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Abstract
Te reo Māori, New Zealand’s only indige-001
nous language, is code-switched with English.002
Most Māori speakers are bilingual, and the003
use of Māori is increasing in New Zealand004
English. Unfortunately, due to the minimal005
availability of resources, including digital data,006
Māori is under-represented in technological ad-007
vances. Cloud-based systems such as Google008
and Azure support Māori language detection.009
However, we provide experimental evidence010
to show that the accuracy of such systems is011
low when detecting Māori. Hence, with the012
support of Māori community, we collect Māori013
and bilingual data to use natural language pro-014
cessing (NLP) to improve Māori language de-015
tection. We train bilingual sub-word embed-016
dings and provide evidence to show that our017
bilingual embeddings improve overall accuracy018
compared to the publicly-available monolin-019
gual embeddings. This improvement has been020
verified for various NLP tasks using three bilin-021
gual databases containing formal transcripts022
and informal social media data. We also show023
that BiLSTM with bilingual sub-word embed-024
dings outperforms large-scale contextual lan-025
guage models such as BERT on down stream-026
ing tasks of detecting Māori language. The027
best accuracy of 87% was obtained using BiL-028
STM with bilingual embeddings for detecting029
code-switch points of bilingual sentences.030

1 Introduction031
Te reo Māori (referred to as Māori) is New032

Zealand’s only indigenous language, spoken033

by 4.5% of the total population of 5 million.034

Māori speakers are generally bilingual, and code-035

switching between Māori and English is common.036

Māori revitalisation efforts have increased Māori037

use in the otherwise English-speaking country.038

Hence, detecting Māori language and code-switch039

instances is a prerequisite to analysing language040

data. As Māori and English both use the Roman041

script, currently annotations are done manually,042

making the process time-consuming, slowing down043

research and technology development. Consider 044

the following sentences: 045

(a) Pērā anō i ngō mate kua hinga atu i te motu. 046

(b) I want to give no offence to my mate Willie 047

Jackson, but once a week hardly qualifies as 048

the significant Māori voice. 049

where green indicates Māori, red is used to indi- 050

cate that the word has same spelling in Māori and 051

English, and the remaining are English. Based on 052

expert knowledge, we know the word mate in the 053

sentence (a) is Māori, while sentence (b) is English. 054

In this research, we focus on two primary tasks: 055

Task 1: Language Detection (LD) - detecting 056

Māori language words from input text. 057

Task 2: Code-switch Detection (CS) - detecting 058

Māori to English or English to Māori code- 059

switch points from input text. 060

There is limited Māori-only and Māori-English 061

bilingual data available. We collected data by seek- 062

ing feedback from the Māori community, where 063

data-sharing is based on trust. As researchers, 064

we remain guardians of the data, ensuring data 065

sovereignty (Stats, 2020). Hence, all the resources 066

shared from this study are bound by the Kaitiaki- 067

tanga license (Te-Hiku-Media). This paper presents 068

one of the first research to use advances in NLP 069

to detect Māori and code-switching. There are no 070

existing models using NLP techniques for code- 071

switch detection. The cloud-based services Google 072

and Azure are the only options available for lan- 073

guage detection. This paper’s contributions are: 074

1. Evaluation of detecting Māori using cloud- 075

based services such as Google and Azure. 076

2. Pre-training Māori-English bilingual, and 077

Māori-only monolingual sub-word embed- 078

dings using the collection of data. Experi- 079

ments using three different bilingual data for 080

various NLP tasks show that bilingual embed- 081

dings outperform monolingual embeddings. 082

3. Providing evidence to show large scale lan- 083

guage models such as Bidirectional Encoder 084
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Representations from Transformers (BERT)085

are outperformed by BiLSTM with non-086

contextual sub-word bilingual embeddings for087

low-resourced language such as Māori.088

4. Providing baseline results for detecting low-089

resourced Māori and code-switch between090

Māori-English language pair.091

2 Te reo Māori (The Māori Language)092

Māori is a Polynesian language belonging to the093

Austronesian family. Phonologically, Māori has ten094

consonants /p t k m n N f r w h/. The Māori vowel095

system is described by five short vowels /i e a o096

u/ (Bauer et al., 1993). Orthographically, there is097

mostly a one-to-one mapping of a Māori phoneme098

to a grapheme, except two digraphs, ‘wh’, which is099

/f/, and ‘ng’ which is /N/. In modern orthography,100

long vowels are denoted with a macron (e.g. ā).101

Long vowels are denoted in modern orthography102

with a macron (e.g. ā). In older text, they are103

sometimes expressed as double vowels (e.g. aa),104

with an umlaut (e.g. ä), or ignored completely. In105

addition, there is some regional variation in the106

way words are spelt (e.g. Aorangi vs Aoraki). This107

contrasts with English, which has a non-phonemic108

orthography. The Māori syllable structure consists109

of a nucleus, which may be occupied by a vowel (or110

a diphthong), and an optional onset (syllable start)111

occupied by a single consonant. Hence, consonant112

clusters are not present in Māori (Harlow, 2007).113

3 Related Work114

Research using NLP to tasks relating to Māori115

is relatively young. Examples include statistical116

machine translation for Māori-English pair (Mo-117

haghegh et al., 2014), and the inclusion of Māori118

language detection and translation using cloud ser-119

vices Google and Azure. Keegan (2017) (Keegan,120

2017) indicates that although the growth of cloud121

services for Māori translations is welcoming, due122

to the minimal availability of digitised Māori data,123

the resulting output is inaccurate. Google also ac-124

knowledges that for low-resource languages, the125

quality of language detection and automatic ma-126

chine translation is far from perfect (Blog)127

We present the first research that uses deep128

learning techniques to detect code-switch between129

Māori and English. Hence, except for the above-130

mentioned cloud-services, we are limited by the131

availability of baseline systems for Māori language132

detection and Māori-English code-switch detection.133

Name and Database # Words
Māori only
D1: Te Taka Database* (Keegan, 2021) 9,862,131
D2: Nga Mahi corpus (James et al., 2020) 81,036
D3: Māori Wikipedia 431,280
D4a: LMC Corpus (LMC) 5,486,328
Total size of Māori-only database = 92 MB
Māori and English
D4b: LMC Corpus (LMC) 7,197,059
D5: Niupepa (Māori Newspapers) (Niupepa) 5,050,988
D6: Twitter Corpus*(Trye et al., 2019) 48,289,375
Total size of bilingual data = 0.4 GB

Table 1: Māori-English Words (MEW) database.‘*’ in-
dicates private collections of data.

We use approaches that were inspired by the liter- 134

ature on other language pairs. Examples include 135

XNLI cross-lingual classification benchmark (Con- 136

neau et al., 2018) where the bidirectional Long 137

short-term memory (BiLSTM) model was used 138

across several low resource languages, including 139

Swahili and Urdu; and code-switch detection using 140

BiLSTM and Character-LSTM for language pair 141

English-Hindi (Lal et al., 2019; Mukherjee et al., 142

2019). XNLI benchmark uses fastText common- 143

crawl embeddings (denoted as E300 in this pa- 144

per) and aligns it with the MUSE library. Com- 145

parison among deep learning models shows that 146

adding background information through sub-word 147

pre-trained embeddings trained using fastText and 148

in the form of lexicons improves the overall per- 149

formance of deep neural networks on databases of 150

low-resource languages (Adouane et al., 2018). 151

Transformers such as BERT is the state-of-the- 152

art in many NLP tasks, including language de- 153

tection, name entity recognition, and machine 154

translation (Devlin et al., 2019; Conneau et al., 155

2020). There are many large scale multilingual 156

models, such as XLM-R (Conneau et al., 2020) 157

and multilingual BERT (mBERT) (Devlin et al., 158

2019) trained on more than 100 languages. Re- 159

search shows that for languages that are under- 160

sampled during training, the effectiveness of large 161

scale multilingual models such as mBERT are sub- 162

optimal (Wu and Dredze, 2020; Wang et al., 2020). 163

In comparison to the contextual representations 164

like BERT, embeddings with sub-word representa- 165

tion are more data-efficient when data availability 166

is limited (Wu and Dredze, 2020). Furthermore, 167

Muller et al. (2021) (Muller et al., 2021) provides 168

evidence to show that many under-sampled or un- 169

seen languages during training –such as Maltese or 170

Narabizi– code-mixed with French perform worse 171

when using mBERT compared to an RNN with 172
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non-contextual dependency parsing baseline. It has173

been shown that for such unseen or under-sampled174

languages, there is a need to further train or fine-175

tune directly with available raw data in the unseen176

target languages (Muller et al., 2021).177

4 Databases178

Due to the low-resource nature of the Māori, there179

is no single extensive database. We collected text180

data from different sources to form the Māori-181

English Words (MEW) database, as summarised182

in Table 1. MEW database contains legal context,183

stories, social media posts and newspaper articles.184

The unlabelled MEW database is used to pre-train185

bilingual and Māori-only monolingual embeddings.186

We use three labelled databases for experiments:187

Hansard database, MLT corpus, and RMT corpus.188

Details of these databases are provided in Table 2.189

Hansard database contains the New Zealand Par-190

liament debates from 2003 onwards. Together191

with experts in Māori (Media), we have labelled192

the Hansard database, where English or Māori la-193

bels are assigned using linguistic rules and manual194

checking. Each sentence in the databases is marked195

as Māori, English or bilingual. Each word of each196

sentence is labelled as Māori or English. The re-197

sulting data includes 102,559 bilingual, 1,909,876198

English-only and 8,826 Māori-only sentences.199

Labelled Māori Loanword Twitter (MLT) corpus200

is a small database, where each tweet is labelled as201

‘relevant’ and ‘irrelevant’, based on the presence of202

a pre-determined set of Māori loanwords in a given203

tweet. Given detecting Māori language in tweets204

is a prerequisite to this task, we consider this task205

also as a Māori LD task. Reo Māori Twitter (RMT)206

corpus contains tweets, where at least 80% of text207

is in Māori. RMT corpus provides a list of 879,000208

Māori words across the tweets. We use this corpus209

also for LD task where the aim is to detect the210

Māori words identified by the researchers.211

5 Language Models and Classifiers212

This section provides details of the language mod-213

els and classifiers we used. We evaluate the perfor-214

mance of cloud-based language detection systems215

from Google and Azure for Māori. We represent216

text as bag-of-words and sub-word embeddings us-217

ing fastText. We use logistic regression and multi-218

nomial naive Bayes as baseline classifiers for lan-219

guage detection. We also use neural networks such220

as RNNs and CNNs to train and evaluate language221

detection and code-switch detection tasks. Further-222

more, we perform transfer learning of pre-trained 223

transformer models, BERT and mBERT, for the 224

down streaming task of language detection. 225

5.1 Cloud-based Online Tools 226

Google Translate (Google) and Microsoft Azure 227

Cognitive Services language detection (Microsoft) 228

are two popular cloud-based online tools that can 229

detect multiple languages. Google supports 108 230

languages, including New Zealand English and 231

Māori. Google’s RNN-based GNMT model (Wu 232

et al., 2016) showed significant improvements in 233

enabling translations to cover many languages, in- 234

cluding low-resourced languages. Google recently 235

replaced the GNMT model with a hybrid model 236

(transformer encoder and RNN decoder). This 237

model has shown significant improvements to the 238

other machine translation systems. Azure’s cog- 239

nitive services can translate 100+ languages, in- 240

cluding Māori. Azure’s early-stage neural net- 241

work model (Xiong et al., 2017) included a CNN- 242

BiLSTM architecture. Recently, Azure has com- 243

bined several machine learning algorithms and neu- 244

ral networks to provide various cognitive services. 245

5.2 Bag of words 246

Bag of words (BOW) is an effective method (Gold- 247

berg, 2017; Joulin et al., 2016b) to represent text 248

as a sparse vector, where the order of words in a 249

document is not considered. The number of occur- 250

rences of a word or a binary value indicating that 251

the word is present in the document is stored. 252

5.3 Word Embeddings 253

For language processing tasks, continuous word 254

representations such as word embeddings trained 255

on large unlabelled databases facilitate effective 256

representation learning (Bojanowski et al., 2017; 257

Joulin et al., 2016a). Here, we use fastText (Bo- 258

janowski et al., 2017) to learn word embeddings, 259

as novel words not present during training can 260

also be represented using fastText-based embed- 261

dings. This can be beneficial for a low-resource 262

setting. FastText supports two word embeddings 263

models: continuous bag-of-words (CBOW) and 264

Skip-grams (Mikolov et al., 2013). The CBOW 265

predicts the specific word from the source context. 266

Skip-gram predicts the source context from the 267

specific word. The embeddings in this research 268

are trained to the specifications of Wikipedia and 269

common crawl fastText models (Grave et al., 2018) 270

(referred to as E300) for both CBOW and Skip- 271
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Data # Sentences # Words Text Labels Task
Hansard data (Hansard) 2,021,261 36,757,230 formal word-level & sentence level language labels LD, CS

MLT corpus (Trye et al., 2019) 2,500 50,000 informal tweet level labels: relevance/irrelevance LD

RMT corpus (Trye et al., 2022) 79,018 1,000,000 informal Māori words are identified and labelled LD

Table 2: Databases used for experimental evaluations. LD: Language Detection, CS: Code-Switch Detection.

Embeddings Model Data Size
Monolingual Embeddings
E300 (Grave et al., 2018) Downloaded 7GB
Māori-300/300SG D1 - D4a 3GB

Bilingual Embeddings
Model-Māori-Eng-300/300SG D1 - D6 3GB

Table 3: Outline of fastText pre-trained 300 dimensional
embeddings. The MEW database (Table 1) was used for
training. ‘SG’: Skipgram model, otherwise it is CBOW.

gram1. E300 uses the CBOW method, character272

n-grams of length 5, window of size 5, 10 negative273

samples per positive sample with 300 dimensions.274

The learning rate is 0.05. Table 3 provides details275

of our bilingual embeddings, which are available to276

on request, including E300 details for comparison.277

5.4 Baseline Classifiers278

We use multinomial naive Bayes (John and Lang-279

ley, 1995) and logistic regression (LR) (Cox, 1958)280

to classify text features represented by BOW and281

static word embeddings. LR is a statistical model282

used to analyse databases where independent vari-283

ables determine an outcome. Naive Bayes (John284

and Langley, 1995) is an easy to build supervised285

learning algorithm, which applies Bayes’ theorem286

with the “naive” assumption of independence.287

5.5 Convolutional Neural Network (CNN)288

CNN for text (Kim, 2014) combines one-289

dimensional convolutions with a max-over-time290

pooling layer and a fully connected layer. If xi:i+j291

is a concatenation of words from a sentence, each292

word, xi, xi+1, ... is mapped to its k-dimensional293

embeddings using word embeddings. A new fea-294

ture is produced using convolution. Max-over-time295

pooling is applied over the feature map to capture296

the most important feature value. The final predic-297

tion is made by computing a weighted combination298

of the pooled values and applying Softmax func-299

tion.300

5.6 Recurrent Neural Networks (RNN)301

RNNs (Rumelhart et al., 1986) are designed to302
handle sequential data, such as text, where the303

data contains complex temporal dependencies and304

1Embeddings trained on a 4 core Intel i7-6700K CPU @ 4.00GHz with
64GB of RAM. Average time: <30 minutes.

hidden information. Long Short Term Memory 305

networks (LSTM) (Hochreiter and Schmidhuber, 306

1997) are modified RNNs designed to overcome 307

the issue of vanishing gradient with RNNs. LSTM 308

consists of a gating mechanism, input gate, forget 309

gate, and output gate, ensuring a constant error flow 310

and avoiding long-term dependency problems. The 311

memory in LSTM is stored in an internal state, and 312

the three gates play a vital role in deciding which in- 313

formation be included, added or removed from the 314

memory. Over time, the memory cells learn which 315

information is essential based on the weights. Bidi- 316

rectional RNNs are widely used extensions where 317

the input sequence is fed from beginning to end 318

and from end to beginning. For BiLSTM (Grave 319

et al., 2018), given there are two LSTM layers, the 320

hidden layer output is split into two - for forward 321

and backwards passes over the input. 322

5.7 Transformers 323

BERT (Devlin et al., 2019) is one of the early 324

transformer models that apply bidirectional train- 325

ing of encoders (Vaswani et al., 2017) to lan- 326

guage modelling. The 12-layer BERT-base model 327

with a hidden size of 768, 12 self-attention heads, 328

110M parameter neural network architecture was 329

pre-trained from scratch on BookCorpus and En- 330

glish Wikipedia. The mBERT-base (Devlin et al., 331

2019) model uses the same pre-training objective 332

as BERT-base and is pre-trained with Wikipedia 333

text of 104 languages with most articles. In this 334

research, we use BERT and mBERT to refer to 335

BERT-base and mBERT-base. 336

6 Experimental Setup 337

We experiment with various language models and 338

classifiers for two main tasks: language detection 339

(LD) and code-switch detection (CS). Our ultimate 340

goal is to find a combination of language modelling 341

and NLP techniques to improve the overall accu- 342

racy of LD and CS tasks. We use three databases 343

to evaluate these tasks with details provided in Ta- 344

ble 2. We use the Hansard database sentences as 345

the primary data for training and testing. All three 346

datasets were pre-processed by lower-casing and 347

using regular expressions to remove punctuation us- 348
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Figure 1: Code-switch detection using neural networks. Example shows ‘English’ words {Everyone, who, spoke, at,
those, meetings, did, so, with} are detected as ‘English’ and ‘aroha’ detected as ‘Māori’.

ing Python 3.9 library with Pandas data frame. All349

experimental results are obtained from a random350

seeds training-testing scheme; 70% of the shuffled351

data is used for training, with 10% for validation352

and 20% for testing, and averaged over three runs.353

The variation of these three independent runs is354

within a range of ±0.015.355

To represent text we use fastText to pre-train em-356

beddings (see Table 3) and BOW. An overview of357

code-switch detection using trained models such as358

BiLSTM and CNN is presented in Figure 1. This359

diagram is an example to demonstrate the system360

we used for end-to-end code-switch detection using361

neural networks. Step 1 includes training and eval-362

uating a neural network. We use the training set363

of the Hansard database to train the model and use364

validation loss as the stopping condition to avoid365

over-fitting. In step 2, we load the trained model366

and detect languages at the word level on testing367

data. Once the language detection is done, the368

points in the sentence where the language labels369

switch from Māori to English or from English to370

Māori are marked as code-switch points.371

Neural network models presented in this re-372

search are implemented using Keras/Tensorflow.373

Adam (Kingma and Ba, 2015), an adaptive learning374

rate optimisation algorithm, is used as the optimiser375

for neural networks. Softmax activation function376

is used in the output layer of the network. We use377

a combination of dropout (Srivastava et al., 2014),378

with a rate of 0.5, and early stopping (Zhang et al.,379

2017) to avoid over-fitting. We use a maximum 380

length of 250 tokens for BiLSTM and CNN, and 381

padding for sentences with less than the maximum 382

length. The embeddings layer is with a dimension 383

of 300. The hidden units of BiLSTM are 128, and 384

the hidden units of one-dimensional convolutions 385

are 128. For both CNN and BiLSTM, categorical 386

cross-entropy is used as the loss function. 387

We also perform transfer learning of pre-trained 388

transformers, BERT and mBERT on the down 389

streaming task of language detection. We use batch 390

size of 16, maximum sequence length of 256 and 391

learning rate of 1e-5. For both BERT and mBERT, 392

the loss and accuracy were reported at each epoch. 393

For both BERT and mBERT, the model converges 394

fast, needing an average of 5 epochs per run. 395

All evaluations were done using Sklearn metrics 396

(Scikit-Learn). Evaluations using baseline clas- 397

sifiers such as multilingual naive Bayes and LR 398

with BOW and static features from embeddings 399

require CPU only2 machines and are very quick to 400

train and evaluate. Neural networks require GPU 401

devices3 for efficient training and testing. The av- 402

erage training time for CNN was 150-180 minutes, 403

and BiLSTM was 300-360 minutes, while BERT 404

and mBERT required 240 minutes per epoch being 405

trained for an average of 5 epochs. The testing time 406

for trained deep learning models is rapid, requiring 407

a few minutes. The code used in this research is 408

24 core Intel i7-6700K CPU @ 4.00GHz with 64GB of RAM.
312 core Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz, GV100GL
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made available4.409

We present overall macro-F1 score and weighted-410

F1 score to provide different insights (Toftrup et al.,411

2021; Khanuja et al., 2020). We also provide label412

F1-score where needed. Macro-F1 provides aver-413

age per-language results and is equally important414

to all languages. The weighted-F1 score considers415

the popularity of the languages in the data set.416

The Nemenyi posthoc test (95% confidence417

level) identifies statistical differences between418

learning methods. Critical Difference (CD) plots419

show the average ranking of individual F1 scores420

obtained using various language models. The lower421

the rank, the better the model is. The difference in422

average ranking is statistically significant if there423

is no bold line connecting the two settings.424

7 Experimental Results425

The results are presented for the language detec-426

tion (LD) tasks and code-switch detection (CS)427

tasks. The language detection task is a crucial first428

step for detecting code-switching (Rijhwani et al.,429

2017; Barman et al., 2014). First, we present the430

results of the language detection tasks using the431

three databases (Table 2), followed by the results432

of the code switch task using the Hansard database.433

As indicated in the experimental setup, all exper-434

imental results are obtained from a random seeds435

training-testing scheme and averaged over three436

runs. The variation of these three independent runs437

is within a range of ±0.015.438

7.1 Task 1: Language Detection439

7.1.1 Cloud-based Online Tools440

To analyse the effectiveness of using Google Trans-441

late and Azure services to detect Māori (and En-442

glish), we experimented with the test set of the443

Hansard database. Google Translate detected444

99.7% of the words, and Azure detected 97.8%445

of the words correctly. Figure 2 presents pie charts446

of the resulting language detection for ‘Māori’447

word (i.e. the gold-standard labels for the words448

is ‘Māori’). For Māori words, Google Translate449

detected with an accuracy of 65.2%, and Azure de-450

tected with an accuracy of 52%. Although the accu-451

racy of Google Translate was better than Azure, the452

error rate of both services are too high for Māori453

language detection. In addition, apart from wrongly454

4Pre-trained bilingual and monolingual embeddings are available for re-
searchers on request. Experimental details, model implementations, and trained
language models are available for researchers, all bound by the Kaitiakitanga
license: https://github.com/MaoriEnglish-Codeswitch/
MaoriEnglish-CodeSwitch-Detection

Model Data Results
Multi-class Macro-F1

Multinomial NB (BOW) Hansard 0.887
LR (BOW) Hansard 0.913

LR (Eng300) Hansard 0.831
LR (Māori-Eng-300) Hansard 0.853
LR (Māori-Eng-300SG) Hansard 0.859

Binary F1-score

LR (Eng300) MLT corpus 0.833
LR (Māori-300SG) MLT corpus 0.812
LR (Māori-Eng-300) MLT corpus 0.849
LR (Māori-Eng-300SG) MLT corpus 0.846

Table 4: Macro-F1 scores and F1-scores for the valida-
tion set of Hansard database and labelled MLT corpus
respectively, where BOW or sentence level features are
used to represent text. Bold: best results for each task.

detecting Māori words as English, around 14-21% 455

of the words were classified as various other lan- 456

guages by both cloud services. 457

7.1.2 Baseline Classifiers 458

LD task using the Hansard database is a multi-class 459

classification problem at the sentence level (classes: 460

Māori, English or Code-Switched sentence). The 461

LD task using MLT corpus is a binary classification 462

problem of relevant/irrelevant tweets based on the 463

usage of the Māori loanwords. Table 4 presents 464

overall macro-F1 and F1 scores for the LD task 465

using Hansard database and MLT corpus, respec- 466

tively, where BOW and static word embeddings 467

at the sentence level (or tweet level) are used to 468

represent the text. We obtain embeddings for each 469

sentence by computing the vector sum of the em- 470

beddings for each word in the sentence. This vec- 471

tor sum is then normalised to have length one, to 472

ensure that sentences of different lengths have rep- 473

resentations of similar magnitudes. The bilingual 474

embeddings perform better than monolingual em- 475

beddings for both Hansard and MLT corpus. How- 476

ever, BOW outperforms static embeddings feature 477

representation for LR. 478

7.1.3 Neural Networks 479

After evaluating the performance of baseline classi- 480

fiers, we further proceed with LD task using neural 481

networks. As the size of the labelled MLT corpus 482

is small, it is insufficient for training and evaluat- 483

ing neural networks. Table 5 presents macro-F1 484

and weighted-F1 scores obtained using the valida- 485

tion set of the Hansard database for performance 486

comparison across language models. The macro- 487

F1 score is an unweighted average score of all 488

the classes. In comparison, weighted-F1 scores 489
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Figure 2: Pie Chart of the languages detected by Google (left) and Azure (right) at word level for the test set of the
Hansard Database. The gold-standard label for all the words used here is ‘Māori’.

Model Macro-F1 Weighted-F1
Monolingual Embeddings
CNN (E300) 0.946 0.985
CNN (Māori-300) 0.905 0.986
CNN (Māori-300SG) 0.914 0.990
BiLSTM (E300) 0.943 0.996
BiLSTM (Māori-300) 0.926 0.995
BiLSTM (Māori-300SG) 0.940 0.995

Bilingual Embeddings
CNN (Māori-Eng-300) 0.963 0.995
CNN (Māori-Eng-300SG) 0.969 0.996
BiLSTM (Māori-Eng-300) 0.984 0.997
BiLSTM (Māori-Eng-300SG) 0.989 0.997

Contextual Embeddings
BERT-base 0.931 0.988
mBERT-base 0.946 0.991

Table 5: Comparison of results for the Hansard database
(validation set) with various models. Bold: best results.

Figure 3: Critical difference plots identifying statistical
differences between models presented in Tables 4 & 5.

are higher than macro-F1 scores across the mod-490

els. The imbalanced distribution in the data, where491

labels are predominantly English, is reflected in492

the scores where the minority classes penalise the493

macro-F1 scores. Bilingual embeddings (Māori-494

Eng-300) consistently perform better than mono-495

lingual embeddings. BiLSTM with Māori-Eng-496

300SG embeddings are the best across all mod-497

els, including BERT-base and mBERT-base. Skip-498

gram models are better than CBOW. In compar-499

ison, English-only embeddings E300 outperform500

Māori-only monolingual embeddings. One possi-501

ble explanation for this is the lack of training data502

for Māori-only embeddings compared to E300.503

Model Training Testing Accuracy
data data (Māori)

Google Wikipedia RMT 68.2%
BiLSTM (E300) Hansard RMT 56.6%
BiLSTM (Māori-Eng-300) Hansard RMT 85.4%
BiLSTM (Māori-Eng-300SG) Hansard RMT 85.6%

Table 6: Accuracy of Māori words detection in RMT
corpus using Hansard-based trained models (Table 5).

Figure 3 presents critical difference plots across 504

the models presented in Table 5 and BOW repre- 505

sentation presented in Table 4. BiLSTM (Māori- 506

Eng-300SG) has the lowest rank, and multinomial 507

naive Bayes (BOW) has the highest rank with no 508

bold line connecting the two, indicating the dif- 509

ference in average ranking is statistically signifi- 510

cant. Bold lines are connecting BiLSTM (Māori- 511

Eng-300SG) with mBERT and BERT-base in the 512

CD-plot, indicating that the difference in average 513

ranking is not statistically significant. A 4-6 % im- 514

provement was observed between BERT/mBERT 515

and BiLSTM (Māori-Eng-300SG). 516

To further evaluate the language models, we used 517

the models trained with the Hansard data to detect 518

Māori words in RMT corpus. Table 6 presents the 519

accuracy of the detection. We also present the ac- 520

curacy of Māori language detection using Google 521

Translate. Evidently, BiLSTM with Māori-Eng- 522

300SG embeddings model trained on the training 523

set of the Hansard database has the best accuracy. 524

As observed with other databases, the accuracy of 525

the bilingual embeddings is higher than the mono- 526

lingual embeddings. However, the accuracy of BiL- 527

STM with E300 embeddings is considerably lower 528

than other models, including Google. One possible 529

reason is the lack of vocabulary in E300 for the 530

informal language used in RMT data (Tweets). 531

7.1.4 In Summary 532

The results suggest that the bilingual embeddings 533

perform better than monolingual embeddings for 534

7



Model CS: Accuracy
CNN (E300) 35%
BiLSTM (E300) 83%
BiLSTM (Māori-Eng-300) 67%
BiLSTM (Māori-Eng-300SG) 87%

Table 7: Accuracy of code-switch detection in the
Hansard data (bilingual sentences of the test set) us-
ing the trained models, as shown in Figure 1.

Figure 4: F1-scores for Māori and English calculated at
the word level for the Hansard database.

the LD task. This finding was verified across the535

Hansard database (Tables 4, 5) and the MLT corpus536

(Table 4). Further evidence is provided in Māori537

words detection using RMT corpus (Table 6). We538

also observed that the bilingual embeddings out-539

performed the pre-trained contextual embeddings.540

One possible reason for this finding is the lack541

of vocabulary in BERT alike models as we did542

not perform any further training using Māori data.543

As emphasised before, the Māori data availability544

and access is the biggest limitation to this research.545

Among the experimented models for LD task, BiL-546

STM with Māori-Eng-300SG performed the best.547

7.2 Task 2: Code-Switch Detection548

For evaluation of the code-switch detection be-549

tween Māori-English pair, we require word-level la-550

bels and hence, only use the test set of the Hansard551

database. We use selected trained models presented552

in Section 7.1, and identify the code-switch point553

(see Figure 1). Figure 4 presents word-level F1554

scores of Māori and English for CS task. For555

English words, all systems perform equally well.556

However, for Māori, cloud-based systems perform557

poorly, and BiLSTM with bilingual embeddings558

shows a substantial improvement in F1 score, as559

observed before. Furthermore, Table 7 presents560

the accuracy of detecting the code-switch points561

of the test set of the Hansard database. Among562

the reported results, CNN with E300 performed563

poorly, and BiLSTM with Māori-Eng-300SG out-564

performed the other models.565

8 Discussions and Conclusions 566

This research is the first attempt to use advances 567

in NLP in two tasks - low-resourced Māori lan- 568

guage detection and Māori-English code-switch 569

detection. Our experiments show that the accuracy 570

of existing cloud-based systems to detect Māori 571

language is very low. We collect data in collabora- 572

tion with Māori researchers for training and eval- 573

uations. Experiments obtained across tasks using 574

three databases show that our bilingual embeddings 575

outperformed English-only embeddings trained on 576

large databases. Among the models tested in this re- 577

search, BiLSTM with bilingual embeddings trained 578

using the Skip-gram model is the best for both tasks. 579

We provide evidence to show BERT-base used on 580

the down-streaming task of language detection – 581

where Māori is under-represented or unseen by the 582

model vocabulary– is not always the best solution 583

(as also observed by (Wu and Dredze, 2020; Wang 584

et al., 2020)). For most low-resourced languages, 585

including Māori, the Wikipedia data is significantly 586

smaller than English, resulting in a fewer vocabu- 587

lary. Due to lack of resources, continuous training 588

or training from scratch of models such as BERT- 589

base is not possible. For future work, it is a possi- 590

bility to use ideas such as Extend M-BERT (Wang 591

et al., 2020) and explore the possibility of using 592

more efficient pre-training techniques to improve 593

the accuracy of BERT like models for language 594

detection of low-resource languages such as Māori. 595

In addition, hybrid models using handcrafted rules 596

based on the phonotactic differences between the 597

languages and deep learning-based methods are 598

a pathway for future work. It is vital to point out 599

that the availability of digitised Māori and bilingual 600

data is limited, which restricts the ability to train 601

large language models. In addition, considering 602

this is the first deep learning-based research in this 603

area, comparison with published work is not possi- 604

ble. We overcome these limitations by respecting 605

the available data and data sovereignty for this re- 606

search, and we use the available cloud services as 607

the baseline existing systems for comparisons. The 608

study reported here is a much-wanted contribution 609

to Māori language technology development. Word 610

embeddings developed in this research are avail- 611

able to other researchers on request, bound by the 612

Kaitiakitanga license. 613
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