonomous Driving. The “∆(↑)” represents the performance gains of our
RAP against the baselines.

Method MO AD OCR
Calculate Intention Color Location Attention Attribute Visual Relation Advertise. License Address Text

Qwen-2.5-VL-7B 20.7 13.3 32.9 29.0 37.8 19.7 60.2 28.3 87.3 88.5 87.7 85.2
-w/ SiTu 30.3 25.5 51.7 36.0 48.8 21.9 64.2 30.2 88.6 90.6 89.1 85.7
∆(↑) +10.4 +12.2 +18.8 +7.0 +11.0 +2.2 +4.0 +1.9 +5.4 +2.1 +1.4 +0.5

or more perception operations πj to guide the LMM toward a better understanding before generating
the final answer. Each path produces a candidate answer A ∈ A, and the best answer Afinal is then
selected from the set A using the uncertainty metric defined in the previous section.

2.4 PERCEPTION ACTION SPACE

Draw Boxes Strategy. This method uses the LMM to perform zero-shot object detection to implement
visual highlighting. It prompts the LMM to identify a set of objects O = {o1, o2, . . . } from the
query Q and return their corresponding bounding box coordinates in a structured format. These
coordinates are then used to render visual annotations directly on the image. We define a function
Φb : I × Q → P(b) that queries the LMM to extract a set of bounding boxes B from an image I
based on a query Q. Here, I is the set of all images, Q is the set of all queries, and b is the set of
all bounding boxes. D is a rendering function that overlays the boxes in B onto the image I . The
operation is then given by:

B = Φb(I,Q) (7)

I ′ = D(I,B) (8)

Grounding Crop Strategy. This strategy effectively focuses the model’s attention by cropping the
image to a region of interest, with irrelevant information suppression as motivation. It prompts the
LMM for bounding boxes of objects O mentioned in the query. It then computes a single, unified
bounding box bunion that encompasses all found objects. The final image I ′ is a cropped version of
the original, centered on this unified region. The operation is defined as:

bunion = ∪b∈Φb(I,Q)b (9)

I ′ = C(I,bunion) (10)

where the union operation ∪ is performed over the bounding box coordinates, and C is a function that
performs the final image transformation.

Grid Crop Strategy. This method employs a simple search to locate and crop key objects by
partitioning the image, also categorized as irrelevant information suppression. It bypasses traditional
object detection by asking the LMM to judge the presence of a target object o within different image
segments. Specifically, the image is partitioned into an even grid of segments. We define a function
ΦP : I × O → [0, 1] that queries the LMM for the probability P (o ∈ S) of an object o being in an
image segment S. The process for a single object is to find the most probable segment S∗:

S∗ = argmax
S∈S

ΦP (S, o) (11)

where S is an even grid partition of the image I . The final image I ′ is a composite of the most
probable regions found for all objects, effectively solving a localization problem through a simple,
coarse-to-fine search process.

3 EXPERIMENTS

3.1 SETUPS

Benchmarks and Metrics. To thoroughly evaluate our framework, we conduct experiments on
fine-grained visual understanding and high-resolution multimodal datasets. The V∗ Bench and
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Table 3: Cross-model generalization results on fine-grained visual understanding benchmarks.

Model Dataset Baseline SiTu Improvement

InternVL 3.5 8B
V* Bench 64.0 72.0 +8.0
HR-Bench 4K 57.0 69.0 +12.0
HR-Bench 8K 54.0 65.0 +11.0

Qwen2.5-VL 3B
V* Bench 69.0 76.0 +7.0
HR-Bench 4K 69.0 71.0 +2.0
HR-Bench 8K 66.0 72.0 +6.0

HR-Bench are used for fine-grained perception, challenging models with high-resolution images
(average resolution of 2246× 1582 and 7680, respectively). We evaluate their sub-tasks—attribute
recognition, spatial relationship reasoning, Fine-grained Single-instance Perception (FSP), and Fine-
grained Cross-instance Perception (FCP)—using accuracy. For practical, real-world scenarios, we
also use a subset of the MME-RealWorld benchmark, reporting on 12 representative sub-tasks.

Implementation Details. For our experiments, we use Qwen2.5VL-7B/3B and InternVL3.5 8B as
the foundational Large Multimodal Model (LMM). All evaluations are performed on a single NVIDIA
A40 GPU (48GB). To simplify and accelerate our experiments, each path uses at most one perception
operation. As a baseline, we compare our framework against various closed- and open-source LMMs,
training-based thinking with image methods, and other LMM perception enhancement methods.

3.2 RESULTS ON FINE-GRAINED VISUAL UNDERSTANDING

High-resolution benchmarks like V∗ Bench and HR-Bench present a significant challenge for VLMs
due to their high image resolution and the small size of target objects. As shown in Table 1, our
method, SiTu, achieves exceptional performance, surpassing both open-source models and complex,
manually-engineered pipelines. On the V∗ Bench, SiTu achieves an overall accuracy of 92.1%,
a significant improvement over the previous state-of-the-art. Our strong performance in attribute
recognition (94.8%) highlights the framework’s ability to effectively leverage fine-grained visual
details. For the even more challenging HR-Bench, SiTu achieves an impressive overall accuracy of
79.5% on the 4K subset and 75.0% on the 8K subset. These results are notably higher than those of
other methods. Specifically, on the Fine-grained Single-instance Perception (FSP) task, SiTu scores
95.0% and 92.0% on the 4K and 8K subsets, respectively. Compared to our foundational model,
Qwen2.5-VL-7B, SiTu demonstrates remarkable performance gains of +20.9% on V∗ Bench and
+10.7% on HR-Bench 4K. These results underscore the effectiveness of our approach in enhancing
perception for high-resolution images, without the need for complex pipeline design or extensive
training.

3.3 RESULTS ON HIGH-RESOLUTION PRACTICAL SCENARIOS

As shown in Table 2, our proposed SiTu method significantly boosts the performance of the baseline
Qwen-2.5-VL-7B model on the MME-RealWorld benchmark. We see the largest gains in the
MO/Calculate (+10.4%), MO/Color (+12.2%), and MO/Location (+18.8%) sub-tasks, highlighting
SiTu’s effectiveness in improving a model’s ability to perceive fine-grained details in complex,
high-resolution scenes. However, the model’s performance improvements were more limited in other
areas, with smaller gains in the AD and OCR categories, such as AD/Visual Relation (+2.2%) and
OCR/Text (+1.4%). We believe these results point to the inherent complexity of these tasks; for
AD/Visual Relation, the challenge lies not just in perceiving multiple objects but in understanding
their spatial relationships, while OCR/Text performance is often limited by the quality of the visual
data itself. These findings show that while SiTu is highly effective at enhancing a model’s high-
resolution perception, there are still challenges in tasks that require complex reasoning or robust
handling of degraded visual data.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Action Space Extensibility and robustness analysis on V* Bench subset.

Strategy Overall Accuracy ∆ vs. Baseline Role
Direct Answer (Naive Baseline) 71.7% - -
+ Contrast Enhancement 70.2% -1.5% Noisy/Harmful
+ Quadrant Selection 74.3% +2.6% Beneficial
+ Object Shrink 76.4% +4.7% Beneficial

SiTu (Combined Policy) 79.6% +7.9% Robust Integration

3.4 GENERALIZATION AND EXTENSIBILITY ANALYSIS

To demonstrate the universality and robustness of our framework beyond the primary setting, we
conducted extensive additional experiments focusing on model generalization and action space
extensibility.

Generalization Across Architectures and Scales. We validated SiTu on two additional models:
InternVL 3.5 8B, which represents a distinct architectural design from the Qwen family, and Qwen2.5-
VL 3B, representing a smaller parameter scale with weaker base reasoning capabilities. As shown
in Table 3, SiTu consistently unlocks significant performance gains across all settings. Notably,
on the challenging HR-Bench 4K, SiTu boosted InternVL’s accuracy by +12.0%, proving that
our uncertainty-guided perception enhancement is model-agnostic and effective across different
architectures.

Action Space Extensibility and Robustness. To address concerns regarding the predefined action
space, we prompted a frontier model (Gemini 3 Pro) to automatically generate three new perception
strategies: Quadrant Selection (5-region zoom), Object Shrink (focused cropping), and Contrast
Enhancement (global transformation). We integrated these unseen actions into SiTu and evaluated
them on a subset of V* Bench.

Figure 3: Comparison of method accuracy with re-
spect to the addition of perception actions. As
the number and diversity of actions increase,
the method’s performance exhibits stable gains,
which demonstrates a scaling phenomenon for fine-
grained visual understanding tasks on test-time.
The x-axis represents different classes of subtasks,
while the y-axis represents the accuracy percent-
age.

The results in Table 4 highlight two key find-
ings: (1) Synergy: The combined SiTu pol-
icy (79.6%) outperforms the best single strategy
(76.4%). (2) Robustness: Although Contrast
Enhancement was a “noisy” strategy that indi-
vidually degraded performance (-1.5%), incor-
porating it did not harm the SiTu system. Our
uncertainty-guided mechanism successfully fil-
tered out the low-quality outputs from this path,
demonstrating the framework’s ability to safely
scale with diverse and even imperfect tools.

3.5 ABLATION STUDIES

To understand the contribution of each compo-
nent of our framework, we conduct a series of
ablation studies focusing on two key aspects:
the effectiveness of individual perception strate-
gies and the impact of our uncertainty-guided
selection mechanism.

Perception Actions Scaling Phenomenon.To
examine how the performance of SiTu evolves

as more perception actions are incorporated, we start from the naive baseline and incrementally add
the predefined actions: Draw Boxes, Grounding Crop, and Grid Crop. As shown in Figure 3, we
observe a consistent performance improvement with the increase of actions, for both FSP and FCP.
This demonstrates that the framework can effectively leverage action diversity to boost performance,
while the cost of implementing such predefined perception operations is significantly lower than
constructing extensive annotated datasets for training. Notably, in our action space, Grounding Crop
and Grid Crop are functionally similar, both serving as irrelevant information suppression. However,
the inclusion of Grid Crop does not lead to diminishing performance gains which is common in
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ensemble mechanism (Fu et al., 2025). We attribute this to the distinct implementation mechanisms
of the two crop actions, and more importantly, it suggests that SiTu is still far from reaching its
upper limit in terms of supported actions diversity.

Table 5: Ablation study of individual per-
ception actions on HR-Bench 8K. Per-
formance is measured by FSP, FCP, and
Overall Accuracy. Full model perfor-
mance is in bold.

Method FSP FCP Overall

Naive Answer 78.8 51.8 65.3
- Draw Boxes 80.0 52.0 66.0
- Grounding Crop 83.0 47.0 65.0
- Grid Crop 84.0 49.0 66.5

SiTu (Full Method) 92.0 58.0 75.0

Individual Perception Actions. To determine whether
our method’s performance comes from specific perception
actions or our uncertainty-guided mechanism, we com-
pared the full SiTu method against the LMM naive an-
swer and individual perception actions followed by naive
answer. As shown in Table 5, perception actions can some-
times improve the original answer but may also introduce
drawbacks. For instance, while Grounding Crop and Grid
Crop improve FSP, they substantially reduce FCP, likely
due to the crop operation tendency to discard visual infor-
mation. Moreover, we observe a clear performance gap
between the naive and single-action baselines and the full
SiTu. This shows that the improvements of SiTu are not
attributable to single perception action. Instead, it combines multiple strategies to achieve superior
overall performance, validating the effectiveness of the proposed uncertainty-guided architecture.

Table 6: Comparison of different uncer-
tainty metric mechanisms on HR-Bench
8K. Performance is measured by FSP,
FCP, and Overall Accuracy. Our method
is in bold.

Selection Method FSP FCP Overall

Random Selection 83.0 49.0 66.0
Majority Voting 91.0 51.0 71.0
Perplexity 92.0 55.0 73.5
Min Entropy 85.0 53.0 69.0
Max Entropy 91.0 53.0 72.0
Mean Entropy (SiTu) 92.0 58.0 75.0

Uncertainty-guided Metric. To evaluate the effectiveness
of our uncertainty-guided selection metric, we compare
our framework’s performance with five alternative metric
methods: random selection, majority voting, perplexity,
min entropy, and max entropy. As shown in Table 6, all
candidate metrics within the uncertainty-guided frame-
work achieve a performance improvement over the Naive
Answer baseline, which demonstrates the stability of our
uncertainty-guided framework. Furthermore, the average
entropy-based approach yields the best results, showcasing
its superiority over other metrics. We believe this advan-
tage stems from the inherent definition of entropy and
the averaging operation’s comprehensive consideration of
the influence of different tokens. Notably, this advantage
even surpasses perplexity, which is typically used as an
optimization objective during training.

3.5.1 CASE STUDIES

To provide a more intuitive understanding of our framework’s perception actions, we visualize several
representative cases in Figure 4. The first row shows a typical example of our Draw Boxes action.
When a query involves objects with significant size differences, a cropping-based approach often
leads to information loss. Draw Boxes, on the other hand, highlights key areas while preserving the
surrounding visual context, helping the LMM reduce hallucinations. The second row demonstrates
the effectiveness of Grounding Crop. This action efficiently removes irrelevant content by using
grounding to identify and crop crucial visual information that may be scattered across different
locations in a high-resolution image, thus avoiding the information loss associated with fixed cropping
methods. The third row illustrates the Grid Crop action. While less flexible than Grounding Crop, it
retains more background information and offers different perspectives. This can be complementary
to the other methods by providing additional context. Collectively, these cases demonstrate that each
of our framework’s perception actions possesses unique advantages. Compared to a naive approach,
these actions accurately seek out crucial visual information, enabling the LMM to focus and respond
to queries with enhanced precision.

4 RELATED WORKS

Large Multimodal Models (LMMs). Significant strides have been made in the field of Large
Multimodal Models (LMMs), demonstrating substantial proficiency in a wide array of vision-language
tasks (Bai et al., 2025a; Chen et al., 2024a; Liu et al., 2024a; Li et al., 2024; Team et al., 2025). The
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Question:

What is the relative position of the white car

compared to the large white building?

Options:

A. To the left and behind the large white building

B. To the right and behind the large white building

C. To the right and in front of the large white building

D. To the left and in front of the large white building

Answer:

Found 'white car' at pixel coordinates [30, 2419, 56,

2447] (drawn in red).

The white car is located to the left and behind the

large white building. Therefore, the correct answer is:

A. To the left and behind the large white building

(Uncertainty 0.322)

Draw BoxesInput Naïve Answer

Answer:

D. To the left and in front of the large white building

(Uncertainty 0.351)

Question:

What's the relative position of the orange building 

compared to the cylindrical green building?

Options:

A. To the left

B. To the right

C. Directly in front

D. Behind

Answer:

The orange building is positioned to the left of the

cylindrical green building. Therefore, the correct

answer is:

A. To the left (Uncertainty 0.253)

Grounding CropInput Naïve Answer

Answer:

The orange building is positioned to the right of the

cylindrical green building. Therefore, the correct

answer is:

B. To the right (Uncertainty 0.315)

Question:

On which side of the man wearing a yellow shirt is

the girl wearing a blue top sitting?

Options:

A. Left

B. Behind

C. Directly in front

D. Right

Answer:

The girl wearing a blue top is sitting to the left of the

man wearing a yellow shirt. Therefore, the correct

answer is:

A. Left (Uncertainty 0.201)

Grid CropInput Naïve Answer

Answer:

D. Right. (Uncertainty 0.422)

Figure 4: Visualization of Perception Actions. This case study is from the fine-grained visual
understanding benchmark HR-Bench 8K. Each sample includes the original image and question, the
intermediate image results from perception actions, and the final answer. A comparison with the
naive answer effectively highlights the distinct advantages of each perception operation.

rapid evolution of this domain is underscored by the emergence of powerful open-source models,
such as LLaVA (Liu et al., 2024a), InternVL (Chen et al., 2024c), and Qwen-VL (Bai et al., 2023a),
which have achieved performance levels comparable to their closed-source counterparts. These
models typically operate by fusing visual representations from specialized encoders with linguistic
tokens, thereby enabling them to process and comprehend information across modalities (Liu et al.,
2024c; Li et al., 2023). This capability has been pivotal in bridging the cognitive divide between
visual perception and linguistic abstraction, allowing LMMs to perform sophisticated reasoning on
a variety of multimodal challenges. Our work provides an orthogonal solution by demonstrating
that MLLMs can be guided to actively explore and manipulate visual information in a training-free
manner, thereby improving their perception and reasoning capabilities.

Thinking with Images. A new paradigm in multimodal reasoning moves beyond static inputs by
enabling models to actively manipulate visual information. These approaches primarily rely on
specialized training to instill dynamic perception capabilities directly into the model’s weights. This
is often achieved through supervised fine-tuning (SFT) (Wu & Xie, 2024; Wang et al., 2025c; Zhan
et al., 2025) or reinforcement learning (RL) (Zheng et al., 2025b; Su et al., 2025a; Zhang et al.,

9
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2025c;d). While these methods have shown promising results, they are fundamentally constrained
by their high training costs and the limited generality of their learned operations. In stark contrast,
our framework requires no training and is compatible with a wide range of perception operations,
providing a flexible alternative that trades inference time for enhanced precision.

Training-free Test-time Scaling. Training-free test-time scaling methods enhance Large Language
Model (LLM) reasoning at inference without requiring additional training. A prominent approach
is self-consistency or parallel thinking, where multiple reasoning paths are generated and their
final answers are aggregated, typically through majority voting (Wang et al., 2022). While this
significantly boosts accuracy, it incurs a substantial computational cost, as generating numerous
traces scales inference overhead linearly (Xue et al., 2023). However, this approach has limitations;
its performance often plateaus or degrades as the number of traces increases. The core issue is
that standard majority voting treats all traces equally, failing to account for quality variations. It
is crucial to distinguish SiTu from prior uncertainty-based works in LLMs, such as ARPO (Dong
et al., 2025) or FR3E (Zheng et al., 2025a). These methods primarily leverage high entropy to drive
exploration during RL training to optimize textual reasoning policies. In contrast, SiTu employs
entropy minimization as an exploitation signal during test-time inference, specifically targeting the
multimodal perception bottleneck (i.e., visual grounding errors) rather than logical reasoning paths.

Training-free LMM Perception Enhancement Training-free methods for LMM perception en-
hancement leverage a model’s existing capabilities to improve its processing of visual information
without the need for additional fine-tuning or architectural changes. These approaches often employ
agent-like workflows to guide the model’s reasoning. For instance, methods like Dyfo (Li et al., 2025)
and Zoom Eye (Shen et al., 2024) are inspired by human cognitive processes like visual search and
dynamic zooming. Dyfo uses a Monte Carlo Tree Search to guide the model’s focus to key visual
regions, while Zoom Eye treats an image as a hierarchical tree to enable ”vision-level reasoning.”
Other methods, such as Retrieval-Augmented Perception (RAP) (Wang et al., 2025b), adapt tech-
niques from large language models, like Retrieval-Augmented Generation (RAG), to retrieve and
fuse relevant image crops for better high-resolution perception.

5 CONCLUSION

In this work, we present SiTu, a novel training-free paradigm for ”thinking with images” that
overcomes the limitations of current training-based approaches. While existing methods rely on
costly fine-tuning, which can cause catastrophic forgetting and narrow a model’s capabilities, our
approach leverages an LMM’s inherent, untapped potential at test time. We address a core challenge
for LMM scaling: enhancing perceptual ability for fine-grained visual understanding. By discovering
a universal, LMM-native uncertainty metric, we dynamically guide the model through optimal
perception paths, integrating diverse actions from visual highlighting to irrelevant information
suppression. On several fine-grained benchmarks, SiTu not only outperforms existing training-
free methods but also surpasses all open-source training-based ”thinking with images” approaches,
proving that enhanced performance can be unlocked without expensive fine-tuning.

Limitations and Future Work. While our proposed framework, SiTu, demonstrates significant
potential, we acknowledge several limitations that also present exciting avenues for future research.
First, the current action space of SiTu is not comprehensive. Its success has only been validated on
fine-grained visual understanding tasks. It remains an open question whether this uncertainty-guided
approach can be generalized to a broader range of multimodal tasks. This will require designing
appropriate and effective actions tailored to different problem domains. Second, the perceptual
actions in this work were manually designed. This approach, while effective, inherently limits the
full potential of the LMM. Future work could explore automated methods to discover and optimize
suitable perception actions for specific tasks, which could lead to further performance gains and
reduce the computational cost associated with action execution. Finally, our SiTu framework is
primarily a zero-shot, training-free test-time scaling method. An interesting direction would be to
investigate whether providing a small number of in-context examples, similar to few-shot learning,
could be used to obtain even greater performance returns. This would explore a hybrid approach that
leverages the best of both training-free and data-driven methods.

10
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A REPRODUCIBILITY DETAILS

A.1 PROMPTS

We use standardized prompts to enforce consistent JSON outputs for downstream processing. For
Visual Highlighting and Grounding Crop, we utilize the prompt: "{question}.\nPlease
locate the relevant item(s) in the image with its bbox coordinates
and its name and output in JSON format.". For Grid Verification, the prompt
is: "Is there a {object name} in this image? Answer Yes or No.". For
the Quadrant Selection (extended action), the prompt is: "The image is divided into
5 regions (1:TL, 2:TR, 3:BL, 4:BR, 5:Center). Which single region
is MOST likely to contain the visual information needed? Reply
with the number."

A.2 HYPERPARAMETERS

For the Grid Strategy, we employ a dynamic grid based on the image aspect ratio; for standard
4:3 images, we default to a 2x2 grid (4 quadrants). Regarding the Crop Strategy (specifically for
Grounding Crop), we calculate the union bounding box of all detected objects and crop a region
equivalent to 1/4 of the original image area, centered on this union box. This effectively provides
a 2x resolution zoom on the region of interest. For Uncertainty Calculation, the entropy for
each token is computed using the distribution of the top-5 log-probabilities. Finally, to ensure
deterministic candidate generation, we iterate through fixed Seeds [0, 1, 2, 3, 4] for each visual view.

A.3 EXTENDED ACTION SPACE DETAILS

To validate the framework’s extensibility, we integrated three additional actions generated by Gemini 3
Pro. First, Quadrant Selection implements a coarse-to-fine zoom by dividing the image into 5 logical
regions (Top-Left, Top-Right, Bottom-Left, Bottom-Right, and Center), where the model selects
the most relevant region for cropping and upscaling. Second, Object Shrink performs a focused
crop strictly around the detected object’s bounding box with minimal padding, effectively removing
background context to isolate the target. Third, Contrast Enhancement applies a global visual
transformation using PIL ImageEnhance.Contrast with a factor of 1.5, aiming to improve
visibility in low-light or low-contrast scenarios without altering spatial geometry.

A.4 FAILURE ANALYSIS

We categorize failure cases into two primary types. Type I (Logical Deficit) occurs when the model
accurately perceives the visual content but fails due to a lack of external knowledge or complex logical
reasoning capabilities (e.g., mathematical derivation). Type II (Action Misalignment) happens in
rare cases where aggressive cropping (e.g., Object Shrink) removes background context required for
global reasoning (e.g., determining time of day from shadows). However, our uncertainty mechanism
effectively minimizes the selection of such misaligned paths.

B DECLARATION OF LLM

The content and initial draft of this paper were manually authored. We employed Gemini for text
polishing and for minor formatting adjustments to some LaTeX tables.
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