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Abstract
Knowledge-based visual question answering001
(KVQA) task aims to answer questions that002
require additional external knowledge as well003
as an understanding of images and questions.004
Recent studies on KVQA inject an external005
knowledge in a multi-modal form, and as more006
knowledge is used, irrelevant information may007
be added and can confuse the question answer-008
ing. In order to properly use the knowledge,009
this study proposes the following: 1) We intro-010
duce a novel semantic inconsistency measure011
using caption uncertainty and semantic similar-012
ity. 2) We suggest a new external knowledge013
assimilation method based on the semantic in-014
consistency measure and apply it to integrate015
explicit knowledge and implicit knowledge for016
KVQA. 3) The proposed method is evaluated017
on the OK-VQA dataset and achieves the state-018
of-the-art performance.019

1 Introduction020

Knowledge-based visual question answering021

(KVQA) task is to answer questions that require an022

understanding of images, questions, and additional023

external knowledge. The KVQA task is proposed024

with the aim of reaching human-level reasoning.025

Injecting huge knowledge based on the entities026

identified from images and questions in a multi-027

modal form is among the tasks being researched.028

However, as the knowledge base (KB) is often in-029

complete, when the context of the entities is con-030

flicting with the KB, irrelevant information can be031

retrieved and confuse the question answering.032

For the example in Fig 1, the question can be an-033

swered with a full understanding of the image and034

question. However, the predicted answer is yellow035

when we add the related external knowledge (i.e.,036

the color of bananas is yellow) for KVQA. Since037

adding the knowledge confuses the prediction of038

the answer, it is necessary to adjust the amount039

of the external knowledge injected according to040

some semantic inconsistency measure. This study041

Figure 1: Representative visual question answering ex-
ample occurring semantic inconsistency with an external
knowledge

proposes a new approach for measuring such in- 042

consistencies and introduces an external knowledge 043

assimilation method. This study is summarized as 044

follows: 045

• We introduce a new semantic inconsistency 046

measure based on caption generation, which 047

is an ensemble of a) uncertainty of the caption 048

and b) similarity between the caption gener- 049

ated with the KB and the ground-truth caption 050

• We propose an external knowledge assimila- 051

tion method based on the proposed semantic 052

inconsistency measure to control the use of 053

external knowledge in KVQA. 054

• We apply the proposed method for combin- 055

ing explicit and implicit knowledge in KVQA 056

and achieve the state-of-the-art result when 057

evaluated with the OK-VQA dataset. 058

2 Related work 059

2.1 KVQA approaches using pre-trained 060

model 061

A lot of researches have studied image and text 062

as a multi-modal form. By tokenizing the object in 063

an image, a study in which alignment between an 064

object and text has been proposed to apply a self- 065

attention model (Lu et al., 2019; Li et al., 2019). 066
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In addition, (Li et al., 2019) showed high perfor-067

mance in various downstream tasks compared with068

other vision-language approaches (Singh et al.,069

2020). Therefore, this study experiments with070

the approach suggested by (Li et al., 2019) for071

extracting the implicit knowledge. Multi-modal072

approaches using image features from Faster R-073

CNN or ResNet and question embedding of pre-074

trained models are also proposed (Kim et al., 2018;075

Ben-Younes et al., 2017). (Kim et al., 2018) gener-076

ated joint representation through Bilinear Attention077

Map. (Ben-Younes et al., 2017) extracted image-078

text joint representation by using image features079

and question embedding and proposed a 3-way080

Tucker fusion method. In addition to using pre-081

trained models, there have also been studies trying082

to solve VQA tasks using additional external knowl-083

edge. (Marino et al., 2019) proposed ArticleNet084

using Wikipedia search API related to keywords085

of an image and words of the question. A method086

for extracting external knowledge related to the ob-087

jects in an image was also introduced (Zhang et al.,088

2021). (Zhang et al., 2021) extracted knowledge089

by using the object label output from the Faster090

R-CNN model. This study extracts more relevant091

knowledge by using not only image object key-092

words, but also words in the question.093

2.2 Graph-based KVQA approaches094

Besides using pre-trained models, studies using095

graph-based models were proposed (Hudson and096

Manning, 2019; Jiang and Han, 2020; García and097

Nakashima, 2020; Gao et al., 2020; Ziaeefard and098

Lécué, 2020). (Hudson and Manning, 2019) sug-099

gested the Neural State Machine based on a proba-100

bilistic graph for reasoning on VQA. (García and101

Nakashima, 2020) introduced a video scene graph102

and caption generation method, and applied them103

for reasoning video question answering (video-QA)104

task. (Jiang and Han, 2020) studied a heteroge-105

neous graph alignment network considering inter-106

and intra-modality on the video-QA. (Gao et al.,107

2020) proposed a method to create graphs from vi-108

sual, linguistic, and numeric features and suggested109

an aggregator that combines the features. However,110

because the study considers the contents of the im-111

age, the method has a limitation on answering a112

question that requires additional knowledge. (Zi-113

aeefard and Lécué, 2020) suggested graph-based114

VQA for capturing the interrelationship between115

objects and entities of external knowledge by com-116

bining concept graph and scene graph. However, 117

the scene graph relation is limited because only 118

locational information is considered. Therefore, 119

in the OK-VQA dataset, the location-based scene 120

graph extraction methods do not show significant 121

performance. 122

Moreover, studies using a pre-trained model and 123

graph-based model have been suggested (Saqur and 124

Narasimhan, 2020; Li et al., 2020; Marino et al., 125

2021). (Saqur and Narasimhan, 2020) introduced 126

multimodal graph networks for compositional gen- 127

eralization in VQA, but the method is evaluated on 128

the task that requires object detection or recogni- 129

tion. (Li et al., 2020) proposed a Knowledge Graph 130

Augmented model using a pre-trained model and 131

graph-based method. However, the knowledge sub- 132

graph is generated by using the image object labels 133

and the words of the question without the image- 134

question context. (Marino et al., 2021) proposed to 135

integrate image-text representation from the BERT- 136

based model and graph information based on the 137

concept of image objects and questions. However, 138

when there are conflicts between graph and pre- 139

trained model representation, there are limitations 140

in using knowledge for question answering. 141

This study proposes a new approach that mea- 142

sures semantic inconsistencies between KB and the 143

given problem, and moderate the use of knowledge 144

based on the measurement. 145

3 Approach 146

This section introduces a semantic inconsistency 147

measure that makes use of uncertainty and semantic 148

similarity modeling. 149

3.1 Semantic inconsistency between an image 150

and an external KB 151

In this study, we utilize caption generation to 152

measure semantic inconsistency between an im- 153

age and external KB. Inspired by (Xiao and Wang, 154

2021), we adopt uncertainty model of caption gen- 155

eration and introduce a novel measure for estimat- 156

ing semantic inconsistency between the KB and the 157

VQA context. 158

3.1.1 Ensemble-based uncertainty estimation 159

for KVQA 160

In the existing image captioning, to generate a 161

sentence y when an input x is given, the conditional 162

distribution p(y|x) is learned and continuously pre- 163

dicts tokens through an autoregressive distribution. 164
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p(y|x) = p(y1|x)
k∏

i=2

p(yi|x, y1, · · · , yi−1) (1)165

In Eq. (1), yi denotes the token correspond-166

ing to the index i in sentence y, and the given167

set x, y1, · · · , yi−1 denotes context ci for predict-168

ing the token corresponding to i. The number of169

tokens that can be predicted is limited based on170

the given context. For example, the word "beach"171

cannot be generated when an image of a cat on a172

desk is given. When a set of words irrelevant to173

the context is denoted hallucinated word V
(ci)
h , the174

following equation can be written175

p(yi ∈ V
(ci)
h ) =

∑
v∈V (ci)

h

p(yi = v|ci) (2)176

In image captioning, token prediction in a given177

context is calculated with the following cross-178

entropy equation. The equation can be divided179

into two based on an entropy of the set of words180

relevant to the context and that of the set of words181

irrelevant to the context as182

H(yi|ci) = −
∑
v∈V

p(yi = v|ci)logp(yi = v|ci)

= −
∑

v∈V \V (ci)

h

p(yi = v|ci)logp(yi = v|ci)

−
∑

v∈V (ci)

h

p(yi = v|ci)logp(yi = v|ci)

(3)183

The uncertainty that can be predicted by the Eq.184

(3) can be divided into two. 1) uncertainty that ap-185

pears in selection of a token that describes the con-186

text 2) uncertainty that appears due to the interfer-187

ence of words irrelevant to the context or an insuffi-188

cient training system. The latter is directly related189

to calculating hallucinated words that are probabil-190

ity irrelevant to the given context. We make use191

of the latter in measuring uncertainty in KVQA,192

as described below. The latter can be decomposed193

into two: aleatoric uncertainty and epistemic uncer-194

tainty (Kiureghian and Ditlevsen, 2009; Depeweg195

et al., 2018; Kendall and Gal, 2017). The uncer-196

tainties can be measured by an ensemble-based197

model (Lakshminarayanan et al., 2017). In Eq. (4),198

w denotes the model weights and q(w) denotes199

the posterior distribution of weights in the training 200

data. If the weights are fixed, H(yi|ci, w) repre- 201

sents the uncertainty related to the data. Aleatoric 202

uncertainty can be written as Eq(w)[H(yi|ci, w)] 203

and calculated by the mean of Hm(yi|ci). Epis- 204

temic uncertainty can also be written by the dif- 205

ference between the entropy H(yi|ci) of p(yi|ci) 206

and aleatoric uncertainty in Eq. (5). The proposed 207

method is illustrated in Fig 2. 208

ual(yi|ci) = Eq(w)[H(yi|ci, w)]

=
1

M

M∑
m=1

Hm(yi|ci)
(4) 209

uep(yi|ci) = H(yi|ci)− Eq(w)[H(yi|ci, w)]
= H(yi|ci)− ual(yi|ci)

(5) 210

A recent study shows that the model pre-trained 211

with a large amount of image captioning data incor- 212

porates commonsense knowledge that is implicit in 213

the data (Su et al., 2020). We use such a pre-trained 214

model (with implicit commonsense knowledge) 215

to generate image captions from the KVQA im- 216

age data, and predict the uncertainty of the knowl- 217

edge for the given VQA using the above ensemble 218

model. 219

3.1.2 Measuring similarity between caption 220

sentences 221

In addition to the above uncertainty model, this 222

study additionally proposes a novel measure that 223

predicts the uncertainty of the implicit knowledge 224

based on the similarity between the generated and 225

the ground-truth caption. That is, if the generated 226

caption with the pre-trained model is much dif- 227

ferent from the ground-truth caption, the implicit 228

commonsense knowledge may be not much of use 229

for the given problem. The S-BERT sentence em- 230

bedding method (Reimers and Gurevych, 2019) is 231

used to calculate the caption similarity. The similar- 232

ity between the caption embeddings is calculated 233

as follows 234

Cap_Sim(Sg, St) =
f(Sg)·f(St)

∥f(Sg)∥·∥f(St)∥ , f : encoder
(6) 235

3.2 Knowledge-based visual question 236

answering 237

Based on the above uncertainty measures, we 238

present a new approach that integrates implicit 239

knowledge and explicit knowledge (external KB) 240

into KVQA. 241
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Figure 2: Ensemble-based uncertainty estimation based on caption generation

3.2.1 Use of knowledge based on semantic242

consistency243

Figure 3: Use of knowledge adjusted based on uncer-
tainty measures

As shown in Fig 3, we adjust the use of the given244

KB based on the above mentioned uncertainty mea-245

sures. In KVQA, when the uncertainty is high and246

the similarity is low, the system tends to attend to247

the content of image-question information. Other-248

wise, the external knowledge is more attended.249

v_score = σ(Wv ∗ [cap_sim, uncertainty])

g_score = σ(Wg ∗ [cap_sim, uncertainty])

zv_implicit = v_score ∗ z_implicit

zg_explicit = g_score ∗ z_explicit
(7)250

As shown in Fig 3 and Eq. (7), v_score and251

g_score are calculated through fully connected252

layer and sigmoid function after concatenating253

the similarity and the uncertainty. Each of the254

score values is finally represented by zv_implicit255

and zg_explicit through dot product between the256

pre-calculated z_implicit extracted from a vision- 257

language model and z_explicit knowledge repre- 258

sentation extracted from a knowledge graph. The 259

use of image-question information and KB are ad- 260

justed based on the score. 261

3.2.2 KVQA with semantic consistency model 262

For KVQA, this study proposes a semantic con- 263

sistency model that relies on the uncertainty mea- 264

sures described above. The model relies on two 265

types of knowledge sources inspired by (Marino 266

et al., 2021): 1) explicit knowledge and 2) im- 267

plicit knowledge. The former is the knowledge 268

extracted from Relational Graph Convolution Net- 269

works (RGCN) that has the external KB as input 270

(Schlichtkrull et al., 2018). The latter is a vision- 271

language embedding extracted from VisualBERT 272

trained with a large-scale data. Furthermore, the 273

use of the explicit and implicit knowledge is ad- 274

justed based on the uncertainty estimation, as de- 275

scribed in section 3.1. 276

Explicit knowledge extraction: Explicit knowl- 277

edge is created by extracting relevant knowledge 278

from the external KB, using the objects recognized 279

in the image. In this study, about 4000 image key- 280

words including objects, places, and attributes of 281

objects are extracted with the following models: 282

1) ResNet-152 (ImageNet (Deng et al., 2009)); 283

2) ResNet-18 (Place365 (López-Cifuentes et al., 284

2020)); 3) Faster R-CNN (VisualGenome (Krishna 285

et al., 2017a)); 4) Mask-RCNN (LVIS (Gupta et al., 286

2019)). External KB used are as follows: 1) DB- 287

Pedia (categorical information) (Auer et al., 2007); 288
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Figure 4: Overall model architecture

2) ConceptNet (commonsense knowledge)(Liu and289

Singh, 2004); 3) VisualGenome (spatial relation-290

ship) (Krishna et al., 2017b); 4) hasPartKB (part291

relationship) (Bhakthavatsalam et al., 2020). The292

relevant knowledge is retrieved with image key-293

words and question words. As a result, a total of294

36,000 edges and 8,000 nodes are extracted. For295

integrating knowledge graphs, we use RGCN that296

distinguishes types and directions of edges in this297

study. The followings are used as RGCN inputs:298

1) keyword presence that indicates words in the299

question with filtered words (with one-hot matrix);300

2) an image keyword probability extracted from301

a pre-trained model; 3) Word2vec representation302

of each keyword or average Word2vec representa-303

tion of multiple words (Mikolov et al., 2013); 4)304

Implicit knowledge representation z_implicit ex-305

tracted from VisualBERT. The extracted explicit306

and implicit knowledge are integrated into KVQA307

as described above.308

Implicit knowledge extraction: Transformer-309

based language models trained with a large-scale310

corpus are known to learn commonsense. There-311

fore, we use VisualBERT model to make use of312

the implicit knowledge generated from the image313

and the question (Li et al., 2019), as shown in Fig314

4. Although there are various studies that align315

images and sentences together, we apply the ap- 316

propriate model to our task by (Singh et al., 2020) 317

experiments. The question representations are ex- 318

tracted by the pre-trained BERT model with Book- 319

Corpus dataset and English Wikipedia, and we 320

use the representations as the input to the Visu- 321

alBERT model. Furthermore, the visual representa- 322

tions are extracted from the Faster R-CNN model 323

pre-trained with VisualGenome/COCO dataset and 324

the result becomes the VisualBERT’s input. To 325

produce z_implicit representation, we use mean- 326

pooling with outputs extracted from the Visual- 327

BERT model. 328

The final implicit and explicit knowledge repre- 329

sentations are calculated to predict the answer from 330

the set of answer vocabulary V ∈ Rv as follows 331

yimplicit = σ(Wv ∗ zv_implicit+ b) (8) 332

333

yexpliciti = σ((Wge ∗ zig_explicit+ bge)
T

(Wvi ∗ zv_implicit+ bvi))
(9) 334

In this study, the answer is predicted through the 335

hidden state of word i corresponding to V ∈ Rv 336

from the extracted explicit knowledge in Eq. (9). 337

The final answer is selected by choosing the highest 338

value from both yimplicit and yexplicit. The model 339

is trained with binary cross-entropy. 340
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4 Experiments and results341

4.1 Dataset and baseline342

We use OK-VQA dataset (Marino et al., 2019)343

which is a popular KVQA benchmark dataset. The344

dataset consists of a total of 14,031 images and345

14,055 questions.346

Dataset # of images # of captions
Train 82,783 413,915

Validation 40,504 202,520

Test 40,775 379,249

Table 1: Table of MSCOCO dataset

MSCOCO dataset (Chen et al., 2015) is used to347

pre-train baseline models that generate captions.348

The dataset size is shown in Table 1. In addition,349

Att2in (Rennie et al., 2017), BuDn (Anderson et al.,350

2018), and Transformer (Vaswani et al., 2017) are351

selected as the baseline models for caption genera-352

tion, which are the representative image captioning353

models, and used to generate captions of the OK-354

VQA dataset.355

4.2 Metrics356

In this study, a standard evaluation metric used357

in VQA challenge (Antol et al., 2015) is employed358

to evaluate the performance with the OK-VQA359

dataset. Furthermore, we evaluate the generated360

caption with BLEU (Papineni et al., 2002), CIDER361

(Vedantam et al., 2015), METEOR (Banerjee and362

Lavie, 2005), and ROUGE-L (Lin, 2004) metrics.363

4.3 Uncertainty-based caption generation364

Corr
cap_sim* & al_un* -0.1907

cap_sim* & ep_un* -0.1653

al_un* & ep_un* 0.4518

*cap_sim represents a caption similarity. al_un and ep_un represent aleatoric uncertainty
and epistemic uncertainty, respectively.

Table 2: Table of correlation with uncertainty and simi-
larity

Table 3 shows performances of the baseline365

model for caption generation on OK-VQA dataset.366

When comparing the image caption performance367

on the OK-VQA dataset with Att2in, BuDn,368

and Transformer models, overall the Transformer369

model shows better performance than others. Our370

study uses Transformer model for uncertainty mod- 371

eling. Fig 7 shows aleatoric uncertainty and epis- 372

temic uncertainty of the word of the generated cap- 373

tion, and the word of uncertain action and unusual 374

object in the image shows higher uncertainty than 375

the average uncertainty of the sentence. 376

Figure 5: The distribution of the uncertainty of gener-
ated caption and similarity between the caption and the
ground-truth caption

Figure 6: Boxplot of the uncertainty value according to
the number of hallucinated objects

Table 2 illustrates correlation between uncer- 377

tainty and caption similarity. The caption similarity 378

and aleatoric uncertainty have a negative correla- 379

tion of -0.1907, and the correlation between sim- 380

ilarity and epistemic uncertainty is -0.1653. The 381

correlation between aleatoric uncertainty and epis- 382

temic uncertainty shows a positive correlation, with 383

a value of 0.4518. The correlation analysis shows 384

the relationship between caption similarity and un- 385

certainty. Using the caption similarity is also sig- 386

nificant. In Fig 5, the distributions of (a) aleatoric 387

uncertainty and (b) epistemic uncertainty show a 388

right-skewed distribution, while (c) caption similar- 389

ity distribution depicts a left-skewed distribution. 390

Since there are extreme values in distributions, se- 391
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER METEOR ROUGE-L
Att2in (Rennie et al., 2017) 0.7843±0.00005 0.6077±0.0002 0.4508±0.00032 0.3302±0.00038 1.0833+0.0016 0.2604±0.00018 0.5561±0.00019

BuDn (Anderson et al., 2018) 0.8123±0.00015 0.6516±0.00009 0.5017±0.00003 0.3786±0.00004 1.2527±0.00039 0.2858±0.00002 0.5859±0.00005

Transformer (Vaswani et al., 2017) 0.8290±0.00028 0.6828±0.00036 0.5410±0.0004 0.4216±0.0004 1.3864±0.0012 0.2997±0.00013 0.6043±0.00023

Table 3: Performances of image captioning with implicit commonsense knowledge on OK-VQA dataset

Figure 7: Image captioning results on OK-VQA dataset. a value in bracket is aleatoric uncertainty and epistemic
uncertainty, respectively and m represents an average aleatoric uncertainty and an average epistemic uncertainty in a
sentence, respectively

mantic inconsistency can be identified with uncer-392

tainties of the caption and the caption similarity.393

This study analyzes the uncertainty relationship394

according to the number of hallucinated objects in395

the generated caption. The proportion of halluci-396

nated objects of generated captions is calculated397

according to a synonym criteria of (Rohrbach et al.,398

2018). After synonym filtering of the generated399

caption, the number of hallucinated objects in the400

generated caption is counted. We divide the ratio401

of the number of words of the hallucinated objects402

among the caption words into 5 groups (0: 0∼0.2,403

1: 0.2∼0.4, 2: 0.4∼0.6, 3: 0.6∼0.8, 4: 0.8∼1.0).404

We calculate the average uncertainty of the caption405

over the average uncertainty of the hallucinated406

objects. As shown in Fig 6, the more hallucinated407

objects in the caption, the higher aleatoric and epis-408

temic uncertainty. We also perform qualitative anal-409

ysis, as shown in Fig 7. For the example shown410

in Fig 7, the generated caption contains uncertain411

words with higher aleatoric and epistemic uncer-412

tainty than m (the average aleatoric uncertainty and413

the average epistemic uncertainty in a sentence).414

4.4 KVQA with semantic inconsistency415

We present our KVQA result with the proposed416

semantic inconsistency model. An ablation study417

is performed with three values of caption similar-418

ity, aleatoric uncertainty, and epistemic uncertainty419

with the weights in Eq. (7). In Table 4, the base-420

line model makes use of both explicit and implicit421

Model Accuracy
Baseline 31.15

Baseline +
Cap_sim 31.55

Baseline +
Aleatoric Uncertainty 31.28

Baseline +
Epistemic Uncertainty 31.93

Baseline +
Cap_sim +

Epistemic Uncertainty (FC*) 31.64

Baseline +
Cap_sim +

Aleatoric Uncertainty (FC*) 32.45

Baseline +
Cap_sim +

Epistemic Uncertainty +
Aleatoric Uncertainty (FC*) 31.07

*FC: Fully connected layer

Table 4: An external knowledge assimilation method
ablation study on OK-VQA dataset

knowledge. The performance on the OK-VQA 422

dataset shows 31.15% accuracy. When caption sim- 423

ilarity is added, the accuracy increases by 0.4%. In 424

addition, when aleatoric and epistemic uncertainty 425

are added, respectively, it shows further improve- 426

ment. 427

Also, when the similarity and aleatoric uncer- 428

tainty are added, the accuracy increases by 0.49%. 429
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Figure 8: Comparison with the predicted answers of the proposed method and the baseline model on OK-VQA
dataset

Model Accuracy
Q-Only 14.93

XNMNet (Shi et al., 2019) 20.67

BAN (Kim et al., 2018) 25.17

BAN + AN (Marino et al.,
2019)

25.61

BAN + KG-Aug (Li et al.,
2020)

26.71

MUTAN (Ben-Younes et al.,
2017)

26.41

MUTAN + AN (Marino et al.,
2019)

27.84

KA (Ziaeefard and Lécué,
2020)

29.03

ViLBERT (Lu et al., 2019) 31.35

KRISP* (Marino et al., 2021) 31.15

Ours 32.45
*Re-implemented result with the authors’code and parameter setting

Table 5: OK-VQA performance comparing with the
state-of-the art approaches

The best performance is 32.45% accuracy when430

caption similarity and the epistemic uncertainty431

are concatenated. In addition, when the three val-432

ues of caption similarity, aleatoric uncertainty, and433

epistemic uncertainty are added, the accuracy is434

31.07%, which shows lower performance than that435

of the baseline. From the results, when all three val-436

ues are given to a model, the model cannot predict437

a correct answer. As shown in Table 5, the model438

with both explicit knowledge, implicit knowledge,439

and semantic inconsistency method achieves the440

state-of-the-art performance. We also present a441

qualitative analysis of the model in Fig 8. We442

compare the prediction from our model with the443

baseline’s. For (a) and (b), our model selects the 444

correct answer. In addition, (c) for the proposed 445

model predicted an answer that is more similar to 446

the correct answer than the baseline model. Also, 447

the proposed method predicts correct answers for 448

(a) an image with a part of the sink, (b) an image 449

with an unusual object illustrated in Fig 8. 450

5 Conclusion and future work 451

In this study, we propose a novel semantic in- 452

consistency measure through uncertainty modeling 453

and semantic similarity for KVQA that can make 454

use of diverse KBs more effectively. As KBs are 455

often incomplete or incompatible with the given 456

problem, the use of knowledge should be moder- 457

ated. With the proposed model, we achieve the 458

state-of-the-art results on KVQA. In future work, 459

we plan to further explore diverse ways of using 460

KBs based on the characteristics of the KB and the 461

given problem. 462
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