

000 001 002 003 004 005 SITU: A SIMPLE TRAINING-FREE THINKING-WITH- 006 IMAGE APPROACH VIA UNCERTAINTY GUIDANCE 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Large Multimodal Models (LMMs) have shown great promise in complex reasoning by incorporating images as intermediate steps, a paradigm known as “thinking with images”. However, most current “thinking with images” techniques are training-based, incurring significant computational costs, limiting model versatility, and risking catastrophic forgetting. To bridge this gap, we propose *SiTu*, a simple, training-free framework for “thinking with images” that leverages an LMM’s inherent uncertainty to achieve test-time scaling for multimodal reasoning. The core of our approach is the discovery of a stable, entropy-based uncertainty estimation native to LMMs, which reliably guides the dynamic combination of diverse perception enhancement paths. We implement three simple perceptual actions, categorized as visual highlighting and irrelevant information suppression, and demonstrate a notable scaling phenomenon: as the number and diversity of these actions increase, the LMM’s reasoning ability improves consistently. Our extensive experiments on fine-grained visual understanding benchmarks like V^* , HR-Bench 4K, HR-Bench 8K, and MME-realworld show that *SiTu* significantly outperforms existing training-free perception enhancement methods. Surprisingly, *SiTu* even surpasses the performance of current state-of-the-art training-based “thinking with images” methods, highlighting the immense potential of test-time scaling for multimodal reasoning.

1 INTRODUCTION

Large Multimodal Models (LMMs) have advanced rapidly, enabling complex multimodal reasoning. A promising paradigm, “thinking with images” (Su et al., 2025b; Zheng et al., 2025b; Zhang et al., 2025c; Zhu et al., 2025; Su et al., 2025a; Huang et al., 2025; Liu et al., 2025; Zhang et al., 2025b; Zhou et al., 2025; Zhang et al., 2025a; Wang et al., 2025a; Bai et al., 2025b; Ni et al., 2025), has recently emerged, where LMMs generate and incorporate images as intermediate steps to enhance multimodal reasoning. This novel approach empowers models to iteratively refine their visual understanding, ultimately yielding more precise and reliable results. However, most current “thinking with images” techniques are training-based, relying on specialized datasets and intensive fine-tuning. This pipeline, while effective, presents several significant limitations. First, it imposes a considerable computational cost; for example, the high-performing method by Zhang et al. (2025d) required 1,200 GPU hours on 32 NVIDIA H800 GPUs. Second, the fine-tuning process can narrowly specialize a model’s capabilities, limiting its versatility. An example is the approach by Ni et al. (2025), where fine-tuning on a point-prompting dataset restricted the model to this singular reasoning strategy. Lastly, fine-tuning risks catastrophic forgetting, may leading to the degradation of the model’s fundamental perception and reasoning abilities developed during massive pre-training.

In contrast, the field of Large Language Models (LLMs) has seen a different promising paradigm: training-free test-time scaling (Muennighoff et al., 2025; Fu et al., 2025). Methods such as Chain-of-Thought (CoT) (Wei et al., 2022), Best-of-N sampling (Freitag & Al-Onaizan, 2017), and self-consistency (Wang et al.) dramatically improve reasoning accuracy without requiring additional training or external tools by just generating extra tokens at inference time. Their low-cost and high-transferability make them a compelling choice for a wide range of downstream tasks.

However, we find that these highly effective training-free test-time scaling methods unexpectedly fail when applied to LMMs, particularly on fine-grained visual understanding tasks (Wu & Xie, 2024;

Wang et al., 2024) that demand focused attention on specific visual subregions to answer detailed questions. As depicted in Figure 1, these methods only show slow, small-scale improvements, and Zero-shot CoT even exhibits performance degradation as it scales. This uniform underperformance reminds us to consider the fundamental differences between LMMs and LLMs and their respective tasks. Prior work has highlighted that, unlike text, which is a discrete input space, visual information exists in a continuous space, making the task of grounding continuous visual signals into discrete semantic tokens significantly more challenging for LMMs (Yang et al., 2024). Furthermore, inaccurate perception in multimodal tasks can lead to catastrophic and often unrecoverable errors in subsequent reasoning (Su et al., 2025b). We argue that the limitations of existing training-free methods in the multimodal domain arise from their failure to improve the fundamental perceptual abilities of LMMs and, at times, from their propensity to impair them. Another line of training-free methods attempts to enhance LMM perception through agent-like workflows (Li et al., 2025; Shen et al., 2024; Wang et al., 2025b). However, these approaches are with two main limitations: First, their fixed workflows require meticulous, task-specific design and prompt engineering to be effective across different LMMs. Second, their predetermined steps can be restrictive, sometimes even hindering a model’s capabilities on unsuitable tasks and leading to performance degradation. Motivated by these observations, we pose the following question: *Can we find a common training-free test-time scaling method for the multimodal domain through enhancing LMM perceptual ability?*

Figure 1: Comparison of existing training-free test-time scaling methods on fine-grained visual understanding benchmark HR-Bench 8K. The x-axis represents the number of tokens generated, and the y-axis shows the accuracy change. “Naive Answer” represents a direct, unassisted LMM response.

To address this question, we propose *SiTu*, a simple training-free thinking-with-image framework that leverages an LMM’s inherent uncertainty to achieve test-time scaling for multimodal domain, especially for challenging fine-grained visual understanding tasks. The cornerstone of our approach is the discovery of a stable, entropy-based uncertainty estimation method that is native to LMMs. This method does not require multiple forward passes or a separate prediction set, yet it can reliably evaluate the confidence of an LMM’s response to a given input. Furthermore, we found this uncertainty metric is not only effective for assessing the final answer but also for guiding optimal perceptual paths during the reasoning process. This finding makes it possible to integrate a wide variety of perceptual enhancement operations into a single, unified framework. We also observe a notable scaling phenomenon within our framework.

work: as the number and diversity of these perceptual operations increase, the overall multimodal reasoning ability of the LMM shows a consistent and stable improvement.

To validate our framework, we defined and implemented three simple perception actions categorized into visual highlighting and irrelevant information suppression. For Visual Highlighting, we utilize the LMM’s grounding ability to pinpoint and emphasize key objects relevant to the question. For Irrelevant Information Suppression, we employ three distinct strategies to remove irrelevant visual regions, thereby focusing the model’s attention on the most critical information. Our experiments on three fine-grained visual understanding datasets demonstrate that our simple *SiTu* method outperforms not only existing LMM perception enhancement methods but also all current open-source training-based “thinking with images” approaches. This remarkable result underscores the significant potential of training-free test-time scaling for LMMs, proving that enhanced performance can be unlocked directly from the models themselves without costly fine-tuning.

Our primary contributions are summarized as follows: 1) We propose *SiTu*, a simple but effective training-free paradigm for “thinking with images” that achieves significant performance gains without costly fine-tuning or architectural modifications. 2) We discover and validate a universal, LMM-native uncertainty metric, which serves as a robust guidance signal for dynamically selecting optimal perceptual enhancement paths. 3) Experiments demonstrate *SiTu*’s state-of-the-art performance on fine-grained visual understanding benchmarks, where it outperforms all existing training-based “thinking with images” and training-free perception enhancement methods.

Figure 2: **Overview of SiTu.** Our approach explores multiple perceptual actions through Perception Action Space and Multi-strategy Exploration. Then through Uncertainty-guided Selection, identifies and returns the optimal answer with lowest uncertainty metric (the starred answer in the figure).

2 METHODS

2.1 PARADIGM FORMULATION

Thinking with images paradigm models multimodal reasoning as a sequential process where an LMM dynamically generates interleaved visual and textual intermediate outputs. At each reasoning step t , the evolving state history is captured by the sequence of previous multimodal outputs $S_t = (z_1, \dots, z_{t-1})$. The next reasoning step, z_t , is generated by the LMM, conditioned on this history, the initial input image I , and the user query Q . Formally, we define the set of all possible intermediate states as the union of textual outputs $\mathcal{T}_{\text{text}}$ and visual artifacts \mathcal{I}_{vis} . The model then samples the next state z_t from its conditional probability distribution:

$$z_t \sim P(\cdot | S_t, I, Q; \Theta_{\text{LMM}}), \quad \text{where } z_t \in \mathcal{T}_{\text{text}} \cup \mathcal{I}_{\text{vis}}. \quad (1)$$

2.2 UNCERTAINTY-GUIDED SELECTION

The most critical component of our framework is the Uncertainty-Guided Selector, which evaluates the quality of reasoning paths and plays a crucial role in eliminating incorrect answers. To handle open-ended questions and compare confidence across different strategies, we quantify the uncertainty of a generated answer using token-based Shannon Entropy.

The uncertainty $\mathcal{U}(A)$ for an answer candidate A is the average entropy of its tokens. This is calculated as:

$$\mathcal{U}(A) = \frac{1}{N} \sum_{i=1}^N \mathcal{H}(t_i) = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^V p_{i,j} \log p_{i,j}, \quad (2)$$

where t_i is the i -th token, N is the total number of tokens in the answer, and $p_{i,j}$ is the probability of the j -th token in the vocabulary for the i -th token position. A lower uncertainty score indicates a more confident and potentially more accurate answer. The final answer A_{final} is selected by choosing the strategy with the minimum uncertainty:

$$A_{\text{final}} = \arg \min_{A \in \mathcal{A}} \mathcal{U}(A), \quad (3)$$

Crucially, the token probabilities $p_{i,j}$ are derived from the same conditional probability distribution $P(\cdot | S_t, I, Q; \Theta_{\text{LMM}})$ defined in Equation (1). This design ensures that our uncertainty metric is context-aware, incorporating the full multimodal history and input image. Thus, this method provides a promising way to evaluate the effectiveness of our perception-enhancing operations.

Theoretical Justification: Entropy vs. Confidence. While related to sequence confidence, Entropy offers a stricter optimization objective for multimodal ambiguity. Mathematically, the Shannon

162 Table 1: Comparison of our **SiTu** with existing works on fine-grained visual understanding benchmarks.
 163 Open-source models with the best performance in each task are shown in **bold**, the second-best
 164 performance is underlined.

Method	V* Bench			HR-Bench 4K			HR-Bench 8K		
	Attribute	Spatial	Overall	FSP	FCP	Overall	FSP	FCP	Overall
<i>Closed-source MLLMs</i>									
O3 (Hurst et al., 2024)	-	-	95.7	-	-	-	-	-	-
GPT 4o (Hurst et al., 2024)	-	-	66.0	70.0	48.0	59.0	62.0	49.0	55.5
QWen-VL-max (Bai et al., 2023b)	-	-	-	65.0	52.0	58.5	54.0	51.0	52.5
<i>Open-source MLLMs</i>									
LLaVA-v1.6-7B (Liu et al., 2024b)	60.9	63.2	61.8	49.0	46.8	47.9	37.3	44.3	40.8
LLaVA-v1.6-13B (Liu et al., 2024b)	60.0	64.5	61.8	49.8	41.3	45.5	38.0	38.3	38.1
LLaVA-HR-X-7B (Luo et al., 2024)	51.3	64.5	56.5	57.8	46.3	52.0	42.0	41.3	41.6
InternVi-1.5-26B (Chen et al., 2024b)	-	-	-	69.5	51.8	60.6	69.3	48.5	57.9
Yi-VL-34B (Young et al., 2024)	-	-	-	46.0	42.8	44.4	39.5	38.5	39.0
Qwen2.5-VL-7B (Bai et al., 2025a)	73.9	67.1	71.2	85.2	52.2	68.8	78.8	51.8	65.3
<i>Training-based Thinking with Image</i>									
SEAL (Wu & Xie, 2024)	74.8	76.3	75.4	-	-	-	-	-	-
Pixel Reasoner (Su et al., 2025a)	-	-	84.3	-	-	-	-	-	-
Chain-of-Focus (Zhang et al., 2025c)	-	-	88.0	-	-	-	-	-	-
Simple O3 (Wang et al., 2025c)	-	-	90.4	-	-	76.2	-	-	-
DeepEyes (Fu et al., 2025)	91.3	<u>88.2</u>	90.1	<u>91.3</u>	59.0	75.1	86.8	58.5	72.6
Thyme (Zhang et al., 2025d)	83.5	<u>80.3</u>	82.2	<u>91.0</u>	<u>63.0</u>	<u>77.0</u>	86.5	57.5	72.0
<i>Training-free methods</i>									
DyFo (Li et al., 2025)	80.0	82.9	81.2	-	-	-	-	-	-
RAP (Wang et al., 2025b)	80.0	84.2	81.7	80.3	42.3	61.3	81.8	45.3	63.5
ZoomEye (Shen et al., 2024)	93.9	85.5	90.6	84.3	55.0	69.6	<u>88.5</u>	50.0	69.3
SiTu (Our methods)	94.8	88.3	92.1	95.0	64.0	79.5	92.0	58.0	75.0
Δ (vs Qwen2.5-VL-7B)	+20.9	+20.9	+20.9	+9.8	+11.8	10.7	+13.2	+6.2	+9.7

187 Entropy $H(p)$ decomposes into two terms:

$$H(p) = \underbrace{-p(\hat{y}) \log p(\hat{y})}_{\text{Inverse Confidence}} + \underbrace{\sum_{y' \neq \hat{y}} -p(y') \log p(y')}_{\text{Distraction / Ambiguity}} \quad (4)$$

193 Standard metrics like MaxProb only optimize the first term. However, in fine-grained perception,
 194 LMMs often suffer from *Inter-Class Conflict* (e.g., assigning 51% probability to “sedan” and 49% to
 195 “coupe”). Entropy explicitly captures this “distraction” (the second term), serving as a more sensitive
 196 proxy for perceptual hallucinations.

2.3 MULTI-STRATEGY EXPLORATION

199 To validate the importance of enhanced perception for test-time scaling method in multimodal tasks,
 200 our framework explores a set of diverse perception operation. Each reasoning path consists of a
 201 sequence of perception operations followed by a final reasoning step. The core idea is that different
 202 paths, by enhancing perception in distinct ways, will provide the LMM with a wider range of possible
 203 candidates. We formally define a perception operation as a function $\pi \in \Pi$ that takes the current
 204 multimodal context—the image I and the query Q —and generates an enriched context for subsequent
 205 reasoning.

$$(I', D) = f_\pi(I, Q), \quad (5)$$

207 where I' is a new visual artifact (e.g., a cropped image or a highlighted region) and D is a textual
 208 description. A key advantage of our approach is that these operations do not rely on external expert
 209 models or specialized tools; instead, they leverage the intrinsic visual understanding of the LMM
 210 itself to create the new context.

211 A complete reasoning path is a sequence of these operations, culminating in a final reasoning step ρ
 212 that generates the answer. We represent a path as:

$$\text{Path}_i = \langle \pi_1, \pi_2, \dots, \pi_n, \rho \rangle, \quad (6)$$

215 The simplest path is the naive one, which consists only of the final reasoning step ρ , corresponding to
 a direct answer from the LMM without any perceptual manipulation. More complex paths involve one

216 Table 2: Comparison of the `SiTu` against the baseline LMM on the MME-RealWorld benchmark.
 217 MO: Monitoring; AD: Autonomous Driving. The “ $\Delta(\uparrow)$ ” represents the performance gains of our
 218 RAP against the baselines.

Method	MO				AD				OCR			
	Calculate	Intention	Color	Location	Attention	Attribute	Visual	Relation	Advertise.	License	Address	Text
Qwen-2.5-VL-7B	20.7	13.3	32.9	29.0	37.8	19.7	60.2	28.3	87.3	88.5	87.7	85.2
-w/ <code>SiTu</code>	30.3	25.5	51.7	36.0	48.8	21.9	64.2	30.2	88.6	90.6	89.1	85.7
$\Delta(\uparrow)$	+10.4	+12.2	+18.8	+7.0	+11.0	+2.2	+4.0	+1.9	+5.4	+2.1	+1.4	+0.5

224 or more perception operations π_j to guide the LMM toward a better understanding before generating
 225 the final answer. Each path produces a candidate answer $A \in \mathcal{A}$, and the best answer A_{final} is then
 226 selected from the set \mathcal{A} using the uncertainty metric defined in the previous section.

228 2.4 PERCEPTION ACTION SPACE

230 **Draw Boxes Strategy.** This method uses the LMM to perform zero-shot object detection to implement
 231 visual highlighting. It prompts the LMM to identify a set of objects $O = \{o_1, o_2, \dots\}$ from the
 232 query Q and return their corresponding bounding box coordinates in a structured format. These
 233 coordinates are then used to render visual annotations directly on the image. We define a function
 234 $\Phi_b : \mathcal{I} \times \mathcal{Q} \rightarrow \mathcal{P}(\mathbf{b})$ that queries the LMM to extract a set of bounding boxes \mathbf{B} from an image I
 235 based on a query Q . Here, \mathcal{I} is the set of all images, \mathcal{Q} is the set of all queries, and \mathbf{b} is the set of
 236 all bounding boxes. \mathcal{D} is a rendering function that overlays the boxes in \mathbf{B} onto the image I . The
 237 operation is then given by:

$$\mathbf{B} = \Phi_b(I, Q) \quad (7)$$

$$I' = \mathcal{D}(I, \mathbf{B}) \quad (8)$$

242 **Grounding Crop Strategy.** This strategy effectively focuses the model’s attention by cropping the
 243 image to a region of interest, with irrelevant information suppression as motivation. It prompts the
 244 LMM for bounding boxes of objects O mentioned in the query. It then computes a single, unified
 245 bounding box $\mathbf{b}_{\text{union}}$ that encompasses all found objects. The final image I' is a cropped version of
 246 the original, centered on this unified region. The operation is defined as:

$$\mathbf{b}_{\text{union}} = \bigcup_{\mathbf{b} \in \Phi_b(I, Q)} \mathbf{b} \quad (9)$$

$$I' = \mathcal{C}(I, \mathbf{b}_{\text{union}}) \quad (10)$$

250 where the union operation \cup is performed over the bounding box coordinates, and \mathcal{C} is a function that
 251 performs the final image transformation.

252 **Grid Crop Strategy.** This method employs a simple search to locate and crop key objects by
 253 partitioning the image, also categorized as irrelevant information suppression. It bypasses traditional
 254 object detection by asking the LMM to judge the presence of a target object o within different image
 255 segments. Specifically, the image is partitioned into an even grid of segments. We define a function
 256 $\Phi_P : \mathcal{I} \times \mathcal{O} \rightarrow [0, 1]$ that queries the LMM for the probability $P(o \in S)$ of an object o being in an
 257 image segment S . The process for a single object is to find the most probable segment S^* :

$$S^* = \arg \max_{S \in \mathcal{S}} \Phi_P(S, o) \quad (11)$$

261 where \mathcal{S} is an even grid partition of the image I . The final image I' is a composite of the most
 262 probable regions found for all objects, effectively solving a localization problem through a simple,
 263 coarse-to-fine search process.

264 3 EXPERIMENTS

265 3.1 SETUPS

266 **Benchmarks and Metrics.** To thoroughly evaluate our framework, we conduct experiments on
 267 fine-grained visual understanding and high-resolution multimodal datasets. The V* Bench and

270 Table 3: **Cross-model generalization results on fine-grained visual understanding benchmarks.**
271

272	Model	Dataset	Baseline	SiTu	Improvement
273	InternVL 3.5 8B	V* Bench	64.0	72.0	+8.0
274		HR-Bench 4K	57.0	69.0	+12.0
275		HR-Bench 8K	54.0	65.0	+11.0
276	Qwen2.5-VL 3B	V* Bench	69.0	76.0	+7.0
277		HR-Bench 4K	69.0	71.0	+2.0
278		HR-Bench 8K	66.0	72.0	+6.0

280
281
282 HR-Bench are used for fine-grained perception, challenging models with high-resolution images
283 (average resolution of 2246×1582 and 7680, respectively). We evaluate their sub-tasks—attribute
284 recognition, spatial relationship reasoning, Fine-grained Single-instance Perception (FSP), and Fine-
285 grained Cross-instance Perception (FCP)—using accuracy. For practical, real-world scenarios, we
286 also use a subset of the MME-RealWorld benchmark, reporting on 12 representative sub-tasks.

287 **Implementation Details.** For our experiments, we use Qwen2.5VL-7B/3B and InternVL3.5 8B as
288 the foundational Large Multimodal Model (LMM). All evaluations are performed on a single NVIDIA
289 A40 GPU (48GB). To simplify and accelerate our experiments, each path uses at most one perception
290 operation. As a baseline, we compare our framework against various closed- and open-source LMMs,
291 training-based thinking with image methods, and other LMM perception enhancement methods.

294 3.2 RESULTS ON FINE-GRAINED VISUAL UNDERSTANDING

295
296 High-resolution benchmarks like V^* Bench and HR-Bench present a significant challenge for VLMs
297 due to their high image resolution and the small size of target objects. As shown in Table 1, our
298 method, SiTu, achieves exceptional performance, surpassing both open-source models and complex,
299 manually-engineered pipelines. On the V^* Bench, SiTu achieves an overall accuracy of 92.1%,
300 a significant improvement over the previous state-of-the-art. Our strong performance in attribute
301 recognition (94.8%) highlights the framework’s ability to effectively leverage fine-grained visual
302 details. For the even more challenging HR-Bench, SiTu achieves an impressive overall accuracy of
303 79.5% on the 4K subset and 75.0% on the 8K subset. These results are notably higher than those of
304 other methods. Specifically, on the Fine-grained Single-instance Perception (FSP) task, SiTu scores
305 95.0% and 92.0% on the 4K and 8K subsets, respectively. Compared to our foundational model,
306 Qwen2.5-VL-7B, SiTu demonstrates remarkable performance gains of +20.9% on V^* Bench and
307 +10.7% on HR-Bench 4K. These results underscore the effectiveness of our approach in enhancing
308 perception for high-resolution images, without the need for complex pipeline design or extensive
309 training.

311 3.3 RESULTS ON HIGH-RESOLUTION PRACTICAL SCENARIOS

312
313 As shown in Table 2, our proposed SiTu method significantly boosts the performance of the baseline
314 Qwen-2.5-VL-7B model on the MME-RealWorld benchmark. We see the largest gains in the
315 MO/Calculate (+10.4%), MO/Color (+12.2%), and MO/Location (+18.8%) sub-tasks, highlighting
316 SiTu’s effectiveness in improving a model’s ability to perceive fine-grained details in complex,
317 high-resolution scenes. However, the model’s performance improvements were more limited in other
318 areas, with smaller gains in the AD and OCR categories, such as AD/Visual Relation (+2.2%) and
319 OCR/Text (+1.4%). We believe these results point to the inherent complexity of these tasks; for
320 AD/Visual Relation, the challenge lies not just in perceiving multiple objects but in understanding
321 their spatial relationships, while OCR/Text performance is often limited by the quality of the visual
322 data itself. These findings show that while SiTu is highly effective at enhancing a model’s high-
323 resolution perception, there are still challenges in tasks that require complex reasoning or robust
handling of degraded visual data.

324
325
326 Table 4: Action Space Extensibility and robustness analysis on V* Bench subset.
327
328
329
330
331

Strategy	Overall Accuracy	Δ vs. Baseline	Role
Direct Answer (Naive Baseline)	71.7%	-	-
+ Contrast Enhancement	70.2%	-1.5%	Noisy/Harmful
+ Quadrant Selection	74.3%	+2.6%	Beneficial
+ Object Shrink	76.4%	+4.7%	Beneficial
SiTu (Combined Policy)	79.6%	+7.9%	Robust Integration

332
333 3.4 GENERALIZATION AND EXTENSIBILITY ANALYSIS
334335 To demonstrate the universality and robustness of our framework beyond the primary setting, we
336 conducted extensive additional experiments focusing on model generalization and action space
337 extensibility.338 **Generalization Across Architectures and Scales.** We validated SiTu on two additional models:
339 InternVL 3.5 8B, which represents a distinct architectural design from the Qwen family, and Qwen2.5-
340 VL 3B, representing a smaller parameter scale with weaker base reasoning capabilities. As shown
341 in Table 3, SiTu consistently unlocks significant performance gains across all settings. Notably,
342 on the challenging HR-Bench 4K, SiTu boosted InternVL’s accuracy by **+12.0%**, proving that
343 our uncertainty-guided perception enhancement is model-agnostic and effective across different
344 architectures.345 **Action Space Extensibility and Robustness.** To address concerns regarding the predefined action
346 space, we prompted a frontier model (Gemini 3 Pro) to automatically generate three new perception
347 strategies: **Quadrant Selection** (5-region zoom), **Object Shrink** (focused cropping), and **Contrast**
348 **Enhancement** (global transformation). We integrated these unseen actions into SiTu and evaluated
349 them on a subset of V* Bench.350
351
352 Figure 3: Comparison of method accuracy with
353 respect to the addition of perception actions. As
354 the number and diversity of actions increase,
355 the method’s performance exhibits stable gains,
356 which demonstrates a scaling phenomenon for fine-
357 grained visual understanding tasks on test-time.
358 The x-axis represents different classes of subtasks,
359 while the y-axis represents the accuracy percentage.
360
361370 as more perception actions are incorporated, we start from the naive baseline and incrementally add
371 the predefined actions: Draw Boxes, Grounding Crop, and Grid Crop. As shown in Figure 3, we
372 observe a consistent performance improvement with the increase of actions, for both FSP and FCP.
373 This demonstrates that the framework can effectively leverage action diversity to boost performance,
374 while the cost of implementing such predefined perception operations is significantly lower than
375 constructing extensive annotated datasets for training. Notably, in our action space, Grounding Crop
376 and Grid Crop are functionally similar, both serving as irrelevant information suppression. However,
377 the inclusion of Grid Crop does not lead to diminishing performance gains which is common in378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100

378 ensemble mechanism (Fu et al., 2025). We attribute this to the distinct implementation mechanisms
 379 of the two crop actions, and more importantly, it suggests that *SiTu* is still far from reaching its
 380 upper limit in terms of supported actions diversity.
 381

382 **Individual Perception Actions.** To determine whether
 383 our method’s performance comes from specific perception
 384 actions or our uncertainty-guided mechanism, we com-
 385 pared the full *SiTu* method against the LMM naive an-
 386 swer and individual perception actions followed by naive
 387 answer. As shown in Table 5, perception actions can some-
 388 times improve the original answer but may also introduce
 389 drawbacks. For instance, while Grounding Crop and Grid
 390 Crop improve FSP, they substantially reduce FCP, likely
 391 due to the crop operation tendency to discard visual infor-
 392 mation. Moreover, we observe a clear performance gap
 393 between the naive and single-action baselines and the full
 394 *SiTu*. This shows that the improvements of *SiTu* are not
 395 attributable to single perception action. Instead, it combines
 396 multiple strategies to achieve superior
 397 overall performance, validating the effectiveness of the proposed
 398 uncertainty-guided architecture.
 399

400 **Uncertainty-guided Metric.** To evaluate the effectiveness
 401 of our uncertainty-guided selection metric, we compare
 402 our framework’s performance with five alternative metric
 403 methods: random selection, majority voting, perplexity,
 404 min entropy, and max entropy. As shown in Table 6, all
 405 candidate metrics within the uncertainty-guided frame-
 406 work achieve a performance improvement over the Naive
 407 Answer baseline, which demonstrates the stability of our
 408 uncertainty-guided framework. Furthermore, the average
 409 entropy-based approach yields the best results, showcasing
 410 its superiority over other metrics. We believe this advan-
 411 tage stems from the inherent definition of entropy and
 412 the averaging operation’s comprehensive consideration of
 413 the influence of different tokens. Notably, this advantage
 414 even surpasses perplexity, which is typically used as an
 415 optimization objective during training.
 416

417 3.5.1 CASE STUDIES

418 To provide a more intuitive understanding of our framework’s perception actions, we visualize several
 419 representative cases in Figure 4. The first row shows a typical example of our Draw Boxes action.
 420 When a query involves objects with significant size differences, a cropping-based approach often
 421 leads to information loss. Draw Boxes, on the other hand, highlights key areas while preserving the
 422 surrounding visual context, helping the LMM reduce hallucinations. The second row demonstrates
 423 the effectiveness of Grounding Crop. This action efficiently removes irrelevant content by using
 424 grounding to identify and crop crucial visual information that may be scattered across different
 425 locations in a high-resolution image, thus avoiding the information loss associated with fixed cropping
 426 methods. The third row illustrates the Grid Crop action. While less flexible than Grounding Crop, it
 427 retains more background information and offers different perspectives. This can be complementary
 428 to the other methods by providing additional context. Collectively, these cases demonstrate that each
 429 of our framework’s perception actions possesses unique advantages. Compared to a naive approach,
 430 these actions accurately seek out crucial visual information, enabling the LMM to focus and respond
 431 to queries with enhanced precision.
 432

433 4 RELATED WORKS

434 **Large Multimodal Models (LMMs).** Significant strides have been made in the field of Large
 435 Multimodal Models (LMMs), demonstrating substantial proficiency in a wide array of vision-language
 436 tasks (Bai et al., 2025a; Chen et al., 2024a; Liu et al., 2024a; Li et al., 2024; Team et al., 2025). The
 437

Table 5: Ablation study of individual per-
 543 ception actions on HR-Bench 8K. Per-
 544 formance is measured by FSP, FCP, and
 545 Overall Accuracy. Full model perfor-
 546 mance is in bold.

Method	FSP	FCP	Overall
Naive Answer	78.8	51.8	65.3
- Draw Boxes	80.0	52.0	66.0
- Grounding Crop	83.0	47.0	65.0
- Grid Crop	84.0	49.0	66.5
<i>SiTu</i> (Full Method)	92.0	58.0	75.0

547

Table 6: Comparison of different uncer-
 548 tainty metric mechanisms on HR-Bench
 549 8K. Performance is measured by FSP,
 550 FCP, and Overall Accuracy. Our method
 551 is in bold.

Selection Method	FSP	FCP	Overall
Random Selection	83.0	49.0	66.0
Majority Voting	91.0	51.0	71.0
Perplexity	92.0	55.0	73.5
Min Entropy	85.0	53.0	69.0
Max Entropy	91.0	53.0	72.0
Mean Entropy (<i>SiTu</i>)	92.0	58.0	75.0

Figure 4: Visualization of Perception Actions. This case study is from the fine-grained visual understanding benchmark HR-Bench 8K. Each sample includes the original image and question, the intermediate image results from perception actions, and the final answer. A comparison with the naive answer effectively highlights the distinct advantages of each perception operation.

rapid evolution of this domain is underscored by the emergence of powerful open-source models, such as LLaVA (Liu et al., 2024a), InternVL (Chen et al., 2024c), and Qwen-VL (Bai et al., 2023a), which have achieved performance levels comparable to their closed-source counterparts. These models typically operate by fusing visual representations from specialized encoders with linguistic tokens, thereby enabling them to process and comprehend information across modalities (Liu et al., 2024c; Li et al., 2023). This capability has been pivotal in bridging the cognitive divide between visual perception and linguistic abstraction, allowing LMMs to perform sophisticated reasoning on a variety of multimodal challenges. Our work provides an orthogonal solution by demonstrating that MLLMs can be guided to actively explore and manipulate visual information in a training-free manner, thereby improving their perception and reasoning capabilities.

Thinking with Images. A new paradigm in multimodal reasoning moves beyond static inputs by enabling models to actively manipulate visual information. These approaches primarily rely on specialized training to instill dynamic perception capabilities directly into the model’s weights. This is often achieved through supervised fine-tuning (SFT) (Wu & Xie, 2024; Wang et al., 2025c; Zhan et al., 2025) or reinforcement learning (RL) (Zheng et al., 2025b; Su et al., 2025a; Zhang et al.,

2025c;d). While these methods have shown promising results, they are fundamentally constrained by their high training costs and the limited generality of their learned operations. In stark contrast, our framework requires no training and is compatible with a wide range of perception operations, providing a flexible alternative that trades inference time for enhanced precision.

Training-free Test-time Scaling. Training-free test-time scaling methods enhance Large Language Model (LLM) reasoning at inference without requiring additional training. A prominent approach is self-consistency or parallel thinking, where multiple reasoning paths are generated and their final answers are aggregated, typically through majority voting (Wang et al., 2022). While this significantly boosts accuracy, it incurs a substantial computational cost, as generating numerous traces scales inference overhead linearly (Xue et al., 2023). However, this approach has limitations; its performance often plateaus or degrades as the number of traces increases. The core issue is that standard majority voting treats all traces equally, failing to account for quality variations. **It is crucial to distinguish SiTu from prior uncertainty-based works in LLMs, such as ARPO (Dong et al., 2025) or FR3E (Zheng et al., 2025a).** These methods primarily leverage high entropy to drive exploration during RL training to optimize textual reasoning policies. In contrast, SiTu employs entropy minimization as an exploitation signal during test-time inference, specifically targeting the multimodal perception bottleneck (i.e., visual grounding errors) rather than logical reasoning paths.

Training-free LMM Perception Enhancement Training-free methods for LMM perception enhancement leverage a model’s existing capabilities to improve its processing of visual information without the need for additional fine-tuning or architectural changes. These approaches often employ agent-like workflows to guide the model’s reasoning. For instance, methods like Dyfo (Li et al., 2025) and Zoom Eye (Shen et al., 2024) are inspired by human cognitive processes like visual search and dynamic zooming. Dyfo uses a Monte Carlo Tree Search to guide the model’s focus to key visual regions, while Zoom Eye treats an image as a hierarchical tree to enable “vision-level reasoning.” Other methods, such as Retrieval-Augmented Perception (RAP) (Wang et al., 2025b), adapt techniques from large language models, like Retrieval-Augmented Generation (RAG), to retrieve and fuse relevant image crops for better high-resolution perception.

5 CONCLUSION

In this work, we present SiTu, a novel training-free paradigm for “thinking with images” that overcomes the limitations of current training-based approaches. While existing methods rely on costly fine-tuning, which can cause catastrophic forgetting and narrow a model’s capabilities, our approach leverages an LMM’s inherent, untapped potential at test time. We address a core challenge for LMM scaling: enhancing perceptual ability for fine-grained visual understanding. By discovering a universal, LMM-native uncertainty metric, we dynamically guide the model through optimal perception paths, integrating diverse actions from visual highlighting to irrelevant information suppression. On several fine-grained benchmarks, SiTu not only outperforms existing training-free methods but also surpasses all open-source training-based “thinking with images” approaches, proving that enhanced performance can be unlocked without expensive fine-tuning.

Limitations and Future Work. While our proposed framework, SiTu, demonstrates significant potential, we acknowledge several limitations that also present exciting avenues for future research. First, the current action space of SiTu is not comprehensive. Its success has only been validated on fine-grained visual understanding tasks. It remains an open question whether this uncertainty-guided approach can be generalized to a broader range of multimodal tasks. This will require designing appropriate and effective actions tailored to different problem domains. Second, the perceptual actions in this work were manually designed. This approach, while effective, inherently limits the full potential of the LMM. Future work could explore automated methods to discover and optimize suitable perception actions for specific tasks, which could lead to further performance gains and reduce the computational cost associated with action execution. Finally, our SiTu framework is primarily a zero-shot, training-free test-time scaling method. An interesting direction would be to investigate whether providing a small number of in-context examples, similar to few-shot learning, could be used to obtain even greater performance returns. This would explore a hybrid approach that leverages the best of both training-free and data-driven methods.

540 REFERENCES
541

- 542 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
543 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint*, 2023a. URL <https://arxiv.org/abs/2309.16609>.
- 545 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
546 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
547 text reading, and beyond. *arXiv preprint*, 2023b. URL <https://arxiv.org/abs/2308.12966>.
- 549 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
550 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
551 2025a.
- 553 Tianyi Bai, Zengjie Hu, Fupeng Sun, Jiantao Qiu, Yizhen Jiang, Guangxin He, Bohan Zeng, Conghui
554 He, Binhang Yuan, and Wentao Zhang. Multi-step visual reasoning with visual tokens scaling and
555 verification. *arXiv preprint arXiv:2506.07235*, 2025b.
- 556 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
557 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
558 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024a.
- 560 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
561 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
562 commercial multimodal models with open-source suites. *arXiv preprint*, 2024b. URL <https://arxiv.org/abs/2404.16821>.
- 564 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
565 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
566 for generic visual-linguistic tasks. pp. 24185–24198, 2024c.
- 568 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen,
569 Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization. *arXiv
570 preprint arXiv:2507.19849*, 2025.
- 572 Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. *ACL
573 2017*, pp. 56, 2017.
- 574 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv
575 preprint arXiv:2508.15260*, 2025.
- 577 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
578 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
579 *arXiv preprint arXiv:2503.06749*, 2025.
- 581 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
582 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*, 2024.
583 URL <https://arxiv.org/abs/2410.21276>.
- 584 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
585 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*,
586 2024. URL <https://arxiv.org/abs/2408.03326>.
- 588 Geng Li, Jinglin Xu, Yunzhen Zhao, and Yuxin Peng. Dyfo: A training-free dynamic focus visual
589 search for enhancing lmms in fine-grained visual understanding, 2025. URL <https://arxiv.org/abs/2504.14920>.
- 591 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
592 pre-training with frozen image encoders and large language models. In *ICML*, 2023. URL
593 <https://proceedings.mlr.press/v202/li23q.html>.

- 594 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 595 tuning. In *CVPR*, 2024a. URL https://openaccess.thecvf.com/content_CVPR2024/html/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.html.
- 596
- 597
- 598 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 599 Llava-next: Improved reasoning, ocr, and world knowledge, 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
- 600
- 601
- 602 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 603 neural information processing systems*, 36, 2024c.
- 604
- 605 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 606 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
- 607
- 608 Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, and Rongrong Ji. Feast your eyes:
 609 Mixture-of-resolution adaptation for multimodal large language models. *arXiv preprint*, 2024.
 URL <https://arxiv.org/abs/2403.03003>.
- 610
- 611 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 612 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 613 scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- 614
- 615 Minheng Ni, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Wangmeng Zuo, and Lijuan
 616 Wang. Point-rft: Improving multimodal reasoning with visually grounded reinforcement finetuning.
arXiv preprint arXiv:2505.19702, 2025.
- 617
- 618 Haozhan Shen, Kangjia Zhao, Tiancheng Zhao, Ruochen Xu, Zilun Zhang, Mingwei Zhu, and
 619 Jianwei Yin. Zoomeye: Enhancing multimodal llms with human-like zooming capabilities through
 tree-based image exploration. *arXiv preprint arXiv:2411.16044*, 2024.
- 620
- 621 Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhui Chen. Pixel reasoner: In-
 622 centivizing pixel-space reasoning with curiosity-driven reinforcement learning. *arXiv preprint
 623 arXiv:2505.15966*, 2025a.
- 624
- 625 Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
 626 Kaide Zeng, Zhengyuan Yang, et al. Thinking with images for multimodal reasoning: Foundations,
 627 methods, and future frontiers. *arXiv preprint arXiv:2506.23918*, 2025b.
- 628
- 629 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 630 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 631 llms. *arXiv preprint arXiv:2501.12599*, 2025.
- 632
- 633 Quuchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen, Lin Chen, Shihang Wang, Pengjun Xie, Fei
 634 Huang, and Feng Zhao. Vrag-rl: Empower vision-perception-based rag for visually rich in-
 635 formation understanding via iterative reasoning with reinforcement learning. *arXiv preprint
 636 arXiv:2505.22019*, 2025a.
- 637
- 638 Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, and Dacheng Tao.
 639 Divide, conquer and combine: A training-free framework for high-resolution image perception in
 640 multimodal large language models. *arXiv preprint*, 2024. URL <https://arxiv.org/abs/2408.15556>.
- 641
- 642 Wenbin Wang, Yongcheng Jing, Liang Ding, Yingjie Wang, Li Shen, Yong Luo, Bo Du, and Dacheng
 643 Tao. Retrieval-augmented perception: High-resolution image perception meets visual rag. *arXiv
 644 preprint arXiv:2503.01222*, 2025b.
- 645
- 646 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 647 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 648 models. In *The Eleventh International Conference on Learning Representations*.
- 649
- 650 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 651 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 652 *arXiv preprint arXiv:2203.11171*, 2022.

- 648 Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei.
 649 Simple o3: Towards interleaved vision-language reasoning. *arXiv preprint arXiv:2508.12109*,
 650 2025c.
- 651
- 652 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 653 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 654 *neural information processing systems*, 35:24824–24837, 2022.
- 655 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multi-
 656 modal llms. In *CVPR*, 2024. URL https://openaccess.thecvf.com/content/CVPR2024/html/Wu_V_Guided_Visual_Search_as_a_Core_Mechanism_in_Multimodal_CVPR_2024_paper.html.
- 657
- 658
- 659 Mingfeng Xue, Dayiheng Liu, Wenqiang Lei, Xingzhang Ren, Baosong Yang, Jun Xie, Yidan Zhang,
 660 Dezhong Peng, and Jiancheng Lv. Dynamic voting for efficient reasoning in large language models.
 661 In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 3085–3104, 2023.
- 662
- 663 Yixin Yang, Zheng Li, Qingxiu Dong, Heming Xia, and Zhifang Sui. Can large multimodal models
 664 uncover deep semantics behind images? In *Findings of the Association for Computational*
 665 *Linguistics: ACL 2024*, pp. 1898–1912, 2024.
- 666
- 667 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
 668 Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*, 2024.
 669 URL <https://arxiv.org/abs/2403.04652>.
- 670
- 671 Yufei Zhan, Hongyin Zhao, Yousong Zhu, Shurong Zheng, Fan Yang, Ming Tang, and Jinqiao Wang.
 672 Understand, think, and answer: Advancing visual reasoning with large multimodal models. *arXiv*
 673 *preprint arXiv:2505.20753*, 2025.
- 674
- 675 Guanghao Zhang, Tao Zhong, Yan Xia, Zhelun Yu, Haoyuan Li, Wanggui He, Fangxun Shu, Mushui
 676 Liu, Dong She, Yi Wang, et al. Cmmcot: Enhancing complex multi-image comprehension via
 677 multi-modal chain-of-thought and memory augmentation. *arXiv preprint arXiv:2503.05255*,
 2025a.
- 678
- 679 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
 680 R1-vl: Learning to reason with multimodal large language models via step-wise group relative
 681 policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.
- 682
- 683 Xintong Zhang, Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaowen Zhang, Yang Liu, Tao Yuan, Yuwei
 684 Wu, Yunde Jia, Song-Chun Zhu, et al. Chain-of-focus: Adaptive visual search and zooming for
 685 multimodal reasoning via rl. *arXiv preprint arXiv:2505.15436*, 2025c.
- 686
- 687 Yi-Fan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu Jiang,
 688 Changyi Liu, Tianke Zhang, et al. Thyme: Think beyond images. *arXiv preprint arXiv:2508.11630*,
 2025d.
- 689
- 690 Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
 691 Zhoufutu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. *arXiv*
 692 *preprint arXiv:2507.07017*, 2025a.
- 693
- 694 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing
 695 Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. *arXiv preprint*
 696 *arXiv:2505.14362*, 2025b.
- 697
- 698 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 699 zero’s” aha moment” in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*,
 2025.
- 700
- 701 Muzhi Zhu, Hao Zhong, Canyu Zhao, Zongze Du, Zheng Huang, Mingyu Liu, Hao Chen, Cheng
 702 Zou, Jingdong Chen, Ming Yang, et al. Active-o3: Empowering multimodal large language models
 703 with active perception via grpo. *arXiv preprint arXiv:2505.21457*, 2025.

702 A REPRODUCIBILITY DETAILS
703704 A.1 PROMPTS
705706 We use standardized prompts to enforce consistent JSON outputs for downstream processing. For
707 **Visual Highlighting** and **Grounding Crop**, we utilize the prompt: "`{question}.\nPlease`
708 `locate the relevant item(s) in the image with its bbox coordinates`
709 `and its name and output in JSON format.`". For **Grid Verification**, the prompt
710 is: "`Is there a {object.name} in this image? Answer Yes or No.`". For
711 the **Quadrant Selection** (extended action), the prompt is: "`The image is divided into`
712 `5 regions (1:TL, 2:TR, 3:BL, 4:BR, 5:Center).` Which single region
713 `is MOST likely to contain the visual information needed? Reply`
714 `with the number.`"715 A.2 HYPERPARAMETERS
716717 For the **Grid Strategy**, we employ a dynamic grid based on the image aspect ratio; for standard
718 4:3 images, we default to a **2x2 grid** (4 quadrants). Regarding the **Crop Strategy** (specifically for
719 **Grounding Crop**), we calculate the union bounding box of all detected objects and crop a region
720 equivalent to **1/4 of the original image area**, centered on this union box. This effectively provides
721 a **2x resolution zoom** on the region of interest. For **Uncertainty Calculation**, the entropy for
722 each token is computed using the distribution of the **top-5 log-probabilities**. Finally, to ensure
723 deterministic candidate generation, we iterate through fixed **Seeds** [0, 1, 2, 3, 4] for each visual view.724 A.3 EXTENDED ACTION SPACE DETAILS
725726 To validate the framework's extensibility, we integrated three additional actions generated by Gemini 3
727 Pro. First, **Quadrant Selection** implements a coarse-to-fine zoom by dividing the image into 5 logical
728 regions (Top-Left, Top-Right, Bottom-Left, Bottom-Right, and Center), where the model selects
729 the most relevant region for cropping and upscaling. Second, **Object Shrink** performs a focused
730 crop strictly around the detected object's bounding box with minimal padding, effectively removing
731 background context to isolate the target. Third, **Contrast Enhancement** applies a global visual
732 transformation using `PIL ImageEnhance.Contrast` with a factor of 1.5, aiming to improve
733 visibility in low-light or low-contrast scenarios without altering spatial geometry.734 A.4 FAILURE ANALYSIS
735736 We categorize failure cases into two primary types. **Type I (Logical Deficit)** occurs when the model
737 accurately perceives the visual content but fails due to a lack of external knowledge or complex logical
738 reasoning capabilities (e.g., mathematical derivation). **Type II (Action Misalignment)** happens in
739 rare cases where aggressive cropping (e.g., Object Shrink) removes background context required for
740 global reasoning (e.g., determining time of day from shadows). However, our uncertainty mechanism
741 effectively minimizes the selection of such misaligned paths.743 B DECLARATION OF LLM
744745 The content and initial draft of this paper were manually authored. We employed Gemini for text
746 polishing and for minor formatting adjustments to some LaTeX tables.
747748
749
750
751
752
753
754
755