
Recurrent Neural Networks as Dynamical Systems:
Exploring Chaos and Order

Pravish Sainath
20125633

Département d’informatique et de recherche opérationnelle (DIRO)
Université de Montréal

Montréal, QC
pravish.sainath@umontreal.ca

Abstract

Chaos is a property of many dynamical systems. The impact of this phenomenon of
chaos on recurrent neural networks (RNNs) is studied based on prior work. Some
problems with the most common RNN architectures due to chaos and instability
are analyzed theoretically and empirically. These are related to having strange
attractors and the consequent vanishing/exploding gradient problems that make
it difficult to learn long-term dependencies. Specialized architectures from the
literature such as Chaos-Free RNN (CF-RNN) and Antisymmetric RNN (AS-RNN)
claim to help mitigate these issues and ensure that RNNs learn good attractors. A
novel variant of CF-RNN, called the Asymmetric Chaos-Free RNN (AS CF-RNN)
is proposed and studied. Some empirical analysis is carried out to examine the
advantages brought by each of these architectures. This is a learning attempt
to view RNNs through the lens of dynamical systems and understand them in
perspective.

1 Introduction

It has been known since many years that artificial neural networks (ANNs) exhibit dynamics. Re-
current Neural Networks (RNNs), especially are a class of universal function approximation models
[20], that have been widely used in several applications related to sequential modeling. They have
been viewed as dynamical systems since their conception [3, 12]. Their success can be attributed to
the fact that they approximate the temporal dynamics of systems over long periods of time.

In recent years, many dynamical systems tools have started being utilized in the study of these ANNs.
Especially, understanding the aspects of chaos and stability (order) of dynamical systems are of
particular interest to discover good models [4]. Chaos is referred to the sensitivity to initial conditions
of many dynamical systems that leads to aperiodic orbits due to their natural characteristic. Over
several years, it has been known that ANNs (including random networks) exhibit this phenomenon
[21], that can potentially make learning difficult for them in some cases. Stability issues in RNN
training such as exploding or vanishing gradients manifest themselves in the models, causing problems
in consolidating inputs in the long-term [3, 19].

This report summarizes the notion of chaos in RNNs and explores some ways to avoid it in many
contexts. As a part of this study, firstly, the characteristics of RNNs that exhibit and do not exhibit
chaos have been reproduced and compared. Secondly, a derivation of a stable hybrid architecture
(based on existing ones from literature) through an analytical treatment has been attempted. Finally,
the new architecture is trained for a task and its performance is compared with the other models to
understand the impact of stability on learning long-range dependencies.

Final Project for the course: MAT 6215 - Dynamical Systems (Winter 2021)

2 Background and Related Work

The work done for this study is based on the ideas drawn from Laurent et al [15] and Chen et al [7].

RNNs can be viewed as a discrete [13] or a continuous [16, 14] dynamical systems with their
respective model parameters. Formulations exist for both of these cases and they have been studied
for various applications. While analyzing RNNs using the dynamical systems framework, it is very
common to consider that the network does not receive any input and only the hidden state dynamics
happen [15]. This is called the dynamical system induced by the RNN This setup views inputs as
perturbations to the system that is trying to achieve certain dynamics. This assumption also makes
the network an autonomous system (with time-dependent inputs not considered). Also, it helps to
decouple the effects of the input and the state.

The basic theory about RNNs as dynamical systems is that they learn good attractors in order to
process the patterns in the input and hence remember them [3]. We know that dynamical systems that
are non-linear and/or recursive in nature have a possibility of exhibiting chaotic behavior for certain
settings of the system parameters (example, a logistic map with the parameter k > 3.8). Similarly, as
RNNs have model parameters represented by their weight matrices, that determine the parameters
of the function iteratively computed by them. For certain values of these weights, they may exhibit
chaotic behavior [15]. Strange attractors that are generated due to chaos, lead to the exponential
divergence of trajectories of any two distinct but neighboring states. Thus the network cannot learn
predictable associations. Many weight initialization schemes aim to avoid this chaotic regime. In
[15], they show that the dynamical system induced by an LSTM or GRU can exhibit chaotic behavior
and they propose a new architecture called the Chaos-Free RNN (CF-RNN) to stabilize the induced
dynamics based on an impulse response model with two gates - input gate θ and forget gate η.

The most useful way of bringing more order in RNNs is using stability analysis of dynamical systems
to understand and control their behavior in the long-term [18]. Unstable systems cause the gradients
to explode, while stable sustems can still experience vanishing gradients, resulting in forgetting of
long-rage input [12]. Some studies use gated networks [12, 8], while others such as [11, 17] have
utilized constraints on the parameter matrix of RNNs to address this. With these two being the most
common approaches, there are other methods that deal with this using a norm-based regularization
[22] or skip-connections [10] or preventing non-linearity saturation [5]. Antisymmetric RNN [6]
(AS-RNN) ensure the stability by constraining the parametric weight matrix to be antisymmetric.
This property bounds the gradients and ensures memory of long-range inputs [13, 18].

3 Proposed Architecture - Derivation

In this section, a variant of the CF-RNN [15] architecture is reverse-engineered by applying the
principles of stability used in AS-RNN [6]. The gated version of AS-RNN stated in [6], despite being
stable, only has a single gate that controls both the input and the state. On the other hand, CF-RNN
has distinct gates for the input and state. The purpose of this architecture is to study the impact of
stability on its long-term learning functions. The local stability property of the AS-RNN imposed by
the asymmetric weight matrix can be utlized to deduce the equations of a dual-gated architecture
based on CF-RNN, to improve it further.

Eq. 1 lists the expressions for the forget gate θ, the input gate η and the hidden state h at each time
step t in terms of the respective weight parameters for a typical CF-RNN.

θt = σ(Wθht−1 + Uθxt + bθ) (1)
ηt = σ(Wηht−1 + Uηxt + bη) (2)

ht = θt � tanh(ht−1) + ηt � tanh(Uhxt) (3)

The discrete-time formulation of the dynamics of the state h in eq. 3 can instead be expressed as a
continuous-time equation by replacing the ht by the time derivative h′t. With an assumed initial state
h0, this can be expressed as the ODE given in eq. 4.

h′t = θt � tanh(ht−1) + ηt � tanh(Uhxt), h(0) = h0 (4)

2

In eq. 3, the function f that corresponds to the ODE system can be expressed as :

f(ht−1;xt,Wh, Uθ, Uη, Uh) = h′t = θt � tanh(ht−1) + ηt � tanh(Uxt) (5)

The stability of the solutions of the system in eq. 4 is given determined by the eigen values of the
Jacobian of the function f , that is given in eq. 6. The computation of the Jacobian J(t) = ∂f

∂ht−1
is

done in Section B.

J(t) = diag
(
θt � (1− θt)� tanh(ht−1)

)
.Wθ + diag

(
tanh′(ht−1)� θt

)
+diag

(
θt � (1− θt)� tanh(Uhxt)

)
.Wη

(6)

As seen in eq. 6, the Jacobian is a sum of diagonal matrices are multiplied with different matrices
Wθ, I and Wη respectively. The nature of eigen values of this Jacobian can give rise to different
effects in the stability of the system.

A new expression J∗(t) can be constructed by setting Wθ = Wη = P and post-multiplying the
second diagonal matrix in the sum by P as shown in eq. 7:

J∗(t) = diag
(
θt � (1− θt)� tanh(ht−1)

)
.P + diag

(
tanh′(ht−1)� θt

)
.P

+diag
(
θt � (1− θt)� tanh(Uhxt)

)
.P

(7)

=⇒ J∗(t) = diag

(
θt � (1− θt)� tanh(ht−1) + tanh′(ht−1)� θt + θt � (1− θt)� tanh(Uhxt)

)
.P

(8)

It is known that the eigen values of the product of an invertible diagonal matrix and an antisymmetric
matrix are purely imaginary (Proof in Proposition 3 of [6]). The diagonal matrix can be assumed to be
invertible (numerically). Thus, this type of product can be achieved in eq. 8 by setting P =Wh−WT

h
for some matrixWh (P is always antimsymmetric). Thus, the eigen values of the constructed Jacobian
J∗(t) are imaginary, giving Re(λi(J(t)) = 0.

The originally assumed model in eq.4 computes the derivative h′(t). For computing the next state h(t),
numerical methods used to solve ODEs need to be used. Following the approach of [6], the forward
Euler method can be applied for this. However, this method is numerically stable only when the eigen
values λi and the step size ε satisfy the condition max

i=1,2,...,n
|1 + ελi(J(t))| ≤ 1 (Section. C.5).

This can be ensured by using the diffusion constant γ ∈ [0,1] to subract the diagonals of P as given
in [6]. The matrix P can thus be modified as P = (Wh −Wh

T − γI). Also, to account for the P
that was multiplied in the second term in eq.7, the tanh(ht−1) in eq. 3 should become tanh(Pht−1).
This ensures that J∗(t) is the Jacobian of the modified function f∗ (from f in eq. 5) given by eq. 9:

f∗(ht−1;xt,Wh, Uθ, Uη, U) = h′(t) = θt� tanh((Wh−Wh
T −γI)ht−1)+ηt� tanh(Uxt) (9)

The final equations of the proposed dual-gated Antisymmetric Chaos-Free RNN (AS CF-RNN)
obtained after applying a forward Euler step of the new ODE, with a step size ε are given in eq. 10 :

θt = σ((Wh −Wh
T − γI)ht−1 + Uθxt + bθ)

ηt = σ((Wh −Wh
T − γI)ht−1 + Uηxt + bη)

ht = ht−1 + ε θt � tanh((Wh −Wh
T − γI)ht−1) + ε ηt � tanh(Uxt) (10)

3

4 Experiments and Results

Two sets of experiments - one for visualizing chaos in RNNs and what it means to be free from them
(in Section. 4.1) and the other for empirically verifying the performance of the theoretically stable
model AS CF-RNN (in Section. 4.2).

4.1 Analysis of chaos : Attractors and Bifurcations

In this experiment (based on [15]), different RNNs with 2-dimensional hidden state vectors were
considered and some specific weight matrices (Table. A.1 for the equations and Section. D.1 for the
values). These models were first used in the absence of any input (zero input) to generate trajectories
from many initial states and plot the attractor on the phase plane, based on [15].

It can be remarked from Fig. 1(a),(b) and (c) that the chosen LSTM and GRU learn strange (chaotic)
attractors while the CF-RNN learned only a point attractor at 0.

(a) LSTM attractor (strange) (b) GRU attractor (strange) (c) CF-RNN attractor (point)

(d) LSTM bifurcation diagram (e) GRU bifurcation diagram (f) CF-RNN bifurcation diagram

(g) LSTM distance evolution (h) LSTM distance evolution (i) CF-RNN distance evolution

Figure 1: Characteristics of the dynamical systems of LSTM, GRU and CF-RNN chosen for the
experiments: (g),(h),(i) - distance plot of ||ht − ĥt||2 for proximate initial points h0 and ĥ0

Using a simple scaling parameter s of the hidden-hidden weight matrix of each model, a bifurcation
diagram is created using the states generated by varying the value of the scale s in the system
f(s.Wh). The LSTM and GRU show period doubling and eventually chaos for a good range of the
parameter. Thus, even a simple scaled version of the weight matrix can produce chaos in the absence
of inputs for LSTM and GRU, while CF-RNN has no bifurcations and is consistently simple.

When two states start from very close initial points h0 and ĥ0, Fig. 1(g),(h) and (i) show the time
evolution of the distance (in phase space) between the states ht and ĥt in the respective trajectories.
Clearly, from the plot, they move away from each other for chaotic systems (LSTM,GRU here) and
remain at fixed distance for CF-RNN. Thus, the chaotic phenomena of dynamical systems induced by
LSTMs and GRUs are clearly seen and the CF-RNN has no chaos at all.

4

4.2 Analysis of Proposed Model AS CF-RNN : Sequential tasks

The AS CF-RNN model has been designed based on theoretical stability guarantees. It is interesting
to see how much it is able to fulfill this in practice and how well it learns long-term dependencies.
This is verified training the network on standard experiments used for testing long-term task, such as
the following.

Copy Task Among a set of K symbols, those that need to be copied are presented in the first N
time steps, then must be output one by one after a long delay of T time steps (introduced in [12] and
explained in [1]). We use N = 25 and K = 19. The network is trained using the cross-entropy error
on the values it predicts.

Table. 1 shows the performance for different values of T of each model. Clearly, the CE of all
models is either increasing or constant as T increases as inputs need to be held for longer-ranges. AS
CF-RNN and AS-RNN (Gated) features among the best models.

Table 1: Results: The Cross Entropy error (CE) and Accuracy % in the Copy Task of various models
for different settings of T

Architecture T = 100 T = 200 T = 400 T = 800

Model γ CE Acc % CE Acc % CE Acc % CE Acc %

AS CF-RNN 0.005 0.001 100 0.001 100 0.001 100 0.003 98.9
AS CF-RNN 0.1 0.002 100 0.001 100 0.002 100 0.005 97.2

AS-RNN (Gated) 0.005 0.000 100 0.001 100 0.002 100 0.004 98.1
AS-RNN (Gated) 0.1 0.002 100 0.003 98.7 0.004 97.8 0.008 94.3

CF-RNN - 0.004 98.4 0.004 98.2 0.018 87.5 0.014 70.7
LSTM - 0.005 98.0 0.076 68.2 0.098 45.7 0.116 36.6
GRU - 0.006 97.8 0.085 50.2 0.125 31.1 0.535 20.2

The experiment is repeated for different values of T and the eigenvalues of the end-to-end Jacobian
matrix of the RNN ∂hT

∂h0
are collected. The absolute values of all the eigen values are used to compute

the mean and standard deviation as shown in Figure. 2 (similar to [6]).

Figure 2: The distribution of eigen values (mean and standard deviation) of the end-to-end Jacobian
trained on the Copy Task for different values of T as indicated.

As seen in Figure. 2, the mean eigenvalue magnitude is closer to one for more stable models such as
AS CF-RNN (Gated) and AS CF-RNN. For LSTM and GRU models, as T increases, the magnitude
shifts lower and lower than 1, tending towards zero, indicating vanishing gradients. The value also
reduces for CF-RNN, whereas for its asymmetric counterpart AS CF-RNN, it is almost consistently at
the same value. The decay in this value for AS CF-RNN is slower compared to the original CF-RNN
model. This indicates that vanishing gradients occur in CF-RNN earlier in time than AS CF-RNN.

Thus, from both Table. 1 and Figure. 2, it can be inferred about the stronger ability of AS CF-RNN
to learn long-term dependencies over CF-RNN. AS CF-RNN seems to be fairly comparable to the
Gated AS-RNN models with lower γ.

5

5 Conclusion and Future Work

By viewing RNNs within the framework of dynamical systems, many tools are made available to
understand and improve these networks. For example, we understand the space learned by te and
analyzing the attractors and bifurcations of some simple networks, we see the necessity of the training
to not get into the chaotic regime during learning. There is a clear need for models to learn simple
attractors. There are no unpredictable dynamics in such models, making them sensitive to only the
impact of the patterns in the data.

The chaos-free network (CF-RNN) leads to simple attractor states and eliminates any scope for chaos.
We saw that operating in a chaos-free setting does not necessarily guarantee good learning by the
network. Additional stability considerations need to be taken into account to ensure that the gradients
are controlled. For example, the aspect of stability in RNNs is key in identifying properties of the
dynamics and fixing issues such as exploding and vanishing gradients.

Asymmetric Chaos-Free RNN (AS CF-RNN) was formulated and proposed based on the stability
theory. Elements of stability from the dynamical systems theory were applied to an existing model
(CF-RNN) with the view of enforcing a certain order as a prior in the network to improve its ability
to learn long-term dependencies, validated by by both theory and experiments. We see that it is able
to effectively gate information from the input as well as the past state, while learning to remember
inputs over a longer time range.

The usage of the AS CF-RNN here was mostly for the purpose of understanding the methods and
mechanisms of some RNNs. More experiments and analyses are necessary in the future for further
study regarding its properties and uses. Some extended analysis of the use of the anti-symmetric.
Thus, an existing version of RNN was adapted using dynamical systems formulation in order to
obtain a potentially superior model that seems to work at least fairly as well for learning long term
dependencies.

Overall, it was understood how chaos and stability of the dynamical system represented by an RNN
are factors that affect the training, efficiency and long-range memorization ability. As a future
direction, the model such as AS CF-RNN needs to improved based on stronger generalizations such
as Lipschitz RNNs [9].

References
[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.

In International Conference on Machine Learning, pages 1120–1128. PMLR, 2016.

[2] Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations, volume 61. Siam, 1998.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[4] Nils Bertschinger and Thomas Natschläger. Real-time computation at the edge of chaos in
recurrent neural networks. Neural computation, 16(7):1413–1436, 2004.

[5] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and Yoshua
Bengio. Towards non-saturating recurrent units for modelling long-term dependencies. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3280–3287,
2019.

[6] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

[7] Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isometry and a mean
field theory of rnns: Gating enables signal propagation in recurrent neural networks. In
International Conference on Machine Learning, pages 873–882. PMLR, 2018.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

6

[9] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

[10] Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural networks
with wormhole connections. arXiv preprint arXiv:1701.08718, 2017.

[11] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-
memory tasks. In International Conference on Machine Learning, pages 2034–2042. PMLR,
2016.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[13] Liang Jin, Peter N Nikiforuk, and Madan M Gupta. Absolute stability conditions for discrete-
time recurrent neural networks. IEEE Transactions on Neural Networks, 5(6):954–964, 1994.

[14] Masahiro Kimura and Ryohei Nakano. Dynamical systems produced by recurrent neural
networks. Systems and Computers in Japan, 31(4):77–86, 2000.

[15] Thomas Laurent and James von Brecht. A recurrent neural network without chaos. arXiv
preprint arXiv:1612.06212, 2016.

[16] Xiao-Dong Li, John KL Ho, and Tommy WS Chow. Approximation of dynamical time-variant
systems by continuous-time recurrent neural networks. IEEE Transactions on Circuits and
Systems II: Express Briefs, 52(10):656–660, 2005.

[17] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In International
Conference on Machine Learning, pages 2401–2409. PMLR, 2017.

[18] John Miller and Moritz Hardt. Stable recurrent models. arXiv preprint arXiv:1805.10369, 2018.

[19] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318. PMLR,
2013.

[20] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are
universal approximators. In International Conference on Artificial Neural Networks, pages
632–640. Springer, 2006.

[21] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural
networks. Physical review letters, 61(3):259, 1988.

[22] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

7

Supplementary Material

A Mathematical description of the networks

The mathematical equations corresponding to the computations involved in many architectures
discussed in the main article are summarized in Table A.1. For each model specified in each row,
the symbols for the different gates and states are listed in the last column. The hidden-to-hidden
parameters are represented by W matrices, the input-to-hidden parameters by U matrices and the
bias vectors by b.

In each case, � denotes the element-wise (Hadamard) product, σ is the sigmoid non-linearity and
tanh stands for the hyperbolic tangent non-linearity.

Table A.1: Specification of full equations of all the RNNs considered in the study

Network Equations Variables

Long Short Term Memory
(LSTM) [12]

it = σ(Wiht−1 + Uixt + bi)
ft = σ(Wfht−1 + Ufxt + bf)
ot = σ(Woht−1 + Uoxt + bo)
gt = tanh(Wght−1 + Ugxt + bg)

ct = σ(ft � ct−1 + it � gt)
ht = ot � σh(ct)

Gates:
it, ft, ot

Cell input:
gt

States:
ht, ct

Gated Recurrent Unit
(GRU) [8]

zt = σ(Wzht−1 + Uzxt + bz)
rt = σ(Wrht−1 + Urxt + br)

ht = (1− zt)� tanh(Uhxt +Wh(rt � ht−1 + bh))
+ zt � ht−1

Gates:
zt, rt

State:
ht

Chaos-Free Recurrent
Neural Network
(CF-RNN)[15]

θt = σ(Wθht−1 + Uθxt + bθ)
ηt = σ(Wηht−1 + Uηxt + bη)

ht = θt � tanh(ht−1) + ηt � tanh(Uhxt)

Gates:
θt, ηt

State:
ht

Antisymmetric RNN
(ASRNN) [6]

ht = ht−1 + ε tanh((Wh −Wh
T − γI)ht−1

+ Vhxt + bh)
State:
ht

Antisymmetric RNN - Gated
(ASRNN-G) [6]

zt = σ((Wh −Wh
T − γI)ht−1 + Uzxt + bz)

ht = ht−1 + εzt � tanh((Wh −Wh
T − γI)ht−1

+ Uhxt + bh)

Gate:
zt

State:
ht

Antisymmetric Chaos-Free
RNN - Dual Gated
(AS CF-RNN-DG)

[proposed]

θt = σ((Wh −Wh
T − γI)ht−1 + Uθxt + bθ)

ηt = σ((Wh −Wh
T − γI)ht−1 + Uηxt + bη)

ht = ht−1 + ε θt � tanh((Wh −Wh
T − γI)ht−1)

+ ε ηt � tanh(Uhxt)

Gate:
θt, ηt

State:
ht

8

B Jacobian computation for function f in Section. 3

From eq. 3,

J(t) =
∂f

∂ht−1
=

∂

∂ht−1

(
θt � tanh(ht−1) + ηt � tanh(Uhxt)

)
J(t) =

∂f

∂ht−1
=

∂

∂ht−1

(
θt � tanh(ht−1)

)
+

∂

∂ht−1

(
ηt � tanh(Uhxt)

)
J(t) =

(
∂θt
∂ht−1

� tanh(ht−1) +
∂tanh(ht−1)

∂ht−1
� θt

)
+

(
∂ηt
∂ht−1

� tanh(Uhxt) +
∂

∂ht−1
tanh(Uhxt)� ηt

)

J(t) =

(
∂θt
∂ht−1

� tanh(ht−1) + diag(tanh′(ht−1))� θt

)
+

(
∂ηt
∂ht−1

� tanh(Uhxt)

)

=⇒ J(t) =

(
∂θt
∂ht−1

� tanh(ht−1)

)
+

(
diag(tanh′(ht−1)� θt)

)
+

(
∂ηt
∂ht−1

� tanh(Uhxt)

)
(B.1)

From eq. 1,

θt = σ(Wθht−1 + Uθxt + bθ)

=⇒ ∂θt
∂ht−1

= diag(σ′(Wθht−1 + Uθxt + bθ)).
∂θt
∂ht−1

(Wθht−1 + Uθxt + bθ) (chain rule)

=⇒ ∂θt
∂ht−1

= diag(σ′(Wθht−1 + Uθxt + bθ)).Wθ

=⇒ ∂θt
∂ht−1

= diag
(
σ(Wθht−1 + Uθxt + bθ)� (1− σ(Wθht−1 + Uθxt + bθ))

)
.Wθ

Substituting the sigmoids that evaluate to θt,

∂θt
∂ht−1

= diag
(
θt � (1− θt)

)
.Wθ (B.2)

Similarly for the derivative of ηt,

∂ηt
∂ht−1

= diag
(
ηt � (1− ηt)

)
.Wη (B.3)

Using eqs. B.2 and B.3 in eq.B.1,

J(t) = diag
(
θt � (1− θt)� tanh(ht−1)

)
.Wθ + diag

(
tanh′(ht−1)� θt

)
+diag

(
θt � (1− θt)� tanh(Uhxt)

)
.Wη

(B.4)

9

C Stability criterion for AS-RNN and variants

Figure C.1 shows the region on the complex plane of eigen values that the forward Euler method is
stable. The circle of stability is shaded in pink and it is unstable elsewhere.

Theoretically, eigen values of a system in the entire left plane region corresponding to Re(λ) < 0
makes it stable. However, while using numerical methods such as Euler methods, the stability is
affected by the numerical stability.

For forward Euler method to be stable, the condition to be satisfied by the eigen values of the Jacobian
is the following (Proposition 2 in [6], originally in [2]):

max
i=1,2,...,n

|1 + ελi(J(t))| ≤ 1 (C.5)

Any method using this scheme should constrain all eigen values inside this circle.

Figure C.1: Region of stability (indicated in pink) of an ODE with eigen values of the Jacobian
λ(J(t)). Outside the pink circle, the system is unstable under the forward Euler method.

D Hyperparameters used in experiments

D.1 Analysis of Chaos

The parameter values for the networks used to plot the attractors, bifurcations and distance plot
in Figure 1 are listed below for each network with hidden dimensions of 2. All other unspecified
parameters were considered to be zeroes.

D.1.1 LSTM

Wi =

[
−1 −4
−3 −2

]
Wo =

[
4 1
−9 −7

]
Wf =

[
−2 6
0 −6

]
Wg =

[
−1 −6
6 −9

]
D.1.2 GRU

Wz =

[
0 1
−1 1

]
Wi =

[
0 1
1 0

]
Uz =

[
5 −8
8 5

]
D.1.3 CF-RNN

Wθ =

[
0 −1
−1 0

]
Wη =

[
1 1
1 1

]
Uh =

[
1 0
0 −1

]
D.2 Copy Task

The most important hyperparameters used for the training of the models used in Section. 4.2 are
tabulated below :

10

Table D.2: Architecture and training hyperparameters of the models used in the Copy Task

Architecture Training

Model γ |h| Optimizer lr

AS CF-RNN 0.005 128 Adagrad 0.01
AS CF-RNN 0.1 128 Adagrad 0.01

AS-RNN (Gated) 0.005 128 Adam 0.1
AS-RNN (Gated) 0.1 128 Adam 1

AS-RNN 0.005 128 SGD 0.001
CF-RNN - 128 Adam 0.001

LSTM - 128 Adam 0.001
GRU - 128 Adam 0.005

The step size ε of the Aymmetric-matrix based models was chosen to be 0.01.

E AS CF-RNN Experiments - Additional Results

Table E.3: Performance of the models in the permuted MNIST (pMNIST) Task

Architecture

Model γ |h| Accuracy(%)

AS CF-RNN 0.005 128 93.3
AS-RNN (Gated) 0.005 128 93.1

AS-RNN 0.005 128 95.8
CF-RNN - 128 90.4

LSTM - 128 92.6

11

	Introduction
	Background and Related Work
	Proposed Architecture - Derivation
	Experiments and Results
	Analysis of chaos : Attractors and Bifurcations
	Analysis of Proposed Model AS CF-RNN : Sequential tasks
	Conclusion and Future Work
	Mathematical description of the networks

	Jacobian computation for function f in Section. 3
	Stability criterion for AS-RNN and variants
	Hyperparameters used in experiments
	Analysis of Chaos
	LSTM
	GRU
	CF-RNN

	Copy Task
	AS CF-RNN Experiments - Additional Results

