SITU: A SIMPLE TRAINING-FREE THINKING-WITH-IMAGE APPROACH VIA UNCERTAINTY GUIDANCE

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large Multimodal Models (LMMs) have shown great promise in complex reasoning by incorporating images as intermediate steps, a paradigm known as "thinking with images." However, most current "thinking with images" techniques are training-based, incurring significant computational costs, limiting model versatility, and risking catastrophic forgetting. To bridge this gap, we propose SiTu, a simple, training-free framework for "thinking with images" that leverages an LMM's inherent uncertainty to achieve test-time scaling for multimodal reasoning. The core of our approach is the discovery of a stable, entropy-based uncertainty estimation native to LMMs, which reliably guides the dynamic combination of diverse perception enhancement paths. We implement three simple perceptual actions, categorized as visual highlighting and irrelevant information suppression, and demonstrate a notable scaling phenomenon: as the number and diversity of these actions increase, the LMM's reasoning ability improves consistently. Our extensive experiments on fine-grained visual understanding benchmarks like V^* , HR-Bench 4K, HR-Bench 8K, and MME-realworld show that SiTu significantly outperforms existing training-free perception enhancement methods. Surprisingly, SiTu even surpasses the performance of current state-of-the-art training-based "thinking with images" methods, highlighting the immense potential of test-time scaling for multimodal reasoning.

1 Introduction

Large Multimodal Models (LMMs) have advanced rapidly, enabling complex multimodal reasoning. A promising paradigm, "thinking with images" (Su et al., 2025b; Zheng et al., 2025; Zhang et al., 2025c; Zhu et al., 2025; Su et al., 2025a; Huang et al., 2025; Liu et al., 2025; Zhang et al., 2025b; Zhou et al., 2025; Zhang et al., 2025a; Wang et al., 2025a; Bai et al., 2025b; Ni et al., 2025b, has recently emerged, where LMMs generate and incorporate images as intermediate steps to enhance multimodal reasoning. This novel approach empowers models to iteratively refine their visual understanding, ultimately yielding more precise and reliable results. However, most current "thinking with images" techniques are training-based, relying on specialized datasets and intensive fine-tuning. This pipeline, while effective, presents several significant limitations. First, it imposes a considerable computational cost; for example, the high-performing method by Zhang et al. (2025d) required 1,200 GPU hours on 32 NVIDIA H800 GPUs. Second, the fine-tuning process can narrowly specialize a model's capabilities, limiting its versatility. An example is the approach by Ni et al. (2025), where fine-tuning on a point-prompting dataset restricted the model to this singular reasoning strategy. Lastly, fine-tuning risks catastrophic forgetting, may leading to the degradation of the model's fundamental perception and reasoning abilities developed during massive pre-training.

In contrast, the field of Large Language Models (LLMs) has seen a different promising paradigm: training-free test-time scaling (Muennighoff et al., 2025; Fu et al., 2025). Methods such as Chain-of-Thought (CoT) (Wei et al., 2022), Best-of-N sampling (Freitag & Al-Onaizan, 2017), and self-consistency (Wang et al.) dramatically improve reasoning accuracy without requiring additional training or external tools by just generating extra tokens at inference time. Their low-cost and high-transferability make them a compelling choice for a wide range of downstream tasks.

However, we find that these highly effective training-free test-time scaling methods unexpectedly fail when applied to LMMs, particularly on fine-grained visual understanding tasks (Wu & Xie, 2024;

055

057

058

060

061

062

063

064

065

066

067

068

069

070 071

072

073

074

075

076

077

078

079

081

082

083

084

085

086

087

880

090

091 092

093

096

098

099

100

101

102

103

104

105

106

107

Wang et al., 2024) that demand focused attention on specific visual subregions to answer detailed questions. As depicted in Figure 1, these methods only show slow, small-scale improvements, and Zero-shot CoT even exhibits performance degradation as it scales. This uniform underperformance reminds us to consider the fundamental differences between LMMs and LLMs and their respective tasks. Prior work has highlighted that, unlike text, which is a discrete input space, visual information exists in a continuous space, making the task of grounding continuous visual signals into discrete semantic tokens significantly more challenging for LMMs (Yang et al., 2024). Furthermore, inaccurate perception in multimodal tasks can lead to catastrophic and often unrecoverable errors in subsequent reasoning (Su et al., 2025b). We argue that the limitations of existing training-free methods in the multimodal domain arise from their failure to improve the fundamental perceptual abilities of LMMs and, at times, from their propensity to impair them. Another line of training-free methods attempts to enhance LMM perception through agent-like workflows (Li et al., 2025; Shen et al., 2024; Wang et al., 2025b). However, these approaches are with two main limitations: First, their fixed workflows require meticulous, task-specific design and prompt engineering to be effective across different LMMs. Second, their predetermined steps can be restrictive, sometimes even hindering a model's capabilities on unsuitable tasks and leading to performance degradation. Motivated by these observations, we pose the following question: Can we find a common training-free test-time scaling method for the multimodal domain through enhancing LMM perceptual ability?

Figure 1: Comparison of existing training-free testtime scaling methods on fine-grained visual understanding benchmark HR-Bench 8K. The x-axis represents the number of tokens generated, and the y-axis shows the accuracy change. "Naive Answer" represents a direct, unassisted LMM response.

To address this question, we propose SiTu, a simple training-free thinking-with-image framework that leverages an LMM's inherent uncertainty to achieve test-time scaling for multimodal domain, especially for challenging finegrained visual understanding tasks. The cornerstone of our approach is the discovery of a stable, entropy-based uncertainty estimation method that is native to LMMs. This method does not require multiple forward passes or a separate prediction set, yet it can reliably evaluate the confidence of an LMM's response to a given input. Furthermore, we found this uncertainty metric is not only effective for assessing the final answer but also for guiding optimal perceptual paths during the reasoning process. This finding makes it possible to integrate a wide variety of perceptual enhancement operations into a single, unified framework. We also observe a notable scaling phenomenon within our frame-

work: as the number and diversity of these perceptual operations increase, the overall multimodal reasoning ability of the LMM shows a consistent and stable improvement.

To validate our framework, we defined and implemented three simple perception actions categorized into visual highlighting and irrelevant information suppression. For Visual Highlighting, we utilize the LMM's grounding ability to pinpoint and emphasize key objects relevant to the question. For Irrelevant Information Suppression, we employ three distinct strategies to remove irrelevant visual regions, thereby focusing the model's attention on the most critical information. Our experiments on three fine-grained visual understanding datasets demonstrate that our simple SiTu method outperforms not only existing LMM perception enhancement methods but also all current open-source training-based "thinking with images" approaches. This remarkable result underscores the significant potential of training-free test-time scaling for LMMs, proving that enhanced performance can be unlocked directly from the models themselves without costly fine-tuning.

Our primary contributions are summarized as follows: 1) We propose SiTu, a simple but effective training-free paradigm for "thinking with images" that achieves significant performance gains without costly fine-tuning or architectural modifications. 2) We discover and validate a universal, LMM-native uncertainty metric, which serves as a robust guidance signal for dynamically selecting optimal perceptual enhancement paths. 3) Experiments demonstrate SiTu's state-of-the-art performance on fine-grained visual understanding benchmarks, where it outperforms all existing training-based "thinking with images" and training-free perception enhancement methods.

Simple Thinking-with-image via Uncertainty Guidance Question Perception Action Space / Multi-strategy Exploration **Uncertainty-guided Selection** Naive answer by LMM: 1 Draw Boxe The man is on the driver side u(A)=0.45 | rank 4Perception answers: Where is the position LMM 1: The man is in front of the car. of the man to the car? u(A)=0.31 | rank 2 2: The man is on the hood of the car. Answer u(A)=0.25 | rank 1 The man is on the (3) Grid Crop hood of the car 3: The man is on the driver side Uncertainty: 0.25 $u(A)=0.44 \mid rank \ 3$

Figure 2: **Overview of SiTu.** Our approach explores multiple perceptual actions through Perception Action Space and Multi-strategy Exploration. Then through Uncertainty-guided Selection, identifies and returns the optimal answer with lowest uncertainty metric (the starred answer in the figure).

2 Methods

2.1 PARADIGM FORMULATION

Thinking with images paradigm models multimodal reasoning as a sequential process where an LMM dynamically generates interleaved visual and textual intermediate outputs. At each reasoning step t, the evolving state history is captured by the sequence of previous multimodal outputs $S_t = (z_1, \ldots, z_{t-1})$. The next reasoning step, z_t , is generated by the LMM, conditioned on this history, the initial input image I, and the user query Q. Formally, we define the set of all possible intermediate states as the union of textual outputs $\mathcal{T}_{\text{text}}$ and visual artifacts \mathcal{I}_{vis} . The model then samples the next state z_t from its conditional probability distribution:

$$z_t \sim P(\cdot|S_t, I, Q; \Theta_{\text{LMM}}), \quad \text{where } z_t \in \mathcal{T}_{\text{text}} \cup \mathcal{I}_{\text{vis}}.$$
 (1)

2.2 Uncertainty-Guided Selection

The most critical component of our framework is the Uncertainty-Guided Selector, which evaluates the quality of reasoning paths and plays a crucial role in eliminating incorrect answers. To handle open-ended questions and compare confidence across different strategies, we quantify the uncertainty of a generated answer using token-based Shannon Entropy.

The uncertainty U(A) for an answer candidate A is the average entropy of its tokens. This is calculated as:

$$\mathcal{U}(A) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{H}(t_i) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{V} p_{i,j} \log p_{i,j},$$
 (2)

where t_i is the *i*-th token, N is the total number of tokens in the answer, and $p_{i,j}$ is the probability of the *j*-th token in the vocabulary for the *i*-th token position. A lower uncertainty score indicates a more confident and potentially more accurate answer. The final answer A_{final} is selected by choosing the strategy with the minimum uncertainty:

$$A_{\text{final}} = \arg\min_{A \in \mathcal{A}} \mathcal{U}(A), \tag{3}$$

Crucially, the token probabilities $p_{i,j}$ are derived from the same conditional probability distribution $P(\cdot|S_t,I,Q;\Theta_{\mathrm{LMM}})$ defined in Equation (1). This design ensures that our uncertainty metric is context-aware, incorporating the full multimodal history and input image. Thus, this method provides a promising way to evaluate the effectiveness of our perception-enhancing operations.

2.3 Multi-Strategy Exploration

To validate the importance of enhanced perception for test-time scaling method in multimodal tasks, our framework explores a set of diverse perception operation. Each reasoning path consists of a

sequence of perception operations followed by a final reasoning step. The core idea is that different paths, by enhancing perception in distinct ways, will provide the LMM with a wider range of possible candidates. We formally define a perception operation as a function $\pi \in \Pi$ that takes the current multimodal context—the image I and the query Q—and generates an enriched context for subsequent reasoning.

$$(I', D) = f_{\pi}(I, Q), \tag{4}$$

where I' is a new visual artifact (e.g., a cropped image or a highlighted region) and D is a textual description. A key advantage of our approach is that these operations do not rely on external expert models or specialized tools; instead, they leverage the intrinsic visual understanding of the LMM itself to create the new context.

A complete reasoning path is a sequence of these operations, culminating in a final reasoning step ρ that generates the answer. We represent a path as:

$$Path_i = \langle \pi_1, \pi_2, \dots, \pi_n, \rho \rangle, \tag{5}$$

The simplest path is the naive one, which consists only of the final reasoning step ρ , corresponding to a direct answer from the LMM without any perceptual manipulation. More complex paths involve one or more perception operations π_j to guide the LMM toward a better understanding before generating the final answer. Each path produces a candidate answer $A \in \mathcal{A}$, and the best answer A_{final} is then selected from the set \mathcal{A} using the uncertainty metric defined in the previous section.

2.4 Perception Action Space

Draw Boxes Strategy. This method uses the LMM to perform zero-shot object detection to implement visual highlighting. It prompts the LMM to identify a set of objects $O = \{o_1, o_2, \dots\}$ from the query Q and return their corresponding bounding box coordinates in a structured format. These coordinates are then used to render visual annotations directly on the image. We define a function $\Phi_{\mathbf{b}}: \mathcal{I} \times Q \to \mathcal{P}(\mathbf{b})$ that queries the LMM to extract a set of bounding boxes \mathbf{B} from an image I based on a query Q. Here, \mathcal{I} is the set of all images, Q is the set of all queries, and \mathbf{b} is the set of all bounding boxes. \mathcal{D} is a rendering function that overlays the boxes in \mathbf{B} onto the image I. The operation is then given by:

$$\mathbf{B} = \Phi_{\mathbf{b}}(I, Q) \tag{6}$$

$$I' = \mathcal{D}(I, \mathbf{B}) \tag{7}$$

Grounding Crop Strategy. This strategy effectively focuses the model's attention by cropping the image to a region of interest, with irrelevant information suppression as motivation. It prompts the LMM for bounding boxes of objects O mentioned in the query. It then computes a single, unified bounding box $\mathbf{b}_{\text{union}}$ that encompasses all found objects. The final image I' is a cropped version of the original, centered on this unified region. The operation is defined as:

$$\mathbf{b}_{\text{union}} = \cup_{\mathbf{b} \in \Phi_{\mathbf{b}}(I,Q)} \mathbf{b} \tag{8}$$

$$I' = \mathcal{C}(I, \mathbf{b}_{union}) \tag{9}$$

where the union operation \cup is performed over the bounding box coordinates, and \mathcal{C} is a function that performs the final image transformation.

Grid Crop Strategy. This method employs a simple search to locate and crop key objects by partitioning the image, also categorized as irrelevant information suppression. It bypasses traditional object detection by asking the LMM to judge the presence of a target object o within different image segments. Specifically, the image is partitioned into an even grid of segments. We define a function $\Phi_P: \mathcal{I} \times \mathcal{O} \to [0,1]$ that queries the LMM for the probability $P(o \in S)$ of an object o being in an image segment S. The process for a single object is to find the most probable segment S^* :

$$S^* = \arg\max_{S \in \mathcal{S}} \Phi_P(S, o) \tag{10}$$

where S is an even grid partition of the image I. The final image I' is a composite of the most probable regions found for all objects, effectively solving a localization problem through a simple, coarse-to-fine search process.

Table 1: Comparison of our SiTu with existing works on fine-grained visual understanding benchmarks. Open-source models with the best performance in each task are shown in **bold**, the second-best performance is underlined.

Method	V* Bench			HR-Bench 4K			HR-Bench 8K		
Method	Attribute	Spatial	Overall	FSP	FCP	Overall	FSP	FCP	Overall
Closed-source MLLMs									
O3 (Hurst et al., 2024)	-	-	95.7	-	-	-	-	-	-
GPT 40 (Hurst et al., 2024)	-	-	66.0	70.0	48.0	59.0	62.0	49.0	55.5
QWen-VL-max (Bai et al., 2023b)	-	-	-	65.0	52.0	58.5	54.0	51.0	52.5
		Open-sou	rce MLLM	S					
LLaVA-v1.6-7B (Liu et al., 2024b)	60.9	63.2	61.8	49.0	46.8	47.9	37.3	44.3	40.8
LLaVA-v1.6-13B (Liu et al., 2024b)	60.0	64.5	61.8	49.8	41.3	45.5	38.0	38.3	38.1
LLaVA-HR-X-7B (Luo et al., 2024)	51.3	64.5	56.5	57.8	46.3	52.0	42.0	41.3	41.6
InternVl-1.5-26B (Chen et al., 2024b)	-	-	-	69.5	51.8	60.6	69.3	48.5	57.9
Yi-VL-34B (Young et al., 2024)	-	-	-	46.0	42.8	44.4	39.5	38.5	39.0
Qwen2.5-VL-7B (Bai et al., 2025a)	73.9	67.1	71.2	85.2	52.2	68.8	78.8	51.8	65.3
	Trainir	ig-based T	hinking wi	th Imag	e				
SEAL (Wu & Xie, 2024)	74.8	76.3	75.4	-	-	-	-	-	-
Pixel Reasoner (Su et al., 2025a)	-	-	84.3	-	-	-	-	-	-
Chain-of-Focus (Zhang et al., 2025c)	-	-	88.0	-	-	-	-	-	-
Simple O3 (Wang et al., 2025c)	-	-	90.4	-	-	76.2	-	-	-
DeepEyes (Fu et al., 2025)	91.3	88.2	90.1	91.3	59.0	75.1	86.8	58.5	72.6
Thyme (Zhang et al., 2025d)	83.5	80.3	82.2	91.0	63.0	<u>77.0</u>	86.5	57.5	72.0
Training-free methods									
DyFo (Li et al., 2025)	80.0	82.9	81.2	-	-	-	-	-	-
RAP (Wang et al., 2025b)	80.0	84.2	81.7	80.3	42.3	61.3	81.8	45.3	63.5
ZoomEye (Shen et al., 2024)	93.9	85.5	90.6	84.3	55.0	69.6	88.5	50.0	69.3
SiTu (Our methods)	94.8	88.3	92.1	95.0	64.0	79.5	92.0	58.0	75.0
Δ (vs Qwen2.5-VL-7B)	+20.9	+20.9	+20.9	+9.8	+11.8	10.7	+13.2	+6.2	+9.7

3 EXPERIMENTS

3.1 SETUPS

Benchmarks and Metrics. To thoroughly evaluate our framework, we conduct experiments on fine-grained visual understanding and high-resolution multimodal datasets. The V* Bench and HR-Bench are used for fine-grained perception, challenging models with high-resolution images (average resolution of 2246×1582 and 7680, respectively). We evaluate their sub-tasks—attribute recognition, spatial relationship reasoning, Fine-grained Single-instance Perception (FSP), and Fine-grained Cross-instance Perception (FCP)—using accuracy. For practical, real-world scenarios, we also use a subset of the MME-RealWorld benchmark, reporting on 9 representative sub-tasks.

Implementation Details. For our experiments, we use Qwen2.5VL-7B as the foundational Large Multimodal Model (LMM). All evaluations are performed on a single NVIDIA A40 GPU (48GB). To simplify and accelerate our experiments, each path uses at most one perception operation. As a baseline, we compare our framework against various closed- and open-source LMMs, training-based thinking with image methods, and other LMM perception enhancement methods.

3.2 RESULTS ON FINE-GRAINED VISUAL UNDERSTANDING

High-resolution benchmarks like V^* Bench and HR-Bench present a significant challenge for VLMs due to their high image resolution and the small size of target objects. As shown in Table 1, our method, SiTu, achieves exceptional performance, surpassing both open-source models and complex, manually-engineered pipelines. On the V^* Bench, SiTu achieves an overall accuracy of 92.1%, a significant improvement over the previous state-of-the-art. Our strong performance in attribute recognition (94.8%) highlights the framework's ability to effectively leverage fine-grained visual details. For the even more challenging HR-Bench, SiTu achieves an impressive overall accuracy of 79.5% on the 4K subset and 75.0% on the 8K subset. These results are notably higher than those of other methods. Specifically, on the Fine-grained Single-instance Perception (FSP) task, SiTu scores 95.0% and 92.0% on the 4K and 8K subsets, respectively. Compared to our foundational model, Qwen2.5-VL-7B, SiTu demonstrates remarkable performance gains of +20.9% on V^* Bench and +10.7% on HR-Bench 4K. These results underscore the effectiveness of our approach in enhancing

271

272

273274275276277278279

280

281 282

283 284

285

286

287

288

289

290

291

292

293

294

295296297

298299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Table 2: Comparison of the SiTu against the baseline LMM on the MME-RealWorld benchmark. MO: Monitoring; AD: Autonomous Driving. The " $\Delta(\uparrow)$ " represents the performance gains of our RAP against the baselines.

Method	Method MO			AD				OCR				
	Calculate	Intention	Color	Location	Attention	Attribute	Visual	Relation	Advertise.	License	Address	Text
Qwen-2.5-VL-7B	20.7	13.3	32.9	29.0	37.8	19.7	60.2	28.3	87.3	88.5	87.7	85.2
-w/SiTu	30.3	25.5	51.7	36.0	48.8	21.9	64.2	30.2	88.6	90.6	89.1	85.7
$\Delta(\uparrow)$	+10.4	+12.2	+18.8	+7.0	+11.0	+2.2	+4.0	+1.9	+5.4	+2.1	+1.4	+0.5

perception for high-resolution images, without the need for complex pipeline design or extensive training.

3.3 RESULTS ON HIGH-RESOLUTION PRACTICAL SCENARIOS

As shown in Table 2, our proposed SiTu method significantly boosts the performance of the baseline Qwen-2.5-VL-7B model on the MME-RealWorld benchmark. We see the largest gains in the MO/Calculate (+10.4%), MO/Color (+12.2%), and MO/Location (+18.8%) sub-tasks, highlighting SiTu's effectiveness in improving a model's ability to perceive fine-grained details in complex, high-resolution scenes. However, the model's performance improvements were more limited in other areas, with smaller gains in the AD and OCR categories, such as AD/Visual Relation (+2.2%) and OCR/Text (+1.4%). We believe these results point to the inherent complexity of these tasks; for AD/Visual Relation, the challenge lies not just in perceiving multiple objects but in understanding their spatial relationships, while OCR/Text performance is often limited by the quality of the visual data itself. These findings show that while SiTu is highly effective at enhancing a model's high-resolution perception, there are still challenges in tasks that require complex reasoning or robust handling of degraded visual data.

3.4 ABLATION STUDIES

To understand the contribution of each component of our framework, we conduct a series of ablation studies focusing on two key aspects: the effectiveness of individual perception strategies and the impact of our uncertainty-guided selection mechanism.

Figure 3: Comparison of method accuracy with respect to the addition of perception actions. As the number and diversity of actions increase, the method's performance exhibits stable gains, which demonstrates a scaling phenomenon for finegrained visual understanding tasks on test-time. The x-axis represents different classes of subtasks, while the y-axis represents the accuracy percentage.

Perception Actions Scaling Phenomenon.To examine how the performance of SiTu evolves as more perception actions are incorporated, we start from the naive baseline and incrementally add the predefined actions: Draw Boxes, Grounding Crop, and Grid Crop. As shown in Figure 3, we observe a consistent performance improvement with the increase of actions, for both FSP and FCP. This demonstrates that the framework can effectively leverage action diversity to boost performance, while the cost of implementing such predefined perception operations is significantly lower than constructing extensive annotated datasets for training. Notably, in our action space, Grounding Crop and Grid Crop are functionally similar, both serving as irrelevant information suppression. However, the inclusion of Grid Crop does not lead to diminishing performance gains which is common in ensemble mechanism (Fu et al., 2025). We attribute this to the distinct implementation mechanisms of the two crop actions, and more importantly, it suggests that SiTu is still far

from reaching its upper limit in terms of supported actions diversity.

Individual Perception Actions. To determine whether our method's performance comes from specific perception actions or our uncertainty-guided mechanism, we compared the full SiTu method against the LMM naive answer and individual perception actions followed by naive answer. As shown in Table 3, perception actions can sometimes improve the original answer but may also introduce drawbacks. For instance, while Grounding Crop and Grid Crop improve FSP, they substantially reduce FCP, likely due to the crop operation tendency to discard visual information. Moreover, we observe a clear performance gap between the naive and single-action baselines and the full SiTu. This shows that the improvements of SiTu are not

Table 3: Ablation study of individual perception actions on HR-Bench 8K. Performance is measured by FSP, FCP, and Overall Accuracy. Full model performance is in bold.

Method	FSP	FCP	Overall		
Naive Answer	78.8	51.8	65.3		
- Draw Boxes	80.0	52.0	66.0		
- Grounding Crop	83.0	47.0	65.0		
- Grid Crop	84.0	49.0	66.5		
SiTu (Full Method)	92.0	58.0	75.0		

attributable to single perception action. Instead, it combines multiple strategies to achieve superior overall performance, validating the effectiveness of the proposed uncertainty-guided architecture.

Uncertainty-guided Metric. To evaluate the effectiveness of our uncertainty-guided selection metric, we compare our framework's performance with five alternative metric methods: random selection, majority voting, perplexity, min entropy, and max entropy. As shown in Table 4, all candidate metrics within the uncertainty-guided framework achieve a performance improvement over the Naive Answer baseline, which demonstrates the stability of our uncertainty-guided framework. Furthermore, the average entropy-based approach yields the best results, showcasing its superiority over other metrics. We believe this advantage stems from the inherent definition of entropy and the averaging operation's comprehensive consideration of the influence of different tokens. Notably, this advantage even surpasses perplexity, which is typically used as an optimization objective during training.

Table 4: Comparison of different uncertainty metric mechanisms on HR-Bench 8K. Performance is measured by FSP, FCP, and Overall Accuracy. Our method is in bold.

Selection Method	FSP	FCP	Overall
Random Selection	83.0	49.0	66.0
Majority Voting	91.0	51.0	71.0
Perplexity	92.0	55.0	73.5
Min Entropy	85.0	53.0	69.0
Max Entropy	91.0	53.0	72.0
Mean Entropy (SiTu)	92.0	58.0	75.0

3.4.1 CASE STUDIES

To provide a more intuitive understanding of our framework's perception actions, we visualize several representative cases in Figure 4. The first row shows a typical example of our Draw Boxes action. When a query involves objects with significant size differences, a cropping-based approach often leads to information loss. Draw Boxes, on the other hand, highlights key areas while preserving the surrounding visual context, helping the LMM reduce hallucinations. The second row demonstrates the effectiveness of Grounding Crop. This action efficiently removes irrelevant content by using grounding to identify and crop crucial visual information that may be scattered across different locations in a high-resolution image, thus avoiding the information loss associated with fixed cropping methods. The third row illustrates the Grid Crop action. While less flexible than Grounding Crop, it retains more background information and offers different perspectives. This can be complementary to the other methods by providing additional context. Collectively, these cases demonstrate that each of our framework's perception actions possesses unique advantages. Compared to a naive approach, these actions accurately seek out crucial visual information, enabling the LMM to focus and respond to queries with enhanced precision.

4 RELATED WORKS

Large Multimodal Models (LMMs). Significant strides have been made in the field of Large Multimodal Models (LMMs), demonstrating substantial proficiency in a wide array of vision-language tasks (Bai et al., 2025a; Chen et al., 2024a; Liu et al., 2024a; Li et al., 2024; Team et al., 2025). The rapid evolution of this domain is underscored by the emergence of powerful open-source models, such as LLaVA (Liu et al., 2024a), InternVL (Chen et al., 2024c), and Qwen-VL (Bai et al., 2023a), which have achieved performance levels comparable to their closed-source counterparts. These models typically operate by fusing visual representations from specialized encoders with linguistic

Figure 4: Visualization of Perception Actions. This case study is from the fine-grained visual understanding benchmark HR-Bench 8K. Each sample includes the original image and question, the intermediate image results from perception actions, and the final answer. A comparison with the naive answer effectively highlights the distinct advantages of each perception operation.

tokens, thereby enabling them to process and comprehend information across modalities (Liu et al., 2024c; Li et al., 2023). This capability has been pivotal in bridging the cognitive divide between visual perception and linguistic abstraction, allowing LMMs to perform sophisticated reasoning on a variety of multimodal challenges. Our work provides an orthogonal solution by demonstrating that MLLMs can be guided to actively explore and manipulate visual information in a training-free manner, thereby improving their perception and reasoning capabilities.

Thinking with Images. A new paradigm in multimodal reasoning moves beyond static inputs by enabling models to actively manipulate visual information. These approaches primarily rely on specialized training to instill dynamic perception capabilities directly into the model's weights. This is often achieved through supervised fine-tuning (SFT) (Wu & Xie, 2024; Wang et al., 2025c; Zhan et al., 2025) or reinforcement learning (RL) (Zheng et al., 2025; Su et al., 2025a; Zhang et al., 2025c;d). While these methods have shown promising results, they are fundamentally constrained by their high training costs and the limited generality of their learned operations. In stark contrast, our framework requires no training and is compatible with a wide range of perception operations, providing a flexible alternative that trades inference time for enhanced precision.

Training-free Test-time Scaling. Training-free test-time scaling methods enhance Large Language Model (LLM) reasoning at inference without requiring additional training. A prominent approach is self-consistency or parallel thinking, where multiple reasoning paths are generated and their final answers are aggregated, typically through majority voting (Wang et al., 2022). While this significantly boosts accuracy, it incurs a substantial computational cost, as generating numerous traces scales inference overhead linearly (Xue et al., 2023). However, this approach has limitations; its performance often plateaus or degrades as the number of traces increases. The core issue is that standard majority voting treats all traces equally, failing to account for quality variations. When low-quality traces dominate, the final answer can be suboptimal. To mitigate this, recent work has explored methods to assess individual trace quality. While effective for LLMs, these methods lack direct application to Large Multimodal Models (LMMs). Our experiments show that directly transferring these techniques to LMMs presents significant challenges and leads to a notable performance degradation.

Training-free LMM Perception Enhancement

Training-free methods for LMM perception enhancement leverage a model's existing capabilities to improve its processing of visual information without the need for additional fine-tuning or architectural changes. These approaches often employ agent-like workflows to guide the model's reasoning. For instance, methods like Dyfo (Li et al., 2025) and Zoom Eye (Shen et al., 2024) are inspired by human cognitive processes like visual search and dynamic zooming. Dyfo uses a Monte Carlo Tree Search to guide the model's focus to key visual regions, while Zoom Eye treats an image as a hierarchical tree to enable "vision-level reasoning." Other methods, such as Retrieval-Augmented Perception (RAP) (Wang et al., 2025b), adapt techniques from large language models, like Retrieval-Augmented Generation (RAG), to retrieve and fuse relevant image crops for better high-resolution perception. Despite their ingenuity, these agent-like methods typically have two main limitations. First, their fixed workflows require meticulous and task-specific design, making them sensitive to different LMM architectures and prompt engineering. Second, their predetermined steps can be restrictive, potentially hindering a model's natural capabilities on tasks where the defined workflow is unsuitable, and sometimes even leading to performance degradation.

5 Conclusion

In this work, we present SiTu, a novel training-free paradigm for "thinking with images" that overcomes the limitations of current training-based approaches. While existing methods rely on costly fine-tuning, which can cause catastrophic forgetting and narrow a model's capabilities, our approach leverages an LMM's inherent, untapped potential at test time. We address a core challenge for LMM scaling: enhancing perceptual ability for fine-grained visual understanding. By discovering a universal, LMM-native uncertainty metric, we dynamically guide the model through optimal perception paths, integrating diverse actions from visual highlighting to irrelevant information suppression. On several fine-grained benchmarks, SiTu not only outperforms existing training-free methods but also surpasses all open-source training-based "thinking with images" approaches, proving that enhanced performance can be unlocked without expensive fine-tuning.

Limitations and Future Work. While our proposed framework, SiTu, demonstrates significant potential, we acknowledge several limitations that also present exciting avenues for future research. First, the current action space of SiTu is not comprehensive. Its success has only been validated on fine-grained visual understanding tasks. It remains an open question whether this uncertainty-guided approach can be generalized to a broader range of multimodal tasks. This will require designing appropriate and effective actions tailored to different problem domains. Second, the perceptual actions in this work were manually designed. This approach, while effective, inherently limits the full potential of the LMM. Future work could explore automated methods to discover and optimize suitable perception actions for specific tasks, which could lead to further performance gains and reduce the computational cost associated with action execution. Finally, our SiTu framework is primarily a zero-shot, training-free test-time scaling method. An interesting direction would be to investigate whether providing a small number of in-context examples, similar to few-shot learning, could be used to obtain even greater performance returns. This would explore a hybrid approach that leverages the best of both training-free and data-driven methods.

REFERENCES

- Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint, 2023a. URL https://arxiv.org/abs/2309.16609.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint*, 2023b. URL https://arxiv.org/abs/2308.12966.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025a.
 - Tianyi Bai, Zengjie Hu, Fupeng Sun, Jiantao Qiu, Yizhen Jiang, Guangxin He, Bohan Zeng, Conghui He, Binhang Yuan, and Wentao Zhang. Multi-step visual reasoning with visual tokens scaling and verification. *arXiv preprint arXiv:2506.07235*, 2025b.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024a.
- Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites. *arXiv* preprint, 2024b. URL https://arxiv.org/abs/2404.16821.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. pp. 24185–24198, 2024c.
- Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. *ACL* 2017, pp. 56, 2017.
- Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv* preprint arXiv:2508.15260, 2025.
- Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv preprint arXiv:2503.06749, 2025.
- Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2410.21276.
- Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2408.03326.
- Geng Li, Jinglin Xu, Yunzhen Zhao, and Yuxin Peng. Dyfo: A training-free dynamic focus visual search for enhancing lmms in fine-grained visual understanding, 2025. URL https://arxiv.org/abs/2504.14920.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *ICML*, 2023. URL https://proceedings.mlr.press/v202/li23q.html.
- Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In CVPR, 2024a. URL https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.html.

- Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, 2024b. URL https://llava-vl.github.io/blog/2024-01-30-llava-next/.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024c.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
 - Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, and Rongrong Ji. Feast your eyes: Mixture-of-resolution adaptation for multimodal large language models. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2403.03003.
 - Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
 - Minheng Ni, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Wangmeng Zuo, and Lijuan Wang. Point-rft: Improving multimodal reasoning with visually grounded reinforcement finetuning. arXiv preprint arXiv:2505.19702, 2025.
 - Haozhan Shen, Kangjia Zhao, Tiancheng Zhao, Ruochen Xu, Zilun Zhang, Mingwei Zhu, and Jianwei Yin. Zoomeye: Enhancing multimodal llms with human-like zooming capabilities through tree-based image exploration. *arXiv* preprint arXiv:2411.16044, 2024.
 - Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: Incentivizing pixel-space reasoning with curiosity-driven reinforcement learning. *arXiv* preprint *arXiv*:2505.15966, 2025a.
 - Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li, Kaide Zeng, Zhengyuan Yang, et al. Thinking with images for multimodal reasoning: Foundations, methods, and future frontiers. *arXiv* preprint arXiv:2506.23918, 2025b.
 - Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
 - Qiuchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen, Lin Chen, Shihang Wang, Pengjun Xie, Fei Huang, and Feng Zhao. Vrag-rl: Empower vision-perception-based rag for visually rich information understanding via iterative reasoning with reinforcement learning. *arXiv* preprint *arXiv*:2505.22019, 2025a.
 - Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, and Dacheng Tao. Divide, conquer and combine: A training-free framework for high-resolution image perception in multimodal large language models. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2408.15556.
 - Wenbin Wang, Yongcheng Jing, Liang Ding, Yingjie Wang, Li Shen, Yong Luo, Bo Du, and Dacheng Tao. Retrieval-augmented perception: High-resolution image perception meets visual rag. *arXiv* preprint arXiv:2503.01222, 2025b.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv* preprint arXiv:2203.11171, 2022.
 - Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei. Simple o3: Towards interleaved vision-language reasoning. *arXiv preprint arXiv:2508.12109*, 2025c.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In CVPR, 2024. URL https://openaccess.thecvf.com/content/CVPR2024/html/Wu_V_Guided_Visual_Search_as_a_Core_Mechanism_in_Multimodal_CVPR_2024_paper.html.
 - Mingfeng Xue, Dayiheng Liu, Wenqiang Lei, Xingzhang Ren, Baosong Yang, Jun Xie, Yidan Zhang, Dezhong Peng, and Jiancheng Lv. Dynamic voting for efficient reasoning in large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 3085–3104, 2023.
 - Yixin Yang, Zheng Li, Qingxiu Dong, Heming Xia, and Zhifang Sui. Can large multimodal models uncover deep semantics behind images? In *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 1898–1912, 2024.
 - Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2403.04652.
 - Yufei Zhan, Hongyin Zhao, Yousong Zhu, Shurong Zheng, Fan Yang, Ming Tang, and Jinqiao Wang. Understand, think, and answer: Advancing visual reasoning with large multimodal models. *arXiv* preprint arXiv:2505.20753, 2025.
 - Guanghao Zhang, Tao Zhong, Yan Xia, Zhelun Yu, Haoyuan Li, Wanggui He, Fangxun Shu, Mushui Liu, Dong She, Yi Wang, et al. Cmmcot: Enhancing complex multi-image comprehension via multi-modal chain-of-thought and memory augmentation. *arXiv preprint arXiv:2503.05255*, 2025a.
 - Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.
 - Xintong Zhang, Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaowen Zhang, Yang Liu, Tao Yuan, Yuwei Wu, Yunde Jia, Song-Chun Zhu, et al. Chain-of-focus: Adaptive visual search and zooming for multimodal reasoning via rl. *arXiv preprint arXiv:2505.15436*, 2025c.
 - Yi-Fan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu Jiang, Changyi Liu, Tianke Zhang, et al. Thyme: Think beyond images. *arXiv preprint arXiv:2508.11630*, 2025d.
 - Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. *arXiv preprint arXiv:2505.14362*, 2025.
 - Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-zero's" aha moment" in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*, 2025.
 - Muzhi Zhu, Hao Zhong, Canyu Zhao, Zongze Du, Zheng Huang, Mingyu Liu, Hao Chen, Cheng Zou, Jingdong Chen, Ming Yang, et al. Active-o3: Empowering multimodal large language models with active perception via grpo. *arXiv preprint arXiv:2505.21457*, 2025.

A APPENDIX

Declaration of LLM: The content and initial draft of this paper were manually authored. We employed Gemini for text polishing and for minor formatting adjustments to some LaTeX tables.