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Abstract
Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its
(uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Lavenant
et al. [35] addressed this challenging problem under a stochastic differential equation (SDE) model
with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative
to the Wiener measure. Chizat et al. [15] then provided a practical grid-free mean-field Langevin
(MFL) algorithm using Schrödinger bridges. Motivated by the overwhelming success of observable
state space models in the traditional paired trajectory inference problem (e.g. target tracking), we
extend the above framework to a class of latent SDEs in the form of observable state space models.
In this setting, we use partial observations to infer trajectories in the latent space under a specified
dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce
PO-MFL to solve this latent trajectory inference problem and provide theoretical guarantees by
extending the results of [35] to the partially observed setting. We leverage the MFL framework
of [14], yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time
marginals. Experiments validate the robustness of our method and the exponential convergence of
the MFL dynamics, and demonstrate significant outperformance over the latent-free method of [14]
in key scenarios.

1. Introduction

Estimating the temporal dynamics and trajectories of a population from collections of unpaired
observations at specific time points is a challenging fundamental problem with many potential ap-
plications and a recent flurry of interest in the community [14, 15, 34, 35]. Previous work focused
on the fully observed setting, where all variables that are important to the underlying dynamics are
directly observed with no hidden states. This setting is relevant to single-cell genomic data analysis,
where the goal is to understand the trajectories of a population of cells at unobserved times and
reconstruct the trajectories of individual cells in gene space. Here, note that physics properties such
as momentum do not apply. That said, research in signal processing and control theory has over-
whelmingly shown the importance of being able to handle latent states in dynamics modeling more
generally [17, 24]. Even linear state space models have enjoyed a recent resurgence for modeling
text sequence data with large language models (e.g. [22]).

While in general the problem of recovering a hidden state is not identifiable, systems theory
has developed observability conditions on the underlying dynamics model that does allow for such
recovery [31]. For instance, in target tracking, oftentimes only a position variable is observed,
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(a) Ground truth. (b) Reconstructed trajectories. (c) Velocities.

Figure 1: Constant velocity model. We see that our method, PO-MFL, is more robust as the MFL
method fails to converge, and provides per-particle velocity in contrast to MFL. See Section H for
the experiment setting.

yet the tracking algorithm uses a state space model that includes a hidden velocity state [6, 18].
This hidden state allows for better predicting the future position of the target, improving the final
trajectory inference by not only better modeling the dynamics, but making it easier to identify which
of several targets observed at any given time correspond to the current track [6, 18]. The hidden
states themselves, when interpretable, may also be of direct interest for downstream applications.

The trajectory inference problem has many similarities to the tracking problem. In particular,
at any given time, a cloud of points is observed, but these points are not labeled, i.e. there is no
indication of which points at time t1 match to the points at time t2. Inferring these “matches” is
the task of trajectory inference, and closely parallels the data association problem in target tracking
[32, 46]. As a result, we are motivated to introduce latent state space modeling to the trajectory
inference problem.

While itself being a fully observed framework without incorporating a known dynamics, the
optimal transport (OT)-based method of [15] is particularly amenable to our aims. It proposes
to optimize collections of particles at each time step to minimize a data fit term (a cost between
the particle cloud and the observed data points) and a trajectory fit term consisting of the entropic
Wasserstein distance between sets of particles at adjacent time points. The entropic OT framework
arises naturally from the SDE model (as we will see later), and provides an explicit and robust
procedure for obtaining inferred trajectories from unpaired time series data by following the OT
plan between time points. Representing the inferred time marginal densities as particles is also
particularly amenable to our partially observed framework, as we can have the particles be in the
hidden state space and form a data fit term to the observations using a specified (stochastic) obser-
vation model. In many ways this parallels the observation model/hidden state particle setup used
by the particle filter [4] and other sequential Monte Carlo methods [18] for the paired-observation
trajectory inference setting. We provide additional discussion in Appendix A.

2. Latent Trajectory Inference

Let Xt ∈ X be an unobserved state vector evolving according to the following SDE for t ∈ [0, 1]:

dXt = −Ξ(t,Xt)dt−∇Ψ(t,Xt)dt+
√
τdBt, (1)

where {Bt} is a Brownian motion, τ is the known diffusivity parameter, Ξ ∈ C([0, 1] × X : X )
is a known driving vector field, and Ψ ∈ C2([0, 1] × X ) is an unknown potential function. Let P
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be the law of the SDE with initial condition P0 where Pt ∈ P(X ) are the marginals of P at time
t ∈ [0, 1].1

Consider a smooth function g : X → Y transforming Xt into the observation space Y: Yt =
g(Xt). Suppose we have T observation times with 0 ≤ tT1 < · · · < tTT ≤ 1, and we observe NT

i

i.i.d. samples from the marginal distribution of YtTi :

{Y T
i,j}

NT
i

j=1
i.i.d.∼ g♯PtTi

:= QtTi
,

forming empirical distributions ρ̂Ti =
∑NT

i
j=1 δY T

i,j
.

The goal is to recover P given the snapshots (ρ̂T1 , . . . , ρ̂
T
T ). In general, to make this problem

well-posed and tractable, we make several assumptions on this very general setup. The first of these
is a notion of observability that generalizes the ensemble observability introduced in [60]:

Definition 1 (CΨ-ensemble observability) Assume that Ψ is unknown but restricted to a class CΨ.
We say the tuple (g,Ξ, CΨ) is CΨ-ensemble observable if, given g, Ξ, τ , and all marginals Qt = g♯Pt

of Yt for all t ∈ [0, 1], the marginals Pt of Xt are uniquely determined for all t ∈ [0, 1].

With this observability assumption, we can infer the latent dynamics solely from the marginals Qt.
A discussion of the relationship between this condition and that of classical/ensemble observability
is present in Appendix C. There, we also verify the conditions of Definition 1 for several important
setups, e.g., the key velocity-based dynamics model we use in our experiments. We also provide a
more complete discussion of our assumptions in Appendix A.

3. PO-MFL: Approximate Minimum Entropy Estimation

Inspired by [35], we use minimum entropy estimation as the fundamental tool for connecting tempo-
ral snapshots into continuous trajectories, where the entropy is the relative entropy (KL divergence)
of the estimated trajectory distribution with respect to the known portion of the SDE. In other words,
we estimate the trajectory distribution by maximizing its log-likelihood with respect to the distri-
bution induced by the SDE, subject to matching the observed marginals. We will show that the
optimal point of the minimum entropy objective function converges to the ground truth trajectory
distribution.

It is not practical, however, to directly work with the trajectory distribution as it is an infinite-
dimensional object. In what follows, we will show that the minimum entropy objective in trajectory
space can be reduced to an OT-based objective, where marginals at adjacent time points are con-
nected via entropic OT.

This reduction allows us to perform trajectory inference using only representations of the latent
space time marginals, which can be accomplished via sets of particles. These particles can then be
optimized via MFL dynamics.

3.1. Minimum entropy objective function

In this section, we specify the minimum entropy objective function on the trajectory distribution.
Let {tTi } ⊂ [0, 1] be our observation times, where ∆ti := tTi+1 − tTi . Recall that in general, we do

1. Our SDE differs from that of [15, 35] with the addition of non-zero Ξ.
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not have exact measurement of the temporal marginals, we will only have samples from them. As
a result, we must introduce a fit function to measure the discrepancy between the observation space
time marginals of the estimated trajectory distribution R and the observed samples.

Let the observed empirical distribution smoothed by the h-wide heat kernel Φh be ρ̂T,hi :=

Φh

(
1
NT

i

∑NT
i

i=1 δY T
i,j

)
∈ P(Y) for i ∈ [T ].2 Consider the fit function Fitλ,σ : P(Y)T → R:

Fitλ,σ(QtT1
, . . . ,QtTT

) :=
1

λ

T∑
i=1

∆tiDFσ(g♯RtTi
, ρ̂T,hi ),

with data-fitting term introduced by [15] augmented by observation function g to be

DFσ(g♯RtTi
, ρ̂T,hi ) :=

∫
Y
− log

[∫
X
exp

(
−∥g(x)− y∥

2

2σ2

)
dRtTi

(x)

]
dρ̂T,hi (y)

= H(ρ̂T,hi |g♯RtTi
∗ Nσ) +H(ρ̂T,hi ) + C,

where Nσ is the Gaussian kernel with variance σ2, C > 0 is a constant, and we use the substitution
QtTi

= g♯RtTi
.3 Note that this is the negative log-likelihood under the noisy observation model

Ŷ T
i,j = g(XT

i,j) + σZi,j , where Ŷ T
i,j is the observation and Zi,j

i.i.d.∼ N (0, I). It is easy to see that

DFσ is jointly convex in (RtTi
, ρ̂T,hi ) and linear in ρ̂T,hi . The main difference compared to [15] is

that our data-fitting term is in observation space, e,g. the addition of the function g. We briefly
mention that the data-fitting term in [35] is H(Nσ ∗ µ̂T,hi |RtTi

). The data-fitting term introduced by
[15] (and thus ours also) is computationally more effective when RtTi

is a discrete measure and thus
is more amenable for the MFL dynamics. This difference in data-fitting term does not yield major
changes for the theoretical results, which can be seen in Appendix D.

The minimum entropy estimator introduced in [35] is the minimizer of the functional F :
P(Ω)→ R

F(R) := Fitλ,σ(QtT1
, . . . ,QtTT

) + τH(R|WΞ,τ ). (2)

Recall that our key novelties are the fit term in observation space and entropy minimization in
path space with respect to divergence-free, Markov path measures. Nonetheless, we show that we
can still recover the ground truth in the limit as the number of observations becomes dense.

Theorem 2 (Consistency (informal, see Thm. 11)) Suppose P is the SDE given in (1) with ini-
tial condition P0 ∈ P(X ) such that H(P0|vol) < +∞. Let RT,λ,h ∈ P(Ω) be the unique
minimizer of (2), e.g. RT,λ,h := argminR∈P(Ω)F(R). Then, we have the weak convergence
limh→0,λ→0

(
limT→∞RT,λ,h

)
= P.

This result parallels Theorem 2.3 in [35], which provides a consistency result in the fully ob-
served setting where the entire state vector Xt is observed and Ξ = 0 identically. Due to these
differences, the result in [35] cannot be directly applied to our setting, and while our proof is able to
follow a similar overall structure, dense and nontrivial changes throughout the extensive proof are
required. These arguments can be found in Appendix D.

2. This smoothing h aids the proofs and will be taken to a limit of zero in the following theoretical results.
3. Note that the inner integral is over X as the optimization will occur on the latent space, while the inner integral is

over Y as the observations are over Y .
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3.2. The reduced problem

As in [15], we need to “reduce” our problem over the space P(X )T to use the MFL dynamics [27].
As before, let ∆ti := tTi+1 − tTi and τi := ∆ti · τ . Consider the following entropic OT cost (see
Appendix B), defined for some τi > 0, as

Tτi,Ξ(µ, ν) := min
γ∈Π(µ,ν)

∫
cΞτi(x, y) dγ(x, y) + τiH(γ|µ⊗ ν) = min

γ∈Π(µ,ν)
τiH(γ|pΞτiµ⊗ ν), (3)

where pΞt is the transition probability density of WΞ,τ over the time interval [0, t] and the cost
function is cΞτi(x, y) := −∆ti log(p

Ξ
τi(x, y)). Note that in general, pΞτi cannot be found explicitly, so

we discuss how to approximate it in Appendix G. We recall from [15, App. A] that this optimization
problem is a Schrödinger bridge problem [37, 38, 50]. Define the functional G : P(X )T → R for
µ = (µ(1), . . . ,µ(T )) that represents a family of reconstructed temporal marginals, by

G(µ) := Fitλ,σ(g♯µ) +

T−1∑
i=1

1

∆ti
Tτi,Ξ(µ

(i),µ(i+1)). (4)

We consider the reduced objective F : P(X )T → R, defined as

F (µ) := G(µ) + τH(µ), (5)

where H(µ) =
∑T

i=1

∫
log(µ(i))dµ(i) is the minus differential entropy of the family of measures

µ. Similar to [15], we have an equivalence of minimizing F (2), the objective in path space P(Ω),
and F (5), the reduced objective over P(X )T . The proof is provided in Appendix E.

Theorem 3 (Representer theorem) Let Fit : P(Y)T → R be any function and let Ξ be bounded
and divergence-free. If F admits a minimizer R∗ then (R∗

tT1
, . . . ,R∗

tTT
) is a minimizer for F . If F

admits a minimizer µ∗ ∈ P(X )T , then a minimizer R∗ for F is built as

R∗(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at times
tT1 , . . . , t

T
T , respectively and RtT1 ,...,t

T
T

is the composition of the optimal transport plans γi that min-

imize Tτi,Ξ(µ
∗(i),µ∗(i+1)), for i ∈ [T − 1].=

Note that the composition of the transport plans is obtained as:

Rti,...,tT (dx1, . . . , dxT ) = γ1(dx1, dx2)γ2(dx3|x2) · · · γT−1(dxT |xT−1), (6)

where the OT plans γi(dxi, dxi+1) = γi(dxi+1|xi)µi(dxi) are conditional probabilities (or “disin-
tegrations”). As in [15], the “reduction” of the optimization space from P(Ω) to P(X )T is enabled
by the Markov property of WΞ,τ , which holds for us due to the Lipschitz continuity assumption
on Ξ and that WΞ,τ remains the uniform measure at all time. Theorem 3 allows us to compute a
minimizer for F from a minimizer for F and its associated OT plans.

To approximate the OT terms, we replace Tτi,Ξ(µ
(i),µ(i+1)) in (4) with Tτi(ξ

ti+1−ti
♯ µ(i),µ(i+1)),

where Tτi(µ, ν) := minγ∈Π(µ,ν) τiH(γ|pτiµ ⊗ ν) and pt(x, y) is the transition probability density
of the Brownian motion on X over the time interval [0, t]. This cost is easily computed as pτi is
the Gaussian kernel. In particular the cost function is c̃Ξτi(x, y) := −∆ti log(pτi(ξ∆t(x), y)), and
we use Varadhan’s approximation [42], c̃Ξτi(x, y) ≈

1
2 ∥y − x+∆tΞ(t1, x)∥2, which holds for τi

small, e.g. see Algorithm 1.
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Algorithm 1 PO-MFL: framework for latent trajectory inference
Input: Collection of observations (ρ̂1, . . . , ρ̂T ), collection of T time samples (tT1 , . . . , tTT ), velocity dynamics Ξ, number
of iterations for MFL dynamics N , number of particles m, entropic OT parameter λ
Initialize m particles for each time: (m̂1, . . . , m̂T ) ∈ Xm×T

for N iterations do
for i ∈ [T − 1] do

∆ti := tTi+1 − tTi
Ci := {Cj,k}mj,k=1 ← 1

2
∥m̂i+1,k − m̂i,j +∆tiΞ(t

T
i , m̂i,j)∥2

γi ← Sinkhorn(m̂i, m̂i+1, Ci, λ ·∆ti)
end
m̂← MFL(m̂,γ, ρ̂) ▷m := (m̂1, . . . , m̂T ), etc.

end
Output: collection of particles m̂, trajectories γt−1 ◦ · · · ◦ γ1

3.3. PO-MFL

We summarize our proposed latent trajectory inference method in Algorithm 1. We recall that
discussion on the cost function (line 4) and MFL dynamics (line 7) can be found in Sections G and
F, respectively. We use the Sinkhorn algorithm for entropic OT, which we discuss in Appendix B.
Using N iterations of the MFL dynamics, the total runtime for our algorithm is O(NTm2), as we
need to solve T − 1 entropic OT problems on m×m size matrices in each iteration.4

Given the set of observed temporal marginal samples in the observation space Y , Algorithm 1
yields a set of m particles at each time step i representing the temporal marginal distributions in
the latent space X . Simulated trajectories may be recovered by sampling from the composition of
entropic transport plans as shown in (6). We provide a variety of experiments in Appendix H.

4. Conclusion

We consider the problem of trajectory inference in latent space based on indirect observation, ex-
tending the theoretical analysis of the min-entropy estimator introduced in [35] and the MFL dy-
namics algorithm introduced in [15]. Experiments were provided showing that the ability to include
simple non-informative latent dynamics models, such as the “constant velocity” model, and autore-
gressive models, can dramatically improve the trajectory inference performance over the baseline
MFL method.

For future work, while we do here provide some flexibility for model misspecification via the
unknown Ψ potential, it would be interesting to further explore the stability of our method when
the dynamics model Ξ is misspecified. Further exploration of ensemble observability would also be
a highly interesting fundamental direction to explore. Finally, we will seek to explore the various
promising empirical use cases outlined in the introduction.
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tions. Birkhäuser Basel, 2015. ISBN 978-3-319-20827-5. doi: 10.1007/978-3-319-20828-2.
URL https://www.springer.com/gp/book/9783319208275.

[49] Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh
Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin
Brumbaugh, Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and
Eric S. Lander. Optimal-transport analysis of single-cell gene expression identifies devel-
opmental trajectories in reprogramming. Cell, 176(4):928–943.e22, 2019. ISSN 0092-8674.
doi: https://doi.org/10.1016/j.cell.2019.01.006. URL https://www.sciencedirect.
com/science/article/pii/S009286741930039X.
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Appendix A. Discussion

Applications While our focus is on the theoretical underpinnings of the latent trajectory inference
problem and MFL-based algorithm, we envision our approach being broadly applicable to a variety
of real-world tasks. For instance, the extra smoothing induced by introducing a hidden velocity state
could improve trajectory inference in the genomic data analysis setting mentioned above [15], or
any application where trajectory inference is relevant. Another possible application domain could
be survey or medical data. Specifically, when trajectory data is needed, longitudinal studies are
often designed where individuals are followed over time and continue to be re-interviewed, but
significant logistical challenges are involved in such a procedure [55]. Trajectory inference could
allow for different individuals to be sampled at each time point, significantly easing the burden
on researchers. Our approach for introducing hidden states (e.g. velocity) would be particularly
impactful, as in both social science and medical data, often individual’s trajectories (e.g. preferences
or health) do carry significant momentum. Finally, our approach could have advantages in private
learning of time series models or private synthetic data generation for time series. This is because
in (differential) privacy [19, 20], the goal is to preserve the statistics of an individual, and trajectory
inference allows for each individual’s data to be limited to a single point in time, not requiring a full
trajectory record that may be difficult to privatize. Our partial observation framework would allow
for even more privacy to be maintained as some variables could remain hidden if an appropriate
dynamics model was available.

Related works There have been many works in the mathematical and computational biology
community on trajectory inference: see [47] for a survey and comparison of single-cell trajectory
inference methods. [49] introduces the use of OT for trajectory inference; however, the method
generates paths that are generally not smooth. [13] uses OT to construct measure-valued splines,
which yields smooth paths, [9] models population dynamics as a Jordan-Kinderlehrer-Otto (JKO)
flow [30], and [45] uses OT to analyze gene trajectories.

[59] consider the limits of trajectory inference from single-cell snapshots in the equilibrium
setting. However, as far as we are aware, [35] was the first work to provide theoretical guarantees of
any estimator for trajectory inference. They introduce a min-entropy estimator for gradient-driven
drift models and prove convergence to the ground truth in the limit as the number of observations
become dense in the observation period. [15] extends the entropy minimization formulation of [35]
by considering a different fitting functional, reducing optimization space, and using MFL dynamics.
[61] considers the application of these OT frameworks to the steady-state setting with known cell
birth and death rates. A recent work [58] builds on [35] and provides theoretical guarantees for
trajectory inference in the branching case.

There has been much work on latent space for generative models, many of which use OT. [56]
uses score-based generative modeling in latent space. [29] uses a pre-trained encoder and decoder,
consider diffusion in latent space, and prove theoretical guarantees that the output distribution is
close to the ground truth. [23, 62] consider learn latent manifold structures using OT, [51] considers
gradient flow in latent space to study equivariant networks, [52] studies the latent space of generative
models using OT, and[1] considers the nonlinear filtering problem using partial observations using
OT. There are also some works considering concrete applications of Schrödinger bridges with non-
Wiener reference measures. For example, [12] considers Schrödinger bridges where the prior is any
Markov evolution for control theory and [10] shows that Schrödinger bridges between Gaussians
against reference measures induced by linear SDEs have a closed forms.
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Notation For probability measures µ, ν, the relative entropy (e.g. the KL divergence) isH(µ|ν) =∫
log(dµ/dν)dµ if µ ≪ ν and +∞ otherwise. For n ∈ N, let [n] := {1, . . . , n}. We use X to

denote the latent space and Y to denote the observation space. We use the notation P(·) to denote
the probability distributions over a space. The path space is Ω = C([0, 1] : X ), the set of continuous
X -valued paths. In our theoretical discussion, as in [35], we assume without loss of generality that
the end time interval is t = 1. If R ∈ P(Ω) is a probability measure on the space of paths, its
marginal at time t is denoted as Rt ∈ P(X ). We generally use the Greek letters µ, ρ to denote
probability distributions on X ,Y , respectively. We use δx to denote a Dirac delta at x. By an abuse
of notation, we use | · |2 = ⟨·, ·⟩ ∈ R for both the squared norm of a vector and the quadratic
variation of a stochastic process. For clarity, we use the notation g♯· when applied to measures and
g(·) when applied to random variables (similarly for ξ). We use vol to denote the uniform measure
on X .

Theoretical assumptions Let X ,Y be Polish spaces, where X is a smooth and compact Rie-
mannian manifold or a compact and convex subset of Rd. In the manifold setting, we assume its
Ricci curvature K is bounded from below, e.g. K > −∞.

The path space Ω = C([0, 1] : X ) is equipped with the uniform topology and its Borel σ-
algebra. The probability space on paths P(Ω) is equipped with the weak topology, e.g. convergence
against bounded, continuous functions. Assume our probability space (Ω,F ,P) is complete and
filtered, where the filtration is with respect to the process {Xt}. P is a probability measure, and if it
is not specified, expectations are taken with respect to P. Let WΞ,τ be the measure induced by the
SDE dZt = −Ξ(t, Zt) dt+

√
τ dBt.

Assumption 4 (Dynamics and Observation Model) Assume Ξ : C([0, 1] × X : X ) is known,
divergence-free, Lipschitz continuous, and satisfies ∥Ξ∥L∞ < +∞. Assume the observation func-
tion g : X → Y is smooth, measurable, bounded, and time invariant.

The divergence-free assumption is required so that the time marginals of WΞ,τ remain vol for all
time if the initial condition is vol5. Lipschitz continuity and ∥Ξ∥L∞ < +∞ are technical conditions
necessary for our proofs, and there are also some necessary mild technical conditions on the pair
(Ξ,Ψ). These assumptions are discussed in Appendix D. Finally, by bounded for g, we mean the
image of a set of finite measure also has finite measure.

Appendix B. Entropic Optimal Transport

We provide a brief exposition to entropic OT. We refer the reader to [16, 44] for a more thorough
introduction.

Let X ,Y be arbitrary spaces, c : X × Y → R be a cost function, and µ, ν be probability
measures on X ,Y , respectively. The entropic OT problem is

Tϵ(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy) + ϵH(π|µ⊗ ν),

where Π(µ, ν) is the set of all probability measures on X × Y with marginals µ on X and ν on Y ,
H is the relative entropy, and ϵ is the regularization parameter. By standard duality theory, this is

5. Note that if X has a boundary, we need a zero flux condition on Ξ, but we do not consider this in our theoretical
analysis.
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equivalent to the following problem

Tϵ(µ, ν) = max
φ∈L1(µ),ψ∈L1(ν)

∫
φdµ+

∫
ψdν + ϵ

(
1−

∫
e

1
ϵ
(φ(x)+ψ(y)−c(x,y))dµ(x)dµ(y)

)
,

which admits a unique solution up to a translation (φ + κ, ψ − κ) for κ ∈ R. Furthermore, the
functions (φ,ψ) satisfy the following conditions:{

φ(x) = −ϵ log
∫
exp(1ϵ (φ(y)− c(x, y)))dν(y)

ψ(y) = −ϵ log
∫
exp(1ϵ (φ(y)− c(x, y)))dµ(x).

In the discrete (empirical measure) setting, these potentials give motivation for the Sinkhorn
algorithm, which we describe in Algorithm 2. Here, ⊙ is taken to be element-wise multiplication.
[2] shows that the entropic OT problem can be solved in approximately linear time.

Algorithm 2 Sinkhorn
Input: Probability measures µ, ν, cost matrix C, regularization parameter ϵ, number of iterations
N
φ(0) ← 1
K ← exp(−C/ϵ)
for i = 1, . . . , N do

ψ(i) ← ν ⊙K⊤φ(i−1)

φ(i) ← µ⊙Kψ(i−1)

end
Output: transport plan diag(φ(N))K diag(ψ(N))

Appendix C. Ensemble Observability for Linear Systems

Recall that in classical observability [21], the goal is to recover the dynamics of a single particle,
while here we want to recover the dynamics of a probability distribution. The notion of ensemble
observability introduced in [60] tackles this problem. Consider the non-stochastic model with linear
Ξ(X) = AΞX +BΞ:

dXt = −(AΞXt +BΞ) dt (7)

with initial condition P0 and linear observations Yt = g(Xt) = CgXt + Dg. For shorthand, we
denote this system as (AΞ, BΞ, Cg, Dg).

The following is the definition of ensemble observability as introduced in [60]: it does not
consider stochasticity.

Definition 5 (Ensemble observability [60, Def. 1]) The linear system (7) is ensemble observable
if given marginals g♯Pt of Yt for all t ∈ [0, 1], the marginals Pt of Xt are uniquely determined for
all t ∈ [0, 1].

We can consider Definition 1 as an extension of ensemble observability. In particular, if we con-
sider τ = 0 in Definition 1, we exactly recover ensemble observability. [60] showed that classical
observability is a necessary condition for ensemble observability, and provided several sufficient
conditions as well. For a random variable X , we denote φX to be its characteristic function. We
assume the following on the initial distribution X0.
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Assumption 6 Let X0 be such that s 7→ φX0(sv) is real-analytic for all non-zero v ∈ Rn.

This assumption is not very strong and most “nice” distributions satisfy it, e.g. if they have a density.
Recall that by [21, Thm. 5.2], classical observability holds if and only if the observability matrix
O := [CΞ, CΞAΞ, . . . , CΞA

n−1
Ξ ] has rank n. [60] provides two useful sufficient conditions6 for

ensemble observability of such systems.

Proposition 7 ([60, Thm. 8]) Under Assumption 6, if (AΞ, BΞ, Cg, Dg) is observable and rankCg =
n− 1, then (AΞ, BΞ, Cg, Dg) is ensemble observable.

Corollary 8 ([60, Cor. 8]) Under Assumption 6, if X = R2 and (AΞ, BΞ, Cg, Dg) is observable,
then (AΞ, BΞ, Cg, Dg) is ensemble observable.

We now show that these two conditions can be carried over to stochastic systems, i.e., those
with τ > 0. Consider adding stochasticity to (7) with the model

dXt = −(AΞXt +BΞ) dt+
√
τ dBt (8)

with initial condition P0, {Bt} is an Rn-valued Brownian motion, and observations Yt = CgXt +
Dg. We have the following result:

Corollary 9 Suppose (AΞ, BΞ, Cg, Dg) is ensemble observable (with τ = 0). Then the system (8)
with known τ > 0 is ensemble observable.

Proof It is easy to see via direct calculation7 that the solution to (8) is

Xt = e−AΞtX0 −
(∫ t

0
e−AΞ(t−s) ds

)
BΞ +

√
τ

∫ t

0
e−AΞ(t−s)dBs, (9)

where we use matrix exponentials. Using arguments similar to those in [57], we can characterize
the covariance:

Σt := Cov [Xt] = τ

∫ t

0
e−(AΞ+A

⊤
Ξ )(t−s)ds.

We also know that

µt := E[Xt] = e−AΞtX0 −
(∫ t

0
e−AΞ(t−s) ds

)
BΞ.

Then as the first two terms on the right-hand side of (9) have zero variance and the Itô integral of a
deterministic integrand is normally distributed with mean zero, we know that (9) is distributed as

Xt ∼ N (µt,Σt).

As we know τ , and the corresponding observability matrix to the system has full-rank, we see
that the pushforward (to observation space) of every term in (9) is also fully recoverable as well.
Note that it is possible to deconvolve8 the known Gaussian noise from Xt, and hence the system is
ensemble observable. This concludes the proof.

Next, we extend Corollary 8 to independent processes and apply Corollary 9.

6. These are not the only concrete conditions provided therein. Furthermore, a more general sufficient condition is
provided which is possible to check numerically.

7. E.g. using an integrating factor.
8. E.g., using the fact that deconvolution is equivalent to division in the Fourier domain.
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Proposition 10 Let X = X1 × · · · × Xn, where each Xi = R2. Suppose (AΞi , BΞi , Cgi , Dgi) is
observable for each i ∈ [n]. Further, suppose the initial condition joint distribution for theX0,i sat-
isfies Assumption 6 with [X0,i]1, [X0,j ]2 conditionally independent conditioned on [X0,i]2, [X0,j ]1,
for each j ̸= i. If noise parameter τ > 0 is known and {Bt} is an X -valued Brownian motion, then
the system 

AΞ1

...
AΞn

 ,

BΞ1

...
BΞn

 ,

Cg1...
Cgn

 ,

Dg1
...

Dgn




is ensemble observable. Furthermore, the system remains ensemble observable under (known) per-
mutations.

Proof This follows from a simple application of Corollaries 8 and 9.

C.1. Example: “Constant velocity” model

The two-dimensional “constant velocity” model, so named because the velocity would be constant
if there were no process noise (τ = 0), uses a state vector

X = (x, y, ẋ, ẏ) ∈ R4,

where here (x, y) are two-dimensional positional coordinates, and (ẋ, ẏ) is the current two-dimensional
velocity. The “constant velocity” dynamics model uses Ξ(X) = AΞX where

AΞ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
which is a very simple matrix simply implying that the rate of change of X1 = x is given by the
current state vector X3 = ẋ, and similarly for y.

Having defined the dynamics, in this model, only the positions are observed. In other words,
the observations g(X) = [I2, 02×2]X , i.e. CΞ = [I2, 02×2] and DΞ = 0.

Note that this experimental setting satisfies Proposition 10 as the x and y dynamics are indepen-
dent. Hence, it is sufficient to check if the system is observable. HereC = [1, 0] andA = [0, 1; 0, 0],
so the observability matrix for each of these subsystems becomes[

C
CA

]
=

[
1 0
0 1

]
,

which is the identity and thus full rank. By observability theory, the system is classically observable,
and by the results above, ensemble observable as well.

Note that ensemble observability can be extended to non-zero Ψ in this setting. For instance, in
the “constant velocity” model of the main text,∇Ψ = [0;ψ] for constant but unknown ψ will serve
simply as a drift term on the mean of the hidden velocity state. Since without this drift the mean of
the velocity is constant, this drift will be identifiable and the system will be ensemble observable.

Finally, as a brief remark, note that in Definition 1, we require Ψ to be restricted to a class of
functions CΨ as otherwise the SDE (1) may fail to satisfy classical observability. Further exploration
of CΨ classes is left to future work.
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Appendix D. Proofs for Consistency

We make this section as self-contained as possible, although we suppress some of the longer details
when they are very similar to certain corresponding results in [35]. Whenever we do, we point to
the fuller arguments in [35]. The main result in this section is the following:

Theorem 11 (Consistency, (formal version of Thm. 2)) Let P be the law of the SDE given in (1),
restated below:

dXt = −Ξ(t,Xt) dt−∇Ψ(t,Xt) dt+
√
τ dBt,

with initial condition P0 ∈ P(X ) such that H(P0|vol) < +∞. Assume we have the following:

1. g : X → Y is a smooth, measurable, bounded, time invariant function, and (g,Ξ, CΨ) is
CΨ-ensemble observable.

2. For every T ≥ 1, we have a sequence of ordered observation times {tTi }Ti=1 between 0 and 1,
and {tTi }Ti=1 becomes dense in [0, 1] as T → +∞.

3. For each T and each i ∈ [T ], we have NT
i ≥ 1 random variables {Y T

i,j}
NT

i
j=1, which are i.i.d.

and distributed according to g♯PtTi
.

4. The variables Y T
i,j and Y T ′

i′,j′ are sampled independently from their respective distributions
except when (T, i, j) = (T ′, i′, j′).

Consider the functional (2), restated below:

F(R) := Fitλ,σ(g♯RtT1
, . . . , g♯RtTT

) + τH(R|WΞ,τ ),

and let RT,λ,h ∈ P(Ω) be its unique minimizer:

RT,λ,h := argmin
R∈P(Ω)

F(R).

Then, we have the weak convergence

lim
h→0,λ→0

(
lim
T→∞

RT,λ,h

)
= P,

almost surely.

Proof We use Theorem 15 to take the limit T → +∞. By the law of large numbers and the
weak convergence assumption, we have ρt = Φh(Pt), almost surely. Define Rλ,h to be the limit of
RT,λ,h as T → +∞. By Theorem 15, it is the unique minimizer of

R 7→ Fλ,h(R) :=
1

λ

∫ 1

0
DF(Rt,ΦhPt) dt+ τH(R|WΞ,τ ).

By definition of the data-fitting term, the functional Gλ,h in Theorem 29 differs from Fλ,h only by
a constant. We see that

Gλ,h(R) = Fλ,h(R)−
∫ 1

0
H(ΦhPt) dt− C,

so Rλ,h must also be the unique minimizer for Gλ,h. Finally, we use Theorem 29 to take the limit
of Rλ,h as h→ 0 and λ→ 0. This concludes the proof.
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D.1. Variational characterization of the SDE

We recall some previously introduced preliminaries and notation. Ω = C([0, 1] : X ) is the set
of X -valued paths, {Xt}t∈[0,1] is our canonical process, and F is the Borel σ-algebra generated
by the random variables Xs for s ≤ t such that {Ft}t∈[0,1] is a filtration. We use the notation
| · |2 = ⟨·, ·⟩ ∈ R for the quadratic variation of a process (similarly use this notation for cross-
variation).

For the Girsanov transforms to be martingales, we have the following mild technical assumption.

Assumption 12 (Novikov conditions on Ξ) Assume that the following Novikov conditions hold:

E
[
exp

(
1

2

∫ 1

0
|Ξ|2 ds

)]
< +∞

and

E
[
exp

(
1

2

∫ 1

0
|Ξ +∇Ψ|2 ds

)]
< +∞.

Also, assume that there exists C < +∞ such that
∫ 1
0 |Ξ|

2 ds ≤ C and
∫ 1
0 |Ξ +∇Ψ|2 ds ≤ C.

This last condition is so that we can apply Girsanov’s on manifolds, e.g. [25, Thm. 8.1.2].

Proposition 13 (analogous to [35, Prop. 2.11]) Let P be the law of the SDE in (1). Then the
Radon-Nikodym derivative of P with respect to WΞ,τ is given WΞ,τ -a.e. by

dP

dWΞ,τ
(X) =

dP0

dvol
(X0) exp

(
Ψ(0, X0)−Ψ(1, X1)

τ

)
· exp

(
1

τ

(∫ 1

0

(
∂sΨ−

1

2
|∇Ψ|2 − ⟨Ξ,∇Ψ⟩+ τ

2
∆Ψ

)
(s,Xs) ds

))
.

(10)

To prove this proposition, we do not use a martingale characterization as in [35], but directly use
the Girsanov theorem (which by our assumption on Ξ, can be applied on manifolds) and the Itô
formula.
Proof By the chain rule, we have

dP

dWΞ,τ
(X) =

dP0

dvol
(X0) ·

dP

dWτ
· dW

τ

dWΞ,τ
.

The first term follows from an averaging argument identical to that of [35, Prop. 2.11]. For the
second term, recall that P is the measure induced by the process dXt = −(Ξ +∇Ψ) dt+

√
τ dBt

18
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and Wτ is the measure induced by the process dYt =
√
τ dBt. We have

dP

dWτ
= exp

(
1√
τ

∫ t

0
(Ξ +∇Ψ)(s,Xs) dBs −

1

2τ

∫ t

0
|Ξ +∇Ψ|2(s,Xs) ds

)
= exp

(
1√
τ

∫ t

0
∇Ψ(s,Xs) dBs −

1

2τ

∫ t

0
|∇Ψ|2(s,Xs) ds

)
· exp

(
1√
τ

∫ t

0
Ξ(s,Xs) dBs −

1

2τ

∫ t

0
(|Ξ|2 + 2⟨Ξ,∇Ψ⟩)(s,Xs) ds

)
= exp

(
1

τ

(
Ψ(0, X0)−Ψ(1, X1) +

∫ t

0

(
∂sΨ−

1

2
|∇Ψ|2 + τ

2
∆Ψ

)
(s,Xs) ds

))
· exp

(
1√
τ

∫ t

0
Ξ(s,Xs) dBs −

1

2τ

∫ t

0
(|Ξ|2 + 2⟨Ξ,∇Ψ⟩)(s,Xs) ds

)
= exp

(
1

τ

(
Ψ(0, X0)−Ψ(1, X1) +

√
τ

∫ t

0
Ξ(s,Xs) dBs

))
,

· exp
(
1

τ

∫ t

0

(
∂sΨ−

1

2
|Ξ +∇Ψ|2 + τ

2
∆Ψ

)
(s,Xs) ds

) (11)

where the first line follows from the Girsanov theorem, [43, Thm. 8.6.6] and the third line follows
from Itô’s formula, [43, Thm. 4.2.1]. Letting WΞ,τ be the measure induced by the process dZt =
−Ξ(t, Zt) dt+

√
τ dBt, we have

dWτ

dWΞ,τ
= exp

(
1

2τ

∫ t

0
|Ξ|2 ds− 1√

τ

∫ t

0
Ξ dBs

)
(12)

by Girsanov. Combining (11) and (12) yields (10). The claim follows.

The next result is the variational characteristic of the SDE.

Theorem 14 (analogous to [35, Thm. 2.1]) Suppose (g,Ξ, CΨ) is CΨ-ensemble observable. Let
Ξ : [0, 1]× X → X be a smooth function and Ψ : [0, 1]× X → R be a smooth potential. Let P be
the law of the SDE

dXt = −Ξ(t,Xt) dt−∇Ψ(t,Xt) dt+
√
τ dBt

with initial condition P0 ∈ P(X ) such that H(P0|vol) < +∞. If R ∈ P(Ω) is such that g♯Rt =
g♯Pt for all t ∈ [0, 1], we have

H(P|WΞ,τ ) ≤ H(R|WΞ,τ )

with equality if and only if P = R.

The argument follows that of [35] with our ensemble observable assumption and reference measure.
Here, the proof is the same, but now we use the fact that our reference measure “cancels out” the
stochastic integral, e.g. see Proposition 13.
Proof Let P be the law of the solution of (1) and suppose R ∈ P(Ω) is another path measure such
that H(R|WΞ,τ ) < +∞. Let p, r ∈ L1(Ω,WΞ,τ ) denote the Radon-Nikodym derivative of P,R
with respect to WΞ,τ , respectively. By strict convexity of x 7→ x log x, we have

r log r − p log p ≥ (1 + log p)(r − p),
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WΞ,τ -almost everywhere, with equality if and only if r = p. Integrating with respect to WΞ,τ , we
see

H(R|WΞ,τ )−H(P|WΞ,τ ) ≥ ER[1 + log p]− EP[1 + log p]. (13)

Using Proposition 13, we have

ER[1 + log p] = ER

[
1 + log

(
dP0

dvol

)
(X0) +

Ψ(0, X0)−Ψ(1, X1)

τ

+
1

τ

∫ 1

0

(
∂sΨ−

1

2
|∇Ψ|2 − ⟨Ξ,∇Ψ⟩+ τ

2
∆Ψ

)
(s,Xs) ds

]
.

By definition of ensemble observability, if g♯Rt = g♯Pt for all t ∈ [0, 1], this implies Rt = Pt for
all t ∈ [0, 1]. Because this expression only depends on the temporal marginals of R as the Radon-
Nikodym derivative of P with respect to WΞ,τ does not contain a stochastic integral, the right-hand
side of (13) vanishes if g♯Rt = g♯Pt for all t ∈ [0, 1]. This concludes the proof.

D.2. The main technical result: Theorem 15

Theorem 15 (analogous to [35, Thm. 2.7]) Fix λ > 0 and assume we have the following:

1. For every T ∈ N, we have a sequence of ordered observation times {tTi }Ti=1; a sequence of
data smoothed by the heat-kernel ρ̂Ti (a collection of T probability measures on Y); and a
sequence of non-negative weights {ωTi }Ti=1.

2. There exists a P(Y)-valued continuous curve ρ ∈ C([0, 1] : P(Y)) such that the following
weak convergence holds: for all continuous functions a : [0, 1]× Y → R,

lim
T→+∞

T∑
i=1

ωTi

∫
X
a(tTi , x)ρ̂

T
i (dx) =

∫ 1

0

∫
X
a(t, x)ρ(dx) dt.

For each T , let RT ∈ P(Ω) be the unique minimizer of

R 7→ FT (R) := τH(R|WΞ,τ ) +
1

λ

T∑
i=1

ωTi DF(g♯RtTi
, ρ̂Ti ). (14)

Then as T → +∞, the sequence {RT } converges weakly on P(Ω) to the unique minimizer of

R 7→ F (R) := τH(R|WΞ,τ ) +
1

λ

∫ 1

0
DF(g♯Rt, ρt).

Before proving this theorem, we state the following result that is immediate from the non-
negativity of our data-fitting term.

Fact 16 (Non-negativity) With the assumptions of Theorem 15, the functionals FT and F are
bounded from below by 0.
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Proof [Proof of Theorem 15] The argument follows that of [35]. Let R be a minimizer of F and
RT be the minimizer of FT . By optimality of the minimizers, we have G0R = R and G0RT = RT .
Using Proposition 27, we can find a sequence R̃T that converges weakly to R as T → +∞ such
that

F (R) ≥ lim sup
T→+∞

FT (R̃
T ) ≥ lim sup

T→+∞
min
P(Ω)

FT = lim sup
T→+∞

FT (R
T ).

In particular, the sequence is bounded, which by Fact 16, implies the sequence H(RT |WΞ,τ ) is
bounded. Then from the compactness of the sublevel sets of the entropy, we have a limit point R̂ of
the sequence {RT }. Using the optimality of R and Proposition 28, we see

F (R) ≤ F (G0R̂) ≤ lim inf
T→+∞

FT (R
T ).

Thus, we have equalities everywhere, so

F (R) = lim sup
T→+∞

FT (R̃
T ) = lim

T→+∞
FT (R

T ).

Then we see
FT (R̃)− FT (RT ) = FT (R̃

T )− min
P(Ω)

FT

converges to 0 as T → +∞. By [35, Lem. B.3], relative entropy is 1-convex with respect to the
total variation, i.e. if p, q, r are three probability measures,

H

(
p+ q

2

∣∣∣∣∣r
)
≤ 1

2
H(p|r) + 1

2
H(q|r)− 1

2
∥p− q∥2TV.

Since the data-fitting term is also convex, the full objective FT (·) is 1-convex with respect to the
total variation. By a classic strong convexity argument, since FT (R̃) converges to the minimum
value minP(Ω) FT achieved at RT , ∥R̃T −RT ∥TV must also converge to 0 as T → +∞. Recall
that TV convergence is stronger than weak convergence. Then, using the weak convergence of R̃T

to R, we see that RT converges weakly to R as T → +∞. This concludes the proof.

The remainder of Appendix D.2 is dedicated towards proving Theorem 15.

D.2.1. HEAT FLOW AND REGULARIZATION OF THE MARGINALS

Recall that we use Φs to denote the heat flow with width s. We use the heat flow to regularize the
marginals. First, we have the following result showing that the density of ΦsRt is continuous jointly
in t and x.

Proposition 17 (analogous to [35, Prop. 2.12]) Let s > 0. There exists a constant C depending
only on X and Ξ for which the following hold:

1. For each R ∈ P(Ω), its heat flow regularization ΦsRt has density ρ(s)(t, ·) (with respect to
the volume measure) that satisfies for all t ∈ [0, 1], x ∈ X , we have

ρ(s)(t, x) ≥ 1

Cs
.
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2. For all t1, t2 ∈ [0, 1] and x1, x2 ∈ X , we have

|ρ(s)(t1, x1)−ρ(s)(t2, x2)| ≤ C
(√

τ
√
H(R|WΞ,τ ) + C + Cτ

√
|t1 − t2|+ dX (x1, x2)

)
.

Proof The first estimate is directly from [35]. The second estimate follows from [35] and the
following proposition.

Proposition 18 (analogous to [35, Lem. 2.13]) There exists a constant C depending only on X
and Ξ such that for each R ∈ P(Ω),

ER[dX (Xt1 , Xt2)
2] ≤ C

(
H(R|WΞ,τ ) + C + Cσ2

)
σ2|t1 − t2|.

Proof The argument follows that of [35]. For any η > 0, using the dual representation of entropy
with the function X 7→ ηdX (Xt1 , Xt2), we have

ηER[dX (Xt1 , Xt2)
2] ≤ H(R|WΞ,τ ) + logEWΞ,τ [exp(ηdX (Xt1 , Xt2)

2].

Using an upper bound on the heat kernel from [36, Cor. 3.1] and that ∥Ξ∥L∞ < +∞, we have the
following bound on the transition probability for WΞ,τ :

pτ (x, y, t) ≤
Ce∥Ξ∥

2
L∞

(τt)d/2
exp

(
Cτt− dX (x, y)

2

Cτt

)
.

Then the remainder of the argument of the proof of [35, Prop. 2.13] yields the desired result.

D.2.2. HEAT FLOW AND ENTROPY ON THE SPACE OF PATHS

We introduce an auxiliary variational problem in which all the temporal marginals are fixed.

Definition 19 Let ρ ∈ C([0, 1] : P(X )) be a P(X )-valued continuous curve with respect to the
weak topology. Define the problem Aτ (ρ) to be

Aτ (ρ) := inf
R∈P(Ω)

{τH(R|WΞ,τ ) | ∀t ∈ [0, 1], g♯Rt = g♯ρt}.

We use the convention that Aτ (ρ) = +∞ if the above problem has no admissible competitor.

Using a dual representation of A, we can use PDE theory to solve this problem. First, we give
a martingale characterization of a class of stochastic processes:

Proposition 20 Suppose W̃Ξ,τ is the law of the SDE dXt = −Ξ dt +
√
τ dBt with arbitrary

initial distribution. Let φ : [0, 1]×X → R be a smooth function. Then, the process whose value at
t ∈ [0, 1] is given by

exp

(
1

τ

(
φ(t,Xt)− φ(0, X0)−

∫ t

0

[
∂sφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

]
(s,Xs) ds

))
(15)

is an Ft-martingale under W̃Ξ,τ .
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Proof By Assumption 12 on Ξ, the process

Mφ
t = φ(t,Xt)− φ(0, X0)−

∫ t

0

[
∂sφ− ⟨Ξ,∇φ⟩+

τ

2
∆φ
]
(s,Xs) ds (16)

is anFt-martingale under W̃Ξ,τ by [43, Thm 8.3.1]. We calculate the quadratic variation ⟨Mφ⟩t
similar to [26, Prop. 1.3.1]. First, we have

φ(t,Xt)
2 = φ(0, X0)

2 +Mφ2

t +
1

2

∫ t

0
[−⟨Ξ,∇φ2⟩+∆φ2](s,Xs) ds

= φ(0, X0)
2 +Mφ2

t +
1

2

∫ t

0
[−2φ⟨Ξ,∇φ⟩+∆φ2](s,Xs) ds.

Using Itô’s formula, we have

φ(t,Xt)
2 = φ(0, X0)

2 + 2

∫ t

0
φ(s,Xs)dφ

2(s,Xs) + ⟨Mφ⟩t

= φ(0, X0)
2 + 2

∫ t

0
φ(s,Xs)dM

φ
s +

∫ t

0
φ(s,Xs)[−⟨Ξ,∇φ⟩+∆φ](s,Xs)ds+ ⟨Mφ⟩t.

Equating the bounded variation parts, we see

⟨Mφ⟩t =
1

2

∫ t

0

[
−2φ⟨Ξ,∇φ⟩+∆φ2 + 2φ⟨Ξ,∇φ⟩ − φ∆φ

]
(s,Xs) ds

=
1

2

∫ t

0

[
∆φ2 − φ∆φ

]
(s,Xs) ds

=

∫ t

0
|∇φ(s,Xs)|2 ds.

Then, (15) is the exponential martingale of Mφ
t .

Here, recall that Assumption 12 ensures that (16) is a martingale. Otherwise, it is only a local
martingale and we would need to check the L1 convergence of the stopped process with an increas-
ing sequence of stopping times that goes to +∞. This is a standard argument in stochastic calculus,
e.g. see [43].

Now we give the dual representation mentioned above.

Proposition 21 (analogous to [35, Prop. 2.15]) Let ρ ∈ C([0, 1] : P(X )) be a P(X )-valued con-
tinuous curve. We have

Aτ (ρ) = τH(ρ0|vol)

+ sup
φ

{
−
∫
X
φ(0, x)ρ0(dx)−

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρt(dx) dt

}
,

where the supremum is taken over all φ ∈ C2([0, 1]×X ) such that φ(1, ·) = 0.
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Proof The argument follows that of [35]. From the duality result of [3, Prop. 2.3], we have

Aτ (ρ) = τH(ρ0|vol)+τ sup
ψ

{∫ 1

0

∫
X
ψρt(dx) ds−

∫
X

[
logEWΞ,τ,x exp

(∫ 1

0
ψ dt

)
ρ0(dx)

]}
,

where WΞ,τ,x is the measure such that WΞ,τ
0 = δx and the supremum is taken over ψ ∈ C([0, 1]×

X ). Here, the characterization holds because the argument in [3] only requires the reference mea-
sure to be uniform at all marginals.

Let −ψ := 1
τ (∂tφ + 1

2 |∇φ|
2 − ⟨Ξ,∇φ⟩ + τ

2∆φ) for some smooth φ satisfying the terminal
condition φ(1, x) = 0. By Proposition 20, we see

EWΞ,τ,x

[
exp

(
−φ(0, X0)

τ
+

∫ t

0
ψ(t,Xt) dt

)]
= 1.

As X0 = 0 under WΞ,τ,x, we have∫
X

[
logEWΞ,τ,x exp

(∫ t

0
ψ(t,Xt) dt

)]
=

∫
X

[
log eτ

−1φ(0,x)
]
ρ0(dx)

=
1

τ

∫
X
φ(0, x) ρ0(dx).

The remaining argument of [35] follows through.

The main idea is that there is a contraction of Aτ under the heat flow, which we can think of as
a space-time counterpart of the contraction of entropy under the heat flow.

Proposition 22 (analogous to [35, Prop. 2.16]) Let ρ ∈ C([0, 1] : P(X )) be a P(X )-valued con-
tinuous curve and for s ≥ 0, define the new curve ρ(s) : t 7→ Φsρt. Let K be a lower bound on the
Ricci curvature of the manifold X . Then, for any s ≥ 0, we have

Aτ (ρ(s)) ≤ e−2KsAτ (ρ).

Proof Consider the dual formulation in Proposition 21. If φ : [0, 1] × X → R is a C2 function
with boundary condition φ(1, ·) = 0, then by the self-adjointness property of the heat semigroup,
we have∫

X
φ(0, ·)ρ(s)0 +

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρ
(s)
t dt

=

∫
X
{Φsφ}(0, ·)ρ0 +

∫ 1

0

∫
X

(
∂tΦsφ+

1

2
Φs|∇φ|2 − Φs⟨Ξ,∇φ⟩+

τ

2
∆Φsφ

)
ρt dt,

where Φs∂tφ = ∂tΦsφ by Schwarz’s theorem and Φs∆φ = ∆Φsφ by simple calculation. By
properties of the carré du champ operator [5, Cor. 3.3.19] and expanding out the inner product, we
see that ⟨ΦsΞ,∇Φsφ⟩ ≤ e−2KsΦs⟨Ξ,∇φ⟩. Thus, letting φ̃ = e2KsΦsφ and Ξ̃ = e2KsΦsΞ, we
have

−
∫
X
φ(0, ·)ρ(s)0 −

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρ
(s)
t dt

≤ −e−2Ks

[∫
X
φ̃(0, ·)ρ0 −

∫ 1

0

∫
X

(
∂tφ̃+

1

2
|∇φ̃|2 − ⟨Ξ̃,∇φ̃⟩+ τ

2
∆φ̃

)
ρt dt

]
≤ e−2Ks[Aτ (ρ)− τH(ρ0|vol)],
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where the last inequality is due to Proposition 21. Taking a supremum over φ, we see that

Aτ (ρ(s)) ≤ e−2KsAτ (ρ) + τ
[
H(Φsρ0|vol)− e−2KsH(ρ0|vol)

]
.

By [35, Eq. B.3], the second term in the right-hand side is always non-positive, so the claim follows.

Next, we define the regularizing operator Gs that acts at the level of laws on the space of paths.

Definition 23 For each R ∈ P(Ω) with H(R|WΞ,τ ) < +∞ and for each s ≥ 0, define

Gs(R) := argmin
R̃∈P(Ω)

{H(R̃|WΞ,τ ) | ∀t ∈ [0, 1], g♯R̃t = g♯ΦsRt}.

That is, among all probability distributions on the space of paths whose marginals in hidden space
coincide with t 7→ g♯ΦsRt, the measure Gs(R) ∈ P(Ω) is the one with the smallest entropy.

Note that Gs(R) is well-defined because thanks to Proposition 22,Aτ ((ΦsRt)t) ≤ e−2KsAτ ((Rt)t) ≤
e−2KsH(R|WΞ,τ ) < +∞, so the minimization problem has admissible solutions. Since sublevel
sets of entropy are compact, there exists a minimizer, and from strict convexity of the entropy func-
tional, it is unique. Now note that

Aτ ((Φs(Rt)t) = H(Gs(R|WΞ,τ )).

This gives us the following result.

Proposition 24 (analogous to [35, Prop. 2.18]) For each R ∈ P(Ω) such that H(R|WΞ,τ ) <
+∞, we have the following:

1. For any s ≥ 0, H(Gs(R)|WΞ,τ ) ≤ e−2KsH(G0(R)|WΞ,τ ) ≤ e−2KsH(R|WΞ,τ ).

2. Gs(R) converges to G0(R) weakly as s→ 0+.

Proof The argument follows that of [35]. The first property is a rewriting of Proposition 22 together
with the definition of Gs and Aτ . The second property follows from our observability assumption
and an analogous argument to that of the proof of [35, Prop. 2.18]. Consider the following sequential
characterization. Let {sn}n∈N be a sequence with sn → 0 as n → +∞. By the contraction
estimate in (i) and that the Ricci curvature is bounded from below, we know that H(GsnR|WΞ,τ )
is uniformly bounded in n. Let R̃ be any limit point of GsnR. Notice that this limit point exists due
to the compactness of the sublevel sets of H(·|WΞ,τ ).

We show that R̃ = G0R by a standard analytic argument. We consider a subsequence (which we
do not relabel) GsnR that converges to R̃ as n → +∞. The marginals of R̃ agree with those of R
as we easily see that the marginals of GsnR are the {ΦsnRt}t∈[0,1], and Φsnf → f in L1(X , vol) as
sn → 0. Then, using the lower semi continuity of entropy, the definition of Gsn , and the contraction
estimate for A, we have

H(R̃|WΞ,τ ) ≤ lim inf
n→+∞

H(GsnR|WΞ,τ )

= lim inf
n→+∞

Aτ ((ΦsnRt)t)|WΞ,τ )

≤ lim inf
n→+∞

e−2KsnAτ ((Rt)t) = Aτ ((Rt)t).

This shows that R̃ = G0R, which concludes the proof.
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D.2.3. THE DATA-FITTING TERM

We recall the definition of the data-fitting term here:

DFσ(g♯RtTi
, ρ̂T,hi ) :=

∫
Y
− log

[∫
X
exp

(
−∥g(x)− y∥

2

2σ2

)
dRtTi

(x)

]
dρ̂T,hi (y)

:= H(ρ̂T,hi |g♯RtTi
∗ Nσ) +H(ρ̂tTi

) + C,

where Nσ is the Gaussian kernel. First, we have the following result, which is immediate from
properties of entropy.

Proposition 25 The function r 7→ DF(r, p) is convex and lower semi continuous on P(X ).

We will require a quantitative control on the effect of the heat flow on the data-fitting term.

Proposition 26 (analogous to [35, Prop. 2.22]) Assume g : X → Y is measure preserving.9 Let
p, r ∈ P(X ). There exists a constant C > 0 depending only on X , g, and σ such that for every
s > 0,

DF(g♯Φsr, g♯p) ≤ DF(g♯r, g♯p) + s · C.

Above, for simplification of the notation, we pushforward both parameters of the data-fitting term
by g. This makes the argument below much cleaner.
Proof The argument follows that of [35], but it is much simpler due to our different data-fitting
term. In particular, we do not need a bound on the Fisher information. By an abuse of notation,
denote r ∈ L1(X , vol) the density of r with respect to vol. Denote r(s, ·) to be the density of Φsr
with respect to r. It satisfies the heat equation

∂r

∂s
= ∆r.

Then, we have

d

ds
DF(g♯Φsr, g♯p) =

d

ds

∫
Y
− log

[∫
X
exp

(
−∥g(x)− g(y)∥

2

2σ2

)
r(s, x)vol(dx)

]
p(y)vol(dy)

= −
∫
Y
log

[∫
exp

(
−∥g(x)− g(y)∥

2

2σ2

)
∂

∂s
r(s, x)vol(dx)

]
p(y)vol(dy)

= −
∫
Y
log

[∫
X
exp

(
−∥g(x)− g(y)∥

2

2σ2

)
∆r(s, x)vol(dx)

]
p(y)vol(dy)

≤ C
∫
Y
p(y)vol(dy) ≤ C,

where the inequality follows from properties of the Gaussian integral and the fact that
∫
∆r(s, x)vol(dx) =

1. Integrating yields the desired result.

9. Suppose that (X , λX ), (Y, λY) are measure spaces with Lebesgue measure. g is measure preserving if for every
Borel set B ∈ X , λX (A) = λY(g♯A).
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D.2.4. TWO RESULTS ON LIMITS OF FUNCTIONALS

We require two results of the functional FT defined in (14). We use these for the Γ-convergence
theory required in the proof of Theorem 15.

Proposition 27 (analogous to [35, Prop. 2.24]) Use the notation and assumptions of Theorem 15.
Suppose R ∈ P(Ω) with F (R) < +∞ and G0R = R. Then there exists a sequence R̃T which
converges weakly to R as T → +∞ and

lim sup
T→+∞

FT (R̃
T ) ≤ F (R).

Proof The argument follows that of [35]. Let s > 0. Combining Proposition 26 for the data-fitting
term and Proposition 24 for the relative entropy on the space of paths, we see that

F (Gs(R) = τH(GsR|WΞ,τ ) +
1

λ

∫ 1

0
DF(ΦsRt, ρt) dt

≤ τe−2KsH(R|WΞ,τ ) +
1

λ

∫ 1

0
DF(Rt, ρt) dt+ s · C,

so we have
lim sup
s→0

F (GsR) ≤ F (R).

Now as − log[GsR]t is a continuous function of t and x by Proposition 17, we can use the weak
convergence of ρ̂T to ρ to write, for s > 0,

lim
T→+∞

T∑
i=1

ωTi DF
(
[GsR]tTi

, ρ̂Ti

)
=

∫ 1

0
DF([GsR]t, ρt) dt.

This implies for all s > 0, we have limT→+∞ FT (GsR) = F (GsR), so it is sufficient to let
R̃ := GsTR for a sequence {sT }T≥1 that decays to 0 sufficiently slowly as T → +∞. This
concludes the proof.

Proposition 28 (analogous to [35, Prop. 2.25]) Use the notation and assumptions of Theorem 15.
For each T ≥ 1, let R̃T ∈ P(Ω) and assume that it converges weakly to some R ∈ P(Ω) as
T →∞. Then

F (G0R) ≤ lim inf
T→+∞

FT (R̃
T ).

Proof The argument follows that of [35]. Assume that lim infT→+∞ FT (R̃
T ) < +∞ otherwise we

are done. Then, up to a subsequence (that we do not relabel), we have supT H(R̃T |WΞ,τ ) < +∞.
Combining Proposition 26 for the data-fitting term and Proposition 24 for the relative entropy on
the space of paths, we have

FT (GsR̃T ) = τH(GsR̃T |WΞ,τ ) +
1

λ

T∑
i=1

ωTi DF
(
g♯ΦsR̃

T
tTi
, ρ̂Ti

)
≤ τe−2KsH(R̃T |WΞ,τ ) +

1

λ
DF

(
R̃T
tTi
, ρ̂Ti

)
+
sc

λ
.
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Now we rewrite the above as

FT (R̃
T ) ≥ FT (GsR̃T )− C(s),

where
C(s) = τ |e−2Ks − 1| sup

T
H(R̃T |WΞ,τ ) +

sc

λ

is upper bounded by a quantity independent of T and lims→0+ C(s) = 0. For the data-fitting term,
define the sequence of functions aTs (t, x) to be

aTs (t, x) := − log

[∫
exp

(
−∥g(z)− x∥

2

2σ2

)
dΦsR̃

T
t (z)

]
,

which is parametrized by T . Notice that from the definition of the data-fitting term, we have

T∑
i=1

ωTi DF(g♯ΦsR̃
T
tTi
, ρ̂Ti ) =

T∑
i=1

ωTi

∫
X
aTs (t

T
i , x)ρ̂

T
i (dx).

For a fixed s > 0, the family of functions aTs (t, x) indexed by T is uniformly equicontinuous due
to g being continuous and Proposition 17. Then there exists a subsequence (that we do not relabel)
that converges uniformly on [0, 1]× Y as T →∞ to the function

aTs (t, x) = − log

[∫
exp

(
−∥g(z)− x∥

2

2σ2

)
dΦsRt(z)

]
= − log

[∫
exp

(
−∥g(z)− x∥

2

2σ2

)
d[GsR]t(z)

]
.

Using this uniform convergence with the weak convergence of ρ̂Ti to ρt, we see

lim
T→+∞

T∑
i=1

ωTi DF
(
ΦsR

T
tTi
, ρ̂Ti

)
= lim

T→+∞

T∑
i=1

ωTi

∫
X
aTs (t

T
i , x)ρ̂

T
i (dx)

=

∫ 1

0

∫
X
as(t, x)ρt(dx) dt

=

∫ 1

0
DF(GsRt, ρt) dt.

Using lower semi continuity of entropy, we have F (GsR) ≤ lim infT→∞ FT (GsR̃T ). Thus, for
each s > 0, we have

lim inf
T→+∞

FT (R̃
T ) ≥ F (GsR)− C(s).

Finally, we use Proposition 24 to take s → 0+ using the lower semi continuity of F and the
convergence of GsR to G0R when s→ 0+.
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D.3. Γ-convergence: taking h→ 0, λ→ 0

Theorem 29 (analogous to [35, Thm. 2.9]) Let P ∈ P(Ω) with H(P|WΞ,τ ) < +∞. For each
λ > 0 and h > 0, let Rλ,h be the minimizer of the functional

R 7→ Gλ,h(R) := τH(R|WΞ,τ ) +
1

λ

∫ 1

0
H(ΦhPt|Rt ∗ Nσ) dt.

Then, as h→ 0, λ→ 0, the measure Rλ,h converges to the minimizer of R 7→ H(R|WΞ,τ ) among
all measures such that g♯Rt = g♯Pt for all t ∈ [0, 1]. Furthermore, if P is the law of the SDE in
(1), then Rλ,h converges to P.

Proof The argument follows that of [35]. First, consider R := GhP ∈ P(Ω) as a competitor in
Gλ,h. Using the contraction estimate given by Proposition 24, we have

min
P(Ω)

Gλ,h = Gλ,h(R
λ,h) ≤ τH(GhP|WΞ,τ ) ≤ τe−KhH(G0P|WΞ,τ ).

As K > −∞ and H(P|WΞ,τ ) by assumption, we see that Gλ,h(Rλ,h) is uniformly bounded in λ
and h. Thus, H(Rλ,h|WΞ,τ ) is uniformly bounded as well. Due to [35, Prop. B.2], this implies
that the family Rλ,h belongs to a compact set in the weak topology. Let R̃ be any limit point in the
limit as λ→ 0, h→ 0. We only need to show that R̃ = G0P. Note that

τH(Rλ,h|WΞ,τ ) ≤ Gλ,h(Rλ,h) ≤ τe2KhH(G0P|WΞ,τ ).

By taking h→ 0 and using the lower semi continuity of entropy, we see

H(R̃|WΞ,τ ) ≤ H(G0P|WΞ,τ ).

Now using Fatou’s lemma, the chain rule for relative entropy, and joint lower semi continuity of the
entropy, we have ∫ 1

0
H(Pt|R̃t ∗ Nσ) dt ≤ lim inf

λ→0,h→0

∫ 1

0
H(ΦhPt|Rλ,h

t ∗ Nσ) dt

≤ lim inf
λ→0,h→0

∫ 1

0
H(ΦhPt|Rλ,h

t ) dt

≤ lim inf
λ→0,h→0

(
λ sup
λ,h

Gλ,h(R
λ,h)

)
= 0.

Thus, it follows that g♯R̃t = g♯Pt for almost every t. Therefore, by definition of G0, we have
R̃ = G0P. This concludes the proof.

Appendix E. Reduced Formulation

E.1. Proof of Theorem 3

We use the following result to prove Theorem 3. Here, the statement is identical to that of [15], but
we consider a different reference measure.
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Lemma 30 (analogous to [15, Prop. B.2]) There exists a constant C > 0 such that, for any R ∈
P(Ω) and tT1 , . . . , t

T
T a collection of time instants, it holds

H(R|WΞ,τ )
(†)
≥ H(RtT1 ,...,t

T
T
|WΞ,τ

tT1 ,...,t
T
T

)

(∗)
≥

T−1∑
i=1

H(RtTi ,t
T
i+1
|pΞτi(RtTi

⊗RtTi+1
))−

T−1∑
i=1

H(RtTi
|WΞ,τ

tTi
) + C.

The first inequality (†) becomes an equality if and only if

R(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at times
tT1 , . . . , t

T
T , respectively. In addition, the second inequality (∗) becomes an equality if and only if R

is Markovian.

Proof Using the fact that Ξ is divergence-free and that WΞ,τ has the Markov property, the proof
from [15] holds. We provide the full proof for completeness. The first inequality (†) and the equality
case follows from the behavior of entropy with respect to a Markov measure under conditioning,
e.g. [37, Eq. 11]. In particular, we have

H(R|WΞ,τ ) = H(RtT1 ,...,t
T
T
|WΞ,τ

tT1 ,...,t
T
T

)

+

∫
H
(
R(·|x1, . . . , xT )|WΞ,τ (·|x1, . . . , xT )

)
dRtT1 ,...,t

T
T
(x1, . . . , xT ),

where the second term vanishes if and only if the conditional distributions R(·|x1, . . . , xT ) follow
the law of WΞ, for RtT1 ,...,t

T
T

almost every (x1, . . . , xT ). The second inequality (∗) follows from
[7, Lem. 3.4], which states

H(RtT1 ,...,t
T
T
|WΞ,τ

tT1 ,...,t
T
T

) ≥
T−1∑
i=1

H(RtTi ,t
T
i+1
|WΞ,τ

tTi ,t
T
i+1

)−
T−1∑
i=2

H(RtTi
|WΞ,τ

tTi
) =: E,

with equality if and only if RtT1 ,...,t
T
T

is Markovian. As in [15], we reorganize the terms in E.
Without loss of generality, assume that RtTi

are absolutely continuous with density dRtTi
(x)/dx :=

ri(x) and let VX be the Lebesgue volume of X . Since WΞ,τ

tTi
is the uniform measure on X for every

tTi , we have
H(RtTi

|WΞ,τ

tTi
) = H(RtTi

) + log VX .

Letting τi := τ(tTi+1 − tTi ), we also have

WΞ,τ

tTi ,t
T
i+1

(dx, dy) =
1

VX
pΞτi(x, y) dx dy.
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Thus, we see that for any µ, ν ∈ P(X ) with finite differential entropy and γ ∈ Π(µ, ν), we have

H(γ|WΞ,τ

tTi ,t
T
i+1

) =

∫
log

(
dγ

dx⊗ dy
VX
pΞτi

)
dγ(x, y)

= log VX +

∫
log

(
dγ

pΞτid(µ⊗ ν)
dµ

dx

dν

dy

)
dγ

= log VX +H(γ|pΞτi(µ⊗ ν)) +H(µ) +H(ν),

where the last line follows from [39, Lem. 1.6]. Now using the fact that RtTi ,t
T
i+1
∈ Π(RtTi

,RtTi+1
),

we have

E = log VX +
T∑
i=1

H(RtTi ,t
T
i+1
|pΞτi(RtTi

⊗RtTi+1
)) +

T−1∑
i=1

H(RtTi
),

which proves the formula.

Theorem 31 (Thm. 3, restated) Let Fit : P(Y)T → R be any function and let Ξ be bounded and
divergence-free.

1. If F admits a minimizer R∗ then (R∗
tT1
, . . . ,R∗

tTT
) is a minimizer for F .

2. If F admits a minimizer µ∗ ∈ P(X )T , then a minimizer R∗ for F is built as

R∗(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at
times tT1 , . . . , t

T
T , respectively and RtT1 ,...,t

T
T

is the composition of the optimal transport plans

γi that minimize Tτi,Ξ(µ
∗(i),µ∗(i+1)), for i ∈ [T − 1].

Proof The proof from [15] holds using our transition probability densities and OT plans. We pro-
vide it for completeness. First, note that a minimizer R∗ ∈ P(Ω) of F(R) = Fit(QtT1

, . . . ,QtTT
)+

τH(R|WΞ,τ ) is of the form in Lemma 30. Let µ(i) := R∗
tTi

be its marginals and γ(i) := R∗
tTi ,t

T
i+1

,

which clearly satisfies γ(i) ∈ Π(µ(i),µ(i+1)). Using C := log VX , we see that

F(R∗) = Fit(g♯µ
(1), . . . , g♯µ

(T )) + τ
T−1∑
i=1

H(γ(i)|pΞτi(µ
(i) ⊗ µ(i+1))) + τH(µ) + C

≥ Fit(g♯µ
(1), . . . , g♯µ

(T )) +
τ

τi

T−1∑
i=1

Tτi,Ξ(µ
(i),µ(i+1)) + τH(µ) + C,

where the inequality becomes an equality if and only if R∗
tTi ,t

T
i+1

= γ(i) is optimal in the definition

of Tτi,Ξ(µ
(i),µ(i+1)). The claim follows.
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Appendix F. Mean-Field Langevin Dynamics

MFL dynamics are designed to minimize functionals of the form Fϵ = G + (τ + ϵ)H , where
G : P(X ) → R is smooth and H is minus the differential entropy. As in [15], we increase the
entropy factor by ϵ > 0 because G is not convex, but F0 = G + τH is. Using the first-variation
V [µ] of G given in Proposition 32, the MFL dynamics is defined as the solution of the following
non-linear McKean-Vlasov SDE, for s ≥ 0:{

dX
(i)
s = −∇V (i)[µs](X

(i)
s ) ds+

√
2(τ + ϵ) dB

(i)
s + dΦ

(i)
s , Law(X

(i)
0 ) = µ

(i)
0

µ
(i)
s = Law(X

(i)
s ), i ∈ [T ],

(17)

where dΦ(i)
s is the boundary reflection in the sense of the Skorokhod problem, e.g. [54]. Here, Ξ

does not, and should not show up in (17) as we already consider Ξ for the entropic OT problem (3)
that induces the Schrödinger potentials. Thus, the McKean-Vlasov SDE is exactly the same as that
of [15]. The family of laws {µs}s≥0 of this stochastic process are characterized by the following
system of PDEs:

∂sµ
(i)
s = ∇ · (∇V (i)[µs]µ

(i)
s ) + (τ + ϵ)∆µ(i)

s , (18)

which are coupled via the quantity ∇V (i)[µs]. The link between (17) and (18) follows from the
Itô-Tanaka formula, see e.g. [28, Lem. C.3]. This is a multi-species PDE where each of the species
µ(i) attempts to minimize ∆ti

λ Fitλ,σ(·, ρ̂Ti ) + (τ + ϵ)H via a drift-diffusion dynamics, and it is
connected to µ(i−1) and µ(i+1) via Schrödinger bridges.

F.1. Properties of G and F

We describe some properties of functions G (4) and F (5).
Recall that the first-variation of G : P(X )T → R at µ is the unique (up to an additive constant)

function V [µ] ∈ C(X )T such that for all ν ∈ P(X )T ,

lim
ϵ→0

1

ϵ
[G(1− ϵ)µ+ ϵν)−G(µ)] =

T∑
i=1

V (i)[µ](x) d(ν − µ)(i)(x).

Proposition 32 (analogous to [15, Prop. 3.2]) The function G is convex separately in each of its
inputs (but not jointly), weakly continuous and its first-variation is given for µ ∈ P(X )T and
i ∈ [T ] by

V (i)[µ] =
δFit

δµ(i)
[µ] +

φi,i+1

tTi+1 − tTi
+

ψi,i−1

tTi − tTi−1

,

and
δFit

δµ(i)
[µ] : x 7→ −∆ti

λ

∫
Nσ(g(x)− y)

(Nσ ∗ g♯µ(i))(y)
dρ̂(y),

where (φi,j , ψi,j) ∈ C∞(X ) are the Schrödinger potentials for Tτi,Ξ(µ
(i),µ(j)), with the conven-

tion that the corresponding term vanishes when it involves ψ1,0 or φT,T+1. The function F is jointly
convex and admits a unique minimizer µ∗, which has an absolutely continuous density (again de-
noted by µ∗) characterized by

(µ∗)(i) ∝ e−V (i)[µ∗]/τ , for i ∈ [T ].
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Here, the Schrödinger potentials are classically L1 by standard (entropic) OT theory, but we can
extend them to C∞ functions, as discussed in [15].
Proof The argument is similar to that of [15]. The properties of G and its first-variation are clear.
In particular, the first-variation of Tτi,Ξ follows from the fact that g is smooth and [48, Prop. 7.17],
and the first-variation of Fit follows by direct calculation. The convexity of G follows from the
convexity of Tτi,Ξ and the fact that the pushforward of g is linear. The joint convexity of F , its
unique minimizer, and the characterization of the minimizer follow directly from the argument in
the proof of [15, Prop. 3.2].

F.2. Noisy particle gradient descent

Let m ∈ N be the number of particles used in the discretization for each of the time marginals
µ(i). For computation, we approximate the MFL dynamics by running noisy gradient descent on
the function Gm : (Xm)T → R defined as Gm(X̂) := G(µ̂X̂), where

µ̂
(i)

X̂
:=

1

m

m∑
j=1

δ
X̂

(i)
j

.

From [14, Prop. 2.4], we see that m∇
X

(i)
j

Gm(X̂) = ∇V (i)[µ̂X̂ ](X̂
(i)
j ). Thus, this yields the

discretization of (17):X̂
(i)
j [k + 1] = X̂

(i)
j [k]− η∇V (i)[µ̂[k]](X̂

(i)
j [k]) +

√
2η(τ + ϵ)Z

(i)
j,k, X̂

(i)
j [0]

i.i.d.∼ µ
(i)
0

µ̂(i)[k] = 1
m

∑m
j=1 δX̂(i)

j [k]
, i ∈ [T ],

(19)

where η > 0 is a step-size, the Z(i)
j,k are i.i.d. standard Gaussian variables, and all the particles

should be projected onto X at each step if X has boundaries. The MFL dynamics are recovered in
the limit as m→∞ and η → 0, e.g. see [14, 41, 53].

Recently, [11, 53] have shown a uniform-in-time propagation of chaos for the MFL dynamics:
the “distance” between the m-particle distribution and the infinite-particle limit is order O( 1

m) for
all t > 0.

F.3. Mean-field Langevin dynamics and exponential convergence

In [14, 15], it is shown that the MFL dynamics in (17) converges at an exponential rate to the
minimizer, and this convergence also holds in relative entropy and in Wasserstein distance. We
provide the proof for the following similar result for our partially observed setting in Appendix F.

Theorem 33 (Convergence) Assume X is the d-torus. Let µ0 ∈ P(X )T be such that F (µ0) <
+∞. Then for ϵ ≥ 0, there exists a unique solution (µs)s≥0 to the MFL dynamics (17). Let ϵ > 0
and assume that µ0 has a bounded absolute log-density, it holds

Fϵ(µs)−minFϵ ≤ e−Cs(Fϵ(µ0)−minFϵ),

where C = βe−α/ϵ for some α, β > 0 independently of µ and ϵ. Moreover, taking a smooth time-
dependent ϵs that decays asymptotically as α̃/ log s for some α̃ > α, it holds F0(µs) − F0(µ

∗) ≲
log log s/ log s→ 0 and µs converges weakly to the min-entropy estimator µ∗.
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Proof As in [15], we simply need to verify the assumptions in [14, Thm. 3.2]. Recall that the
objective function is of the form Fϵ = G + (τ + ϵ)H . The stability and regularity of the first-
variation V , [14, Assumption 1], is immediate from [15, Prop. C.2] and that g is bounded. The
convexity of F0 and existence of a minimizer for Fϵ, [14, Assumption 2], follows from Proposition
32.

For the uniform log-Sobolev inequality (LSI), [14, Assumption 3], first note that the ith com-
ponent of the first-variation of F0 is given by V (i)[µ] + τ logµ(i). Define D := diamX and
E := diam g♯X , where D < +∞ by assumption and E < +∞ as g is bounded. Note that
oscV (i)[µ] < +∞ as the gradient formula for δFit/δµ(i) is non-negative and is bounded by
EeE

2/(2σ2) and by [15, App. A, Eq. 17], the Schrödinger potential φi,i+1 has an oscillation bounded
by

sup
x,y∈X

ctTi ,tTi+1
(x, y)− inf

x,y∈X
ctTi ,tTi+1

(x, y) ≤ D2/2.

Following the argument in the proof of [14, Thm. 3.3], the probability measure proportional to
e−(V (i)[µ]+τ logµ(i))/ϵ satisfies a LSI with constant ρ ≥ αe−β/ϵ for some α, β independent of
s, ϵ,µ0.

Then, [14, Thm. 3.2] guarantees the exponential convergence with rate e−Cs with C = 2ϵρ.
Furthermore, the convergence result with simulated annealing follows from [14, Thm. 4.1].

Appendix G. Approximation of the kernel

Note that we cannot directly solve the objective function F (5), as the entropic OT cost Tτi,Ξ(µ, ν) is
defined with the transition function pΞτi , which is generally not available in closed form. We give an
approximation of Tτi,Ξ(µ, ν) by considering an Euler-Maruyama discretization [33]. Let µ ∈ P(Ω)
be a stochastic process following the SDE dXt = −Ξ(t,Xt) dt +

√
τ dBt with an arbitrary initial

distribution. Let ∆t := t2 − t1 and suppose µt1 , µt2 are two time marginals of µ. Recall that if
Xt1 ∼ µt1 , and

Xt2 := Xt1 −
∫ t2

t1

Ξ(s,Xs) ds+
√
τ

∫ t2

t1

dBs, (20)

then Xt2 ∼ µt2 . For small ∆t = t2 − t1, since Ξ and µs are smooth, the integrand of the second
term will be approximately constant over the integration interval. Thus, we can approximate the
first two terms of (20) as ξ∆t(Xt1) := Xt1 −Ξ(t1, Xt1) ·∆t. Finally, note that the last term of (20)
is an isotropic Gaussian with variance τ∆t. This suggests approximating the transition kernel pΞτi as
a deterministic drift given by the current Ξ, followed by isotropic Gaussian noise. For Ξ = 0, this
would reduce to the kernel used by the MFL method, i.e. the Brownian motion transition kernel.

This provides an intuition for why our approach is more robust than that of the MFL method
when the true Ξ is non-zero, since ξ∆t(Xt1)−Xt2 ≈ N (0, τ∆t) for small ∆t, while the Xt1 −Xt2

used by the MFL algorithm has non-zero expectation, is non-Gaussian, and often has significantly
higher variance.10

Let TV(·, ·) denote the total variation distance. We have the following result for using the
approximation in the transition kernel , which is a special case of [8, Thm. 2.1]. Note that this

10. In a sense, our Euler-Maruyama approximation can be considered a first order approximation method, while MFL
corresponds to a zeroth order method. Higher order methods could be an avenue for future work.

34



PARTIALLY OBSERVED TRAJECTORY INFERENCE

Figure 2: (left) Velocity of one particle at end of optimization. (right) Population velocity at begin-
ning of optimization, showing exponential convergence.

implies that the difference in probability between the approximate kernel and true kernel for any
event is of order O((∆t)1/3), which converges to 0 as T →∞.

Proposition 34 Let Xt2 be as in (20) and X̃t2 := ξ∆t(Xt1) +
√
τ(Bt2 − Bt1), where Xt1 = δx.

Then,
TV(Xt2 , X̃t2) ≤ C1e

C2|x|2(∆t)1/3,

where the constants C1, C2 > 0 depend only on dimX and the Lipschitz constant of Ξ.

Using this approximation yields tractable OT terms in the objective function. Specifically, in-
stead of Tτi,Ξ(µ

(i),µ(i+1)) in (4), we use Tτi(ξ
ti+1−ti
♯ µ(i),µ(i+1)), where

Tτi(µ, ν) := min
γ∈Π(µ,ν)

τiH(γ|pτiµ⊗ ν)

is the entropic OT cost in [15, Eq. 6] and pt(x, y) is the transition probability density of the Brow-
nian motion on X over the time interval [0, t]. This cost is easily computed as pτi is the Gaussian
kernel. In particular the cost function is c̃Ξτi(x, y) := −∆ti log(pτi(ξ

∆t(x), y)), and we use Varad-
han’s approximation [42], c̃Ξτi(x, y) ≈

1
2 ∥y − x+∆tΞ(t1, x)∥2, which holds for τi small, e.g. see

Algorithm 1. To wrap up our discussion here, it is important to highlight that we require a general-
ization of [35, Thm. 2.3] using our path measure WΞ,τ , Theorem 2, to justify convergence of our
estimator when including Ξ in our cost function in the entropic OT problem (3).

Appendix H. Experiments

In this section, we briefly provide synthetic experiments that demonstrate the advantages of having
a dynamics prior. All experiments were run on an M1 Macbook Air with 16 GB of RAM. Synthetic
experiments take a few minutes to run, and Wikipedia experiments take a few hours to run.

“Constant velocity” model We compare the behavior of our method, PO-MFL, to that of
MFL, using the “constant velocity” model popular in target tracking [40], see Appendix C.1 for
further details of this model and its ensemble observability.11 In this model, the state space is
X = (x, y, ẋ, ẏ) ∈ R4, with Ξ given in the appendix and observations g(X) = [I2, 02×2]X . Note
that due to non-zero process noise τ , despite the name, this model does not imply that the velocity
is constant in time. The particles are initialized at the origin with velocities set as ẋ = 5 and ẏ = 7,
i.e. X0 = (0, 0, 5, 7). The ground truth is shown in Figure 1a.

11. This model can be interpreted as introducing velocity as a hidden state to be inferred, in order to build momentum into
the dynamics (an object in motion tends to stay in motion). This is an extremely generic model and makes minimal
assumptions on the underlying data, as evidenced by its use in target tracking.
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Our optimization method observes only the positions of the particles, i.e. g(x, y, ·, ·) = (x, y),
but it uses Ξ as being a constant velocity prior. Results shown in Figure 1b show that PO-MFL is
able to successfully reconstruct the paths trajectories, while MFL fails to converge. Furthermore, in
Figure 1c, we verify that the population average of the particles’ velocities matches with the ground
truth.

(a) Ground truth.

(b) Reconstructed trajectories.

(c) Reconstructed velocity from PO-MFL. Note the bi-
modal velocity estimate.

Figure 3: Crossing paths experiment under the
“constant velocity” SDE.

Figure 2 (left) displays the y velocity of one
particle for the last 500 iterations of optimiza-
tion. Although at each iteration, the velocity
is stochastic, we can see that the mean is at 7.
In Figure 2 (right), we plot the average y ve-
locity in the first 400 iterations of optimization,
providing empirical evidence of the exponen-
tial convergence of our algorithm guaranteed by
Theorem 33.

Figure 3 shows a crossing paths experi-
ment where the population is divided into two
groups, one moving right and down, and the
other right and up, with their paths crossing
in the middle. In this particularly illuminating
regime, PO-MFL leverages the “constant veloc-
ity” model used in this section to distinguish
the downward moving group from the upward
moving group. Note that PO-MFL is not told
a priori which samples belong to which group.
While MFL here collapses to the centroid, we
point out that even if its optimization was suc-
cessful, the MFL would prefer U -shaped trajec-
tories here rather than the correct straight-line
trajectories, as it does not retain a hidden veloc-
ity state and only seeks to match adjacent time
points by their relative position via entropic OT.

We provide a variety of additional ex-
periments below illustrating how performance
changes as the number of observed particles,
the spacing of time points, and the underlying ground truth initial velocity affects performance.
Figure 5 shows the average W2 distance between the ground truth positions and recovered positions
(averaged by time point) across these experiments. Our approach remains significantly more robust
as these parameters are varied compared to MFL.

In this experiment, the diffusivity parameter is set at τ = 0.05. Particles are initialized from
X0 ∼ N (0, 0.12 · I) and simulated over the time interval t ∈ [0, 5] with marginals sampled at 5
evenly spaced intervals. Both PO-MFL and MFL are applied using m = 100 particles, we observe
32 particles at each time point, and we use a kernel width of σ = 1.0 for the data-fitting term. The
optimization procedure is initialized with η = 0.5 and continues for 2,000 iterations. The number
of Sinkhorn iterations for entropic OT is capped at 500 iterations.
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(a) Ground truth. (b) Reconstructed trajectories.

Figure 4: Wikipedia data.

For the crossing paths experiment, the diffusivity parameter is set at τ = 0.0005, and the time
interval is [0, 2.25], and marginals are sampled at 10 evenly spaced intervals we use m = 50 parti-
cles.

Wikipedia traffic data For real world data, we consider daily traffic data from Wikipedia.12

Because some of the webpage traffic has large spikes/outliers, we only consider pages whose daily
visits are between 100 and 500. We use the data from 3 pages over the course of 500 days as our
ground truth.

m PO-MFL MFL
3 1.01e7 1.61e7
6 1.07e7 1.76e7

15 1.05e7 1.91e7

m PO-MFL MFL
3 3.95e5 2.06e6
6 7.26e5 3.03e6

15 9.56e5 4.43e6

Table 1: Average W2 distance between
true and sampled trajectory distribu-
tions for Wikipedia dataset over 100
MCMC trials. (Top) mean, (Bottom)
standard deviation

For PO-MFL, we do not consider partial observa-
tions: we utilize an autoregressive model xt+1 = θ1xt +
θ2xt−6. In this setting, the state space for MFL is R500,
while the state space for PO-MFL is R2×500. The first
marginal of PO-MFL matches the data for MFL, while
the second marginal of PO-MFL is the data lagged by 6
days. To compute the values of θ1 and θ2, we take the
average of the regression parameters calculated from 30
trajectories drawn from the same distribution.

We try different number of particles m = 3, 6, 15 and
report the results in Table 1. To compute the values in
the table we sample 3 trajectories from the output of the
algorithm and use this as our empirical measure. We use
the Euclidean distance in R500 as our cost metric. Here,
we use just the first dimension for PO-MFL. We see that
both the mean and variance from PO-MFL are significantly less than that of MFL. We plot three
trajectories in Figure 4 with the m = 3 experiment, and note that PO-MFL yields less volatile
trajectories.

In this experiment, the diffusivity parameter is set at τ = 0.001. Particles are initialized uni-
formly over the interval [100, 300]. We use a kernel width of σ = 1.0 for the data-fitting term. The
optimization is initialized with η = 0.5 and continues for 2,000 iterations. The number of Sinkhorn
iterations for entropic OT is capped at 250 iterations. We scale the data by 1/50 for stability during
optimization.

12. We use train 2.csv from https://www.kaggle.com/competitions/web-traffic-time-series-forecasting
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Figure 5: Average W2 distance between ground truth and PO-MFL recovered positions in “constant
velocity.” (left) Number of time points. (middle) Number of observations. (right) Velocity.

H.1. Circular motion model

In the circular motion experiment, the diffusivity parameter is set at τ = 0.0002. Particles are ini-
tialized from X0 ∼ N (0, 0.12 · I) and simulated over the time interval t ∈ [0, 3.14] with marginals
sampled at 15 evenly spaced intervals. Both PO-MFL and MFL are applied using m = 100 par-
ticles, we observe 32 particles at each time point, and we use a kernel width of σ = 1.0 for the
data-fitting term. The optimization procedure is initialized with η = 0.5 and continues for 4,000
iterations. The number of Sinkhorn iterations for entropic OT is capped at 500 iterations.

In our second model, the particles (θ, θ̇, θ̈) ∈ S × R2 represent a constant acceleration model
on the unit circle, starting from the initial condition (0, 0.5, 1). Here, we use angular velocity and
angular acceleration. In this experiment, we only observe the position, e.g. g(θ, ·, ·) = θ. In Figure
6a, we show the ground truth with position on the left and angular velocity on the right. In Figure
6b, we show that PO-MFL successfully reconstruct the positions while although MFL converges, it
does not recover the ground truth. In Figure 6c, we show that the reconstructed velocity matches
that of the ground truth in Figure 6a.

In the following sections, if a parameter is not stated, we assume the same setting of parameters
as in the main text.

H.2. Varying velocity

Experiments varying the mean of the ground truth initial velocity distribution are shown in Figure 9.
At the endpoints, we observe 32 particles, and in the intermediate stages, we observe just 2 particles
per time point. Note that in the small velocity regime, although MFL converges, it converges to the
wrong distribution.

H.3. Varying number of observed particles

Figures 7 and 8 show results when the number of observed samples at the intermediate time points
are varied (the number of observations at the endpoints is held constant at 32). Here, we try the same
settings as above, but now we consider velocity (ẋ, ẏ) = (2, 4). We try the number of observations
1, 2, 4, 8, 16, 32, 128, 256. Even in a large number of observation regime, the MFL algorithm is
not capable of reconstructing the full trajectory, instead clustering around the center of the overall
trajectory.
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(a) Ground truth. (b) Reconstructed position marginals.

(c) Reconstructed angular velocity marginals from PO-MFL.

Figure 6: Circular motion model.

Figure 7: Varying number of observations at the intermediate times. Increasing number of observa-
tions improves the optimization.

H.4. Varying temporal sampling density ∆t

In Figure 10, we show results for increasing the density of temporal sampling. At the endpoints, we
observe 32 particles, and in the intermediate stages, we observe 2 particles. MFL was sensitive to
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Figure 8: A high observation regime at the intermediate time points.

hyperparameter values as we needed to try different parameters to get semi-reasonable results for
the figure. We used σ = 0.1,m = 25.
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Figure 9: Varying velocity. We see that as the ground truth initial velocity increases, MFL breaks
while PO-MFL remains robust.
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Figure 10: Varying the number of observed time points for fixed time window, i.e. varying ∆t. Note
that PO-MFL is always robust. MFL does better with more observations, but the method still tends
to collapse inwards because its model suggests that, in expectation, particles should not be moving
(as the Brownian motion reference measure has 0 expectation).
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