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Abstract

Aspect sentiment triplet extraction (ASTE) is
a sentiment analysis task that aims to extract
views’ sentiment polarity, expression, and tar-
get (aspect). While the unsupervised scenario
for the sentence or aspect-level sentiment has
made much progress in recent years, unsuper-
vised ASTE remains unstudied because of its
far more complex data structure. This paper
challenges this remaining problem and pro-
poses the first unsupervised method for aspect
sentiment triplet extraction, which even does
not require any training on human-annotated
data. Based on the previous discovery of the
pre-trained language model’s awareness of sen-
timent, we further leverage the masked lan-
guage model to prompt an ASTE dataset with
automatically annotated labels. Our method,
PromptASTE, fills in a series of prompts to
generate a dataset for related aspects and views.
The dataset is then used to train an ASTE model
for prediction. Training on PromptASTE re-
sults in models with an outstanding capability
in extracting sentiment polarities and targeted
aspects. Our model sets the first and strong
baseline on unsupervised ASTE.

1 Introduction

Aspect sentiment triplet extraction (ASTE) is a type
of sentiment analysis task. While conventional sen-
timent analysis either classifies the sentiment po-
larity of a sentence or extracts aspect span with
polarity, ASTE is interested in aspect-based sen-
timent and extracts the expression (view) and tar-
get (aspect) of sentiments, making it a challenging
problem with the complex data structure.

Some instances of ASTE are shown in Fig-
ure 1, the view and aspect are represented by spans.
Paired spans are labeled as the sentiment polarity
of the view on its targeted aspect. While many
previous works have been done for the supervised
ASTE system, unsupervised ASTE remains a blank.
Also, some tries have been made for zero-shot
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Figure 1: Instances for the ASTE task.

sentence-level and aspect-level sentiment analy-
sis (Sarkar et al., 2019; Wang and Ji, 2022; Phan
et al., 2021), but the rather complex data structure
of ASTE block these methods from stepping fur-
ther. As sentiment is a universal and cross-language
phenomenon, unsupervised ASTE is appealing to
reduce the burden for annotation, especially for
low-resource language with a limited number of
skilled annotators.

However, unsupervised ASTE is challenging as
ASTE data are structured in a complex form. The
unsupervised system faces several essential prob-
lems for relationship understanding. a) Polarity
How does the model understand the sentiment po-
larity with no annotated knowledge? b) Relation-
ship How does the model learns paired feature that
does not exist in sequential natural language with
no annotation for relationships? ¢) Boundary How
does the model determine the span boundaries an-
notated by a human when testing?

The challenges above hinder the application of
conventional unsupervised methods, like clustering.
Moreover, clustering requires collecting unanno-
tated data for unsupervised training, which is still
unfriendly for low-resource languages. We aim
to step even further towards a method that is free
from any ASTE-related data, no matter annotated
or unannotated.

Thus, we cast our attention to generative pre-
train language models (PLMs) (Radford et al.,
2018; Devlin et al., 2019; Liu et al., 2019; Yang
et al., 2019), which are competitive zero-shot learn-



ers (Radford et al., 2018) with strong scalability.
PLMs, like RoBERTa (Liu et al., 2019), are trained
on upstream masked language model (MLM) tasks
that require the language model to fill in masked
words in context. Recent studies have shown that
pre-training endows PLMs with sentiment aware-
ness to solve conventional sentiment analysis prob-
lems, suggesting the PLM is an admirable choice
for unsupervised ASTE. By utilizing the MLM task,
we fill in prompts to create an ASTE dataset from
PLMs. A prompt combination is used to sample
kernel spans, which are spans consisting of aspect
sentiment triplets, from PLMs.

The annotating system comprises three prompts
for domain specification, aspect generation, and
view generation. We also propose a contrastive
prompt to prompt better sentiment expressions
by contrasting positive and negative expressions.
Based on the kernel span, PLMs are again used to
supplement the contextual background via mask
filling. The supplemented data finally form the
PromptASTE dataset.

After the dataset is created, PromptASTE is used
to train ASTE models following a supervised sce-
nario. Spans and their relationships are annotated
in graphs to train an extractor for graphic pattern
capturing. We test the trained extractor on several
ASTE datasets and compare the results with su-
pervised results. Our method shows competitive
performance on unsupervised ASTE and sets the
first and strong baseline.

2 Background and Related Work

Triplets in ASTE are formalized in (V, A, P) where
V, A, P refer to view (expression) span, aspect
(target) span, and sentiment polarity respectively.
ASTE models are trained to determine the bound-
ary of spans and label the polarity held by the view
towards the aspect.

Since the annotation of a variety of ASTE
datasets (Peng et al., 2020; Xu et al., 2020) based
on aspect based sentiment analysis (ABSA) data
(Pontiki et al., 2014, 2015, 2016), many supervised
methods have been proposed for ASTE. (Peng et al.,
2020) tests a wide range of previous triplet extract-
ing method on ASTE and propose a tag-and-pair
pipeline to set the first supervised baseline. Spans
are extracted by finding segments and their rep-
resentations are fed into a pair classifier to find
whether a relationship exists between them. Xu
et al. incorporate position information and CRF

inference into the tagging system to boost perfor-
mance. Wu et al. formalize ASTE in a grid tagging
scheme. The tagged grid is decoded by first finding
terms in the diagnosis and then searching for grids
indicating relationships between terms.

While supervised ASTE has attracted much at-
tention, the unsupervised scenario has not been
discussed as a fairly more challenging task. Be-
sides its complex structured nature, the difficulty
also comes from the incapability of existing un-
supervised systems to build a complete pipeline,
from span extraction to relationship labeling. In
unsupervised relation extraction, a related task, cur-
rent models have only limited capability to label
the relationships between paired already extracted
spans (Tran et al., 2020; Yuan and Eldardiry, 2021).
These methods use the conventional unsupervised
method like clustering to assign closely distributed
span pairs to the same labels. Thus, the prereq-
uisite of annotated spans makes these zero-shot
methods unfriendly to real unsupervised learning.
There are some trials for zero-shot aspect-based
sentiment analysis (ABSA) (Shu et al., 2022; Seoh
et al., 2021). Seoh et al. utilize models fine-tuned
on natural language inference (NLI) to solve a sub-
task of ABSA, labeling the sentiment on an aspect.
To label an input sentence, the researchers query
the model whether a positive opinion on the aspect
entails or contrasts the input sentence that acts as
the premise. Shu et al. further develop the method
towards an end-to-end ABSA pipeline by query-
ing the NLI model whether an aspect exists in the
premise sentence. These methods are zero-shot
but still require annotated datasets for NLI training,
which limits their generality for different domains.

Our work aims at a real unsupervised pipeline for
the complex ASTE task, so we turn towards lever-
aging generative PLMs, which are powerful zero-
shot learners via training on super-large corpora.
The long training procedure endows PLMs with the
understanding of semantic relationships between
tokens, which makes the PLM a desirable tool for
unsupervised downstream tasks. Also, mask fill-
ing on prompts has been verified to be a powerful
way to extract commonsense knowledge (Petroni
et al., 2019), relationship understanding (Goswami
et al., 2020), and sentiment awareness (Wu et al.,
2019) of the PLM. Our work further leverages the
endowed sentiment awareness in PLMs to build a
complete unsupervised pipeline for ASTE.

Some works on supervised ABSA has also taken



prompts to improve the model performance. Li
et al. formalize the aspect extraction and sentiment
classification as a BART (Lewis et al., 2020)-based
generative task. They first tune BART on MLM for
sentiment prompts and then use it to generative la-
bels and indices of the aspect spans. Gao et al. use
T5 (Raffel et al., 2020) to do conditional generation.
By re-generate the non-aspect and non-view part
of the sentence, TS5 transform an original instance
to a new one. Based on this augmentation strat-
egy, Raffel et al. successfully achieve a significant
performance improvement on ABSA.

3 Prompting ASTE Dataset

3.1 The Pipeline

We first provide a rough overview of our method
and how it copes with the challenges in unsuper-
vised ASTE. Our pipeline takes a series of prompts
as the input and outputs sentences with aspect-
based views. Kernel span is an intermediate from
prompts and is used for sentence generation. The
pipeline comprises two main procedures: kernel
span generation and context supplement.

Kernel span consists of the aspect sentiment
triplet. To obtain those spans, our prompt involves
masked view spans (v-mask) and masked aspect
spans (a-mask). The PLM fills the masked spans,
and the kernel span is extracted from the filled
prompts and then used for the second step, context
supplement. We show how this pipeline design
addresses the mentioned issues as follows,

Polarity We include polarity words <pol> in the
prompt and use the contrast between polarity words
to improve the quality of view span generation.

Relationship We pre-define the relationship be-
tween aspect and view spans in the prompt.

Boundary We set limitations to the maximal
length of spans and use words like the to ensure
spans with proper constituency roles are generated.

Based on the kernel spans, we again use the
PLM to supplement the contextual background for
the sentiment via mask filling. The supplemented
results are the final PromptASTE dataset.

3.2 Domain Prefix Prompt

The domain prefix prompt is used to specify the
domain for kernel span generation. As in the green

frame in Figure 2, the domain prefix prompt deter-
mines the contextual environment for the prompt-
ing generation. As the testing datasets are in dif-
ferent domains, the domain prefix prompt will help
generate more relevant training data to improve the
performance of trained models.

3.3 Aspect Prompt

The aspect prompt is the blue frame in Figure 2,
which is responsible for polarity selection and as-
pect generation. The prompt contains a-masks and
a polarity token <pol> that provides hints for the
later generation.

After the polarity of triplets in the kernel span
is selected, the polarity token is substituted by a
token with sentiment information. In the instances
in Figure 2, the word good substitutes <pos> and
indicates the positive sentiment in the kernel span.

Then we fill in the <a-mask> the input tem-
plate X = [21.;_1,<mask>,- -, <mask>, 2 1.p]

X (j—it1
where <a-mask> is transforn(ljed int)o multiple mask
tokens. We sample x ~ P(x; 11| X, Ziiyr—1) =
MLM (X, ;.54 k—1)irr from the pre-trained lan-
guage model. X;.; denotes the span from the i-th
word to the j-th word. 7' refers to the temperature
for sampling.

3.4 Contrastive View Prompt

After generating the aspect span, we also fill in the
coreference masked aspect span in the view prompt.
Then we use contrastive generation to get the view
expression.

For the input prompt X, polarity word x,, gen-
erated k-word span z;.;. 1, we calculate the prob-
ability distribution on the next (i 4+ k-th) mask
token Py, = P(xi1| X, Zpol, Tizitk—1) and also
the contrastive distribution P’. P’ is the proba-
bility distribution calculated based on the input
with w,, switched to the opposite sentiment word
w;wl. w14k is thus sampled from the distribution
%elog(P pot) ~wlog(Ppot) where % is the normaliz-
ing constant. w is a factor that controls the degree
of contrast during the generation. The view span is
likely sampled following the predicted distribution
as the aspect span.

After the template is filled, we seize the kernel
span and build the triplets using pre-defined rela-
tionships.
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Figure 2: Prompting steps for the generation of PromptASTE.
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Figure 3: Supplement procedures that transform kernels
into training data.

3.5 Context Supplement

Based on the collected kernel spans, we supplement
the contextual background for them by continuing
to utilize mask filling. We use two supplement
scenarios in our experiments: prefix filling and
kernel merging as in Figure 3.

Prefix filling is to attach several mask tokens to
the beginning of the sentence. Then the PLM fills
in the masks following a greedy strategy.

Kernel merging is to merge multiple kernel
spans together. We insert several mask tokens
between two collected kernels and use the PLM to
fill in the mask, still following the greedy strategy.

We avoid adding mask tokens after the kernel
span since the generated contents are more likely to
break the aspect boundary. Thus, we do not apply
suffix filling for the context supplement.
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Figure 4: Kernel spans used in our experiments.

4 Experiment

4.1 Testing Data and Metric

We use the ASTE datasets annotated in (Xu et al.,
2020) for testing. The datasets include three restau-
rant review datasets and a laptop review dataset. To
compare with previous supervised methods, we use
the test datasets for evaluation. Besides, we also
create a subset without boundary determination and
neutral views to test the model’s understanding of
relationship and polarity. We drop all triplets with
neutral sentiment polarity and remove triplets that
consist of spans with more than one gram.

For evaluation, we use the F1 score that consid-
ers the exact matching of triplets as applied to pre-
vious supervised ASTE models. A triplet matches
the golden triplet only when their views, aspects,
and sentiment polarities are all matched.



Method 14res 14lap 15res 16res

P. R. Fl1 P. Fl1 P. R. Fl1 P. R. Fl1
(supervised)
CMLA+ 39.18 47.13  42.79 | 30.09 3692 33.16 | 3456 39.84 37.01 | 41.34 42,10 41.72
RINANTE+ 3142 39.38 3495 | 21.71 18.66 20.07 | 29.88 30.06 29.97 | 25.68 2230 23.87
Li-unified-R 41.04 6735 51.00 | 40.56 4428 4234 | 4472 51.39 47.82 | 37.33 5451 4431
(Peng et al., 2020) 4324 63.66 5146 | 37.38 50.38 42.87 | 48.07 57.51 5232 | 4696 64.24 5421
OTE-MTL 63.07 58.25 60.56 | 54.26 41.07 46.75 | 60.88 42.68 50.18 | 65.65 54.28 59.42
JET' 63.44 54.12 5841 | 53.53 4328 47.86 | 68.20 42.89 52.66 | 6528 5195 57.85
JET® 70.56 5594 6240 | 5539 4733 51.04 | 6445 5196 57.53 | 7042 5837 63.83
GTS 7176 59.09 64.81 | 57.12 5342 5521 | 5471 55.05 54.88 | 65.89 6627 66.08
(Huang et al., 2021) 63.59 7344 68.16 | 57.84 5933 5858 | 5453 63.30 58.59 | 63.57 7198 6752
(Jing et al., 2021) 6795 7123 69.55 | 62.12 5638 58.55 | 60.00 59.27 59.11 | 70.65 70.23 70.44
(unsupervised)
MVNA-CT 32.64 2696 29.53 | 22.02 17.68 19.61 | 27.67 2454 26.01 | 30.60 2471 2734
MVNA-TAG 41.66 3441 37.69 | 24.65 19.71 2190 | 30.56 28.04 29.25 | 42.19 3521 38.29
PromptASTE (res) 63.80 35.81 4588 | 38.71 1553 22.16 | 55.05 41.15 47.09 | 60.06 41.25 48.90
PromptASTE (lap) 5348 3551 42.68 | 40.65 2773 3297 | 4647 40.34 43.19 | 5641 36.72 44.49
PromptASTE (res+lap) 44.69 42.76 43.70 | 36.70 29.57 32.75 | 40.77 43.71 42.19 | 50.16 46.68 48.36

Table 1: Main results from our experiments on PromptASTE

4.2 Dataset Configuration

To build the PromptASTE dataset, we design six
kernel spans as shown in Figure 4. The whole
prompts for kernel construction are shown in Ap-
pendix A. Considering the domain variation in
the testing dataset, we create two PromptASTE
datasets with two different domain prefix prompts
as follows.
Restaurant: In the restaurant, ...
Laptop: For the laptop, ...

The contrastive prompting for a neutral view
span is a little different from a positive and
negative view. The neutral sentiment does not
have a semantically opposite sentiment. Thus,
we set both the positive and negative sentiments
as the opposite to eliminate the view’s polarity.
The formula of contrastive generation is P =
%elog Pypy—7% log Pros—4 log PNeG

For the generation, we use RoBERTa-large as
the PLM. Compared to BERT, RoBERTa is pre-
trained only with the MLM objective, which sug-
gests ROBERTa is able to show the potential of a
mask-filling-based generation fully. Other specific
configurations are further described in Appendix B.

4.3 Model and Baseline

Model We take the current state-of-the-art, (Jing
et al., 2021) as the learner on our prompt-annotated
dataset. (Jing et al., 2021) borrows a combina-
tion between table encoder and sequential encoder
with interaction from (Wang and Lu, 2020) to build
a strong extractor for aspect-view relationships.
We completely follow the configuration in the pa-
per to make a direct comparison between models

trained on human-annotated and prompt-annotated
datasets. We train the model on datasets in the
restaurant domain (res), laptop domain (lap), and a
combination of two domains (res+lap).

Baseline Because of the lack of unsupervised
methods for comparison, we build a simple base-
line, matched view, and nearest aspect (MVNA).
We use a sentiment dictionary containing positive
and negative words from NLTK to match spans in
sentiments. The matched spans are taken as view
spans with corresponding labels and their nearest
noun phrase are extracted as their aspects. We im-
plement two ways to get the noun phrases, using
constituency tree (MVNA-CT) or part-of-speech
tagger (MVNA) !. For MVNA-CT, we sample all
noun phrases with no subtree and delete the stop
words on each side of the span. For MVNA-TAG,
we just sample all continuous NOUN-tagged words.
To follow up with previous works, we also report
the performance of supervised methods to show
the remaining gap for zero-shot methods to reach
supervised performance.

4.4 Experiment Result

Main result As in Table 1, we train and test
extractor on PromptASTE datasets constructed
in different domains. In comparison to unsuper-
vised methods, PromptASTE outperforms the best
MVNA generally by 10 F1 scores, verifying its
effectiveness as an unsupervised method. Promp-
tASTE achieves precision comparable to recent
supervised methods, while recall is the weakness

'We use the tagger and extractor provided by NLTK.



14res

14lap

15res 16res

Method
P. R. F1 P. F1 P. R. F1 P. R. F1

Supervised 8597 79.85 82.80 | 73.18 7225 72.72 | 77.62 7232 74.88 | 82.08 79.15 80.59
MVNA-CT 47.10 3896 42.65 | 30.63 2227 2579 | 40.11 3333 36.41 | 44.13 34.18 38.52
MVNA-TAG 5871 5479 56.68 | 40.86 34.55 37.44 | 46.01 4356 4475 | 5749 51.64 5441
PromptASTE (res) 76.06 53.37 6272 | 54776 4697 50.57 | 67.74 5491 60.66 | 69.37 67.12 68.23
PromptASTE (lap) 61.39 5227 5647 | 5294 4525 4880 | 60.03 48.17 5345 | 6451 57.85 61.00
PromptASTE (res+lap) 75.81 47.33 5827 | 62.64 4099 4955 | 74.19 48.89 5894 | 74.19 5647 64.13

Table 2: Experiment results on the testing data in sampled subsets.

of PromptASTE. This weakness results from the
trade-off between generality and simplicity and can
be overcome by involving more patterns during
prompting. But we want to propose a more general
paradigm to prompt unsupervised datasets. Though
there still exists a gap between PromptASTE and
the highest supervised baseline, the outstanding
performance establishes our method as a strong
unsupervised baseline.

Domain analysis The main results also show
how domain specification in dataset prompting af-
fects the training result. In terms of the F1 score,
the extractor performs better when they are trained
on prompted data in the same domain as the test
data, which is consistent with the research empiric.
Training on data in another domain generally leads
to a drop in both precision and recall, which reflects
the penalty from domain difference. The mixture
of data from the different domains can improve
the recall in the sacrifice of precision by providing
various data, which are out-of-domain.

Subset result Table 2 presents the results tested
on the sampled datasets. PromptASTE achieves
much higher results on the subset due to the dif-
ficulty of the unsupervised method to determine
boundaries annotated by humans. Free from bound-
ary determination, the gap between PromptASTE
and the supervised method is narrowed down in the
subset, which better reflects the potential of PLMs
for sentiment understanding.

5 Further Analysis

5.1 Few-shot Version

The zero-shot performance of PromptASTE con-
vinces it to be a reasonable method to understand
no (annotated) resource circumstance. Here we
also consider a less constrained circumstance that
we can use a few annotated data as the prompt tem-
plate for Prompt. We conduct experiments on the
l4res dataset by sampling 50 instances.

We set two series of baselines. One is to di-
rectly train an extractor based on the few anno-
tated data. The other is to use mask filling (MF)
(Kumar et al., 2020) for data augmentation, which
is a more straightforward prompting method than
PromptASTE. MF,;¢., and MF e mask-and-fill
only the view or aspect span. MFj,,,,, mask-and-
fill both spans and +aug means sampling other
20% words for extra mask-and-filling. When we
mask view spans, we attach the sentiment polarity
of the triplet to the beginning of the sentence with a
<sep> token. We sample 16 times for each instance
and apply RoBERTa-large for mask filling towards
a fair comparison.

Table 4 presents the performance of different
few-shot methods. Here, z, f refer to zero-shot and
few-shot versions of PromptASTE. The state-of-
the-art supervised method drops about 20 F1 scores
on the few-shot condition, close to our zero-shot
results. Among the MF methods, mask-and-filling
only the aspect span outperforms other methods.
With extra mask-and-filling, the few-shot perfor-
mance can be further improved as proposed by (Ku-
mar et al., 2020). PromptASTE significantly out-
performs the best MF by 4.36 F1 score, verifying
its capacity for better generation quality. The com-
bination of few-shot and zero-shot PromptASTE
further boosts the performance to very close to the
supervised performance, showing the potential of
PromptASTE in generating human-like annotation.

5.2 Generation Quality

Towards a more comprehensive analysis of our
PromptASTE, we also evaluate the quality of in-
stances generated from PromptASTE as we use a
generate-and-train strategy. We borrow the evalu-
ating process in (Kumar et al., 2020) for data aug-
mentation, which includes two stages: semantic
integrity and diversity.

For semantic integrity, we follow (Kumar et al.,
2020) to train an extractor based on the original
training dataset and test it on our prompted dataset.



Dataset P. R. F1 = Njpse 1l-gram(T) 3-gram(1) SBLEUy()) SBLEU4({)
14res 67.95 7123 69.55 2071 14.08 64.20 5.74 2.88
prompted res  66.93 55.21 60.51 7570 19.56 82.30 3.85 1.85
14lap 62.12 56.38 58.55 1456 11.95 56.66 5.58 2.62
prompted lap 65.72 45.22 53.58 3234 17.42 77.90 4.01 1.91
Table 3: Semantic fidelity and diversity of generated data.
Method P. R. F1 Method P. R. F1
. PromptASTE 76.06 53.37 62.72
(Jingetal., 2021) 48.04 52.99 49.98 w/o Domain Prefix 5765 47.10 5185
w/o Contrastive Prompting  61.05 53.16 56.83
MFyiew 5232 57.35 54.72 w/ Suffix Filling 7121 5131 59.64
MF spect 58.17 57.11 57.64
MF;pan 4891 63.39 56.88 Table 5: Ablation Study on PromptASTE. The subset
MF yicw+aug 3599 56.74 56.36 of res14 is selected as the test dataset.
MFqspect+aug 54.72 65.87 59.78
MFspan-+aug 56.23 59.88 58.00 Method l4res 14lap
PromptASTE, 63.80 35.81 45.88 BARTyNi1 (Shu et al., 2022)  33.90 36.80
PromptASTE,  69.05 59.88 64.14 E‘SIELR?SLIII (Sltl“ N ;‘B’zg’zz) g; "2‘8 ig'zg
PromptASTE 6730 64.13 65.68 uetak, ' '
romp f+z PromptASTE 55.02 42.33

Table 4: Performance of few-shot PromptASTE.

We report precision, recall, and F1 score instead
of accuracy scores considering the task difference.
For diversity, we use the ratio of distinct n-gram
(denoted as n-gram) while also including the self
BLEU (SBLEU) (Tevet and Berant, 2021) score
to provide a broader analysis. The ratio of distinct
n-gram is literally the number of distinct n-gram
spans divided by the total number of n-gram spans
in the dataset. For SBLEU, we sample 1000 sen-
tences from the dataset twice, pair them and then
calculate the BLEU scores of the paired sentences.
We avoid pairing a sentence to itself and report
the average BLEU scores of sentence pairs. For
semantic fidelity, we take the results on the test
dataset for comparison. For diversity, we use the
whole dataset for comparison. The results from our
analyses are presented in Table 3.

Semantic Integrity On the prompted dataset, the
trained extractor shows a close performance to the
original test dataset in precision, while the recall
drops by from 10 to 15. The close precision reflects
PromptASTE generating data in reliable quality
but the relatively low recall discloses the still exist-
ing domain difference between the annotated and
prompted data. This domain difference also ex-

Table 6: Comparison on F1 score with the zero-shot
ABSA baseline.

plains why the extractor trained on the prompted
dataset achieves lower recall than precision.

Diversity The comparison on diversity shows
our prompted data enjoys a higher ratio of dis-
tinct n-gram and a lower SBLEU than the human-
annotated dataset, indicating the prompted dataset
has better diversity in word usage. Thus, the wider
coverage of vocabulary is an underlying factor
that supports the strong performance of Promp-
tASTE. The reason behind this counter-intuitive
phenomenon is pre-trained language model learns
about various expressions during its training on
large-scale corpora while the annotated data only
covers a small subset of them. Still, the prompted
dataset lacks aspect-view relationship expressions
due to constant kernel span forms, but in terms of
the lexical level, we conclude prompted data to be
more diversified than human-annotated data.

5.3 Ablation Study

To better understand the effects of different mod-
ules in our PromptASTE pipeline, we launch an
ablation study on them. From the results in Ta-
ble 5, we can see that domain prefixes and con-
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trastive prompting contribute a lot to the Promp-
tASTE pipeline. Furthermore, We test a pipeline
with suffix filling, which fills in mask tokens at-
tached after the kernel span. The performance drop
in the ablation study suggests suffix filling is not
a beneficial context supplement method. Based
on the distribution of kernel spans, the backfire is
probably caused by the rather low chance for kernel
spans to exist at the beginning of the sentence.

5.4 ABSA Comparison

To further complement the lack of strong unsuper-
vised baselines for ASTE, we make a comparison
with zero-shot ABSA models. ABSA is a simpler
task in comparison with ASTE since it does not
require the extraction of view expression V. Shu
et al. build many baselines on zero-shot ABSA by
using an NLI model. Their method succeeds (Seoh
et al., 2021) to query the NLI model whether an
expression about aspect existence or view polarity
entails the input sentence. Their proposed con-
trastive post-training on review Natural Language
Inference (CORN) uses BART as the backbone and
post-trains the model on review NLI.

We compare PromptASTE with the baselines
on the two datasets with F1 scores reported by
(Shu et al., 2022). Our unsupervised PromptASTE
outperforms the NLI-based zero-shot models by a
large gap. As PromptASTE requires no annotation,
it is an admirable result to show the capability of
generative pre-trained language models to achieve
better performance than models post-trained on
other tasks and then transferred to handle ASTE.

5.5 Case Study

We analyze several cases in Figure 5 to discuss the
strength and limitations of PromptASTE.

In the first case, the instance pattern is covered by
our prompting pipeline. The instance can be gener-
ated by the prompt via kernel merging between two

defined kernel spans. As a result, the instance is
easily solved by the extractor trained with Promp-
tASTE. The second case shows the scalability of
PromptASTE as the pattern of the instance is not
covered by prompting. The extractor stays robust
against the noise from the adjective component we
tried. Thus, the triplets are successfully extracted
from the sentence. The limitation of PromptASTE
is presented in the third case. While the extractor
correctly extracts the first triplet, the recommend-
teriyaki relationship is ignored. As the relationship
is in a casual pattern that is very different from our
pre-defined ones, the extractor fails to capture it.
Incorporating this casual pattern into kernel spans
might well solve the problem. The last case in-
cludes inference based on coreference, a thorny
problem for our parse trained on data with fixed
patterns. The case also shows our method to suf-
fer from shortcut learning (Geirhos et al., 2020).
The word complained is directly recognized as a
negative view of the word waiter, without under-
standing the semantic relationships between them.
Solving these problems might require pre-trained
models for a stronger inference capability.

From the cases, we conclude that our method
has some basic understanding of ASTE and enjoys
some scalability from the PLM. However, hyper-
linguistic phenomena like coreference still remain
a problem for us to solve in future studies.

6 Conclusion

We propose a novel method, PromptASTE, for
ASTE, which is also the first unsupervised method.
We utilize the PLM’s understanding of sentiment
and apply a series of prompts to construct a training
dataset from the PLM. Various prompting mecha-
nisms guarantee the quality of the generated dataset
and trained extractor to set a strong baseline for un-
supervised ASTE.
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A Whole Prompt for Kernel Building

We present the whole prompts used in our exper-
iments in Figure 6. Some special tokens are in
the prompts. <prefix> refers to the domain prefix
prompt. <det> refers to the determinative compo-
nent. <adv> refers to the adverb component. <be>
refers to words with the be lemma.

B Prompting Configuration

The beam size is set to 256 to cover a wide range
of candidates. Tokens good, bad, and average are
used to substitute the polarity token to indicate pos-
itive, negative, and neutral sentiment polarities. We
set temperature 7" to 1.0 for aspect span generation
and 2.5 for context supplement. The weight w for
contrastive prompting is 0.6. The max length of
the mask token series for context supplement is 6.

Kernel Temperature
[Polarity  §

<v-mask> <a-mask> 1/3
;T Polarity}

<a-mask> is <v-mask> 2/3
i Polarity} Polarity

<a-mask> is <v-mask> and <v-mask> 2/3
i T Bolarity| |

<a-mask> and <a-mask> are <v-mask> 2/3
{Polarity . H {Polarity

<v-mask> <a-mask> and <v-mask> <a-mask> 1/3
fPolarity . B

<v-mask> the <a-mask> 1/6

Figure 7: The configuration for the temperature to gen-
erate view spans.

The temperature for view span generation varies
from kernel to kernel to balance the generation’s
diversity and correctness. The specific setup for
these temperatures is included in Figure 7. A fre-
quently used method for temperature searching is
selecting a configuration that performs the best on
the downstream task. We do not use this strategy
since the performance of the trained model here
is dependent on prompted results from different
prompts, which is very time-consuming for search-
ing. Thus, we only adjust the temperature for the
language to prompt fluent sentences.

C Statistical Properties of Dataset

The statistical properties of the ASTE datasets in
our experiments are presented in Table 7.
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Prop. l4res 15res 1l6res 14lap
Sent. Num. 2.1k 1.1k 14k 1.5k
Sent. Len. 169 150 149 184
Span. Num. 6.8k 3.1k 4.0k 4.1k
Span. Len. 1.3 1.3 1.3 1.4

Rel. Num. 40k 1.7k 22k 24k

Table 7: Statistical properties of the ASTE datasets used
in our experiments.

D Negation

One possible concern about ABSA is how to deal
with negations, which is a general weakness of
generative pre-trained language models for natural
language understanding. Here we show Promp-
tASTE is able to generate negative expressions with
a proper sentiment polarity (not good for negative
polarity). Specifically, we select instances with any
view expression that contains the word not. Since
there are too few such instances in the test dataset,
we sample 65 instances from the combination of
training, development, and test datasets of 14res.

Method ALL ONLY NEG

P. R. F. P. R. F.
MVNA 2430 19.12 2140 0.00 0.00 0.00
MVNANEG 28.15 27.94 28.04 4286 1739 2474
PromptASTE 3826 32.35 35.06 35.56 24.24 28.83

Table 8: Performance on instances with view span in
negation expression. MVNAngg adds not <pos>, not
<neg> to negative and positive span lists, respectively.

The results of different unsupervised methods is
shown in Table 8. Here, ALL refers to the perfor-
mance on all triplets in the instances. While ONLY
NEG only considers triplets with not view expres-
sions. We drop triplets of which view spans contain
no not after prediction to avoid their perturbance
to the evaluation. Compared to the performance
on other instances, ASTE performs worse due to
the higher difficulty in understanding the negation
grammar for sentiment classifiers. But this case is
not intractable for PromptASTE as it still outper-
forms the span matching algorithm. The source
of such ability is from the understanding of the
mask-filling generator. When the MLM model gen-
erates not for mask filling, like The shrimp taco is
not <mask>. for positive sentiment, it is capable
to generate bad instead of good to create a kernel
span with the correct sentiment polarity.
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Figure 6: The whole format of prompts used in our experiments.
E Generator Variant w  ldres l4lap
0.2 3943 3482
44212 .
Method scale l4res 14lap 0 37.87
0.6 45.88 39.27
BERT large 4491 37.82 0.8 4549 39.43
RoBERTa large 45.88 39.27 1.0 4437 3876
DeBERTa large 46.54 40.10
RoBERTa base 44.12 38.12 Table 10: Comparison among different w setups.
RoBERTageyview base 47.12 41.19

Table 9: Comparison among different MLM generators.

We compare the performance of PromptASTE with
different MLLM models as the generator to explore
which factors of generator affect the performance.
We include BERT, RoBERTa, and DeBERTa (He
et al., 2021). As Table 9, the comparison among
BERT, RoBERTa, and DeBERTa shows that mod-
els specified for MLM (RoBERTa, DeBERTa) per-
form better, which is consist with that the generat-
ing procedure only involves MLM. Also, the better
representation learning ability enables DeBERTa
to outperform RoBERTa used in our experiments.

Also, the model scale and domain of corpora
for pre-training are important factors affecting the
performance. The base version of RoOBERTa per-
forms much worse than the large version since its
MLM capbility is also weaker. Furthermore, the
corpora domain is shown to be more important than
the model scale as a base version of RoOBERTa pre-
trained on review corpora? is capable to outperform
the large version.

Zhttps://huggingface.co/allenai/reviews_roberta_base/
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How the important parameter w affects the per-
formance is presented in Table 10. With a too small
w will gradually degrades to the procedure to w/o
contrastive prompting and leads to severe perfor-
mance drop. On the other hand, raising w too high
will deviate the model to searching for words not
fit in the contrastive prompt. Since these words are
also not guaranteed to fit in the initial template, too
high w will not further improve the performance
and might decrease the generation quality.

F Dataset Size and Performance

—o— PromptASTE; —e— Supervised
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e
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Figure 8: Model Performance v.s. Dataset size.


https://huggingface.co/allenai/reviews_roberta_base/

In Figure 8, we show how the dataset size af-
fects the model performance. We compare the
performance of the model from (Jing et al., 2021)
trained on human-annotated datasets and prompted
datasets. The results show the performance of un-
supervised training also gradually improves with
the growth of dataset size, which verifies the anno-
tated data to be diversified rather than generating
duplicates.
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