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Abstract

Discovering object-centric representations from images has the potential to greatly
improve the robustness, sample efficiency and interpretability of machine learning
algorithms. Current works on multi-object images typically follow a generative
approach that optimizes for input reconstruction and fail to scale to real-world
datasets despite significant increases in model capacity. We address this limitation
by proposing a novel method that leverages feature connectivity to cluster neighbor-
ing pixels likely to belong to the same object. We further design two object-centric
regularization terms to refine object representations in the latent space, enabling our
approach to scale to complex real-world images. Experimental results on simulated,
real-world, complex texture and common object images demonstrate a substan-
tial improvement in the quality of discovered objects compared to state-of-the-art
methods, as well as the sample efficiency and generalizability of our approach. We
also show that the discovered object-centric representations can accurately predict
key object properties in downstream tasks, highlighting the potential of our method
to advance the field of multi-object representation learning.

1 Introduction

Human understanding of the world relies on objects as compositional building blocks [24], and
emulating this through object-centric representations can improve robustness, sample efficiency,
generalization to out-of-domain distributions, and interpretability of machine learning algorithms
[18, 9]. Recent work utilizes a generative approach, optimizing pixel-based reconstruction to learn
object-centric representations [8, 17, 33, 4, 35, 12, 13, 11, 45, 46, 51]. This approach has limitations
as it prioritizes pixel accuracy over object discovery and functional feature extraction [30, 11]. This
may lead to the failure of discovering objects [35], or obtaining useful object features, such as position,
shape, or boundaries between overlapping objects [23]. Additionally, pixel-based reconstruction
tends to waste model capacity on less important visual features, such as complex backgrounds [25],
making scaling these methods to real-world images a challenge.

To address the fundamental limitations of pixel-based reconstruction, we propose a framework that
leverages feature connectivity and design two object-centric regularization terms to directly refine
object representations, ensuring sufficient separation and high disentanglement between dimensions.
Our method utilizes visual connectedness principles [38], where similar pixels that are connected
should belong to the same object, to guide object discovery. The two regularization terms promote
disentangled representations and prevent sub-optimal clustering.

We demonstrate that our approach outperforms state-of-the-art methods in discovering multiple
objects from simulated, real-world, complex texture and common object images in a fine-grained
manner without supervision. The proposed solution attains sample efficiency and is generalizable
to out-of-domain images. The learned object representations also accurately predict key object
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properties in downstream tasks. Our contributions include: (1) a framework that leverages feature
connectivity for fine-grained object discovery, (2) introduction of object-centric regularization terms
as an alternative to pixel-based reconstruction loss, (3) experimental validation of our solution’s
superior performance, and (4) demonstration of the usefulness of discovered object representations in
downstream tasks.

2 Related Work

Numerous works have demonstrated remarkable success in segmenting real-world images. Most
of these works focus on semantic segmentation and object detection by utilizing supervised signals
[19, 6]. In contrast, unsupervised approaches like SLIC [1] employ a modified k-means algorithm to
cluster pixels into superpixels, similar to Felzenszwalb’s algorithm [15] that relies on hand-crafted
features for clustering. However, these methods do not focus on learning useful representations for
the segmented components.

Various unsupervised methods for learning object-centric representations have been proposed, and
can be categorized into three main approaches: spatial attention, sequential attention, and iterative
attention. Spatial attention approach utilizes spatial transformer networks [21] to crop out rectangular
regions from an image and extract object attributes such as position and scale [14, 31, 8, 33]. They
rely on a fixed-size sampling grid which may not be suitable for scenes with varying object sizes, and
may compromise training when the sampling grid does not overlap with any object.

The sequential attention approach uses RNN-based models such as MONet [5] and GENESIS [12] to
sequentially attend to different regions in an image. These methods employ a deterministic network
to perform the attention process, which allows them to capture and represent objects in the scene.
However, these methods may neglect smaller objects as they tend to produce a weaker signal during
the attention process. This can lead to incomplete or biased representations of scenes with objects
of varying sizes. To overcome this, GENESIS-V2 [13] uses a stochastic stick-breaking process to
perform attention randomly.

In the iterative attention approach, a set of object representations is randomly initialized and then
iteratively refined to bind these objects to different regions of an image. IODINE [17] is a model
that can discover objects with disentangled representations. However, it requires long training times
and many samples. Slot Attention [35] introduces competition among the object representations by
utilizing cross-attention along the object dimension. While this method is fast, versatile and can be
extended to handle videos [29], it may fail to discover objects when the training set is diverse, and
the resulting representations are highly entangled.

EfficientMORL [11], SLATE [45], SysBinder [46] and BO-QSA [22] are recent developments in
the iterative attention approach aimed at addressing some limitations of earlier methods like Slot
Attention. EfficientMORL presents an hierarchical variational autoencoder and a lightweight iterative
refinement network to increase efficiency without sacrificing representation quality. SLATE increases
the non-linear interaction between the slots in Slot Attention with an autoregressive decoder that is
conditioned on the slots, resulting in improved reconstructions and object-centric representations.
SysBinder enhances the slots of Slot Attention with factor representations called block-slots, which
provides within-slot disentanglement between learned factors. BO-QSA initializes the slots of Slot
Attention as learnable embeddings instead of sampling from a Gaussian distribution and uses bi-level
optimization, resulting in more stable training. Despite the advancements, one drawback remains: the
number of clusters are fixed a priori which limits the applicability in real-world scenarios where the
number of objects or clusters is not known beforehand.

3 Methodology

Our proposed method OC-Net is designed to extract objects in an image without relying on labeled
data or specifying the number of objects present in the image. By not requiring the number of objects
to be specified beforehand, OC-Net can generalize better to real-world scenes with varying numbers
of objects and handle more complex scenarios.

Figure 1 shows the main components of OC-Net. The main idea behind OC-Net is to learn pixel
embeddings that can be clustered to discover objects and their respective object masks and object
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Figure 1: Overview of OC-Net.

representations. This is achieved by passing the input image through a 1 ⇥ 1 convolutional layer
to obtain a set of N pixel embeddings P = {p1, . . . ,pN} of D dimensions each. We leverage
on feature connectivity and iteratively cluster the embeddings of neighbouring pixels based on the
likelihood that they belong to the same object. The output is a set of objects O = {O1, . . . , OM}

where each object is a set of pixel embeddings. We derive the object mask mj of each object by
setting the pixel corresponding to the embedding in Oj :

mj [i] =

⇢
1 if pi 2 Oj

0 otherwise
(1)

where mj [i] denotes the ith pixel value and i 2 {1, . . . , N}.

With this, we obtain the matrix of object representations Z = [z1, . . . , zM ] where each zj is the sum
of extracted mask information and the average of the pixel embeddings in Oj :

zj [d] = (A ·mj)[d] +
1

|Oj |

X

pi2Oj

pi[d] (2)

where zj [d] denotes the dth value of vector zj , d 2 {1, . . . , D}, A is the mask transformation matrix.

3.1 Object Discovery

The object discovery process iteratively clusters the pixel embeddings based on their feature connec-
tivity and similarity. LayerNorm [2] is applied to normalize all pixel embeddings, and positional
encodings are added to the pixel embeddings. The neighbors of a pixel embedding p are the set of
embeddings of the 8 neighbours in the input image. We use Dijkstra’s algorithm to compute the
shortest distance of a sampled pixel embedding to all other embeddings as follows.

Let U be the set of pixel embeddings that have not been assigned to an object yet. We uniformly
sample a pixel embedding pi 2 U . The distance from pi to itself is set to zero, and the distance
to all the other pixels is set to infinity. We select an unvisited pixel embedding pm that has the
minimum distance to pi. Let pk be the embedding of a neighbour of the pixel corresponding to
pm. We compute the distance between a pair of neighbouring pixels as the similarity between their
corresponding embeddings given by:

sim(pm,pk) =

vuut
DX

d=1

(pm[d]� pk[d])2 (3)
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where pm[d] denotes the dth value of the embedding pm.

If the distance between pi and pk is shorter through pm, we update the shortest distance accordingly.
This ensures that we consider the most efficient path between pixel embeddings, leading to better
object discovery. We mark pm as visited and consider it to be part of the same object as pi according
to a threshold. The process is repeated for the next unvisited pixel embedding until all pixels have
been visited.

3.2 Object-Centric Regularization

We design two object-centric regularization terms Lsep and Lent to improve the quality of the learned
object representations for downstream generalization and object discovery. Given the matrix of object
representations Z = [z1, . . . , zM ] corresponding to the object training samples {(xi,yi)}Mi=1, we
quantify downstream generalization performance with the prediction error:

�Z =
1

M

MX

i=1

||W · zi � yi|| (4)

where W is the minimum-norm solution of the downstream predictor.

Since labels yi are unknown in the unsupervised setting, �Z cannot be directly minimized. Theorem
3.1 below shows that we can minimize an upper bound of �Z by using the projection matrix PZ.
Proof of the theorem is provided in the supplementary material.
Theorem 3.1. Let Y be the matrix of training sample labels and PZ be the projection matrix of Z:

PZ = I� Z>(⌃Z)
†Z (5)

where I is the identity matrix, (.)† is the pseudoinverse and ⌃Z = ZZ> is the unnormalized
covariance matrix of Z. Let ||.||F be the Frobenius norm. Then, the following relation holds:

�Z  ||PZ||F ||Y||F (6)

Since ||Y||F in Equation 6 is unknown but fixed, we can minimize �Z by minimizing ||PZ||F .
From the definition of PZ in Equation 5, ||PZ||F is minimized when the rank of ⌃Z is maximized
[44, 3]. We achieve this by maximizing the diagonal entries of ⌃Z with a separation term Lsep

while simultaneously minimizing its off-diagonal entries with an entanglement term Lent, in effect
regularizing ⌃Z to be a diagonal matrix with a maximum number of nonzero entries.

Maximizing the diagonal entries of ⌃Z via Lsep consequently maximizes the distance between object
representations in the latent space. This encourages the model to learn distinct and non-overlapping
object representations. Expanding the representation space also ensures that objects with varying
features and properties can be accurately represented and distinguished from one another, enhancing
both downstream generalization and fine-grained object discovery. We define Lsep as:

Lsep =
1

D

DX

d=1

max(0, 1�
p
�d + ⌧) (7)

where �d is the variance of the dth dimension across the vectors z1, · · · , zM and ⌧ is a small constant
to maintain numerical stability.

The entanglement term Lent minimizes the off-diagonal entries of ⌃Z and consequently minimizes
the correlation between dimensions in the latent space Z, thereby achieves more disentangled object
representations. Such representations are easier to manipulate and analyze, as each dimension
captures a distinct object property, such as position, scale, or color. Lent is defined as follows:

Lent =
1

D ⇥ (M � 1)

X

i 6=j

⌃Z[i, j] (8)

4 Performance Study

We conduct experiments to evaluate the performance of OC-Net in terms of quality, sample efficiency
and generalizability. We use a diverse range of datasets to demonstrate its effectiveness across various
scenarios:
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Table 1: Summary of dataset characteristics

Dataset Type Ground Truth Image Size # Samples

Multi-dSprites Simulated Pixel Mask 64⇥ 64 1M
Tetrominoes-NM Simulated Pixel Mask 35⇥ 35 1M

SVHN Real-World Bounding Box Varied 530K
IDRiD Real-World Pixel Mask 4288⇥ 2848 81

CLEVRTEX Complex Texture Pixel Mask 128⇥ 128 50K
CLEVRTEX-OOD Complex Texture Pixel Mask 128⇥ 128 10K

Flowers Common Object Pixel Mask 128⇥ 128 7K
Birds Common Object Pixel Mask 128⇥ 128 11K

COCO Common Object Pixel Mask 128⇥ 128 12K

1. Simulated datasets Multi-dSprites [23] and Tetrominoes-NM. The former consists of multi-
ple oval, heart or square-shaped sprites with some occlusions, while the latter is a subset
of the original Tetrominoes dataset [23] where images whose ground truth segmentation
requires knowledge of the object shapes are filtered out.

2. Real-world multi-object datasets SVHN [36] and IDRiD [40]. SVHN consists of street
view images of house numbers while IDRiD is the Indian Diabetic Retinopathy Image
Segmentation Dataset.

3. Complex texture datasets CLEVRTEX [26] and CLEVRTEX-OOD. CLEVRTEX features
scenes with diverse shapes, textures and photo-mapped materials while CLEVRTEX-OOD
is the CLEVRTEX out-of-distrbution test set with 25 new materials and 4 new shapes.

4. Common object datasets Flowers [37], Birds [48] and COCO [50]. The Flowers dataset
features 17 diverse flower classes with large variations viewpoint, scale, illumination and
background. Birds is the most widely-used CUB-200-2011 dataset for fine-grained visual
categorization. COCO is the variant of the Microsoft Common Objects in Context dataset
used for large-scale object segmentation [32].

Table 1 shows the dataset characteristics. Following [35, 11], we use the first 60K samples in Multi-
dSprites, Tetrominoes-NM and SVHN for training and hold out the next 320 samples for testing. For
IDRiD, we split this dataset into 54 images for training and 27 images for testing. For CLEVRTEX,
we use the first 40K samples for training and last 5K samples for testing. For CLEVRTEX-OOD,
we use 10K samples for testing. For Flowers, we use the first 6K samples for training and last 1K
samples for testing. For Birds, we use the first 10K samples for training and last 1K samples for
testing. For COCO, we use the first 10K samples for training and last 2K samples for testing.

We compare OC-Net with SLIC [1], Felzenszwalb [11], Slot Attention [35], EfficientMORL [11],
GENESIS-V2 [13], SLATE [45], SysBinder [46] and BO-QSA [22]. We train OC-Net for 1000
iterations with a batch size of 64 using Adam [28] with a learning rate of 1⇥ 10�3. We carried out an
initial experiment to choose the clustering threshold. The results show that the value can range from
0.2 to 2.0 without affecting the performance of OC-Net. As such, we set the threshold to ✏ = 0.7 so
that two pixels will belong to the same object if their normalized feature similarity is more than 50%.
If a pixel is assigned to multiple objects, we assign it to the mask of the first object in that list and
ignore its membership in other objects. Training on 64-by-64 images from Multi-dSprites on a single
V100 GPU with 32GB of RAM takes about 10 minutes.

For all methods, we set the maximum number of foreground objects to 6 and 4 for Multi-dSprites
and Tetrominoes respectively. Training is carried out for 300,000 iterations with a batch size of 64,
using the Adam optimizer with a base learning rate of 4⇥ 10�4. We set the size of the latent space
to be D = 64 for all models. For SVHN and COCO, the number of objects is set to 6. For IDRiD,
the number of objects is set to 20 and we train them for 100,000 iterations. For CLEVRTEX and
CLEVRTEX-OOD, the number of objects is set to 11. For Flowers and Birds, the number of objects
is set to 2.

We use the Adjusted Rand Index (ARI) to measure the quality of objects discovered [20]. The ARI is
a measure of similarity between two data clusterings that takes into account the permutation-invariant
nature of the predicted segmentation masks and their corresponding ground-truth masks. We also
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use the Dice similarity coefficient, along with the Intersection-over-Union (IoU) between the best
matching object masks X and Y as follows:

Dice(X,Y ) =
2|X \ Y |

|X|+ |Y |
; IoU(X,Y ) =

|X \ Y |

|X [ Y |
(9)

where X the set of object pixels extracted and Y is the set of annotated object pixels in the ground
truth. We compute the mean Dice and the mean IoU scores, denoted as mDice and mIoU respectively,
by averaging the individual Dice and IoU scores across all matches. For the complex textures dataset,
background discovery is included in the computation of the scores.

4.1 Experiments on Quality of Discovered Objects

We first evaluate the ability of OC-Net to discover objects from images with multiple objects. Table
2(a) shows the average ARI, mDice and mIoU scores based on the discovered foreground objects in
the simulated datasets after 3 runs. We observe that OC-Net outperforms all other methods by a large
margin in Multi-dSprites, and even achieves perfect score for all Tetrominoes-NM test samples.

Table 2(b) shows the results on the real-world multi-object image datasets. For SVHN, OC-Net
outperforms all methods, even when the ground truth is provided in the form of bounding boxes.
This implies that we need to expand the discovered object masks into their corresponding bounding
boxes which are often rough fits, and is the reason for the close difference in mDice and mIoU
scores between OC-Net and BO-QSA. For IDRiD, which contains multiple small objects, OC-Net
significantly improves the ARI scores and more than doubles the mDice and mIoU scores over all
methods, demonstrating its robustness in challenging object discovery tasks.

Table 2(c) shows the results on CLEVRTEX and CLEVRTEX-OOD, which contains complex textured
objects and backgrounds. Here, OC-Net again shows superior performance in all metrics, illustrating
its capability to effectively segment complex objects. Although a general decrease in performance
is observed across all methods in the CLEVRTEX-OOD test set, likely due to a change in data
distribution, OC-Net’s performance drop is slight and it still outperforms the closest baseline.

Finally, Table 2(d) shows the results on Flowers, Birds and COCO common object datasets. Here,
OC-Net again shows superior performance in all metrics, illustrating its capability to effectively
segment commonly seen natural objects. Notably, OC-Net outperforms all other methods by a large
margin in COCO, demonstrating its robustness in handling objects with highly varied appearances.

Figure 2 visualizes the objects discovered by the various methods for sample images. OC-Net is
able to identify large and small objects in Multi-dSprites even when these objects are significantly
occluded. Moreover, in the Tetrominoes-NM dataset, despite the presence of shadow effects that
often confuse existing methods, OC-Net still manages to separate each tile. For SVHN, only OC-Net
is able to segment the character objects out in a fine-grained manner. EfficientMORL tend to group
all the characters together while the other methods segment the objects in a coarse-grained manner.
For IDRiD, OC-Net is able to segment out the optic disc and small lesions which other methods fail
to discover. For CLEVRTEX and CLEVRTEX-OOD, OC-Net is able to segment out the various
objects from the complex-textured backgrounds in a fine-grained manner. Finally, for Flowers, Birds,
and COCO, only OC-Net is able to segment out the complex-shaped and multi-part objects from the
backgrounds in a fine-grained manner.

4.2 Experiments on Sample Efficiency

One obstacle to unsupervised object discovery is the availability of a sufficiently large number of
suitable training samples. Sample efficiency refers to a model’s ability to learn effectively from a
relatively small number of examples. Figure 3 shows the mIoU scores as we decrease the number of
training samples in Multi-dSprites, SVHN and CLEVRTEX. OC-Net is able to achieve near-optimal
performance even with a significantly smaller training set (1,000 samples) compared to all the other
methods. The high sample efficiency of OC-Net reduces the need for large, potentially costly or
difficult-to-obtain datasets. This makes OC-Net a more practical solution for real-world applications.
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Table 2: Evaluation scores for the discovered foreground objects.

(a) Simulated datasets

Multi-dSprites Tetrominoes-NM

Method ARI mDice mIoU ARI mDice mIoU

SLIC 67.9±0.0 78.5±0.0 70.8±0.0 53.0±0.0 66.1±0.0 53.6±0.0
Felzenszwalb 97.4±0.0 98.6±0.0 95.0±0.0 95.0±0.0 98.0±0.0 96.9±0.0
Slot Attention 91.3±0.3 45.7±0.7 32.6±0.6 99.8±0.1 41.5±0.8 26.6±0.7

EfficientMORL 85.2±0.5 30.1±1.3 19.5±1.1 99.0±1.7 42.5±2.3 27.6±1.9
GENESIS-V2 85.0±1.3 81.5±1.9 72.2±1.4 97.6±0.5 47.1±1.1 31.0±0.8

SLATE 89.5±1.2 82.5±0.9 72.6±1.1 84.5±1.5 57.8±0.9 44.3±0.8
SysBinder 72.3±1.2 30.6±1.1 19.6±1.0 90.7±1.7 41.8±1.9 27.0±1.7
BO-QSA 90.4±1.1 91.6±1.1 88.0±1.2 99.3±0.3 40.9±1.4 25.8±1.2
OC-Net 99.8±0.0 99.5±0.0 99.1±0.0 100.0±0.0 100.0±0.0 100.0±0.0

(b) Real-world datasets

SVHN IDRiD

Method ARI mDice mIoU ARI mDice mIoU

SLIC 5.3±0.0 50.1±0.0 34.5±0.0 32.2±0.0 12.7±0.0 8.8±0.0
Felzenszwalb 31.7±0.0 51.6±0.0 39.8±0.0 14.7±0.0 19.0±0.0 15.4±0.0
Slot Attention 38.9±1.5 51.7±1.8 36.7±1.7 28.7±1.1 8.6±1.7 5.0±1.6

EfficientMORL 32.2±1.7 49.2±2.0 34.0±1.8 16.8±1.5 11.1±2.7 7.0±1.8
GENESIS-V2 28.6±1.4 60.8±1.5 45.9±1.4 18.3±1.6 8.8±1.9 5.4±1.6

SLATE 21.2±1.2 57.0±1.3 41.7±1.5 35.6±2.1 8.1±1.2 4.7±1.8
SysBinder 15.8±1.6 49.5±1.9 34.1±1.8 25.2±1.3 16.6±1.7 11.1±1.8
BO-QSA 24.3±1.2 62.0±1.6 48.3±1.3 27.7±2.0 7.0±1.9 4.5±1.7
OC-Net 39.7±0.1 64.6±0.1 49.9±0.1 39.0±0.4 38.1±0.2 31.2±0.2

(c) Complex textures dataset

CLEVRTEX CLEVRTEX-OOD

Method ARI mDice mIoU ARI mDice mIoU

SLIC 27.4±0.0 20.0±0.0 13.0±0.0 25.8±0.0 21.7±0.0 14.0±0.0
Felzenszwalb 57.3±0.0 33.6±0.0 26.8±0.0 44.6±0.0 29.6±0.0 23.4±0.0
Slot Attention 58.6±1.6 35.0±1.6 26.7±1.5 51.3±1.9 34.1±1.4 25.1±1.3

EfficientMORL 59.5±1.7 37.7±1.5 31.1±1.4 53.9±2.5 32.2±2.4 25.3±2.8
GENESIS-V2 65.6±1.8 36.9±1.4 30.4±1.4 67.6±1.6 34.2±1.5 27.6±1.9

SLATE 57.5±1.8 33.3±1.6 24.4±1.5 56.6±1.3 34.7±2.1 25.3±1.8
SysBinder 61.4±1.7 31.3±1.5 23.1±1.4 61.0±2.4 32.3±2.0 23.8±1.8
BO-QSA 70.9±1.9 42.9±1.8 34.7±1.7 66.1±1.3 42.8±1.4 33.9±1.3
OC-Net 70.7±0.9 45.1±0.9 37.5±0.7 69.8±0.8 43.5±0.7 35.0±0.6

(d) Common objects datasets

Flowers Birds COCO

Method Dice IoU Dice IoU mDice mIoU

SLIC 30.5±0.0 18.4±0.0 33.1±0.0 20.3±0.0 36.2±0.0 24.4±0.0
Felzenszwalb 43.7±0.0 30.4±0.0 34.3±0.0 23.0±0.0 36.6±0.0 27.1±0.0
Slot Attention 43.0±1.5 28.6±1.2 42.9±2.0 27.9±1.8 24.8±2.0 15.0±1.7

EfficientMORL 59.5±2.1 45.2±2.2 44.0±1.9 30.8±1.8 28.4±2.3 18.9±2.1
GENESIS-V2 63.7±2.2 50.2±2.2 41.4±1.7 27.7±1.5 25.1±2.1 16.1±1.7

SLATE 55.6±1.2 40.8±1.8 39.5±1.5 25.9±1.8 37.0±1.9 24.4±1.8
SysBinder 45.0±1.8 30.8±1.6 33.7±1.3 21.1±2.0 18.4±1.6 10.7±1.4
BO-QSA 65.8±1.9 51.7±1.9 44.6±1.7 30.3±1.5 34.9±1.1 23.6±0.9
OC-Net 67.2±0.2 54.4±0.2 47.8±0.2 33.5±0.2 48.2±0.2 35.6±0.2
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(a) Multi-dSprites

(b) Tetrominoes-NM

(c) SVHN

(d) IDRiD

(e) CLEVRTEX

(f) CLEVRTEX-OOD

(g) Flowers

(h) Birds

(i) COCO

Figure 2: Visualization of discovered objects.

4.3 Experiments on Model Generalizability

Ideally, an unsupervised object discovery model should be trained to understand common visual
appearances such as the difference between foreground vs background, so as to discover objects from
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(a) Multi-dSprites (b) SVHN (c) CLEVRTEX

Figure 3: mIoU scores vs decreasing number of training samples.

Table 3: mIoU scores for model generalizability after training on Multi-dSprites.

Method Tetrominoes-NM SVHN IDRiD CLEVRTEX CLEVRTEX-OOD

Slot Attention 21.8±3.5 19.5±3.8 7.5±2.5 12.2±2.2 12.3±2.2
EfficientMORL 21.2±3.8 23.4±2.8 6.5±2.6 12.7±3.2 15.2±2.0
GENESIS-V2 42.9±4.9 31.1±2.8 8.5±2.4 21.9±1.6 21.3±2.5

SLATE 51.4±1.6 21.1±2.0 10.0±1.7 12.7±2.2 12.9±1.8
SysBinder 28.5±1.8 23.8±1.1 13.9±1.8 10.6±1.5 11.6±1.9
BO-QSA 41.8±1.8 24.3±2.0 4.0±1.5 24.4±1.4 22.8±2.5
OC-Net 100.0±0.0 47.5±0.5 29.1±0.5 31.7±0.6 31.3±0.6

out-of-domain images. In this set of experiments, we compare the generalization ability of OC-Net
with the baselines by training the models on Multi-dSprites and testing them on the other datasets.

Table 3 shows the results. For Tetrominoes-NM, there is a decrease in performance for all methods
while OC-Net still obtains perfect score. For SVHN, CLEVRTEX and CLEVRTEX-OOD, the
performance of all models decrease due to the shift in data distribution. However, OC-Net experiences
the smallest drop in performance and still significantly surpasses the best performing method. For
IDRiD, the methods show improvement in performance. One possible reason is that the larger training
set in Multi-dSprites enables the circular shape of the optic disc to be better segmented. Despite this,
OC-Net remains the top performer.

4.4 Ablation Studies

Next, we examine the effect of feature connectivity and regularization terms Lsep and Lent on the
performance of OC-Net. We implemented three variants of OC-Net: (a) w/o connectivity. Here,
we do not require that a path should exist between i and k when computing dist[i, k]; (b) w/o Lent.
This network is trained without the entanglement regularization term; (c) w/o Lsep. The separation
regularization term is not used in the training of OC-Net.

Table 4 shows the mIoU scores for all the datasets. Without feature connectivity, we observe a drop
in performance across all datasets since it is common for images to have multiple identical objects,
that is, same color and shape. As such, OC-Net w/o connectivity tend to cluster these blocks as a
single object.

Removing the entanglement term (OC-Net w/o Lent) leads to a slight decrease in the performance as
the object representations may still be separated even when the dimensions are entangled. The largest
performance drop in all datasets is seen when the object representation separation term is removed
(OC-Net w/o Lsep), indicating the importance of having a well-separated object representation space
for effective object discovery.
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Table 4: mIoU scores for variants of OC-Net.

Method Multi-dSprites Tetro-NM SVHN IDRiD CTEX CTEX-OOD

OC-Net 99.1±0.0 100.0±0.0 49.9±0.1 31.2±0.2 37.5±0.7 35.0±0.6
w/o connectivity 98.8±0.1 89.2±0.1 36.6±0.1 17.3±0.1 20.3±0.9 17.7±0.9

w/o Lent 98.7±0.3 99.6±0.1 48.8±0.1 25.8±0.2 26.4±0.8 18.9±0.4
w/o Lsep 49.3±0.3 51.2±0.2 35.0±0.2 4.0±0.1 18.5±0.6 11.0±0.4

5 Prediction based on Learned Object Representation

One characteristic of an effective object-centric representation is its ability to encode object properties
such as color, position and shape [42]. In this section, we show that the learned object representations
are disentangled and can be used to predict the values of these properties.

Given the representations and their corresponding ground truth values of a target object property,
we employ them as features to train a gradient boosted tree (GBT) [16]. To evaluate how well the
properties of unseen objects are predicted by the GBT, we use the coefficient of determination R2

[49]. We perform an experiment using the learned object representations from the simulated datasets
to predict the properties of object such as color, position and shape. We use the mIoU score to match
the discovered object to the ground truth object. We split the 320 test images equally into two sets,
one for training the GBT model for each object property, and the other for evaluation.

Table 5 shows the average R2 scores of the GBT models on the evaluation set. The GBT models
trained with OC-Net representations achieved the highest R2 scores compared to the models trained
using the representations from other methods. This suggests that the object representations learned
by OC-Net are effective in encoding the object properties.

Table 5: R2 scores for object property prediction on simulated datasets

Multi-dSprites Tetrominoes-NM

Method Color Position Shape Color Position Shape

Slot Attention 72.2±12 96.8±0.1 38.2±0.0 86.5±6.5 98.7±0.6 36.3±0.0
EfficientMORL 86.5±6.2 95.8±0.1 61.7±0.0 94.9±3.2 97.9±0.7 68.5±0.0
GENESIS-V2 78.1±7.5 97.1±0.7 75.8±0.0 88.1±5.8 94.6±2.6 37.9±0.0

SLATE 87.5±0.7 90.6±4.4 31.7±0.0 85.5±3.9 89.6±0.7 10.5±0.0
SysBinder 73.6±1.0 69.3±3.4 33.3±0.0 97.9±0.6 77.8±2.7 19.9±0.0
BO-QSA 96.3±1.6 97.4±0.1 75.2±0.0 98.1±0.7 98.9±0.2 52.5±0.0
OC-Net 98.0±0.6 98.3±0.1 78.1±0.0 100.0±0.0 99.4±0.1 98.7±0.0

6 Conclusion

In this work, we have described a framework called OC-Net that learns object-centric representations
in a fine-grained manner without supervision. OC-Net leverages on feature connectivity and two new
regularization terms to learn disentangled representations and to ensure the representations of different
objects are well-separated. From the results of experiments conducted on simulated, real-world,
complex texture and common object images, we have demonstrated the superior quality of the object
representations over current state-of-the-art. Moreover, we have highlighted the sample efficiency
and generalizability of OC-Net. Finally, we have shown how the discovered object representations
can be used to predict object properties in a downstream task, indicating its potential use for other
computer vision applications where samples and ground truth labels are limited.

There are still obstacles that have to be overcome for successful application of our framework to the
full visual complexity of the real world. A natural next step would be to extend OC-Net to handle
real-world scenes containing objects with more complex part-whole hierarchies. It is also promising
to explore explicit representation of the discovered objects into a dictionary of prototypes to better
handle occlusion between objects. Lastly, real-world scenes with multiple objects is still of higher
visual complexity than the datasets considered here and reliably bridging this gap is an open problem.
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