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Abstract

Knowledge-based visual question answering
(KVQA) task aims to answer questions that
require additional external knowledge as well
as an understanding of images and questions.
Recent studies on KVQA inject an external
knowledge in a multi-modal form, and as more
knowledge is used, irrelevant information may
be added and can confuse the question answer-
ing. In order to properly use the knowledge,
this study proposes the following: 1) We intro-
duce a novel semantic inconsistency measure
using caption uncertainty and semantic similar-
ity. 2) We suggest a new external knowledge
assimilation method based on the semantic in-
consistency measure and apply it to integrate
explicit knowledge and implicit knowledge for
KVQA. 3) The proposed method is evaluated
on the OK-VQA dataset and achieves the state-
of-the-art performance.

1 Introduction

Knowledge-based visual question answering
(KVQA) task is to answer questions that require an
understanding of images, questions, and additional
external knowledge. The KVQA task is proposed
with the aim of reaching human-level reasoning.
Injecting huge knowledge based on the entities
identified from images and questions in a multi-
modal form is among the tasks being researched.
However, as the knowledge base (KB) is often in-
complete, when the context of the entities is con-
flicting with the KB, irrelevant information can be
retrieved and confuse the question answering.

For the example in Fig 1, the question can be an-
swered with a full understanding of the image and
question. However, the predicted answer is yellow
when we add the related external knowledge (i.e.,
the color of bananas is yellow) for KVQA. Since
adding the knowledge confuses the prediction of
the answer, it is necessary to adjust the amount
of the external knowledge injected according to
some semantic inconsistency measure. This study

Q: What color is the banana?
A: Green

Figure 1: Representative visual question answering ex-
ample occurring semantic inconsistency with an external
knowledge

proposes a new approach for measuring such in-
consistencies and introduces an external knowledge
assimilation method. This study is summarized as
follows:

* We introduce a new semantic inconsistency
measure based on caption generation, which
is an ensemble of a) uncertainty of the caption
and b) similarity between the caption gener-
ated with the KB and the ground-truth caption

* We propose an external knowledge assimila-
tion method based on the proposed semantic
inconsistency measure to control the use of
external knowledge in KVQA.

* We apply the proposed method for combin-
ing explicit and implicit knowledge in KVQA
and achieve the state-of-the-art result when
evaluated with the OK-VQA dataset.

2 Related work

2.1 KVQA approaches using pre-trained
model

A lot of researches have studied image and text
as a multi-modal form. By tokenizing the object in
an image, a study in which alignment between an
object and text has been proposed to apply a self-
attention model (Lu et al., 2019; Li et al., 2019).



In addition, (Li et al., 2019) showed high perfor-
mance in various downstream tasks compared with
other vision-language approaches (Singh et al.,
2020). Therefore, this study experiments with
the approach suggested by (Li et al., 2019) for
extracting the implicit knowledge. Multi-modal
approaches using image features from Faster R-
CNN or ResNet and question embedding of pre-
trained models are also proposed (Kim et al., 2018;
Ben-Younes et al., 2017). (Kim et al., 2018) gener-
ated joint representation through Bilinear Attention
Map. (Ben-Younes et al., 2017) extracted image-
text joint representation by using image features
and question embedding and proposed a 3-way
Tucker fusion method. In addition to using pre-
trained models, there have also been studies trying
to solve VQA tasks using additional external knowl-
edge. (Marino et al., 2019) proposed ArticleNet
using Wikipedia search API related to keywords
of an image and words of the question. A method
for extracting external knowledge related to the ob-
jects in an image was also introduced (Zhang et al.,
2021). (Zhang et al., 2021) extracted knowledge
by using the object label output from the Faster
R-CNN model. This study extracts more relevant
knowledge by using not only image object key-
words, but also words in the question.

2.2 Graph-based KVQA approaches

Besides using pre-trained models, studies using
graph-based models were proposed (Hudson and
Manning, 2019; Jiang and Han, 2020; Garcia and
Nakashima, 2020; Gao et al., 2020; Ziaeefard and
Lécué, 2020). (Hudson and Manning, 2019) sug-
gested the Neural State Machine based on a proba-
bilistic graph for reasoning on VQA. (Garcia and
Nakashima, 2020) introduced a video scene graph
and caption generation method, and applied them
for reasoning video question answering (video-QA)
task. (Jiang and Han, 2020) studied a heteroge-
neous graph alignment network considering inter-
and intra-modality on the video-QA. (Gao et al.,
2020) proposed a method to create graphs from vi-
sual, linguistic, and numeric features and suggested
an aggregator that combines the features. However,
because the study considers the contents of the im-
age, the method has a limitation on answering a
question that requires additional knowledge. (Zi-
aeefard and Lécué, 2020) suggested graph-based
VQA for capturing the interrelationship between
objects and entities of external knowledge by com-

bining concept graph and scene graph. However,
the scene graph relation is limited because only
locational information is considered. Therefore,
in the OK-VQA dataset, the location-based scene
graph extraction methods do not show significant
performance.

Moreover, studies using a pre-trained model and
graph-based model have been suggested (Saqur and
Narasimhan, 2020; Li et al., 2020; Marino et al.,
2021). (Saqur and Narasimhan, 2020) introduced
multimodal graph networks for compositional gen-
eralization in VQA, but the method is evaluated on
the task that requires object detection or recogni-
tion. (Li et al., 2020) proposed a Knowledge Graph
Augmented model using a pre-trained model and
graph-based method. However, the knowledge sub-
graph is generated by using the image object labels
and the words of the question without the image-
question context. (Marino et al., 2021) proposed to
integrate image-text representation from the BERT-
based model and graph information based on the
concept of image objects and questions. However,
when there are conflicts between graph and pre-
trained model representation, there are limitations
in using knowledge for question answering.

This study proposes a new approach that mea-
sures semantic inconsistencies between KB and the
given problem, and moderate the use of knowledge
based on the measurement.

3 Approach

This section introduces a semantic inconsistency
measure that makes use of uncertainty and semantic
similarity modeling.

3.1 Semantic inconsistency between an image
and an external KB

In this study, we utilize caption generation to
measure semantic inconsistency between an im-
age and external KB. Inspired by (Xiao and Wang,
2021), we adopt uncertainty model of caption gen-
eration and introduce a novel measure for estimat-
ing semantic inconsistency between the KB and the
VQA context.

3.1.1 Ensemble-based uncertainty estimation
for KVQA

In the existing image captioning, to generate a
sentence y when an input x is given, the conditional
distribution p(y|x) is learned and continuously pre-
dicts tokens through an autoregressive distribution.
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In Eq. (1), y; denotes the token correspond-
ing to the index ¢ in sentence y, and the given
set x,y1, - ,yi—1 denotes context ¢; for predict-
ing the token corresponding to i. The number of
tokens that can be predicted is limited based on
the given context. For example, the word "beach"
cannot be generated when an image of a cat on a
desk is given. When a set of words irrelevant to
the context is denoted hallucinated word Vh(ci), the
following equation can be written
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In image captioning, token prediction in a given
context is calculated with the following cross-
entropy equation. The equation can be divided
into two based on an entropy of the set of words
relevant to the context and that of the set of words
irrelevant to the context as
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The uncertainty that can be predicted by the Eq.
(3) can be divided into two. 1) uncertainty that ap-
pears in selection of a token that describes the con-
text 2) uncertainty that appears due to the interfer-
ence of words irrelevant to the context or an insuffi-
cient training system. The latter is directly related
to calculating hallucinated words that are probabil-
ity irrelevant to the given context. We make use
of the latter in measuring uncertainty in KVQA,
as described below. The latter can be decomposed
into two: aleatoric uncertainty and epistemic uncer-
tainty (Kiureghian and Ditlevsen, 2009; Depeweg
et al., 2018; Kendall and Gal, 2017). The uncer-
tainties can be measured by an ensemble-based
model (Lakshminarayanan et al., 2017). In Eq. (4),
w denotes the model weights and ¢(w) denotes

the posterior distribution of weights in the training
data. If the weights are fixed, H (y;|c;, w) repre-
sents the uncertainty related to the data. Aleatoric
uncertainty can be written as E ) [H (yi|ci, w)]
and calculated by the mean of H,,(y;|c;). Epis-
temic uncertainty can also be written by the dif-
ference between the entropy H (y;|c;) of p(yi|c;)
and aleatoric uncertainty in Eq. (5). The proposed
method is illustrated in Fig 2.
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A recent study shows that the model pre-trained
with a large amount of image captioning data incor-
porates commonsense knowledge that is implicit in
the data (Su et al., 2020). We use such a pre-trained
model (with implicit commonsense knowledge)
to generate image captions from the KVQA im-
age data, and predict the uncertainty of the knowl-
edge for the given VQA using the above ensemble
model.

3.1.2 Measuring similarity between caption
sentences

In addition to the above uncertainty model, this
study additionally proposes a novel measure that
predicts the uncertainty of the implicit knowledge
based on the similarity between the generated and
the ground-truth caption. That is, if the generated
caption with the pre-trained model is much dif-
ferent from the ground-truth caption, the implicit
commonsense knowledge may be not much of use
for the given problem. The S-BERT sentence em-
bedding method (Reimers and Gurevych, 2019) is
used to calculate the caption similarity. The similar-
ity between the caption embeddings is calculated
as follows

. £(59)-£(50)
Cap_Sim(Sy, St) = 175, Sircsan: |+ encoder

(6)

3.2 Knowledge-based visual question
answering

Based on the above uncertainty measures, we
present a new approach that integrates implicit
knowledge and explicit knowledge (external KB)
into KVQA.
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Figure 2: Ensemble-based uncertainty estimation based on caption generation
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Figure 3: Use of knowledge adjusted based on uncer-
tainty measures

As shown in Fig 3, we adjust the use of the given
KB based on the above mentioned uncertainty mea-
sures. In KVQA, when the uncertainty is high and
the similarity is low, the system tends to attend to
the content of image-question information. Other-
wise, the external knowledge is more attended.

v_score = o (W,  [cap_sim, uncertainty])
g_score = a(W * [cap_sim, uncertainty])
zZy_tmplicit = v_score x z_implicit
zg_explicit = g_score x z_explicit
(7
As shown in Fig 3 and Eq. (7), v_score and
g_score are calculated through fully connected
layer and sigmoid function after concatenating
the similarity and the uncertainty. Each of the
score values is finally represented by z,_implicit
and z,_explicit through dot product between the

pre-calculated z implicit extracted from a vision-
language model and z explicit knowledge repre-
sentation extracted from a knowledge graph. The
use of image-question information and KB are ad-
justed based on the score.

3.2.2 KVQA with semantic consistency model

For KVQA, this study proposes a semantic con-
sistency model that relies on the uncertainty mea-
sures described above. The model relies on two
types of knowledge sources inspired by (Marino
et al., 2021): 1) explicit knowledge and 2) im-
plicit knowledge. The former is the knowledge
extracted from Relational Graph Convolution Net-
works (RGCN) that has the external KB as input
(Schlichtkrull et al., 2018). The latter is a vision-
language embedding extracted from VisualBERT
trained with a large-scale data. Furthermore, the
use of the explicit and implicit knowledge is ad-
justed based on the uncertainty estimation, as de-
scribed in section 3.1.

Explicit knowledge extraction: Explicit knowl-
edge is created by extracting relevant knowledge
from the external KB, using the objects recognized
in the image. In this study, about 4000 image key-
words including objects, places, and attributes of
objects are extracted with the following models:
1) ResNet-152 (ImageNet (Deng et al., 2009));
2) ResNet-18 (Place365 (Lopez-Cifuentes et al.,
2020)); 3) Faster R-CNN (VisualGenome (Krishna
et al., 2017a)); 4) Mask-RCNN (LVIS (Gupta et al.,
2019)). External KB used are as follows: 1) DB-
Pedia (categorical information) (Auer et al., 2007);
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Figure 4: Overall model architecture

2) ConceptNet (commonsense knowledge)(Liu and
Singh, 2004); 3) VisualGenome (spatial relation-
ship) (Krishna et al., 2017b); 4) hasPartKB (part
relationship) (Bhakthavatsalam et al., 2020). The
relevant knowledge is retrieved with image key-
words and question words. As a result, a total of
36,000 edges and 8,000 nodes are extracted. For
integrating knowledge graphs, we use RGCN that
distinguishes types and directions of edges in this
study. The followings are used as RGCN inputs:
1) keyword presence that indicates words in the
question with filtered words (with one-hot matrix);
2) an image keyword probability extracted from
a pre-trained model; 3) Word2vec representation
of each keyword or average Word2vec representa-
tion of multiple words (Mikolov et al., 2013); 4)
Implicit knowledge representation z_implicit ex-
tracted from Visual BERT. The extracted explicit
and implicit knowledge are integrated into KVQA
as described above.

Implicit knowledge extraction: Transformer-
based language models trained with a large-scale
corpus are known to learn commonsense. There-
fore, we use VisualBERT model to make use of
the implicit knowledge generated from the image
and the question (Li et al., 2019), as shown in Fig
4. Although there are various studies that align

images and sentences together, we apply the ap-
propriate model to our task by (Singh et al., 2020)
experiments. The question representations are ex-
tracted by the pre-trained BERT model with Book-
Corpus dataset and English Wikipedia, and we
use the representations as the input to the Visu-
alBERT model. Furthermore, the visual representa-
tions are extracted from the Faster R-CNN model
pre-trained with VisualGenome/COCO dataset and
the result becomes the VisualBERT’s input. To
produce z_implicit representation, we use mean-
pooling with outputs extracted from the Visual-
BERT model.

The final implicit and explicit knowledge repre-
sentations are calculated to predict the answer from
the set of answer vocabulary V' € R" as follows

yimplicit = o(Wy * z,_implicit +b)  (8)

y-exp“m = o((Wye * z;_explicit + bge)T

’ o ©
(Wi * zy_implicit + by;))

In this study, the answer is predicted through the
hidden state of word ¢ corresponding to V' € R"
from the extracted explicit knowledge in Eq. (9).
The final answer is selected by choosing the highest
value from both y"Plicit apd e=Plicit The model
is trained with binary cross-entropy.



4 Experiments and results

4.1 Dataset and baseline

We use OK-VQA dataset (Marino et al., 2019)
which is a popular KVQA benchmark dataset. The
dataset consists of a total of 14,031 images and
14,055 questions.

Dataset  # of images # of captions
Train 82,783 413,915
Validation 40,504 202,520
Test 40,775 379,249

Table 1: Table of MSCOCO dataset

MSCOCO dataset (Chen et al., 2015) is used to
pre-train baseline models that generate captions.
The dataset size is shown in Table 1. In addition,
Att2in (Rennie et al., 2017), BuDn (Anderson et al.,
2018), and Transformer (Vaswani et al., 2017) are
selected as the baseline models for caption genera-
tion, which are the representative image captioning
models, and used to generate captions of the OK-
VQA dataset.

4.2 Metrics

In this study, a standard evaluation metric used
in VQA challenge (Antol et al., 2015) is employed
to evaluate the performance with the OK-VQA
dataset. Furthermore, we evaluate the generated
caption with BLEU (Papineni et al., 2002), CIDER
(Vedantam et al., 2015), METEOR (Banerjee and
Lavie, 2005), and ROUGE-L (Lin, 2004) metrics.

4.3 Uncertainty-based caption generation

Corr
cap_sim* & al_un* -0.1907
cap_sim* & ep_un* -0.1653
al_un* & ep_un* 0.4518

*cap_sim represents a caption similarity. al_un and ep_un represent aleatoric uncertainty
and epistemic uncertainty, respectively.

Table 2: Table of correlation with uncertainty and simi-
larity

Table 3 shows performances of the baseline
model for caption generation on OK-VQA dataset.
When comparing the image caption performance
on the OK-VQA dataset with Att2in, BuDn,
and Transformer models, overall the Transformer
model shows better performance than others. Our

study uses Transformer model for uncertainty mod-
eling. Fig 7 shows aleatoric uncertainty and epis-
temic uncertainty of the word of the generated cap-
tion, and the word of uncertain action and unusual
object in the image shows higher uncertainty than
the average uncertainty of the sentence.
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Figure 5: The distribution of the uncertainty of gener-
ated caption and similarity between the caption and the
ground-truth caption

Aleatoric uncertainty

Epistemi
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Figure 6: Boxplot of the uncertainty value according to
the number of hallucinated objects

Table 2 illustrates correlation between uncer-
tainty and caption similarity. The caption similarity
and aleatoric uncertainty have a negative correla-
tion of -0.1907, and the correlation between sim-
ilarity and epistemic uncertainty is -0.1653. The
correlation between aleatoric uncertainty and epis-
temic uncertainty shows a positive correlation, with
a value of 0.4518. The correlation analysis shows
the relationship between caption similarity and un-
certainty. Using the caption similarity is also sig-
nificant. In Fig 5, the distributions of (a) aleatoric
uncertainty and (b) epistemic uncertainty show a
right-skewed distribution, while (c) caption similar-
ity distribution depicts a left-skewed distribution.
Since there are extreme values in distributions, se-



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER METEOR ROUGE-L

Att2in (Rennie et al., 2017) 0.7843+0.00005  0.6077+0.0002  0.4508+0.00032 0.3302+0.00038 1.0833+0.0016  0.2604+0.00018 0.5561+0.00019

BuDn (Anderson et al., 2018) 0.8123£0.00015  0.6516+0.00009  0.5017+0.00003  0.3786+0.00004 1.2527+0.00039  0.2858+0.00002  0.5859+0.00005

Transformer (Vaswani et al., 2017)  0.8290+0.00028 0.6828+0.00036  0.5410+0.0004  0.4216+0.0004  1.3864+0.0012  0.2997+0.00013  0.6043+0.00023

Table 3: Performances of image captioning with implicit commonsense knowledge on OK-VQA dataset

Caption: A fire (0.40, 0.68) hydrant on Caption: A white bird is standing on the Caption: A person (0.812, 0.75) is

the side of a street,

m = (0.14, 0.64) m = (0.36, 0.66)

(@ (b)

top (1.12, 0.82) of an oven,

holding a teddy bear, m = (0.24, 0.67)

©

Figure 7: Image captioning results on OK-VQA dataset. a value in bracket is aleatoric uncertainty and epistemic
uncertainty, respectively and m represents an average aleatoric uncertainty and an average epistemic uncertainty in a

sentence, respectively

mantic inconsistency can be identified with uncer-
tainties of the caption and the caption similarity.
This study analyzes the uncertainty relationship
according to the number of hallucinated objects in
the generated caption. The proportion of halluci-
nated objects of generated captions is calculated
according to a synonym criteria of (Rohrbach et al.,
2018). After synonym filtering of the generated
caption, the number of hallucinated objects in the
generated caption is counted. We divide the ratio
of the number of words of the hallucinated objects
among the caption words into 5 groups (0: 0~0.2,
1: 0.2~0.4, 2: 0.4~0.6, 3: 0.6~0.8, 4: 0.8~1.0).
We calculate the average uncertainty of the caption
over the average uncertainty of the hallucinated
objects. As shown in Fig 6, the more hallucinated
objects in the caption, the higher aleatoric and epis-
temic uncertainty. We also perform qualitative anal-
ysis, as shown in Fig 7. For the example shown
in Fig 7, the generated caption contains uncertain
words with higher aleatoric and epistemic uncer-
tainty than m (the average aleatoric uncertainty and
the average epistemic uncertainty in a sentence).

4.4 KVQA with semantic inconsistency

We present our KVQA result with the proposed
semantic inconsistency model. An ablation study
is performed with three values of caption similar-
ity, aleatoric uncertainty, and epistemic uncertainty
with the weights in Eq. (7). In Table 4, the base-
line model makes use of both explicit and implicit

Model

Baseline

Accuracy
31.15

Baseline +

Cap_sim 31.55

Baseline +

Aleatoric Uncertainty 31.28

Baseline +

Epistemic Uncertainty 31.93

Baseline +
Cap_sim +

Epistemic Uncertainty (FC*) 31.64

Baseline +
Cap_sim +

Aleatoric Uncertainty (FC*) 3245

Baseline +
Cap_sim +
Epistemic Uncertainty +

Aleatoric Uncertainty (FC*) 31.07

*FC: Fully connected layer

Table 4: An external knowledge assimilation method
ablation study on OK-VQA dataset

knowledge. The performance on the OK-VQA
dataset shows 31.15% accuracy. When caption sim-
ilarity is added, the accuracy increases by 0.4%. In
addition, when aleatoric and epistemic uncertainty
are added, respectively, it shows further improve-
ment.

Also, when the similarity and aleatoric uncer-
tainty are added, the accuracy increases by 0.49%.



Q: Which item in this room is usually to
wash hands?

A: sink Baseline: tell time
Baseline: bed Ours: decoration
Ours: sink

@

Q: What is the purpose of these objects?
A: [decoration, art]

Q: What is the purpose of the logos on
this truck?

A identification

Baseline: car

Ours: safety
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Figure 8: Comparison with the predicted answers of the proposed method and the baseline model on OK-VQA

dataset

Model Accuracy

Q-Only 14.93

XNMNet (Shi et al., 2019) 20.67

BAN (Kim et al., 2018) 25.17

BAN + AN (Marino et al., 25.61
2019)

BAN + KG-Aug (Li et al., 26.71
2020)

MUTAN (Ben-Younes et al., 26.41
2017)

MUTAN + AN (Marino et al., 27.84
2019)

KA (Ziaeefard and Lécué, 29.03
2020)

VIiLBERT (Lu et al., 2019) 31.35

KRISP* (Marino et al., 2021)  31.15

Ours 32.45

*Re-implemented result with the authors’code and parameter setting

Table 5: OK-VQA performance comparing with the
state-of-the art approaches

The best performance is 32.45% accuracy when
caption similarity and the epistemic uncertainty
are concatenated. In addition, when the three val-
ues of caption similarity, aleatoric uncertainty, and
epistemic uncertainty are added, the accuracy is
31.07%, which shows lower performance than that
of the baseline. From the results, when all three val-
ues are given to a model, the model cannot predict
a correct answer. As shown in Table 5, the model
with both explicit knowledge, implicit knowledge,
and semantic inconsistency method achieves the
state-of-the-art performance. We also present a
qualitative analysis of the model in Fig 8. We
compare the prediction from our model with the

baseline’s. For (a) and (b), our model selects the
correct answer. In addition, (c) for the proposed
model predicted an answer that is more similar to
the correct answer than the baseline model. Also,
the proposed method predicts correct answers for
(a) an image with a part of the sink, (b) an image
with an unusual object illustrated in Fig 8.

5 Conclusion and future work

In this study, we propose a novel semantic in-
consistency measure through uncertainty modeling
and semantic similarity for KVQA that can make
use of diverse KBs more effectively. As KBs are
often incomplete or incompatible with the given
problem, the use of knowledge should be moder-
ated. With the proposed model, we achieve the
state-of-the-art results on KVQA. In future work,
we plan to further explore diverse ways of using
KBs based on the characteristics of the KB and the
given problem.
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