

FPTQUANT: FUNCTION-PRESERVING TRANSFORMS FOR LLM QUANTIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs) require substantial compute, and thus energy, at
 012 inference time. While quantizing weights and activations is effective at improving
 013 efficiency, naive quantization of LLMs can significantly degrade performance due
 014 to large magnitude outliers. This paper describes FPTQuant, which introduces
 015 three novel, lightweight, and expressive function-preserving transforms (FPTs) to
 016 facilitate quantization of transformers: (1) a mergeable pre-RoPE transform for
 017 queries and keys, (2) a mergeable transform for values, and (3) a cheap, dynamic
 018 per-token scaling transform. By leveraging the equivariances and independencies
 019 inherent to canonical transformer operation, we designed these FPTs to maintain
 020 the model’s function while shaping the intermediate activation distributions to
 021 be more quantization friendly. FPTQuant requires no custom kernels and adds
 022 virtually no overhead during inference. The FPTs are trained both locally to reduce
 023 outliers, and end-to-end such that the outputs of the quantized and full-precision
 024 models match. FPTQuant enables static INT4 quantization with minimal overhead
 025 and shows SOTA speed-up of up to $3.9 \times$ over FP. Empirically, FPTQuant has an
 026 excellent accuracy-speed trade-off—it is performing on par or exceeding most prior
 027 work and only shows slightly lower accuracy compared to a method that is up to
 028 29% slower.

1 INTRODUCTION

031 **Motivation.** Inference on large language models (LLMs) incurs a significant compute toll for every
 032 token generated, which ultimately costs money and consumes environmental resources. These costs
 033 limit the proliferation of LLM use cases, especially on resource constrained edge devices. They are
 034 also a significant barrier to furthering AI research and democratization. Therefore, improving LLM
 035 inference efficiency is a critical goal. Of all the numerous LLM efficiency techniques proposed to
 036 date, quantization is by far the most successful; significantly reducing the inference cost by reducing
 037 the data bit width across the model.

039 **Transforms for aggressive quantization.** Outliers in transformer weights, activations, and key-
 040 value data are a key challenge for quantization (Bondarenko et al., 2021; Kovaleva et al., 2021;
 041 Dettmers et al., 2022; Bondarenko et al., 2023; Sun et al., 2024). The fundamental issue is that
 042 quantizing outliers to a regular grid leads to an unfortunate range-precision trade-off. We can either
 043 (1) capture the outliers by increasing the range, but lose valuable precision at the highest distribution
 044 density around zero, or (2) retain precision, but clip the outliers. Both options unfortunately impact
 045 model performance. Prior work has explored operations, such as scalings or rotations, that can
 046 be added or applied to pretrained networks to smooth outliers without altering the overall model
 047 behaviour *in the absence of quantization*. For example, Xiao et al. (2024) take a single linear layer, \mathbf{W} ,
 048 with input, \mathbf{X} , and apply a per-channel scaling $\mathbf{T} = \text{diag}(\mathbf{s})$ to \mathbf{X} before quantizing, to reduce outliers,
 049 applying the inverse scales to the linear weights. Without quantizers, $(\mathbf{XT})(\mathbf{T}^{-1}\mathbf{W}) = \mathbf{XW}$, but
 050 with quantizers Q , $Q(\mathbf{XT})Q(\mathbf{T}^{-1}\mathbf{W}) \neq Q(\mathbf{X})Q(\mathbf{W})$. We refer to such operations as *function-
 051 preserving transforms (FPTs)*, for which we desire the following properties:

052 **P1 Function-preservation.** Without any quantization, inserting transform pairs should not
 053 change the output (up to computational errors). In practice, this means each FPT typically
 054 has an inverse operation.

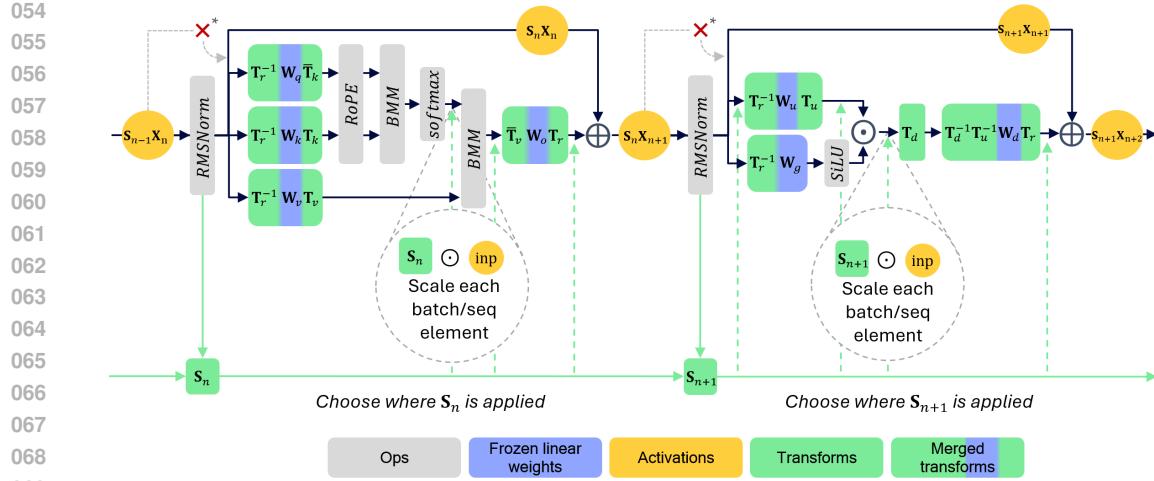


Figure 1: **FPTQuant**. FPTQuant consists of 6 transform types. $(\mathbf{T}_k, \bar{\mathbf{T}}_k)$ is a scale-and-rotate transform merged into the query and key weights; $(\mathbf{T}_v, \bar{\mathbf{T}}_v)$ consists of invertible matrices per head merged into value and output weights; transforms $\{\mathbf{S}_n\}_{n=1}^N$ ($N = 2 \times$ number of transformer blocks for typical LLMs) are per-token scalers applied to the residual and within the attention and MLP blocks. The scales \mathbf{S}_n are computed by existing RMSNorms, and in practice means now the RMSNorm is also applied to the residual (versus the original network, see \times^*). We also use $(\mathbf{T}_u, \mathbf{T}_u^{-1})$ a per-channel scaler merged into up and down projection weights similar to (Hu et al., 2025), partly online Hadamard transform \mathbf{T}_d (Ashkboos et al., 2024a) and mergeable rotation matrix \mathbf{T}_r (Liu et al., 2024a).

P2 Expressivity. Transforms with a continuous parametrization and more degrees of freedom are desirable. Continuity means transforms can be optimized directly, e.g. using gradient descent. Extra degrees of freedom offer more flexibility for reducing the quantization error.

P3 Compute overhead. Depending on the FPT type and location, it may be possible to merge (or ‘fuse’) it into an existing operation in a pretrained model. Non-mergeable FPTs represent a new op in the computational graph, and incur additional overhead, as well as requiring software and/or hardware support.

Contributions. Our contributions are threefold:

1. We introduce FPTQuant: Function-Preserving Transforms for Quantization (Figure 1). FPTQuant includes three novel FPTs that are designed to be both expressive and cheap.
2. We show FPTQuant enables static INT4 quantization with minimal overhead. This provides a SOTA speed-up of up to $3.9 \times$ over FP. FPTQuant requires no kernel-level changes.
3. We show FPTQuant has an excellent accuracy-speed trade-off—it is performing on par or exceeding most prior work and only shows slightly lower accuracy compared to a method that is up to 29% slower.

2 RELATED WORK

Quantization Neural network quantization has been demonstrated as an effective technique for reducing the model size and improving computational efficiency (Krishnamoorthi, 2018; Nagel et al., 2021). Quantization methods can generally be categorized into post-training quantization (PTQ) and quantization-aware training (QAT) families. PTQ algorithms take a pretrained high precision network and convert it directly into a fixed-point network without the need for the original training pipeline (Banner et al., 2018; Cai et al., 2020; Choukroun et al., 2019; Hubara et al., 2020; Meller et al., 2019; Zhao et al., 2019; Nagel et al., 2019; 2020; Li et al., 2021). These methods are data-free or only require a small calibration dataset, and are generally fast and easy to use. Quantization-aware training (QAT) methods (Gupta et al., 2015; Jacob et al., 2018; Esser et al., 2020; Bhalgat et al., 2020; Nagel et al., 2022) simulate quantization during training, allowing the model to find more optimal solutions compared to PTQ. However, they generally require longer training times, increased memory usage, need for labeled data and hyperparameter tuning.

108 **LLM quantization** The excessive training cost and memory usage of traditional QAT methods
 109 make them less suitable for quantizing modern LLMs. A few works focus on developing efficient
 110 variants of QAT for LLMs include (Liu et al., 2024b; Du et al., 2024; Chen et al., 2024; Dettmers
 111 et al., 2024; Xu et al., 2023; Bondarenko et al., 2024). Notably, ParetoQ (Liu et al., 2025) is the only
 112 work we are aware of that scales QAT to billions of tokens.

113 Post-training quantization of LLMs is a challenging task due to presence of strong numerical outliers
 114 in weights and activations (Bondarenko et al., 2021; Kovaleva et al., 2021; Dettmers et al., 2022;
 115 Bondarenko et al., 2023; Sun et al., 2024). Various strategies have been explored at tackling
 116 these difficulties. These include employing second-order information to mitigate the quantization
 117 error (Frantar et al., 2022); emphasizing the importance of so-called “salient” weights that correspond
 118 to high-magnitude activations (Dettmers et al., 2023; Lin et al., 2023; Lee et al., 2024); separating
 119 outliers and use mixed-precision (Kim et al., 2023; Huang et al., 2024; Egiazarian et al., 2024). Some
 120 of the other LLM PTQ methods include (Jeon et al., 2023; Lee et al., 2023; Luo et al., 2023; Chee
 121 et al., 2024). Note that many of these PTQ techniques focus primarily on weight quantization and
 122 memory size reduction.

123 **Function-preserving transformations** Nagel et al. (2019) explored the idea of FPTs for CNN
 124 quantization, observing that ReLU and per-channel scaling commute, which allows scaling of weights
 125 across different layers. In the context of LLMs, Xiao et al. (2024) observe that activation quantization
 126 is harder than weight quantization due to more outliers. They propose migrating problematic outliers
 127 from the activations to the weights, using an online per-channel scaling factor for activations going
 128 into linear layers. Wei et al. (2023) add a shift to the scaling, and use a grid search to find a scaler that
 129 minimizes the mean-squared error per linear layer. Shao et al. (2024) extend this by including scaling
 130 vectors for queries and keys, and using gradient descent to minimize the error per transformer block.

131 Chee et al. (2024) were the first to consider transforms that mix channels, albeit only for weight
 132 quantization, focusing on vector quantization (Tseng et al., 2024) in later work. QuaRot (Ashkboos
 133 et al., 2024a) shows randomized Hadamard transforms (RHTs) are effective at reducing outliers.
 134 SpinQuant (Liu et al., 2024a) shows that different RHTs perform very differently, yet they cannot be
 135 optimized. They extend QuaRot by adding two unconstrained rotation matrices, which are trained
 136 to minimize the standard causal LM loss. Critically, these rotation matrices are placed such that
 137 they can be merged with weights post-training, negating inference cost. Lin et al. (2024) use online
 138 rotations consisting of fixed channel permutations and block diagonal rotations. OSTQuant (Hu
 139 et al., 2025) use combinations of scaling vectors and rotations. Recently, FlatQuant (Sun et al., 2025)
 140 introduced matrix multiplications with a Kronecker product of two smaller matrices. This provides a
 141 transform that is both optimizable, and theoretically cheap to compute. In Appendix A we summarize
 142 the associated costs for various transforms and an in-depth comparison of transforms in prior work.

144 3 METHOD

146 3.1 TRANSFORMS

148 **We argue equivariances and independencies in pretrained models are key to developing better**
 149 **FPTs, and should be explicitly exploited.** Where a candidate FPT is equivariant w.r.t. pretrained
 150 model operations, we have the freedom to choose whether to apply it before, or after said operation.
 151 This can also influence whether the operation is mergeable. For example, Ashkboos et al. (2024b)
 152 used the equivariance $\text{RMSNorm}(\mathbf{XM}) = \text{RMSNorm}(\mathbf{X})\mathbf{M}$ for orthogonal \mathbf{M} , to apply a rotation
 153 matrix to the residual of LLMs, merging the transform and its inverse into the linear layers of each
 154 transformer block. This is a powerful transform, yet it incurs no compute overhead. Understanding
 155 equivariances and independencies in networks is thus essential for finding optimal trade-offs between
 156 expressivity (P2) and inference cost P3. In this section, we will discuss three equivariances, and how
 157 these offer three novel transforms.

158 3.1.1 PRE-ROPE TRANSFORM (MERGEABLE)

160 Reducing the bit width of KV cache and queries can significantly reduce memory footprint and
 161 computational cost of attention, especially with longer context windows. Unfortunately, we cannot
 162 naively merge transforms into the query and key projection weights, because modern LLMs use

162 RoPE positional encodings (Su et al., 2024) (see Appendix C). We introduce a pair of pre-RoPE
 163 transforms $(\mathbf{T}_k, \bar{\mathbf{T}}_k)$, where \mathbf{T}_k is applied to keys and $\bar{\mathbf{T}}_k$ can be interpreted as an inverse of \mathbf{T}_k ,
 164 applied to the queries. The transforms consist of scaled 2×2 rotation matrices, and applying these
 165 to the query and key weights Pre-RoPE, the attention output remains unchanged. For simplicity we
 166 first assume a single attention head. Denoting $i, j \in \mathbb{N}$ as the token indices and RoPE applied to
 167 queries and keys as function $f : \mathbb{R}^d \times \mathbb{N} \rightarrow \mathbb{R}^d$ with $f(\mathbf{x}, i) = \mathbf{x}\mathbf{R}_{\Theta, i}^{d_{\text{head}}}$ (see details Appendix C),
 168 the following holds:

169 **Theorem 3.1.** *Let $N = d_{\text{head}}/2$, and $\mathbf{R}_n \in O(2)$ and $s_n \in \mathbb{R}$, for $n = 1, \dots, N$. Define
 170 $\mathbf{T}_k = \text{diag}(\mathbf{s}) \text{diag}(\{\mathbf{R}_n\}_{n=1}^N)$ and $\bar{\mathbf{T}}_k = \text{diag}(\mathbf{s}^{-1}) \text{diag}(\{\mathbf{R}_n\}_{n=1}^N)$. Given query and key weights
 171 $(\mathbf{W}_q, \mathbf{W}_k) \in \mathbb{R}^{d_{\text{in}} \times d_{\text{head}}}$, define $\tilde{\mathbf{W}}_q = \mathbf{W}_q \mathbf{T}_k$ and $\tilde{\mathbf{W}}_k = \mathbf{W}_k \bar{\mathbf{T}}_k$. Now it holds:*

$$172 \langle f(\mathbf{x}_i \tilde{\mathbf{W}}_q, i), f(\mathbf{x}_j \tilde{\mathbf{W}}_k, j) \rangle = \langle f(\mathbf{x}_i \mathbf{W}_q, i), f(\mathbf{x}_j \mathbf{W}_k, j) \rangle$$

174 See Appendix C for the proof. In practice, for multi-head attention and grouped-query attention, we
 175 can choose an independent transform for each key head. Assuming there are H key heads and mH
 176 query heads for some $m, H \in \mathbb{N}$ ($m = 1$ for standard multihead attention), this means we have H
 177 independent transforms as above. For the more typical grouped query-attention ($m > 1$), each key
 178 head is attended to by multiple query heads, hence we need to repeat the corresponding \mathbf{T}_k transform
 179 across these heads. Generally, we can thus write:

$$180 \mathbf{s}^{(h)} \in \mathbb{R}^d, \mathbf{R}_n^{(h)} \in O(2), \quad \forall h, n \quad (1)$$

$$182 \mathbf{T}_k^{(h)} = \text{diag}(\mathbf{s}^{(h)}) \text{diag}(\{\mathbf{R}_n^{(h)}\}_{n=1}^N), \quad (2)$$

$$184 \mathbf{T}_k = \text{diag}(\{\mathbf{T}_k^{(h)}\}_{h=1}^H) \quad (3)$$

$$185 \bar{\mathbf{T}}_k = \text{diag}(\underbrace{\bar{\mathbf{T}}_k^{(1)}, \dots, \bar{\mathbf{T}}_k^{(1)}, \bar{\mathbf{T}}_k^{(2)}, \dots, \bar{\mathbf{T}}_k^{(H)}}_{m \times}), \quad (4)$$

3.1.2 MULTIHEAD VALUE TRANSFORM (MERGEABLE)

189 Note that the attention probabilities \mathbf{A} are of shape (B, mH, l^1, l^2) and the values are of size
 190 (B, mH, l^2, d) . The batched matmul (BMM) multiplies these per sample, head, and token, and sum
 191 this over l^2 . Note d plays no role in this BMM, consequently we are free to apply any invertible
 192 transform to the d axis—in particular, for a single head, it holds that for any invertible matrix
 193 \mathbf{T} , the attention block output does not change upon merging \mathbf{T} as follows: $(\mathbf{A}(\mathbf{X}\mathbf{W}_v))\mathbf{W}_o =$
 194 $(\mathbf{A}(\mathbf{X}(\mathbf{W}_v\mathbf{T})))(\mathbf{T}^{-1}\mathbf{W}_o)$. Note that the different heads in the values are independent, hence we can
 195 apply a different transform to each attention head. Newer models use grouped-query attention, which
 196 requires a bit of bookkeeping: we need to repeat the inverses per key head, across the corresponding
 197 softmax heads. Assuming there are again H value heads (repeated to mH heads) and mH query
 198 heads, we can choose any invertible $\mathbf{T}_v^{(h)} \in \mathbb{R}^{d \times d}$, and set:

$$199 \mathbf{T}_v = \text{diag}(\{\mathbf{T}_v^{(h)}\}_{h=1}^H), \quad (5)$$

$$201 \bar{\mathbf{T}}_v = \text{diag}(\underbrace{(\mathbf{T}_v^{(1)})^{-1}, \dots, (\mathbf{T}_v^{(1)})^{-1}, (\mathbf{T}_v^{(2)})^{-1}, \dots, (\mathbf{T}_v^{(H)})^{-1}}_{m \times}), \quad (6)$$

203 which are merged into respectively \mathbf{W}_v and \mathbf{W}_o weights.

3.1.3 PSEUDODYNAMIC RESIDUAL SCALING

207 In modern transformer blocks, the residual remains unnormalized—i.e. the LayerNorm or RMSNorm
 208 that we apply to the input of the attention and FFN blocks, is not applied to the residual. In practice
 209 this means each token of the residual can have a vastly different scale and is difficult to quantize.
 210 Even if we do not quantize the residual, this implies that changing the residual representations of
 211 tokens i and j may require vastly different scales of the output of the attention and FFN blocks if
 212 the norm of i 's residual different than that of j 's. This may for example explain why the output of
 213 the SwiGLU in the FFN (i.e. input of \mathbf{W}_d) has serious outliers, see (Bondarenko et al., 2023) and
 214 Appendix E, and that subsequent blocks can have similar outlier patterns, see Figure 2(a,b).

215 Quantization could thus be improved if only the residual was normalized. Fortunately, this can be
 achieved at virtually no cost, without changing the output of the pretrained network. Moreover, we

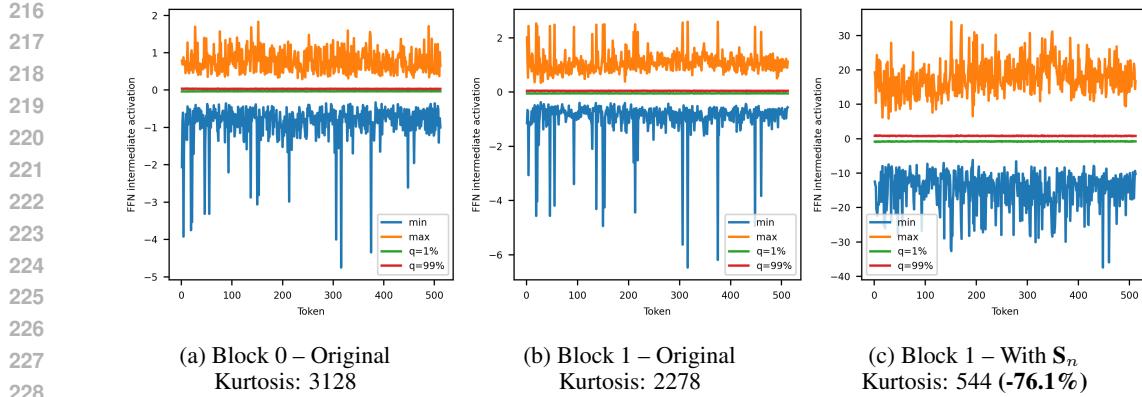


Figure 2: **Dynamic scaling reduces intra-block outliers.** We plot the intermediate FFN activations of Llama 3.2 3B-bit in the first two blocks (not visualizing the massive [BOS] outlier (Sun et al., 2024)). In the zeroth block, there are some serious tokens with outliers (a). These outliers are absorbed into the residual, and we observe the same tokens cause outliers one block later (b). By applying S_1 (scaling the FFN intermediate layer by the previous residual norm), we see that the outliers are significantly reduced (c).

can apply a similar scaler inside the transformer blocks; this can reduce outliers for intra-block outlier patterns (Figure 2)

Step 1: move RMSNorm. Let us index all the blocks in the transformer with $n = 1, \dots, N$, where we index the attention and MLP blocks separately (i.e. typically, N equals two times the number of LLM transformer blocks). Let \mathbf{X}_n denote the residual that bypasses a block, \mathbf{Y}_n the output of a block, and $\mathbf{Z}_n = \mathbf{X}_n + \mathbf{Y}_n$. Note, normally $\mathbf{X}_{n+1} = \mathbf{Z}_n$, and the transformer’s final output is \mathbf{Z}_N . We move the RMSNorm, such that it is applied to the residual too. Let us use $\tilde{\mathbf{X}}_n$ to denote the new residuals. Moving the RMSNorm implies that the residuals are now scaled by a matrix $\mathbf{S}_n = \mathbf{1} \oslash \|\mathbf{X}_n\|_R$ of shape (batch, sequence length), where \oslash denotes an element-wise division and $\|\cdot\|_R$ denotes the root-mean-square along the last dimension, $\|\cdot\|_R : \mathbf{x} \mapsto \frac{1}{\sqrt{d}} \|\mathbf{x}\|_2$. In other words, $\tilde{\mathbf{X}}_n = \mathbf{S}_n \odot \mathbf{X}_n$, with \odot denoting the element-wise multiplication along the dimensions of \mathbf{S}_n .

Step 2: rescale outputs feeding back into residuals. We do not want to change the network’s final output. To ensure this, we need to make sure that anything that feeds back into the residual is rescaled to the new normalized representation. We rescale the outputs \mathbf{Y}_n using the same scales, i.e. ensure:

$$\tilde{\mathbf{Y}}_n = \mathbf{S}_n \odot \mathbf{Y}_n, \quad (7)$$

which then gives $\tilde{\mathbf{Z}}_n = \tilde{\mathbf{X}}_n + \tilde{\mathbf{Y}}_n = \mathbf{S}_n \odot \mathbf{Z}_n$.

Note that (i) matrix multiplication, (ii) linear layers without bias¹, and (iii) BMM all commute with a scaler on the batch/sequence dimension. Consequently, we have a choice where we apply the scale, see Figure 1. Importantly, this means we can apply the rescaling far into the attention and MLP blocks, which we find reduces quantization error within these blocks.

Computing \mathbf{S}_n . Note that for $n > 1$, $\mathbf{S}_n = \mathbf{1} \oslash \|\mathbf{X}_n\|_R = \mathbf{1} \oslash \|\mathbf{Z}_{n-1}\|_R = \mathbf{1} \oslash \|\tilde{\mathbf{Z}}_{n-1} \oslash \mathbf{S}_{n-1}\|_R = \mathbf{S}_{n-1} \oslash \|\tilde{\mathbf{Z}}_{n-1}\|_R$. The right-hand side means we can compute \mathbf{S}_n based on $\tilde{\mathbf{Z}}_{n-1}$, instead of needing to rescale the residual first back to \mathbf{Z}_{n-1} explicitly. We get the recursive relationship:

$$\mathbf{S}_0 = \mathbf{1} \text{ and } \tilde{\mathbf{Z}}_0 = \mathbf{X}_1 \quad (8)$$

$$\mathbf{S}_n = \mathbf{S}_{n-1} \oslash \|\tilde{\mathbf{Z}}_{n-1}\|_R \quad n = 1, \dots, N \quad (9)$$

¹We have not found any modern LLMs that use bias for the out and down projection layers.

270 **Step 3: rescale transformer output (in practice not needed).** Note that $\tilde{\mathbf{Z}}_N = \mathbf{S}_n \odot \mathbf{Z}_N$. To
 271 ensure we get the same output as the original network, we should divide the very last output by \mathbf{S}_n .
 272 In practice we do not need to: the transformer is followed by the LM head, which starts with an
 273 RMSNorm and hence removes the norm automatically.
 274

275 **3.1.4 OTHER TRANSFORMS**

276 In addition to these new transforms, FPTQuant uses a rotation matrix \mathbf{T}_r for rotating the residuals,
 277 since this is completely mergeable and effective at reducing activation quantization error (Liu et al.,
 278 2024a). Additionally, the notoriously bad activation quantization error at the down projection input
 279 (see Appendix E and Table 3 in (Liu et al., 2024a)) warrants an online transform here; we use a
 280 Hadamard transform as in (Ashkboos et al., 2024a; Chee et al., 2024), because it is cheap (Table 6).
 281 We further use a per-channel scalar transform \mathbf{T}_u that we merge into \mathbf{W}_u and \mathbf{W}_d , similar to (Hu
 282 et al., 2025), which effectively rescales the channels before the Hadamard transform mixes them. An
 283 illustration of all our transforms applied to a typical transformer block is shown in Figure 1.

284 **3.2 OPTIMIZATION**

285 **3.2.1 LOCAL OPTIMIZATION**

286 To reduce the worst outliers, we optimize all transforms first locally and independently—this improves
 287 subsequent end-to-end training (Appendix F.2.1). We minimize the L_p norm of each transform’s
 288 merged weights and use gradient descent. For example, for the residual rotation we optimize:

$$289 \min_{\mathbf{T}_r} \sum_{i=1}^{\# \text{layers}} \left[\sum_{\mathbf{W} \in \{\mathbf{W}_q^i, \mathbf{W}_k^i, \mathbf{W}_v^i, \mathbf{W}_u^i, \mathbf{W}_g^i\}} \|\mathbf{T}_r^{-1} \mathbf{W}\|_p + \sum_{\mathbf{W} \in \{\mathbf{W}_o^i, \mathbf{W}_d^i, \mathbf{W}_g^i\}} \|\mathbf{W} \mathbf{T}_r\|_p \right], \quad (10)$$

290 whilst for the PreRoPE transforms \mathbf{T}_k^i of layer i , parameterized by Φ^i , we just minimize:

$$291 \min_{\Phi^i} \|\mathbf{W}_q^i \bar{\mathbf{T}}_k^i\|_p + \|\mathbf{W}_k^i \mathbf{T}_k^i\|_p.$$

292 Since \mathbf{T}_r affects all linear layers, we optimize it first (Eq 10). Locally optimized transforms are
 293 merged into the weights, after which the next transform is optimized and so forth. We set $p = 4$,
 294 following (Bondarenko et al., 2024), who showed L_4 is good for determining the quantization grid.
 295

301 **3.2.2 END-TO-END OPTIMIZATION**

302 We follow (Liu et al., 2024b) and use student-teacher training for reducing the quantization error
 303 further. The original model’s weights are frozen. We train the student (the quantized model with
 304 transforms) to approximate the teacher (the unquantized FP model), with Jensen-Shannon Divergence
 305 loss:

$$306 \min_{\Phi} \mathbb{E}_X [JSD[f(\mathbf{X}), f_{\Phi}(\mathbf{X})], \quad (11)$$

307 where f denotes the original model, f_{Φ} the quantized model, and Φ includes both the transformation
 308 and the quantization grid parameters. It is essential we include the latter—the grid cannot adapt to
 309 the transformed input otherwise. Note that the original model weights are shared between student
 310 and teacher, hence there is no additional memory footprint for the student-teacher framework. In
 311 Appendix L we show that FPTQuant’s parametrization is stable, i.e. that even with noisy training
 312 updates the function-preserving property (P1) holds.

313 The end-to-end student-teacher approach deviates from SpinQuant (Liu et al., 2024a) and
 314 FlatQuant (Sun et al., 2025). SpinQuant uses the LLM’s original next-token prediction loss. Com-
 315 pared to next-token prediction, student-teacher training: 1) provides more signal (i.e., for each data
 316 point and sequence element, a full vector of probabilities, vs. a single label), and in turn this 2)
 317 decreases overfitting. This is an important reason to avoid next-token prediction loss: although we
 318 are working with transforms that in the absence of quantization do not change the model output, the
 319 combination of the large number of parameters $|\Phi|$ and the quantization non-linearities (i.e. round-
 320 ing), actually provide the transformed and quantized model with enough capacity to overfit—see
 321 Appendix F.2.2. FlatQuant optimizes the mean squared error (MSE) per transformer block. This is
 322 not directly applicable for transforms that may affect multiple blocks at once, for example a rotation
 323 applied to the residual and merged into all linears, as used here and by (Ashkboos et al., 2024a; Liu
 et al., 2024a).

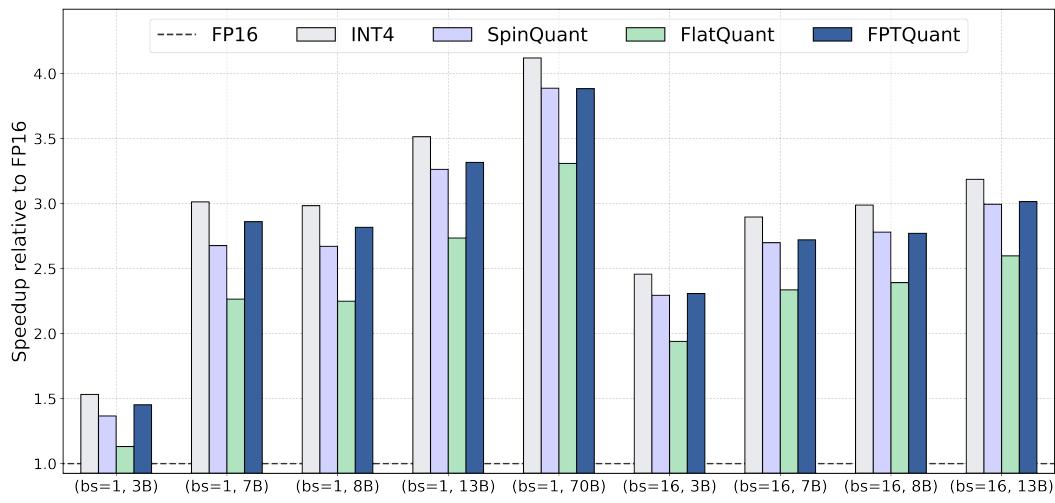


Figure 3: **Static INT4 prefill speedup** of FPTQuant on a single transformer block of Llama across different model sizes (3B, 7B, 8B, 13B, and 70B), batch sizes (1 and 16), with 1024 sequence length.

4 EXPERIMENTS

Evaluation. We choose a range of models and settings to evaluate FPTQuant. We use Llama 2 7B/13B (Touvron et al., 2023) and Llama 3 8B (Grattafiori et al., 2024) to allow direct comparison to reported results from QuaRot (Ashkboos et al., 2024a), SpinQuant (Liu et al., 2024a) and FlatQuant (Sun et al., 2025). We add to this Llama 3.2 3B instruct—a newer and smaller model that is popular for edge devices. Finally, we test other model families and bigger sizes including **Mistral-8B** (Mistral.ai, 2025) and **Qwen2.5-32B** (Yang et al., 2024) . We evaluate on Wikitext-2 (Merity et al., 2017), and use LM-harness to evaluate the same Common Sense Reasoning tasks used in FlatQuant (Sun et al., 2025): PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), ARC-e and ARC-c (Clark et al., 2018), and LAMBADA (Paperno et al., 2016). In Appendix H we also include results for reasoning tasks (5-shot MMLU and GSM8K).

Baselines. We compare FPTQuant against the original floating point model (FP), PTQ using rounding-to-nearest (RTN), RTN with optimizing the quantization ranges (RTN-opt), prior rotation-based including QuaRot (Ashkboos et al., 2024a), SpinQuant (Liu et al., 2024a), **OSTQuant** (Hu et al., 2025), and the more expensive but state-of-the-art FlatQuant (Sun et al., 2025).

Training Setup. For fair comparison, we use the same training and compute budget for all methods—1024 steps with batch size 16 and sequence length 2048. We train on Wikitext-2 (Merity et al., 2017). We found that end-to-end student-teacher training significantly improves generalization over next-token prediction (see Appendix F.2.2), hence choose to use this for the RTN-opt, SpinQuant and QuaRot baselines too. For each method and quantization setup we select hyper-parameters based on the perplexity on the Wikitext-2 validation set.

Quantization Setup Transforms help with low-bit activation quantization, hence we study different activation quantization settings—covering realistic deployment settings (Sec. 4.2), different bit widths (Sec. 4.3), and dynamic activation quantization (Sec. 4.5). Weight quantization methods are tangential to FPTQuant, hence we primarily use round-to-nearest (RTN). In Table 4 we study the combination with the more advanced GPTQ (Frantar et al., 2022)

4.1 FPTQUANT IS FAST

Setup. We evaluate the runtime performance of our method and compare against other methods using FPTPs. We implement FPTQuant, SpinQuant, FlatQuant, and INT4 baseline using PyTorch CUDA/12.1 and using INT4 CUTLASS kernels from QuaRot repository². Note that QuaRot and

²<https://github.com/spcl/QuaRot>

378 **Table 1: FPTQuant excels for harder activation quantization settings.** Exploring different activations
 379 quantization settings on Llama 3.2 3B instruct. Left easy, right hard. *Linears+KV* is a popular setting and
 380 simplest. *+BMM input* also quantizes the BMM inputs (queries and softmax output). *All except residuals*
 381 includes all activations except for the residual. We report Wikitext perplexity—see Appendix G for 0-shot
 382 performance and more models.

#Bits (W-A-KV)	Method	Linears+KV	+BMM input	All except residual
16-16-16	FP16	10.48	10.48	10.48
	SpinQuant	11.71	10.88	11.73
	FlatQuant	10.68	10.68	11.49
4-8-8	FPTQuant	10.78	10.56	10.99
	SpinQuant	12.71	13.16	20.13
	FlatQuant	11.38	12.30	18.60
4-4-4	FPTQuant	11.71	13.99	17.17

391
 392 OSTQuant are about as fast as SpinQuant at inference time. QuaRot is slightly slower, since it has
 393 an extra Hadamard transform applied to the head dimension (before \mathbf{W}_o); OSTQuant is marginally
 394 slower, since it uses online smoothing vectors after the RMSNorm (SpinQuant/FPTQuant merge
 395 these into linear layers). For all methods we assume static INT4 quantization. All the measurements
 396 are conducted on NVIDIA RTX 3080 Ti. We provide all our experiments on a single transformer
 397 block as the whole model does not fit on a single GPU for big enough model size and/or the batch
 398 size. We repeat each measurement 1000 times and report the mean speedup relative to FP16 baseline.
 399 *More details and additional results with using dynamic quantization are in Appendix I.*

400
 401 **Results.** Figure 3 shows the prefill speedup of FPTQuant across different batch sizes and model
 402 sizes. For most configurations, we get 2.8–3.9× speedup over the FP16 implementation, which is
 403 significantly faster than prior reported speedups of QuaRot and FlatQuant. The speedup is consistently
 404 increasing with model size and batch size, as the computation becomes the main bottleneck. FPTQuant
 405 is on par or faster than SpinQuant and consistently faster than FlatQuant, with a relative speedup of
 406 15–29%. FPTQuant is also faster to train, see Appendix J.1. In all cases FPTQuant is within a 5–6%
 407 to the INT4 upper bound.

4.2 FPTQUANT EXCELS AT HARD DEPLOYMENT SETTINGS

408
 409 **Motivation.** There is a large decision space when choosing which activations to quantize. Prior
 410 works (Ashkboos et al., 2024a; Liu et al., 2024a; Sun et al., 2025) focus on dynamic quantization
 411 of linear inputs and KV cache. This deviates from LLM deployment in practice, which typically (i)
 412 has better support for static activation quantization (see Appendix B for details); and (ii) quantizes
 413 more intermediate activations for better speed, memory footprint (Tan et al., 2024; Shen et al., 2024).
 414 In this experiment, we evaluate SpinQuant, FlatQuant, and FPTQuant for different static activation
 415 quantization settings on Llama 3.2 3B instruct. *We observe similar behaviour for Llama 3 8B and*
 416 *Qwen 2.5 7B and zero-shot performance (Appendix G).*

417
 418
 419 **Results.** We observe (Table 1) that FPTQuant performs comparably to baselines for quantization
 420 settings with only linear inputs and KV cache quantize. **It excels at the most challenging setting,**
 421 **in which all activations within the attention and MLP block are quantized.** FPTQuant slightly
 422 underperforms baselines when queries and keys are quantized to 4 bit, since the Pre-RoPE transform
 423 has less capacity to reduce quantizers here than the non-mergeable transforms of SpinQuant (R_3) or
 424 FlatQuant (P_h). In Appendix F we ablate the value of the different transforms used by FPTQuant.

4.3 MAIN RESULTS

425
 426 **Setup.** In the previous section we saw that FPTQuant outperforms baselines comfortably for the
 427 most realistic quantization settings. We extend our evaluation to more models and multiple bit-widths
 428 for static quantization, focussing on the setting that FPTQuant did *relatively worst*: only *Linears+KV*.
 429 *In Appendix H we include standard deviations for a subset of these results, and include reasoning*
 430 *metrics MMLU and GSM8K.*

432 **Table 2: Static quantization.** Comparison of the perplexity score on WikiText-2 (Merity et al., 2017) and
 433 averaged accuracy on 6 Zero-shot Common Sense Reasoning tasks for Llama2-7B (L2-7B), Llama3.2-3B instruct
 434 (L3.2-3B it), Llama3-8B (L3-8B), **Minstral-8B instruct (M-8B it)**, **Qwen2.5-32B (Q2.5-32B)**. *SpinQuant did
 435 not yet finish training for Q2.5-32B 4-4-4.*

#Bits (W-A-KV)	Method	L2-7B		L3.2-3B it		L3-8B		M-8B it		Q2.5-32B	
		Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki (↓)	0-shot ⁶ Avg.(↑)
16-16-16	FP16	5.47	69.79	10.48	65.63	5.75	73.33	6.45	74.37	4.67	75.29
	RTN	73.0	47.75	40.6	47.27	77.7	45.00	5.5e3	31.02	6.83	70.28
	RTN-opt	7.11	56.93	11.20	61.09	7.32	67.35	10.13	51.97	5.72	75.15
	QuaRot	6.22	63.43	10.89	63.12	7.04	67.60	6.76	73.41	5.28	76.24
	SpinQuant	5.97	66.01	11.03	63.28	6.54	71.60	6.86	72.48	5.28	75.51
	OSTQuant	6.49	61.85	11.05	62.48	6.56	71.46	6.82	72.87	5.28	75.96
	FlatQuant	6.46	62.07	10.67	65.04	6.20	72.11	6.69	73.41	5.05	76.22
4-8-8	FPTQuant	5.85	65.96	10.65	64.00	6.27	72.72	6.72	73.59	5.12	77.51
	RTN	526	38.61	128	40.40	127	41.46	5.1e3	30.29	8.08	65.79
	RTN-opt	8.04	48.09	11.57	58.92	7.78	64.73	11.10	48.26	6.31	72.28
	QuaRot	11.91	39.71	11.09	63.18	7.29	66.71	6.93	72.36	5.39	75.26
	SpinQuant	6.45	59.28	11.47	59.04	7.43	65.56	7.04	71.52	5.42	76.18
	OSTQuant	7.01	55.66	11.28	61.44	7.17	68.37	6.99	71.25	5.38	74.53
	FlatQuant	5.91	66.04	10.88	63.69	6.51	70.83	6.83	72.67	5.31	76.37
4-8-4	FPTQuant	6.05	62.68	11.12	62.42	6.78	69.46	7.04	71.10	5.37	75.76
	RTN	2.4e3	39.13	2.2e3	29.17	1.6e5	37.67	1.7e5	29.33	1.8e6	29.83
	RTN-opt	2.2e3	29.54	59.06	31.16	543	30.04	776	29.63	2.5e3	29.85
	QuaRot	1218	30.21	12.81	54.38	19.72	42.76	8.34	64.68	7.51	68.01
	SpinQuant	940	30.17	12.71	54.88	11.04	54.58	8.69	60.60		
	OSTQuant	519	30.75	13.41	52.43	9.66	56.69	10.00	50.88	8.39	66.84
	FlatQuant	106	29.90	11.38	61.00	9.55	61.43	8.44	63.51	7.15	70.29
4-4-4	FPTQuant	603	29.76	11.71	59.46	9.74	52.96	8.49	63.69	6.98	70.60

456 **Table 3: An impact of proposed transforms on Llama 3.2 3B it (W4A4KV4).** For each setting, we tune the
 457 LR and select the best one based on validation Wikitext perplexity. We repeat each experiment 3 times and report
 458 mean and standard deviation. We report Wikitext perplexity, average 0-shot CSR, and 5-shot MMLU accuracies.

Transforms	Wiki (↓)	0-shot ⁶ (↑)	MMLU (↑)
-	60.52 ± 1.46	31.79 ± 0.62	24.96 ± 0.34
$\{\mathbf{T}_d, \mathbf{T}_r, \mathbf{T}_u\}$	12.78 ± 0.08	54.50 ± 1.43	35.46 ± 1.18
$\{\mathbf{T}_d, \mathbf{T}_r, \mathbf{T}_u\}, \mathbf{S}_n$	12.57 ± 0.32	55.38 ± 0.69	36.88 ± 0.95
$\{\mathbf{T}_d, \mathbf{T}_r, \mathbf{T}_u\}, \mathbf{T}_k$	12.45 ± 0.25	55.05 ± 1.12	38.33 ± 1.09
$\{\mathbf{T}_d, \mathbf{T}_r, \mathbf{T}_u\}, \mathbf{T}_v$	11.84 ± 0.03	58.34 ± 0.25	41.54 ± 0.88
FPTQuant (all)	11.80 ± 0.07	58.87 ± 0.74	44.64 ± 0.25

468 **Results.** See Table 2. Similar to earlier results, FPTQuant almost always outperforms QuaRot
 469 and SpinQuant. **OSTQuant generally performs poorly**—this is likely due to **OSTQuant not being**
 470 **strictly function-preserving, and having stability problems (Appendix L)**. In most cases FPTQuant
 471 shows competitive performance to the significantly slower FlatQuant. However, we do note that for
 472 the very challenging setup of W4A4KV4 and Llama 2 7B at W4A8KV4 the gap can sometimes be
 473 bigger, especially for zero-shot accuracy. Note that FlatQuant with static quantization can sometimes
 474 be unstable in the optimization, e.g. their W4A8KV8 Llama 2 7B results are worse than the more
 475 difficult W4A8KV4 ones. **We explore this instability further in Appendix L, where we do a sensitivity**
 476 **analysis of the transforms.** Also note that for W4A8KV8, we outperform FlatQuant, because the
 477 **mergeable FPTQuant transforms are better at reducing weight quantization error—at W4A8KV8,**
 478 **this is relatively more important, since activation quantization is easier.**

4.4 ABLATION OF PROPOSED TRANSFORMS

481 **Setup.** We explore the value of each transform. Let us take Llama 3.2 3B-it and the same quantiza-
 482 tion setup as before, *Linears+KV*, at W4A4KV4. We subselect different transforms and repeat the
 483 experiment for three seeds. *We include more ablations in Appendix F.1.*

484 **Results.** We find (Table 3) that each of the three transforms \mathbf{S}_n , \mathbf{T}_k , \mathbf{T}_v helps reduce the perplexity
 485 and improves the 0-shot CSR and 5-shot MMLU.

486
 487
 488
 489
 Table 4: **Dynamic quantization.** We run the dynamic quantization experiment (W4A4KV4) from FlatQuant
 (Table 1 and Table 2, (Sun et al., 2025)), reporting their results for baselines (marked *). [§]Using sequence length
 of 2048. FPTQuant is on par or better than most of the baselines, except FlatQuant, yet FlatQuant is up to 29%
 slower.

Method	Weight Quantizer	Llama 2 7B		Llama 2 13B		Llama 3 8B	
		Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki (↓)	0-shot ⁶ Avg.(↑)	Wiki [§] (↓)	0-shot ⁶ Avg.(↑)
FP16	-	5.47	69.79	4.88	72.55	6.14	73.33
SmoothQuant*	RTN	83.1	-	35.9	-	210	-
QuaRot*	RTN	8.56	57.73	6.10	66.25	10.60	61.34
SpinQuant*	RTN	6.14	63.52	5.44	68.56	7.96	66.98
OSTQuant	RTN	6.38	65.88	5.34	69.87	7.98	68.32
FlatQuant*	RTN	5.79	67.96	5.12	71.42	6.98	71.23
FPTQuant	RTN	5.97	66.06	5.37	69.81	7.67	68.41
QuaRot*	GPTQ	6.10	65.01	5.40	68.91	8.16	65.79
SpinQuant*	GPTQ	5.96	66.23	5.24	70.93	7.39	68.70
OSTQuant	GPTQ	5.92	66.58	5.29	70.03	7.32	68.64
FlatQuant*	GPTQ	5.78	67.47	5.11	71.64	6.90	71.33
FPTQuant	GPTQ	6.07	66.44	5.35	69.97	7.60	68.70

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 4.5 DYNAMIC QUANTIZATION

Setup. We repeat the previous experiment with W4A4KV4 in a dynamic quantization setting. This is identical to the FlatQuant setup, from which we report baseline results. For all methods, we experiment with both round-to-nearest (RTN) and GPTQ for weight quantization. Since OSTQuant only reports results with GPTQ, we used their codebase and provided commands ³ to generate results. For OSTQuant and FPTQuant, we repeat each experiment for three seeds and report the median perplexity and zero-shot accuracy.

Results. We observe (Table 4) that FPTQuant is consistently on par or better than all baselines except FlatQuant. However, FPTQuant is up to 29% faster than FlatQuant.

5 DISCUSSION

FPTQuant. When choosing FPTs, there is a trade-off between expressivity (P2) and cost (P3): more expressive transforms can help reduce quantization error, but incur overhead. By understanding commutation properties of existing operations within the transformer, we have designed most of FPTQuant’s transforms to be both expressive, yet mergeable into existing weights. In many settings, the FPTs used by FPTQuant provide a good trade-off between accuracy and speed. For some settings, one may prefer to combine FPTQuant with more expressive, non-mergeable transforms. Choosing which FPTs to choose is largely dependent on the model, quantization setting, and resource constraints. In Appendix K we provide some guidelines for practitioners who want to use FPTs for quantizing their own models.

Limitations. We evaluated FPTQuant on LLMs from different generations and with different sizes. While challenges and outlier patterns are often similar across different models (Bondarenko et al., 2023; Kovaleva et al., 2021; Dettmers et al., 2022), it cannot be guaranteed that our insights and gains equally translate to all LLMs.

Societal impact. We think FPTQuant has significant positive societal impact. FPTQuant empowers the use of smaller bit widths, which reduces computational, energy, and environmental impact of LLMs. Reduced LLM cost and memory footprint could make LLMs more accessible to economically-disadvantaged populations, and could improve inference on edge devices (e.g. smartphones).

³<https://github.com/BrotherHappy/OSTQuant>

540 REFERENCES
541

542 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming
543 the challenges of efficient transformer quantization. In *Proceedings of the 2021 Conference on*
544 *Empirical Methods in Natural Language Processing*, pages 7947–7969, Online and Punta Cana, Do-
545 minican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.627. URL <https://aclanthology.org/2021.emnlp-main.627>.

546

547 Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
548 dimensions that disrupt transformers. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3392–3405, 2021.

549

550 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
551 multiplication for transformers at scale. In *Advances in Neural Information Processing Systems*,
552 2022.

553

554 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable Transformers: Removing
555 Outliers by Helping Attention Heads Do Nothing. *Advances in Neural Information Processing*
556 *Systems*, 2023. URL <https://arxiv.org/abs/2306.12929v2>.

557

558 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
559 models. *arXiv preprint arXiv:2402.17762*, 2024.

560

561 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
562 Accurate and Efficient Post-Training Quantization for Large Language Models, March 2024. URL
563 <http://arxiv.org/abs/2211.10438>. arXiv:2211.10438 [cs].

564

565 Xing Hu, Yuan Cheng, Dawei Yang, Zhixuan Chen, Zukang Xu, Jiangyong Yu, XUCHEN, Zhihang
566 Yuan, Zhe jiang, and Sifan Zhou. OSTQuant: Refining Large Language Model Quantization
567 with Orthogonal and Scaling Transformations for Better Distribution Fitting. In *The Thirteenth*
568 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=rAcgDBdKnP>.

569

570 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
571 Torsten Hoefer, and James Hensman. QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,
572 March 2024a. URL <https://arxiv.org/abs/2404.00456v1>.

573

574 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
575 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: LLM quantization
576 with learned rotations, May 2024a. URL <https://arxiv.org/abs/2405.16406v2>.

577

578 Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
579 whitepaper. *arXiv preprint arXiv:1806.08342*, 2018.

580

581 Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
582 men Blankevoort. A white paper on neural network quantization. *arXiv preprint arXiv:2106.08295*,
583 2021.

584

585 Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
586 convolution networks for rapid-deployment. *arXiv preprint arXiv:1810.05723*, 2018.

587

588 Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Zeroq:
589 A novel zero shot quantization framework. In *Proceedings of the IEEE/CVF Conference on*
590 *Computer Vision and Pattern Recognition*, pages 13169–13178, 2020.

591

592 Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks
593 for efficient inference. In *ICCV Workshops*, pages 3009–3018, 2019.

594

595 Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post
596 training neural quantization: Layer-wise calibration and integer programming. *arXiv preprint*
597 *arXiv:2006.10518*, 2020.

598

599 Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but different:
600 Recovering neural network quantization error through weight factorization. In *International*
601 *Conference on Machine Learning*, pages 4486–4495. PMLR, 2019.

594 Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
 595 quantization without retraining using outlier channel splitting. In *International conference on*
 596 *machine learning*, pages 7543–7552. PMLR, 2019.

597

598 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
 599 through weight equalization and bias correction. In *Proceedings of the IEEE/CVF International*
 600 *Conference on Computer Vision (ICCV)*, October 2019.

601

602 Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort.
 603 Up or Down? Adaptive Rounding for Post-Training Quantization, April 2020. URL <https://arxiv.org/abs/2004.10568v2>.

604

605 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
 606 Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. *arXiv preprint*
 607 *arXiv:2102.05426*, 2021.

608

609 Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
 610 limited numerical precision. In *International conference on machine learning*, pages 1737–1746.
 611 PMLR, 2015.

612

613 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
 614 Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
 615 integer-arithmetic-only inference. In *Proceedings of the IEEE Conference on Computer Vision and*
 616 *Pattern Recognition*, pages 2704–2713, 2018.

617

618 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
 619 mendra S. Modha. Learned step size quantization. In *International Conference on Learning*
 620 *Representations (ICLR)*, 2020.

621

622 Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving
 623 low-bit quantization through learnable offsets and better initialization. In *Proceedings of the*
 624 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, 2020.

625

626 Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
 627 oscillations in quantization-aware training. In *International Conference on Machine Learning*,
 628 pages 16318–16330. PMLR, 2022.

629

630 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 631 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-Free Quantization Aware
 632 Training for Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
 633 *Findings of the Association for Computational Linguistics: ACL 2024*, pages 467–484, Bangkok,
 634 Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 635 findings-acl.26. URL <https://aclanthology.org/2024.findings-acl.26/>.

636

637 Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
 638 Unleashing the potential of sub-4-bit llms via self-distillation. *arXiv preprint arXiv:2402.10631*,
 639 2024.

640

641 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
 642 Efficientqat: Efficient quantization-aware training for large language models. *arXiv preprint*
 643 *arXiv:2407.11062*, 2024.

644

645 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 646 of quantized llms. *Advances in Neural Information Processing Systems*, 36, 2024.

647

648 Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen,
 649 Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
 650 models. *arXiv preprint arXiv:2309.14717*, 2023.

651

652 Yelysei Bondarenko, Riccardo Del Chiaro, and Markus Nagel. Low-Rank Quantization-Aware
 653 Training for LLMs, September 2024. URL <http://arxiv.org/abs/2406.06385>.
 654 arXiv:2406.06385.

648 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 649 Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman
 650 Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Scaling laws in extremely
 651 low-bit llm quantization, 2025. URL <https://arxiv.org/abs/2502.02631>.

652 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
 653 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

654 Tim Dettmers, Ruslan Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
 655 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized represen-
 656 tation for near-lossless llm weight compression. *arXiv preprint arXiv:2306.03078*, 2023.

657 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
 658 aware weight quantization for llm compression and acceleration. *arXiv preprint arXiv:2306.00978*,
 659 2023.

660 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
 661 weight quantization for efficient fine-tuning and inference of large language models. In *Proceedings
 662 of the AAAI Conference on Artificial Intelligence*, volume 38, pages 13355–13364, 2024.

663 Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
 664 Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. *arXiv preprint
 665 arXiv:2306.07629*, 2023.

666 Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
 667 and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
 668 models. *arXiv preprint arXiv:2405.14917*, 2024.

669 Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
 670 Alistarh. Extreme compression of large language models via additive quantization. *arXiv preprint
 671 arXiv:2401.06118*, 2024.

672 Yongkweon Jeon, Chungman Lee, Kyungphil Park, and Ho-young Kim. A frustratingly easy post-
 673 training quantization scheme for llms. In *Proceedings of the 2023 Conference on Empirical
 674 Methods in Natural Language Processing*, pages 14446–14461, 2023.

675 Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding
 676 based on element-wise division for post-training quantization. In *International Conference on
 677 Machine Learning*, pages 18913–18939. PMLR, 2023.

678 Yan Luo, Yangcheng Gao, Zhao Zhang, Jicong Fan, Haijun Zhang, and Mingliang Xu. Long-range
 679 zero-shot generative deep network quantization. *Neural Networks*, 166:683–691, 2023.

680 Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
 681 large language models with guarantees. *Advances in Neural Information Processing Systems*, 36,
 682 2024.

683 Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xiang-
 684 long Liu. Outlier Suppression+: Accurate quantization of large language models by equivalent and
 685 optimal shifting and scaling, October 2023. URL <http://arxiv.org/abs/2304.09145>.
 686 arXiv:2304.09145 [cs].

687 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 688 Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally Calibrated Quantization
 689 for Large Language Models, March 2024. URL <http://arxiv.org/abs/2308.13137>.
 690 arXiv:2308.13137 [cs].

691 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#: Even
 692 Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks, February 2024.
 693 URL <https://arxiv.org/abs/2402.04396v2>.

702 Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
 703 Sun, and Ying Wei. DuQuant: Distributing Outliers via Dual Transformation Makes Stronger
 704 Quantized LLMs. In *Advances in Neural Information Processing Systems*. arXiv, November
 705 2024. doi: 10.48550/arXiv.2406.01721. URL <http://arxiv.org/abs/2406.01721>.
 706 arXiv:2406.01721.

707 Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, JiaxinHu, Xianzhi Yu,
 708 Lu Hou, Chun Yuan, Xin Jiang, Wulong Liu, and Jun Yao. Flatquant: Flatness matters for
 709 LLM quantization. In *Forty-second International Conference on Machine Learning*, 2025. URL
 710 <https://openreview.net/forum?id=uTz2Utym5n>.

711

712 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
 713 Hensman. SliceGPT: Compress Large Language Models by Deleting Rows and Columns, February
 714 2024b. URL <http://arxiv.org/abs/2401.15024>. arXiv:2401.15024.

715

716 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 717 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

718

719 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 720 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 721 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

722

723 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 724 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 725 models. *arXiv preprint arXiv:2407.21783*, 2024.

726

727 Mistral.ai. Un ministral, des ministraux, 2025. URL <https://mistral.ai/news/ministraux>.

728

729 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 730 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 731 arXiv:2412.15115*, 2024.

732

733 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 734 models. In *International Conference on Learning Representations*, 2017.

735

736 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about
 737 Physical Commonsense in Natural Language. *Proceedings of the AAAI Conference on Artificial
 738 Intelligence*, 34(05):7432–7439, April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i05.6239.
 739 URL <https://ojs.aaai.org/index.php/AAAI/article/view/6239>. Number:
 05.

740

741 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an
 742 adversarial winograd schema challenge at scale. *Commun. ACM*, 64(9):99–106, August 2021.
 743 ISSN 0001-0782. doi: 10.1145/3474381. URL <https://dl.acm.org/doi/10.1145/3474381>.

744

745 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Machine
 746 Really Finish Your Sentence?, May 2019. URL <http://arxiv.org/abs/1905.07830>.
 747 arXiv:1905.07830 [cs].

748

749 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 750 Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
 751 Challenge, March 2018. URL <http://arxiv.org/abs/1803.05457>. arXiv:1803.05457
 752 [cs].

753

754 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
 755 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambda dataset:
 Word prediction requiring a broad discourse context. In *Proceedings of the 54th Annual Meeting of
 the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1525–1534, 2016.

756 Fuwen Tan, Royson Lee, Łukasz Dudziak, Shell Xu Hu, Sourav Bhattacharya, Timothy Hospedales,
 757 Georgios Tzimiropoulos, and Brais Martinez. MobileQuant: Mobile-friendly Quantization
 758 for On-device Language Models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
 759 editors, *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages
 760 9761–9771, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 761 doi: 10.18653/v1/2024.findings-emnlp.570. URL [https://aclanthology.org/2024.
 762 findings-emnlp.570/](https://aclanthology.org/2024.findings-emnlp.570/).

763 Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu,
 764 Chih-hsiang Li, Xuehang Guo, Zhihao Shu, et al. Edgeeqat: Entropy and distribution guided
 765 quantization-aware training for the acceleration of lightweight llms on the edge. *arXiv preprint
 766 arXiv:2402.10787*, 2024.

767 Nvidia Corporation. Working with Quantized Types — NVIDIA TensorRT Documenta-
 768 tion. URL [https://docs.nvidia.com/deeplearning/tensorrt/latest/
 769 inference-library/work-quantized-types.html#dynamic-quantization](https://docs.nvidia.com/deeplearning/tensorrt/latest/inference-library/work-quantized-types.html#dynamic-quantization). Version 10.10.0.

770 PyTorch. Quantization — PyTorch AO documentation. URL [https://docs.pytorch.org/
 771 docs/stable/quantization.html](https://docs.pytorch.org/docs/stable/quantization.html). Version 2.7.0.

772 Qualcomm. AI Engine Direct SDK documentation. URL [https://docs.qualcomm.com/
 773 bundle/publicresource/topics/80-63442-50/quantization.html](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/quantization.html).

774 Nvidia. TensorRT operators documentation: DynamicQuantize not supported on DLA. URL
 775 [https://docs.nvidia.com/deeplearning/tensorrt/10.10.0/_static/
 776 operators/DynamicQuantize.html](https://docs.nvidia.com/deeplearning/tensorrt/10.10.0/_static/operators/DynamicQuantize.html). Version 10.10.0.

777 Dao AI Lab. fast-hadamard-transform. URL [https://github.com/Dao-AI-Lab/
 778 fast-hadamard-transform](https://github.com/Dao-AI-Lab/fast-hadamard-transform).

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

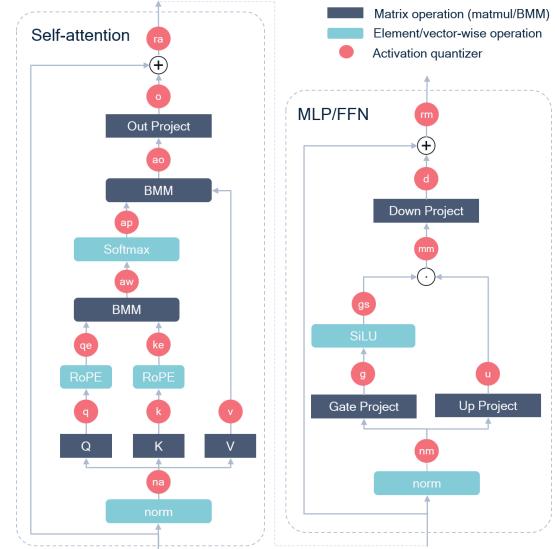
807

808

809

810 A DETAILED TRANSFORMS COMPARISON
811812 In Table 6 we include the representation and theoretical cost of existing transforms. In Table 7 we
813 review existing works, the transforms they use, and their placements.
814815 Table 5 & Figure 4: Activation quantizers: aliases and locations.
816

817 Alias	818 Location
819 ao	820 Attention output
820 ap	821 Attention probabilities
821 aw	822 Attention weights
822 d	823 Down projection output
823 g	824 Gate projection output
824 gs	825 SiLU output
825 k	826 Key projection output
826 ke	827 Key RoPE-embedded
827 mm	828 Gate \odot up multiplication
828 na	829 Norm self-attention
829 nm	830 Norm MLP/FFN
830 o	831 Output projection output
831 q	832 Query projection output
832 qe	833 Query RoPE-embedded
833 ra	834 Residual addition self-attention
834 rm	835 Residual addition MLP/FFN
835 u	836 Up projection output
836 v	837 Value projection output

836 Table 6: Comparing different transforms. Cost is measured in terms of a single matrix vector
837 multiplication, xM , where $M \in \mathbb{R}^{n \times n}$ and row vector $x \in \mathbb{R}^n$. Memory is total parameters.
838

839 Transform	840 Cost	841 Memory	842 Matrix representation
840 Scaler	$\mathcal{O}(n)$	n	$A = \text{diag}(\mathbf{s})$, with $\mathbf{s} \in \mathbb{R}^n$, $s_i \neq 0$
841 Full matrix	$\mathcal{O}(n^2)$	n^2	Any invertible matrix $A \in \mathbb{R}^{n \times n}$
842 Orthogonal	$\mathcal{O}(n^2)$	n^2	$A \in \mathbb{R}^{n \times n}$ s.t. $AA^T = I$
843 Rotation	$\mathcal{O}(n^2)$	n^2	$A \in \mathbb{R}^{n \times n}$ s.t. $AA^T = I$ and $\det(A) = 1$
844 Block diagonal (K blocks)	$\mathcal{O}(\frac{n^2}{K})$	$\frac{n^2}{K}$	$A = \text{diag}(B_1, \dots, B_K)$, with invertible $B_k \in \mathbb{R}^{\frac{n}{K} \times \frac{n}{K}}$, $k = 1, \dots, K$
845 Kronecker	$\mathcal{O}(n\sqrt{n})$	$\sim 2n$	$P = P_1 \otimes P_2$, with invertible $P_i \in \mathbb{R}^{n_i \times n_i}$ and $n_1 n_2 = n$ (usually $n_1 \approx n_2 \approx \sqrt{n}$)
846 Hadamard Transform (HT)	$\mathcal{O}(n \log n)$	0	$H_n = \frac{1}{\sqrt{n}} \bigotimes_{i=1}^{\log_2 n} \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$
847 Randomized HT (RHT)	$\mathcal{O}(n \log n)$	n	$\text{diag}(\mathbf{s})H_n$, with Bernoulli $\mathbf{s} \in \{-1, +1\}^n$
848 Block HT (K blocks)	$\mathcal{O}(n \log[n/K])$	0	$A = \text{diag}(\{H_{n/K}\}^K)$

851
852 B DISCUSSION ON STATIC VS DYNAMIC QUANTIZATION
853854 Traditionally quantization literature and fixed-point accelerators always used static activation scaling
855 factors. However, most LLM quantization literature almost silently started assuming dynamic scaling
856 factors for activations. We call out the distinction here, since in practice it has a big impact on both
857 inference token rate and even which platforms are supported.
858859 **Static quantization** fixes the maximum anticipated range of each quantized tensor ahead of
860 inference time. The quantization grid is determined based on a small calibration dataset, before fixing
861 the scale factors. At runtime, we need only apply these floating-point scale factors following integer
862 matrix multiplication (Nagel et al., 2021). However, despite the ubiquity of static quantization, all
863 prior work to date using FPTs for LLM quantization that we have surveyed (Section 2) assumes
864 dynamic quantization.

864
 865 **Table 7: Function-preserving transform in LLM quantization literature.** (R)HT: (randomized)
 866 hadamard transform. CW: Channel-wise. E2E: end-to-end training, with either original [Label] or
 867 student-teacher [ST] loss. For transform locations, see Table 5.

Work	Transform style	Transform location	Mergeable	Optimization
SmoothQuant (Xiao et al., 2024)	CW Scaler	na, nm	True	Local L_∞
Outlier supp+ (Wei et al., 2023)	CW Affine	na, nm	True	Grid search
OmniQuant (Shao et al., 2024)	CW Affine CW Scaler	na, nm, v (qe, ke)	True False [†]	Block-wise Block-wise
QuaRot (Ashkboos et al., 2024a)	HT HT RHT	mm [‡] , ao, (qe, ke) v ra, rm	False True True	- - -
SpinQuant (Liu et al., 2024a)	RHT Rotation	(qe, ke) R_3 , (mm) merged into all weights (R_1) [‡] , (v.out) (R_2)	False True	- E2E[Label]
DuQuant (Lin et al., 2024)	Scaler+Permute+block- wise rotate	linear weights/inputs	False	Iterative greedy
OSTQuant* (Hu et al., 2025)	Scaler+orthogonal HT	na, nm, (v.out) (qe, ke), mm	True False	E2E[ST] -
FlatQuant (Sun et al., 2025)	Kronecker Full Full	na (P_v), ao (P_o), nm (P_{ug}), mm (P_d) (qe, ke) (P_h) (v.out) (P_v)	False False True	E2E[Label] E2E[Label] E2E[Label]
FPTQuant (us) [‡]	PreRoPE Full per head CW Scaler Sequence Scaler	(q, k) (v, out) (up, down) (ra, rm, ap, mm)	True True True False	Local L_p +E2E[ST] Local L_p +E2E[ST] Local L_p +E2E[ST] -

891 [†] Authors claim channel-wise scaling of queries and keys can be merged, which does not hold for non-additive positional encodings (e.g. RoPE).

892 [‡]We also use SpinQuant’s mergeable R_1 rotation, and non-mergeable HT at mm. * OSTQuant also proposed a scaler before RoPE, but this does
 893 not commute with RoPE and is thus not function-preserving.

894
 895 **Dynamic quantization (DQ)** foregoes the calibration step and instead computes scale factors
 896 dynamically at runtime for each token independently. This means we can set a large grid for tokens
 897 with outliers, while keeping the grid small for tokens without outliers. While this obviously is a huge
 898 boon for model performance, it unfortunately introduces a non-trivial compute cost.

899
 900 **DQ compute overhead.** At inference time, DQ requires the minimum and maximum activation
 901 values to be computed and reduced over the last dimension of the whole activation tensor, for each
 902 token. The resulting scale factors must then be broadcast and applied to each value. This reduce-
 903 broadcast operation can be relatively fast on a CPU, which operates on small chunks of data at a
 904 time, such that the binary tree required for the reduction is manageable. However, GPUs and NPUs
 905 typically process large tensors at once using custom hardware, and thus the reduction and broadcast
 906 tree operations are deep and slow relative to the high throughput MAC operations themselves.

907 **Lack of support for DQ.** DQ is currently not natively supported on many popular hardware and
 908 software stacks. For example, popular quantization packages such as Nvidia TensorRT (Corporation)
 909 and PyTorch AO (PyTorch) do not support DQ. Edge hardware platforms also lack support for
 910 DQ on their accelerators, including Qualcomm SnapDragon Qualcomm and Nvidia Deep Learning
 911 Accelerator (DLA) Nvidia.

912 C PROOF THEOREM 1

913
 914 **RoPE background.** RoPE’s (Su et al., 2024) aim is to modify the queries and keys, such that
 915 the output of the query-key multiplication is dependent on their relative positions. RoPE achieves
 916 this by multiplying queries and keys with a time-dependent rotation matrix, i.e. RoPE is a function
 917 $f : \mathbb{R}^d \times \mathbb{N} \rightarrow \mathbb{R}^d$ with $f(\mathbf{x}, i) = \mathbf{x}\mathbf{R}_{\Theta, i}^{d_{head}}$, where i denotes the token index, Θ the RoPE parameters,

918 and d_{head} the head dimension. Matrix $\mathbf{R}_{\Theta,i}^{d_{head}}$ is a block-diagonal matrix with $N = d_{head}/2$ blocks.
 919 Each block n has size 2×2 and denotes a rotation of angle $i\theta_n$ of two dimensions. Denoting
 920 a 2-dimensional rotation of angle θ by $\mathbf{R}_\theta^{(2)}$, we can thus write $\mathbf{R}_{\Theta,i}^{d_{head}} = \text{diag}((\mathbf{R}_{i\theta_n})_{n=1}^N)$. As
 921 desired, the product between embedded keys and queries depends only on their relative, not absolute,
 922 position: $\langle f(\mathbf{q}_i, i), f(\mathbf{k}_j, j) \rangle = \mathbf{q}_i \mathbf{R}_{\Theta,i-j}^d \mathbf{k}_j^\top$. We develop transforms that we can apply to queries
 923 and keys, yet do not alter the output of the attention softmax. We design these to commute with
 924 RoPE’s $\mathbf{R}_{\Theta,i}^d$ for all i , so that they can be applied before RoPE and merged into \mathbf{W}_q and \mathbf{W}_k .
 925

926 **Theorem 3.1** Let $N = d_{head}/2$, and $\mathbf{R}_n \in O(2)$ and $s_n \in \mathbb{R}$, for $n = 1, \dots, N$. Define
 927 $\mathbf{T}_k = \text{diag}(\mathbf{s}) \text{diag}(\{\mathbf{R}_n\}_{n=1}^N)$ and $\bar{\mathbf{T}}_k = \text{diag}(\mathbf{s}^{-1}) \text{diag}(\{\mathbf{R}_n\}_{n=1}^N)$. Given query and key weights
 928 $(\mathbf{W}_q, \mathbf{W}_k) \in \mathbb{R}^{d_{in} \times d_{head}}$, define $\tilde{\mathbf{W}}_q = \mathbf{W}_q \bar{\mathbf{T}}_k$ and $\tilde{\mathbf{W}}_k = \mathbf{W}_k \mathbf{T}_k$. Now it holds:

$$\langle f(\mathbf{x}_i \tilde{\mathbf{W}}_q, i), f(\mathbf{x}_j \tilde{\mathbf{W}}_k, j) \rangle = \langle f(\mathbf{x}_i \mathbf{W}_q, i), f(\mathbf{x}_j \mathbf{W}_k, j) \rangle$$

931 *Proof.* First, let us prove that \mathbf{T}_k commutes with $\mathbf{R}_{\Theta,i}^{d_{head}}$ for any i and Θ . Both are block diagonal
 932 (with blocks of size 2×2), so we can treat each block individually. For the individual blocks of $\mathbf{R}_{\Theta,i}^d$
 933 and \mathbf{T}_k , write $\mathbf{R}_{i\theta_n}$ and $w_n \mathbf{R}_{\phi_n}$. Trivially, scalars commute with matrices, i.e. $w\mathbf{A} = \mathbf{A}w$ for any
 934 matrix \mathbf{A} and $w \in \mathbb{R}$. Additionally, 2×2 rotations commute, hence $\mathbf{R}_{i\theta_n} w_n \mathbf{R}_{\phi_n} = w_n \mathbf{R}_{\phi_n} \mathbf{R}_{i\theta_n}$.
 935 As this holds for all blocks, $\mathbf{R}_{\Theta,i}^{d_{head}} \mathbf{T}_k = \mathbf{T}_k \mathbf{R}_{\Theta,i}^{d_{head}}$.
 936

937 Second, note that $\bar{\mathbf{T}}_k \mathbf{T}_k^\top = I$,⁴ since weights and rotations cancel out. Replacing $\mathbf{W}_q, \mathbf{W}_k$ by
 938 respectively $\tilde{\mathbf{W}}_q$ and $\tilde{\mathbf{W}}_k$ thus gives attention values:

$$\begin{aligned} \langle f(\mathbf{x}_i \tilde{\mathbf{W}}_q, i), f(\mathbf{x}_j \tilde{\mathbf{W}}_k, j) \rangle &= \langle \mathbf{x}_i \mathbf{W}_q \bar{\mathbf{T}}_k \mathbf{R}_{\Theta,m}^d, \mathbf{x}_j \mathbf{W}_k \mathbf{T}_k \mathbf{R}_{\Theta,n}^d \rangle \\ &= \langle \mathbf{x}_i \mathbf{W}_q \mathbf{R}_{\Theta,i}^d \bar{\mathbf{T}}_k, \mathbf{x}_j \mathbf{W}_k \mathbf{R}_{\Theta,j}^d \mathbf{T}_k \rangle \\ &= \langle \mathbf{x}_i \mathbf{W}_q \mathbf{R}_{\Theta,i}^d \bar{\mathbf{T}}_k \mathbf{T}_k^\top, \mathbf{x}_j \mathbf{W}_k \mathbf{R}_{\Theta,j}^d \rangle \\ &= \langle f(\mathbf{x}_i \mathbf{W}_q, i), f(\mathbf{x}_j \mathbf{W}_k, j) \rangle, \end{aligned}$$

946 as desired. □

947 *Remark C.1.* Note: $\mathbf{R}_{\Theta,i}^d$ overall is a rotation matrix, however rotation matrices generally do not
 948 commute unless they share the same axes of rotations. This motivates a transform that uses the same
 949 block structure. Note also that a block-wise orthogonal matrix would not suffice, since orthogonal
 950 matrices that are not rotations (i.e. that contain also a reflection) do not commute with rotations.
 951

952 D EXPERIMENTAL DETAILS

953 **General set-up.** For all experiments and methods, we use batch size 16 with 2048 sequence length
 954 for training. We train on Wikitext-2, for 1024 steps with cosine learning rate scheduler, 10% warm-up,
 955 and learning rate based on validation PPL. For Qwen 2.5 32B, we use sequence length 512, and 512
 956 steps. In all experiments, we use learnable weight and activation clipping, i.e. the quantization scale
 957 and offset are parameters that are updated. We have found significant advantage to optimizing the
 958 quantization grid end-to-end, as can be seen by the relatively good RTN-opt baseline in Table 2. For
 959 Wikitext perplexity, we evaluate on sequence length 4096—except for Llama 2 7B/13B, for which
 960 2048 is the maximum. **We also report assuming sequence length 2048 for Llama 3 8B in Table 4, to**
 961 **allow fair comparison with results from FlatQuant.**

962 **Baselines.** This work focusses on FPTs. To really understand the value of the FPTs, and not just
 963 better and more costly training, we have chosen to use the same training set-up for all methods. This
 964 includes optimizing the quantization grid end-to-end. We have found that this significantly improved
 965 the performance of some of the baselines—in particular QuaRot and RTN, which do not use any
 966 optimization themselves. The only exception is the dynamic quantization experiment (Table 4): to
 967 make direct comparison possible, we use the set-up and numbers from FlatQuant, which does not
 968 optimize baselines.
 969

970 ⁴For single-headed attention, $\bar{\mathbf{T}}_k = \mathbf{T}_k^{-1}$, but this is not true for grouped query attention (Eq. 1 which is
 971 typically used in LLMs.

972 **FPT Parametrization.** We use `torch.nn.utils.parametrizations.orthogonal` to
 973 parametrize orthogonal matrices with *Cayley* parametrization. Some FPTs use matrix inversions,
 974 e.g. our \mathbf{T}_v and FlatQuant’s P_h . To avoid computing the inverse during training, it is possible to
 975 parametrize these matrices using a singular value decomposition instead, consisting of a diagonal
 976 matrix and two orthogonal matrices. In practice, we have found that the added computation of the
 977 orthogonality parametrization (which internally computes inverses in any case), leads to slower
 978 training and worse results. To avoid potential instability problems with a direct inverse, we choose to
 979 keep all transforms in double precision.

980 **Quantizer range setting.** Although we learn the quantization grids, a good initial quantization grid
 981 improves training. We initialize the quantization grid during a range setting stage. For all experiments
 982 and method, we pass 64 sequences through the unquantized network and choose a grid that minimizes
 983 the L_p norm of the difference between the unquantized and would-be-quantized values. Note that
 984 L_∞ corresponds to minmax range setting, which is popular due to its simplicity. In practice, however,
 985 we have found that $p = 3$ is better than either minmax, L_4 or L_2 . We choose L_3 range setting for all
 986 experiments and also for baselines.

987

988 **Hadamard non-powers of 2** FPTQuant, SpinQuant(Liu et al., 2024a), and QuaRot (Ashkboos
 989 et al., 2024a) use Hadamard transforms. Hadamard transforms are simple to define for powers of
 990 2, namely $H_{2^d} = \bigotimes_{i=1}^d \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$. For some non-powers of 2, there are Hadamard transforms, but
 991 these are not implemented in popular packages like `fast-hadamard-transform` (Lab). The
 992 simplest approach, and default behaviour in `fast-hadamard-transform`, is to pad with zeros
 993 and discard added dimensions after applying the Hadamard transform. This is not correct for FPTs:
 994 the added rows are necessary for mapping the transformed activations back to the original values, so
 995 setting these rows to zero instead, will yield a different output.

996 To avoid problems with non-powers of 2, we take a block-wise Hadamard transform: we split
 997 dimensions into K groups that are each a power of 2, and apply a standard Hadamard to each. The
 998 residual and FFN hidden dimensions d in LLMs are typically $2^n \times K$ with K small—the largest we
 999 have found is $K = 43$ for the FFN hidden dimension in Llama 2 7B. The grouped Hadamard can
 1000 be parallelized efficiently by reshaping the channel dimension into two dimensions of sizes $(K, 2^n)$,
 1001 applying the Hadamard, and reshaping back. Using a grouped Hadamard reduces the mixing to within
 1002 groups, but we have found no evidence of a reduced ability to spread outliers due to this—probably
 1003 because group sizes are still always 256 (for Llama 2’s FFN hidden layer) or larger.

1004

1005

1006 E QUANTIZATION ERROR PER QUANTIZER

1007

1008 In this section, we study the quantization sensitivity of individual weight and activation quantizers.

1009

1010

1011

1012 **Setup** We apply INT4 RTN quantization, without optimization, to a single quantizer location (see
 1013 Table 5 for notation) at a time, and report the WikiText-2 test perplexity. We follow the same protocol
 1014 for the range setting as in the main setup (Appendix D). For activation quantization study, we repeat
 1015 the experiment three times with different seeds (that affect the random selection of sequences for
 1016 range estimation) and report the mean value.

1017

1018

1019

1020

1021

1022

1023

1024

1025

Observations In Table 8, we can see that each weight quantizer location adds about 0.1 perplexity,
 on average, while the down projection stands out from the rest a bit more. We can also see that
 the perplexity drop from quantizing all weights is roughly the sum of drops of individual weight
 quantizers, meaning that the weight quantization noise is approximately additive.

From Table 9, however, we observe that activation quantization is significantly more challenging,
 where often a single activation quantizer completely ruins the model performance. Specifically,
 among the most problematic locations consistently for all models are down projection input/output
 (mm, d), and residuals (ra, rm). Typically, those locations have the strongest outliers, which makes
 them difficult to quantize with uniform affine quantization scheme.

1026 Table 8: **Ablation on weight quantizers**. We report WikiText-2 perplexity (lower is better).
1027

1028 Weight quantizers	1029 Llama 2-7B	1029 Llama 3.2-3B-it	1029 Llama 3-8B	1029 Qwen2.5-7B-it
1030 none (FP16)	1031 5.47	1031 10.48	1031 5.75	1031 6.85
1032 q_proj	1032 5.567	1032 10.434	1032 5.795	1032 6.914
1033 k_proj	1033 5.546	1033 10.167	1033 5.806	1033 6.976
1034 v_proj	1034 5.545	1034 10.485	1034 5.865	1034 6.984
1035 o_proj	1035 5.504	1035 10.628	1035 5.859	1035 6.952
1036 up_proj	1036 5.520	1036 10.691	1036 5.925	1036 7.047
1037 down_proj	1037 5.626	1037 11.118	1037 6.176	1037 7.119
1038 gate_proj	1038 5.513	1038 10.795	1038 5.885	1038 7.034
1039 all	1039 6.176	1039 11.942	1039 6.987	1039 7.981

1040 Table 9: **Ablation on activation quantizers**. We report WikiText-2 perplexity (lower is better). See
1041 Figure 4 for placement of each quantizer.

1042 Activation quantizers	1043 Llama 2-7B	1043 Llama 3.2-3B-it	1043 Llama 3-8B	1043 Qwen2.5-7B-it
1044 none (FP16)	1044 5.47	1044 10.48	1044 5.75	1044 6.85
1045 ao	1045 37.9	1045 17.1	1045 19.6	1045 8.10
1046 ap	1046 1.5e3	1046 55.9	1046 35.3	1046 9.4e3
1047 aw	1047 6.05	1047 12.3	1047 6.67	1047 4.7e4
1048 d	1048 8.5e7	1048 9.0e3	1048 2.3e5	1048 1.4e5
1049 g	1049 36.6	1049 25.5	1049 29.5	1049 9.35
1050 gs	1050 41.0	1050 76.9	1050 88.4	1050 25.4
1051 k	1051 5.95	1051 12.6	1051 6.61	1051 3.9e4
1052 ke	1052 6.02	1052 13.6	1052 6.90	1052 3.3e4
1053 mm	1053 1.1e4	1053 1.7e4	1053 3.1e5	1053 4.5e4
1054 na	1054 498	1054 101	1054 26.3	1054 310
1055 nm	1055 235	1055 156	1055 122	1055 8.2e3
1056 o	1056 294	1056 997	1056 1.5e3	1056 762
1057 q	1057 5.71	1057 12.3	1057 6.83	1057 10.9
1058 qe	1058 5.76	1058 12.2	1058 6.82	1058 12.2
1059 ra	1059 3.4e4	1059 1.3e5	1059 1.3e5	1059 3.6e4
1060 rm	1060 3.0e4	1060 1.4e5	1060 1.3e5	1060 8.8e3
1061 u	1061 34.6	1061 31.5	1061 43.8	1061 13.7
1062 v	1062 6.70	1062 12.0	1062 6.65	1062 7.13
1063 all	1063 3.2e4	1063 1.3e5	1063 1.3e5	1063 1.6e5

1064

F ABLATION STUDIES

1065 We introduce FPT \mathbf{T}_v which is an in-place replacement for R_2 (SpinQuant) and P_v (FlatQuant). We
1066 also propose \mathbf{T}_k , which has a similar aim as R_3 (SpinQuant) and P_h (FlatQuant), but is mergeable.
1067 At last, we introduce \mathbf{T}_u , which is an *addition* to QuaRot/SpinQuant’s Hadamard transform before
1068 the down projection. In this Appendix we ablate these FPTs.1072

F.1 TRANSFORM ABLATIONS

1073 \mathbf{T}_v . We introduce FPT \mathbf{T}_v , which is both mergeable, but also very expressive—we can choose and
1074 optimize *any* invertible $d_{\text{head}} \times d_{\text{head}}$ matrix for each attention head, giving in total $H \times d_{\text{head}} \times d_{\text{head}}$
1075 degrees of freedom. This is much stronger than SpinQuant’s R_2 (Liu et al., 2024a), which optimizes
1076 a single orthogonal matrix across all value heads (about $d_{\text{head}}^2/2$ degrees of freedom). It is also
1077 stronger than FlatQuant’s P_v , who propose two options for parametrizing P_v , either a Kronecker
1078 or full matrix (see Table 6), but in both cases not chosen per head (max $d_{\text{head}} \times d_{\text{head}}$ degrees of
1079 freedom).

We ablate the value of \mathbf{T}_v compared to P_v (full matrix) and R_2 . To isolate the effect of these FPTs, we quantize only weights, V-cache, and input to the out projection layer (W4A4). We use the same training set-up as in the main experiments.

We observe (Table 10) that \mathbf{T}_v performs consistently better across models, in particular significantly outperforming SpinQuant’s R_2 . Since all these options have the same inference cost—0, since they are mergeable—we believe \mathbf{T}_v should be a preferred choice.

Table 10: **\mathbf{T}_v is stronger than baseline FPTs.** We compare against R_2 and P_v from resp. SpinQuant and FlatQuant, which are also transforms applied to values and mergeable into \mathbf{W}_v and \mathbf{W}_o . We use W4A4KV4 with only weights, V-cache, and out projection input quantized, and report Wikitext perplexity (lower is better).

FPT	L3.2 3B-it	L3 8B	L2 7B
— (RTN-opt)	11.04	7.15	5.90
R_2 (SpinQuant)	11.49	7.05	6.06
P_v (FlatQuant)	10.86	6.67	5.74
\mathbf{T}_v (FPTQuant)	10.82	6.63	5.73

\mathbf{T}_k . We conduct a similar ablation for \mathbf{T}_k . \mathbf{T}_k is merged into \mathbf{W}_k and \mathbf{W}_q , and can thus help with key and query quantization. This is similar to R_3 and P_h from respectively SpinQuant and FlatQuant, although these transforms are applied online after the RoPE operator, and thus incur overhead. However, these baselines FPTs are less restricted as a result, and can thus ensure more mixing across channels.

We run a similar experiment as before, only quantizing weights, queries, and keys. We find (Table 11) that for 4-bit quantization of queries and keys, FPTQuant underperforms baselines due to the more restrictive FPT and less mixing across channels. At W4A8, we find \mathbf{T}_k performs on par with baseline FPTs. This experiment clearly shows the expressivity and cost trade-off, P2 vs P3. In some cases, especially when aggressive query-key quantization is beneficial, the overhead of R_3 or P_h may weigh up against their higher cost. In Table 12 we show that adding P_h indeed narrows the gap to FlatQuant on the hardest quantization settings.

Table 11: **Ablating Pre-RoPE.** We quantize only weights and post-RoPE queries and keys and compare the performance of three comparable FPTs. We find that the Pre-RoPE transform \mathbf{T}_k underperforms baselines at 4 bit quantization of the queries and keys. This is unsurprising— \mathbf{T}_k is designed to be mergeable before RoPE, but this results in a more constraint, and less expressive FPT. We observe that at 8 bit queries and keys, \mathbf{T}_k performs on par with baselines.

Quant	FPT	Llama 3.2 3B-it		Llama 3 8B		Llama 2 7B	
		Wiki	0-shot ⁶	Wiki	0-shot ⁶	Wiki	0-shot ⁶
4	— (RTN-opt)	11.20	62.41	7.11	68.88	5.86	66.11
	R_3 (SpinQuant)	10.78	63.19	6.63	70.47	5.69	68.03
	P_h (FlatQuant)	10.82	63.53	6.62	70.75	5.68	67.83
	\mathbf{T}_k (FPTQuant)	11.03	62.53	6.92	69.22	5.83	66.46
8	— (RTN-opt)	10.71	64.59	6.45	72.06	5.64	68.56
	R_3 (SpinQuant)	10.70	64.42	6.44	71.04	5.64	68.27
	P_h (FlatQuant)	10.71	64.88	6.44	72.00	5.65	68.26
	\mathbf{T}_k (FPTQuant)	10.71	64.66	6.44	71.32	5.65	68.38

\mathbf{T}_u . The activations before the down projection layer have large outliers. A Hadamard transform at this location has been shown to massively reduce the quantization error (Liu et al., 2024a; Ashkboos et al., 2024a), as it mixes outliers across channels and hence whitens the activation distribution. Whitening is more effective if variables (in this case, channels) have a similar scale. Our scaling transform \mathbf{T}_u achieves exactly this, whilst being completely mergeable.

1134 Table 12: **Including online P_h (Sun et al., 2025) into FPTQuant narrows the gap to FlatQuant.**
 1135 This incurs some additional overhead, but can be favourable for the hardest quantization settings. We
 1136 use the same setting as used in Table 2

#Bits W-A-KV	Method	Llama 3.2 3B-it		Llama 3 8B		Llama 2 7B	
		Wiki	0-shot	Wiki	0-shot	Wiki	0-shot
16-16-16	FP16	10.48	65.63	5.75	73.33	5.47	69.79
4-8-4	FlatQuant	10.88	63.69	6.51	70.83	5.91	66.04
	FPTQuant	11.12	62.42	6.78	69.46	6.05	62.68
	FPTQuant+ P_h	10.81	62.91	6.63	70.12	5.98	63.04
4-4-4	FlatQuant	11.38	61.00	9.55	61.43	951	29.70
	FPTQuant	11.71	59.27	9.74	52.96	940	29.65
	FPTQuant+ P_h	11.54	60.61	9.38	54.25	899	29.83

1147
 1148
 1149 In this ablation, we test the performance of a Hadamard transform \mathbf{T}_d with and without \mathbf{T}_u . We
 1150 use a randomized Hadamard transform for \mathbf{T}_d , as Liu et al. (2024a) find that even 1 and -1 scales
 1151 can perform better than non-randomized. Intuitively, \mathbf{T}_u has large benefits over using randomized
 1152 Hadamard transforms: the randomized Hadamard discrete binary vector is not easy to optimize,
 1153 does not allow proper scaling down of high-variance channels, and has been shown to exhibit large
 1154 variance w.r.t. initialization (Liu et al., 2024a). We only quantize the down projection input and
 1155 weights (W4A4), but leave all other activations unquantized. We train for 512 steps with batch size 8
 1156 and sequence length 2048 optimizing quantization grid and \mathbf{T}_u scalers, and run for three seeds.
 1157

1158 In Table 13 we observe that adding \mathbf{T}_u has a consistently significant positive effect on quantization
 1159 error. Like Liu et al. (2024a), we find that the randomized Hadamard transform has large variance,
 1160 yet we never observe it does better than when \mathbf{T}_u is added. The largest benefit is observed for Llama
 1161 2 7B, which has significant outliers in activation before the down projection, which \mathbf{T}_u can scale
 1162 down.

1162 Table 13: **Adding scaling transform \mathbf{T}_u before the Hadamard transform \mathbf{T}_d significantly reduces**
 1163 **quantization error.** Results for W4A4 quantization, with only the input to the down projection
 1164 quantized. QuaRot and SpinQuant use \mathbf{T}_d only.

FPT	Llama 3.2 3B-it		Llama 3 8B		Llama 2 7B	
	Wiki	0-shot ⁶	Wiki	0-shot ⁶	Wiki	0-shot ⁶
—	121 ± 18	30.63 ± 0.35	4958 ± 2399	29.88 ± 0.21	787 ± 160	29.9 ± 0.19
\mathbf{T}_d	12.16 ± 0.64	56.62 ± 2.15	10.75 ± 0.62	60.6 ± 0.82	83.8 ± 55.5	31.15 ± 0.84
$\mathbf{T}_u, \mathbf{T}_d$	10.84 ± 0.02	63.83 ± 0.18	7.5 ± 0.23	67.86 ± 0.95	11.8 ± 3.3	43.13 ± 4.95

1172 F.2 OPTIMIZATION

1173 F.2.1 LOCAL OPTIMIZATION

1174 In Section 3.2.1 we proposed a simple data-free and cheap local optimization strategy. Here, we ablate
 1175 the value of this for overall training stability and speed. We train Llama 3.2 3B-it with FPTQuant
 1176 end-to-end, with and without first locally optimizing for 200 steps (see Eq. 10). We repeat the
 1177 experiment for $[0, 32, 128, 256, 512]$ number of end-to-end training steps. As before, we use batch
 1178 size 16 and sequence length 2048, and 10% warm-up steps.

1179 We observe (Figure 5) that local optimization significantly improves pre-training performance. More
 1180 importantly, the better initialization advantage persists during end-to-end training, partly due to a
 1181 more stable training process. With larger number of end-to-end steps, local optimization becomes
 1182 less beneficial. Locally optimizing all transforms sequentially for 200 steps each takes only about 9
 1183 minutes (equivalent in wall time to about 20 end-to-end training steps), and this could be reduced
 1184 further by parallelizing. Consequently, we find that local optimization is a simple approach to make
 1185 end-to-end training faster and more efficient.

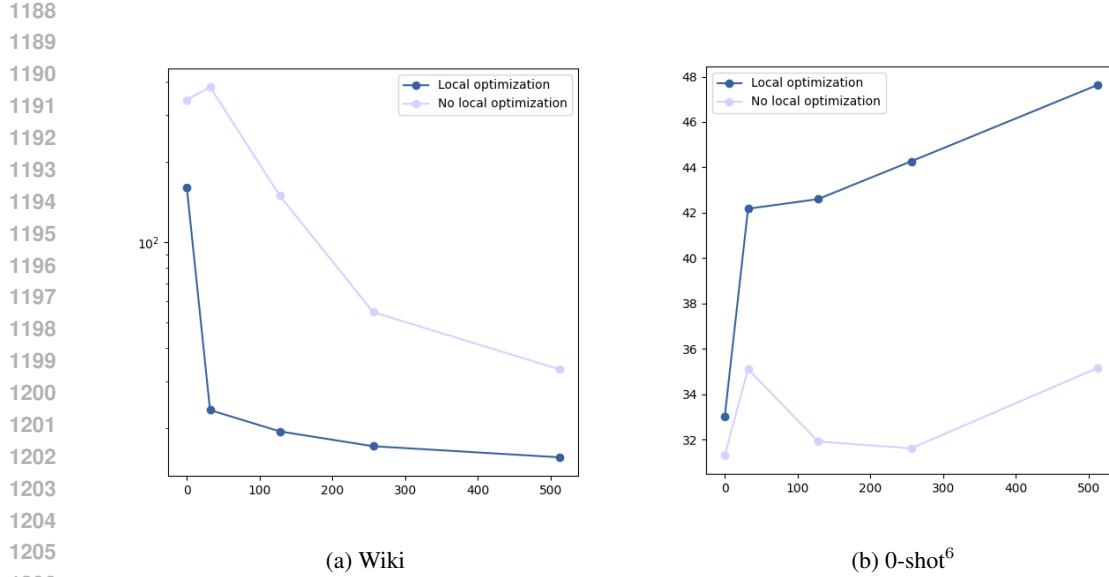


Figure 5: **Local optimization (Section 3.2.1) leads to more stable and faster end-to-end training.** We train FPTQuant on Llama 3.2 3B instruct with and without local optimization, for different number of end-to-end training steps.

Choosing p . During local optimization, we minimize the L_p of merged weights. In Table 14 we ablate different values of p for the same setting as before, evaluating the performance before and after end-to-end training. We find that no L_p performs significantly better than another—though not using local optimization ("No opt") does significantly worse on average and has a large variance. As before (Figure 5), this shows that local optimization improves training stability, though the choice of p is less important.

Table 14: **Influence of p on local L_p optimization.** We run FPTQuant with different local optimization losses L_p (and without local optimization, *no opt*). We use Llama 3.2 3B-it with the same settings as the main experiment (Section 4.3). We use 3 seeds. *For some runs, only one MMLU evaluation finished. In these cases we leave out the standard deviation.*

#Bits (W-A-KV)	p	Before end-to-end training			After end-to-end training		
		Wiki	0-Shot ⁶	MMLU	Wiki	0-Shot ⁶	MMLU
4-8-4	No opt	12.70 \pm 0.41	54.27 \pm 0.45	28.63	11.18 \pm 0.02	60.65 \pm 0.10	47.80
	2	11.90 \pm 0.03	56.84 \pm 0.89	38.74 \pm 1.44	11.10 \pm 0.02	61.96 \pm 0.25	50.21
	3	11.79 \pm 0.08	57.75 \pm 0.13	43.95 \pm 1.20	11.20 \pm 0.04	61.43 \pm 0.48	50.96 \pm 0.62
	4	11.83 \pm 0.03	59.62 \pm 0.54	45.06 \pm 0.67	11.19 \pm 0.03	62.01 \pm 0.34	50.63 \pm 1.92
	5	11.82 \pm 0.03	58.97 \pm 0.30	45.94 \pm 1.42	11.26 \pm 0.05	61.86 \pm 0.34	50.45 \pm 1.04
	6	11.78 \pm 0.03	58.23 \pm 0.08	43.91 \pm 0.46	11.17 \pm 0.02	61.83 \pm 0.51	51.02 \pm 0.25
4-4-4	No opt	4114 \pm 321	29.63 \pm 0.54	24.55 \pm 0.55	12.70 \pm 0.41	54.27 \pm 0.45	28.63
	2	340.01 \pm 17.42	31.36 \pm 0.15	24.76 \pm 0.24	11.90 \pm 0.03	56.84 \pm 0.89	38.74 \pm 1.44
	3	401.93 \pm 35.12	30.84 \pm 0.15	24.50 \pm 0.15	11.79 \pm 0.08	57.75 \pm 0.13	43.95 \pm 1.20
	4	435.74 \pm 78.71	30.40 \pm 0.53	24.84 \pm 0.46	11.83 \pm 0.03	59.62 \pm 0.54	45.06 \pm 0.67
	5	340.46 \pm 2.87	31.10 \pm 0.29	25.27	11.82 \pm 0.03	58.97 \pm 0.30	45.94 \pm 1.42
	6	448.20 \pm 41.51	31.21 \pm 0.10	24.03	11.78 \pm 0.03	58.23 \pm 0.08	43.91 \pm 0.46

F.2.2 STUDENT-TEACHER TRAINING.

We compare the value of end-to-end training in a student teacher fashion (E2E[ST]), versus the original next-token prediction loss (E2E[label]) used in e.g. SpinQuant (Liu et al., 2024a). We take Llama 3.2 3B instruct and use the same set-up as before—training on Wikitext with sequence length 2048, 1024 training steps, and batch size 16.

1242 We observe (Table 15) that next-token prediction leads to consistently better Wikitext perplexity. This
 1243 makes sense: the loss for next token prediction is highly similar to the loss of Wikitext perplexity, and
 1244 since we train and evaluate on (different splits of) Wikitext, the next-token prediction loss fine-tunes
 1245 the FPT weights and quantization grid to directly minimize this loss. However, we also observe that
 1246 for FPTs with learnable transforms and hence more capacity (SpinQuant, FPTQuant), **the next-token**
 1247 **prediction leads to significantly worse 0-shot performance**, which indicates that the next-token
 1248 prediction loss generalizes poorly to tasks that are different than the training set. In other words,
 1249 the next-token prediction loss allows the model to overfit to the target task. Student-teacher training
 1250 does not allow the same level of overfitting, since the output is fitted to match the whole unquantized
 1251 output vector. This also has the added value that a whole vector of probabilities (student-teacher
 1252 training) provides more signal than a one-hot label (next-token prediction).

1253 It may seem counterintuitive that FPTs can lead to such overfitting, since they are designed to preserve
 1254 the model function (P1). However, note that most FPTs have a large number of trainable parameters
 1255 (Table 6), which together with a learnable quantization grid, including activation clipping, entails a
 1256 large capacity to change the function *post-quantization*. For example, next-token prediction could
 1257 relatively easily decrease the loss by increasing the probability of words that are typical Wikitext
 1258 lingo (which could be achieved through simple clipping of non-typical tokens). Student-teacher loss
 1259 would not benefit from this, since even for untypical tokens, it needs to match the output probability.

1260 FPTs are appealing because they do not alter the model’s function significantly and do not require
 1261 significant training. The tendency of next-token prediction to overfit to the training task is undesirable
 1262 to this end; overfitting alters the model function significantly, and to avoid it we would need to
 1263 train for longer with more tasks. Consequently, we discourage researchers from using next-token
 1264 prediction for training FPTs, unless they desire to fine-tune to a specific training set.

1265
 1266 **Table 15: Student-teacher training of FPTs is better for generalization than next-token pre-**
 1267 **diction.** We compare two end-to-end training approaches on Llama 3.2 3B instruct (W4A4KV4
 1268 static quantization): next-token prediction, e.g., used in SpinQuant, versus student-teacher training.
 1269 We observe that for learnable FPTs (SpinQuant, FPTQuant), next-token prediction is able to fit the
 1270 training set (Wikitext) better, leading to lower Wikitext perplexity. However, this does not general-
 1271 ize—the 0-shot common-sense reasoning performance of these models is consistently lower than
 1272 their student-teacher equivalent.

Loss	Method	Wiki	0-Shot ⁶
E2E[label]	RTN-opt	46.29	32.98
E2E[ST]	RTN-opt	46.84	31.16
E2E[label]	SpinQuant	11.23	50.58
E2E[ST]	SpinQuant	12.71	54.88
E2E[label]	FPTQuant	11.58	51.73
E2E[ST]	FPTQuant	11.71	59.27

1283 G QUANTIZATION SETTINGS EXTENDED

1284
 1285 We extend Table 1 to include 0-shot performance and extra models. Table 16 includes Llama 3.2 3B
 1286 instruct and Llama 3 8B, as well as Qwen 2.5 7B instruct (Yang et al., 2024). The latter deteriorates
 1287 significantly for all transforms at 4-bit activations, due to more challenging activation distributions—
 1288 see Table 9. Consequently, we use W4A4KV4 for the Llama models, but W4A8KV8 for Qwen.

1291 H REASONING PERFORMANCE AND STANDARD DEVIATIONS

1292
 1293 To give insight into the stability of methods and significance of results, we repeat the experiment of
 1294 Table 2 for Llama 3.2 3B instruct for multiple seeds and estimate standard deviation. We also include
 1295 reasoning metrics 5-shot MMLU and GSM8K. This gives Table 17

Table 16: **FPTQuant does better at harder quantization settings.** Table 1 extended. Exploring different activations quantization settings with W4KV4A4 (Llama 3.2 3B instruct and Llama 3 8B) and W4A8KV8 (Qwen 2.5 7B instruct). *Linear+KV* is the setting used in (Ashkboos et al., 2024a; Liu et al., 2024a; Sun et al., 2025). *+BMM input* also quantizes the inputs to the attention batched matmuls. *All except residual* includes all intermediate activations, except for residual. We see that FPTQuant tends to underperform slightly on *+BMM*, due to the Pre-RoPE transform being cheaper, but less expressive, than baseline FPTs. This is compensated on the strictest setting, where FPTQuant almost consistently outperforms both baselines.

Quant	Method	L3.2 3B-it		L3 8B		Q2.5 7B-it	
		Wiki (↓)	Avg.(↑)	Wiki (↓)	Avg.(↑)	Wiki (↓)	Avg.(↑)
Linear+KV	Spinquant	12.73	52.85	11.04	54.58	7.66	71.95
	FlatQuant	11.37	61.32	9.55	61.00	7.47	72.69
	FPTQuant	12.78	54.27	9.74	59.27	7.61	71.80
+BMM	Spinquant	12.47	53.96	17.57	37.84	7.87	70.74
	FlatQuant	12.30	57.64	15.42	44.21	7.51	72.04
	FPTQuant	13.72	49.66	12.14	45.09	7.74	69.53
All except residual	Spinquant	20.83	39.94	52.27	34.04	9.23	65.95
	FlatQuant	18.64	46.43	23.45	41.19	9.24	66.78
	FPTQuant	16.95	44.77	18.51	41.84	8.44	68.17

Table 17: **More metrics and standard deviations.** Llama 3.2 3B-it W4A4KV4 and W4A8KV4 static quantization, run with 3 seeds to provide an estimate of standard deviation.

# Bits (W-A-KV)	Method	Wiki (↓)	0-shot ⁶ (↑)	5-shot MMLU (↑)	GSM8K (↑)
16-16-16	FP16	10.48	65.63	59.69	28.20
4-8-4	RTN-opt	11.68±0.07	58.65±0.47	46.45±1.04	12.56±2.13
	QuaRot	11.03±0.03	62.71±0.23	51.68±0.50	18.52±1.95
	SpinQuant	11.50±0.07	61.96±0.11	52.14±0.41	22.29±1.02
	FlatQuant	10.90±0.02	63.84±0.70	55.46±0.26	22.59±0.75
	FPTQuant	11.06±0.02	62.95±0.53	52.62±0.48	18.57±1.68
4-4-4	RTN-opt	64.86±4.09	32.48±0.18	24.98±0.18	1.14±0.06
	QuaRot	13.25±0.58	51.32±2.41	35.72±1.96	3.74±1.27
	SpinQuant	13.04±0.08	53.44±0.48	38.17±0.73	5.61±0.61
	FlatQuant	11.49±0.06	60.07±0.84	49.01±1.29	17.25±0.34
	FPTQuant	11.82±0.03	59.43±0.45	43.71±0.22	12.38±0.66

Overall, we see that in line with the main paper’s results, FPTQuant outperforms baselines SpinQuant and QuaRot almost consistently. Especially on the low bitwidth W4A4KV4, FPTQuant improves over SpinQuant/QuaRot very significantly. The more expensive FlatQuant performs comparably to FPTQuant for Wiki and 0-shot, but outperforms FPTQuant on the more sensitive reasoning tasks.

I DETAILED BENCHMARKING RESULTS

In this section, we provide additional details on runtime performance setup and evaluation of our method using dynamic quantization in comparison to other methods using FPTs.

Setup We implement FPTQuant, SpinQuant, FlatQuant, and INT4 baselines (using static and dynamic quantization) using PyTorch CUDA/12.1 and using INT4 CUTLASS kernels from QuaRot repository⁵. All the measurements are conducted on NVIDIA RTX 3080 Ti. We provide all our experiments on a single transformer block as the whole model does not fit on a single GPU for big enough model size and/or the batch size. We repeat each measurement 1000 times and report the mean speedup relative to FP16 baseline.

⁵<https://github.com/spcl/QuaRot>

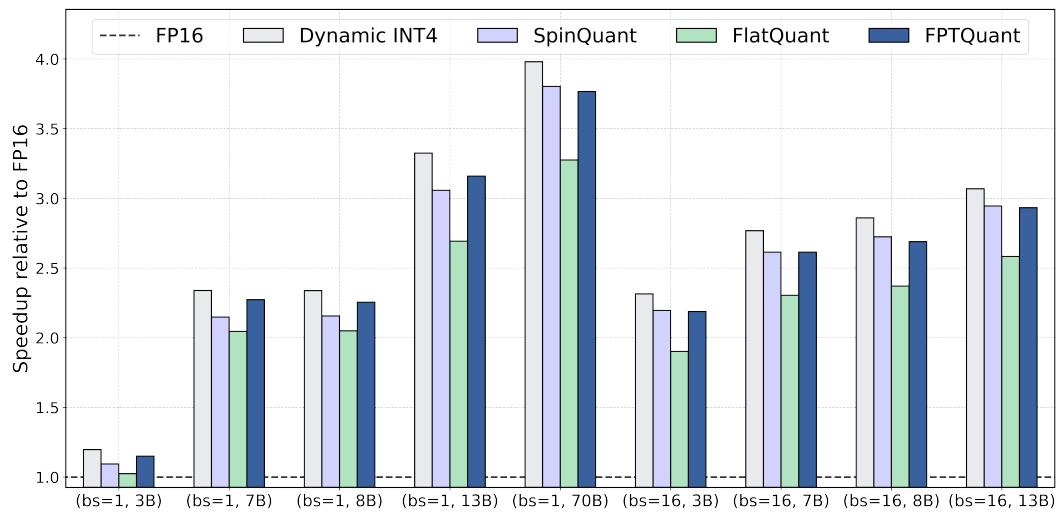


Figure 6: **Dynamic INT4 prefill speedup** of FPTQuant on a single transformer block of LLaMA models across different sizes (3B, 7B, 8B, 13B, and 70B), and batch sizes (1 and 16). We use a sequence length of 1024.

Specifically, we use CUTLASS kernels for quantization/de-quantization and linear layers. Because there is no native INT4 support on Nvidia hardware yet, we use INT8 storage, where each entry represents a pair of INT4 numbers (“double-packed” representation). The kernel for a linear layer, for instance, takes two packed tensors representing weights and activations and computes the matmul assuming INT32 accumulator. Note that query-key and softmax-value BMMs, which are crucial part of the computation, as well as elementwise multiplication in SwiGLU are not quantized in our simulations, and instead are kept in FP16.

Dynamic INT4 runtime Figure 6 shows the prefill speedup of FPTQuant across different batch sizes and model sizes, assuming dynamic INT4 quantization. For most configurations, we still get a solid $2.4\times - 3.8\times$ speedup over the FP16 implementation. The speedup is again consistently increasing with model size and batch size, as the computation becomes the main bottleneck. FPTQuant is on par or faster than SpinQuant and consistently faster than FlatQuant, with a relative speedup of 11-21%. Similar to static case, FPTQuant is once again within a 3-6% to the INT4 upper bound.

J COMPUTE RESOURCES

J.1 TRAINING COST

Although the FPTQuant transforms are mergeable (except Hadamard transform \mathbf{T}_d), we need to consider their training cost.

We detail the training times of the runs from Table 2. For all methods, we trained with a batch size of 4, sequence length 2048, and gradient checkpointing per transformer block, which allowed us to run on a single A100 GPU. We time total training and average over 1024×4 steps (i.e., 1024 training steps with gradient accumulation of 4), see Table 18.

Table 18: Average training time per step (seconds) across different models and methods.

Method	Llama 3.2 3B it	Llama 3 8B	Llama 2 7B
RTN-opt	4.5	7.7	7.3
QuaRot	5.3	8.7	8.4
SpinQuant	7.9	12.0	11.6
FlatQuant	10.3	13.7	19.5
FPTQuant	7.1	12.6	18.3

1404 The results are unsurprising. RTN-opt only optimizes the quantization parameters and is trivially
 1405 the fastest. QuaRot achieves almost the same time—it only adds static Hadamard Transforms to
 1406 RTN-opt, which incurs virtually no cost.

1407 SpinQuant is significantly more expensive than QuaRot, because it optimizes the relatively high-
 1408 dimensional rotation matrix \mathbf{T}_r (R_1 in their paper). This is more expensive than a standard matrix mul-
 1409 tiplication at training time, since it requires internally parametrizing the rotation matrix using either
 1410 Cayley or matrix exponentials (see `torch.nn.utils.parametrizations.orthogonal`).
 1411 On average, FPTQuant is slightly slower than SpinQuant. This makes sense, considering FPTQuant
 1412 includes more optimizable transforms in addition to rotation transform \mathbf{T}_r . Note that even the most
 1413 expensive training of FPTQuant (Llama 2 7B for 4096 steps) takes less than 1 single GPU day. Most
 1414 expensive is FlatQuant, which includes multiple non-mergeable, trainable transforms, including
 1415 multiple explicit reshapes of activations.

1416 The relative training time of FPTQuant can decrease further with a bit of optimization when sequence
 1417 length, batch size, or gradient accumulation increase—since all new FPTQuant transforms are
 1418 mergeable (except the cheap dynamic per-token scaler), they can be merged into the weights prior to
 1419 passing data and thus do **not** scale with input size. In contrast, FlatQuant transforms almost always
 1420 have a forward transform applied online at both training and inference time, and thus scale linearly
 1421 with the input batch size and sequence length.

1422 *Note: local optimization (Section 3.2.1) of FPTQuant is negligible; until convergence takes around 8*
 1423 *minutes for Llama 2 7B (1<% of training).*

1425 J.2 TRAINING COST OF INVERSE \mathbf{T}_v

1427 We may wonder about the cost of the inverse of transform \mathbf{T}_v . Surprisingly, the inverse of \mathbf{T}_v
 1428 is cheap to compute during training. This is partly because of the dimension $d_{\text{head}} = 128$ (for
 1429 tested models), and partly because it can be computed in parallel across the heads. In Table 19 we
 1430 time the inverse forward and backward passes, compared to SpinQuant’s rotation (parametrized in
 1431 `torch.nn.utils.parametrizations.orthogonal`). We find that an inverse is cheaper
 1432 to compute and backpropagate than parametrized rotations.

1433 **SVD for inverse.** Large head dimensions can also be supported efficiently by using a singular value
 1434 decomposition (SVD) to parametrize \mathbf{T}_v during training. For one head h , we parametrize:

$$1436 \mathbf{T}_v^h = \mathbf{U} \operatorname{diag}(\mathbf{s}) \mathbf{V}, \quad \text{with } \mathbf{s} \text{ a vector and } \mathbf{U}, \mathbf{V} \in O(d_{\text{head}})$$

1437 This requires rotation reparametrizations and more memory, but the inverse is simpler:

$$1439 \mathbf{T}_v^h = \mathbf{V}^T \operatorname{diag}(\mathbf{s}^{-1}) \mathbf{U}^T$$

1440 In our experiments, however, the SVD parametrization was slower and *not* more accurate than the
 1441 direct inverse (see Table 19), even for very large head dimensions. This is probably due to the need
 1442 for two orthogonal matrix parametrizations. Hence, in all the paper’s experiments we use the direct
 1443 inverse.

1445 J.3 TOTAL COMPUTE COST FOR PAPER

1447 All the experiments were executed on a single Nvidia A100 GPU equipped with 80GB of VRAM.
 1448 Models of sizes 3B, 7B and 8B needed respectively around 9.1, 14.5, and 16.5 hours of training with
 1449 FPTQuant, assuming the main setup with 1024 training steps, sequence length 2048, and a total batch
 1450 size of $16 = 4$ (per-device batch size) $\times 4$ (gradient accumulation). For obtaining all the results in the
 1451 paper, including the ablations, we needed 69.8 GPU days (A100). Including preliminary experiments
 1452 that did not make it in the final paper and hyperparameter tuning we estimate the total compute costs
 1453 of this research to approximately 386 GPU days.

1454 K GUIDE TO CHOOSING FPTs

1455 When choosing FPTs, there is a trade-off between expressivity (P2) and cost (P3). With FPTQuant,
 1456 we have aimed to find maximally expressive FPTs that are mergeable or very cheap. FlatQuant is

1458 **Table 19: Benchmarking cost of different transform operations for various sizes.** Benchmarking
 1459 was performed 1000 times with 5 repeats using `torch.utils.benchmark`, with input size
 1460 $(1024, 8, \text{dim})$ on an A100. Typical head sizes are 64/128. We observe that the direct inverse is fast.
 1461 Rotations are slightly slower due to expensive parametrizations (Cayley or matrix exponentials). SVD
 1462 decomposition for the inverse is even more expensive due to modelling two orthogonal matrices.

Operation	Dim	Forward (ms)	Forward + Backward (ms)
Inverse (direct)	64	0.463 ± 0.009	1.405 ± 0.010
Inverse (via SVD)	64	1.031 ± 0.006	2.586 ± 0.011
Rotation (Cayley)	64	0.439 ± 0.003	1.523 ± 0.008
Rotation (matrix exp)	64	0.443 ± 0.006	2.706 ± 0.030
Inverse (direct)	128	0.623 ± 0.008	2.014 ± 0.022
Inverse (via SVD)	128	1.322 ± 0.008	3.536 ± 0.020
Rotation (Cayley)	128	0.584 ± 0.002	2.200 ± 0.016
Rotation (matrix exp)	128	0.438 ± 0.004	2.877 ± 0.013
Inverse (direct)	1024	4.916 ± 0.011	34.765 ± 0.329
Inverse (via SVD)	1024	8.611 ± 0.009	41.090 ± 0.456
Rotation (Cayley)	1024	4.678 ± 0.004	35.869 ± 0.526
Rotation (matrix exp)	1024	1.454 ± 0.005	51.086 ± 2.286

1478 a strong baseline that regularly outperforms FPTQuant, although this incurs a cost. Fortunately, in
 1479 practice we can choose on a case-by-case basis which FPTs to include. Here we provide a high-level
 1480 guide to adding FPTs to your own model.

1. *Explore.* Evaluate quantization error per quantizer placement (e.g. Appendix E)
2. *Choose transforms.* Based on step 1, choose which FPTs to add:
 - (a) *Attention and FFN input.* R_1 (SpinQuant) and P_a, P_d (FlatQuant) are similar transforms. The first is shared across all layers of the model, whilst FlatQuant's are not. However, an orthogonal matrix R_1 has about $d^2/2$ degrees of freedom, whereas each of FlatQuant's Kronecker transforms only has about $2d$ degrees of freedom.⁶ Additionally, R_1 is mergeable, whereas P_a and P_d are not. As a result of this, R_1 should have preference unless a per-layer independent FPT like P_a, P_d is warranted—e.g. if some layers have much higher quantization error than others.
 - (b) *Keys and queries.* Depending on how difficult queries and keys are to quantize, one can choose T_k, R_3 (SpinQuant), or P_h (FlatQuant), in increasing order of expense and power (see Appendix F.1)
 - (c) *Values.* The T_v transform is more expressive than baselines and as a result better at reducing quantization error (Appendix F). Since it is mergeable and hence free, this should always be used for improving value and out projection input
 - (d) *Down projection input.* For many networks, these activations are the trickiest to quantize (Appendix E), which usually warrants an online transform (e.g. Hadamard). If a Hadamard is used, adding the mergeable T_u improves quantization further (Appendix F.1).
 - (e) *Residual* A dynamic residual scaler S can aid quantization if the residual has large outliers in particular tokens. There are multiple possible placements for S (Section 3.1.3), e.g. on the softmax output and after SwiGLU.
3. *Initialize FPTs.* Initialize transforms, e.g. as a Welsh-Hadamard matrix or identity.
4. *Locally optimize FPTs.* Locally optimizing transforms improves performance and reduces training time, whilst incurring very little cost (Appendix F.2.1).
5. *Set quantization range.* Set the initial quantization grid, e.g. using L_3 minimization (Appendix D). It is important to only set the grid now, so that initialized FPTs can be taken into account when choosing this grid.

1510 ⁶Of course, this ignores that more degrees of freedom does not necessarily mean the same space of possible
 1511 transforms is navigated—e.g. FlatQuant does not have an orthogonality constraint. Nonetheless, we have found
 R_1 to perform comparable as P_a, P_d .

1512 Table 20: **FPTQuant is function-preserving, and is stable during optimization.** We add i.i.d.
 1513 Gaussian noise $N(0, \sigma)$ to all transform parameters, keeping parametrization constraints (e.g. orthogonality) intact.
 1514 We observe that SpinQuant and FPTQuant remain completely constant—even for
 1515 larger noise, the output of the model remains the same (as desired by P1)

$\sigma \rightarrow$	0	0.1	0.3	1.0	3.0
<i>L3.2-1B-it</i>					
SpinQuant	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00
OSTQuant	13.16 ± 0.00	13.20 ± 0.02	19.01 ± 4.92	$3.1 \pm 0.7 \cdot 10^4$	$4.1 \pm 1.5 \cdot 10^4$
FlatQuant	13.16 ± 0.00	13.16 ± 0.00	13.18 ± 0.02	$5.5 \pm 7.5 \cdot 10^5$	$2.6 \pm 4.5 \cdot 10^2$
FPTQuant	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00	13.16 ± 0.00
<i>L3.2-3B-it</i>					
SpinQuant	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00
OSTQuant	11.05 ± 0.01	11.06 ± 0.05	14.58 ± 1.78	$1.4 \pm 0.5 \cdot 10^4$	$1.4 \pm 0.5 \cdot 10^4$
FlatQuant	11.05 ± 0.00	11.05 ± 0.00	11.63 ± 1.07	$1.5 \pm 2.9 \cdot 10^5$	$1.3 \pm 2.5 \cdot 10^5$
FPTQuant	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00	11.05 ± 0.00
<i>L3.8B</i>					
SpinQuant	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00
OSTQuant	6.14 ± 0.00	6.15 ± 0.00	8.02 ± 1.12	$2.7 \pm 1.5 \cdot 10^4$	$3.2 \pm 1.4 \cdot 10^4$
FlatQuant	6.14 ± 0.00	6.14 ± 0.00	6.35 ± 0.14	$8.8 \pm 11 \cdot 10^5$	$4.8 \pm 5.6 \cdot 10^5$
FPTQuant	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00	6.14 ± 0.00

1533
 1534
 1535 6. *Train end-to-end.* Train the FPTs and quantization grid end-to-end, with the unquantized
 1536 outputs as target.

1538 L FUNCTION-PRESERVATION AND SENSITIVITY ANALYSIS TO NOISY 1539 TRAINING

1542 The function-preserving property (desideratum P1) of FPTs is useful because it reduces the capacity
 1543 to change the pretrained model’s output, and consequently can avoid overfitting to calibration data.
 1544 We have conducted a sensitivity analysis to show the function-preserving properties of different
 1545 transforms *without quantization*. This also gives insight into training stability—if the output of the
 1546 model is stable w.r.t. the parametrization of transforms, it means noisier gradient updates are less
 1547 likely to lead to unstable training.

1548 We take the initialized transforms, and simulate noisy training dynamics by perturbing the parameters;
 1549 we add i.i.d. Gaussian noise with standard deviation $\sigma \in \{0, 0.1, 0.3, 1.0, 3.0\}$ to each transform
 1550 parameter. Naturally, we ensure the parametrizations remain correct—i.e. that an orthogonal matrix
 1551 remains orthogonal (using ‘`torch.nn.utils.parametrization`’). We do not add quantizers, since we want
 1552 to test desideratum P1. We run it for three model sizes, of 1B, 3B, and 8B parameters, and for 5 seeds.
 1553 See Table 20.

1554 SpinQuant and FPTQuant are very stable—even when we completely randomize the transform
 1555 parameters, we are ensured that the function-preserving properties are in fact, preserved, and that
 1556 output is stable. FlatQuant is theoretically function-preserving, but is less stable: their approach
 1557 consists of 6 transforms per transformer block, which each have 1 or 2 online matrix inversions. The
 1558 latter can result in floating point precision issues which destroy the function-preservation, roughly
 1559 observed from $\sigma = 0.3$ (for Llama 3.2 3B-it) and completely destroying the model performance at
 1560 $\sigma = 1$. We have found this is not an issue during training as long as a small learning rate is chosen
 1561 (i.e. the noise is small and the optimizer can correct errors in later steps).

1562 OSTQuant is not function-preserving; it uses smoothing transforms that do not cancel each other
 1563 out. For example, their S_{qk} transform does not commute with RoPE, and hence the query and key
 1564 transforms do not cancel out (i.e. no function-preservation). We see this in the results. Smoothing
 1565 vectors are initialized as identities, hence without noise the model works as expected (yields identical
 1566 output to the original full precision network). When the transform weights are updated even with

1566 relatively small noise ($\sigma = 0.3$), the model is no longer function-preserving and deviates significantly
1567 from the original model. This also means that the model has capacity to overfit the training data.
1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619