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ABSTRACT

Large language models (LLMs) require substantial compute, and thus energy, at
inference time. While quantizing weights and activations is effective at improving
efficiency, naive quantization of LLMs can significantly degrade performance due
to large magnitude outliers. This paper describes FPTQuant, which introduces
three novel, lightweight, and expressive function-preserving transforms (FPTs) to
facilitate quantization of transformers: (1) a mergeable pre-RoPE transform for
queries and keys, (2) a mergeable transform for values, and (3) a cheap, dynamic
per-token scaling transform. By leveraging the equivariances and independencies
inherent to canonical transformer operation, we designed these FPTs to maintain
the model’s function while shaping the intermediate activation distributions to
be more quantization friendly. FPTQuant requires no custom kernels and adds
virtually no overhead during inference. The FPTs are trained both locally to reduce
outliers, and end-to-end such that the outputs of the quantized and full-precision
models match. FPTQuant enables static INT4 quantization with minimal overhead
and shows SOTA speed-up of up to 3.9× over FP. Empirically, FPTQuant has an
excellent accuracy-speed trade-off—it is performing on par or exceeding most prior
work and only shows slightly lower accuracy compared to a method that is up to
29% slower.

1 INTRODUCTION

Motivation. Inference on large language models (LLMs) incurs a significant compute toll for every
token generated, which ultimately costs money and consumes environmental resources. These costs
limit the proliferation of LLM use cases, especially on resource constrained edge devices. They are
also a significant barrier to furthering AI research and democratization. Therefore, improving LLM
inference efficiency is a critical goal. Of all the numerous LLM efficiency techniques proposed to
date, quantization is by far the most successful; significantly reducing the inference cost by reducing
the data bit width across the model.

Transforms for aggressive quantization. Outliers in transformer weights, activations, and key-
value data are a key challenge for quantization (Bondarenko et al., 2021; Kovaleva et al., 2021;
Dettmers et al., 2022; Bondarenko et al., 2023; Sun et al., 2024). The fundamental issue is that
quantizing outliers to a regular grid leads to an unfortunate range-precision trade-off. We can either
(1) capture the outliers by increasing the range, but lose valuable precision at the highest distribution
density around zero, or (2) retain precision, but clip the outliers. Both options unfortunately impact
model performance. Prior work has explored operations, such as scalings or rotations, that can
be added or applied to pretrained networks to smooth outliers without altering the overall model
behaviour in the absence of quantization. For example, Xiao et al. (2024) take a single linear layer, W,
with input, X, and apply a per-channel scaling T = diag(s) to X before quantizing, to reduce outliers,
applying the inverse scales to the linear weights. Without quantizers, (XT)(T−1W) = XW, but
with quantizers Q, Q(XT)Q(T−1W) ̸= Q(X)Q(W). We refer to such operations as function-
preserving transforms (FPTs), for which we desire the following properties:

P1 Function-preservation. Without any quantization, inserting transform pairs should not
change the output (up to computational errors). In practice, this means each FPT typically
has an inverse operation.

1
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Figure 1: FPTQuant. FPTQuant consists of 6 transform types. (Tk, T̄k) is a scale-and-rotate transform
merged into the query and key weights; (Tv, T̄v) consists of invertible matrices per head merged into value and
output weights; transforms {Sn}Nn=1 (N = 2×number of transformer blocks for typical LLMs) are per-token
scalers applied to the residual and within the attention and MLP blocks. The scales Sn are computed by existing
RMSNorms, and in practice means now the RMSNorm is also applied to the residual (versus the original
network, see ×∗). We also use (Tu,T

−1
u ) a per-channel scaler merged into up and down projection weights

similar to (Hu et al., 2025), partly online Hadamard transform Td (Ashkboos et al., 2024a) and mergeable
rotation matrix Tr (Liu et al., 2024a).

P2 Expressivity. Transforms with a continuous parametrization and more degrees of freedom
are desirable. Continuity means transforms can be optimized directly, e.g. using gradient
descent. Extra degrees of freedom offer more flexibility for reducing the quantization error.

P3 Compute overhead. Depending on the FPT type and location, it may be possible to merge
(or ‘fuse’) it into an existing operation in a pretrained model. Non-mergeable FPTs represent
a new op in the computational graph, and incur additional overhead, as well as requiring
software and/or hardware support.

Contributions. Our contributions are threefold:

1. We introduce FPTQuant: Function-Preserving Transforms for Quantization (Figure 1).
FPTQuant includes three novel FPTs that are designed to be both expressive and cheap.

2. We show FPTQuant enables static INT4 quantization with minimal overhead. This provides
a SOTA speed-up of up to 3.9× over FP. FPTQuant requires no kernel-level changes.

3. We show FPTQuant has an excellent accuracy-speed trade-off—it is performing on par or
exceeding most prior work and only shows slightly lower accuracy compared to a method
that is up to 29% slower.

2 RELATED WORK

Quantization Neural network quantization has been demonstrated as an effective technique for
reducing the model size and improving computational efficiency (Krishnamoorthi, 2018; Nagel et al.,
2021). Quantization methods can generally be categorized into post-training quantization (PTQ)
and quantization-aware training (QAT) families. PTQ algorithms take a pretrained high precision
network and convert it directly into a fixed-point network without the need for the original training
pipeline (Banner et al., 2018; Cai et al., 2020; Choukroun et al., 2019; Hubara et al., 2020; Meller
et al., 2019; Zhao et al., 2019; Nagel et al., 2019; 2020; Li et al., 2021). These methods are data-free
or only require a small calibration dataset, and are generally fast and easy to use. Quantization-aware
training (QAT) methods (Gupta et al., 2015; Jacob et al., 2018; Esser et al., 2020; Bhalgat et al., 2020;
Nagel et al., 2022) simulate quantization during training, allowing the model to find more optimal
solutions compared to PTQ. However, they generally require longer training times, increased memory
usage, need for labeled data and hyperparameter tuning.
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LLM quantization The excessive training cost and memory usage of traditional QAT methods
make them less suitable for quantizing modern LLMs. A few works focus on developing efficient
variants of QAT for LLMs include (Liu et al., 2024b; Du et al., 2024; Chen et al., 2024; Dettmers
et al., 2024; Xu et al., 2023; Bondarenko et al., 2024). Notably, ParetoQ (Liu et al., 2025) is the only
work we are aware of that scales QAT to billions of tokens.

Post-training quantization of LLMs is a challenging task due to presence of strong numerical outliers
in weights and activations (Bondarenko et al., 2021; Kovaleva et al., 2021; Dettmers et al., 2022;
Bondarenko et al., 2023; Sun et al., 2024). Various strategies have been explored at tackling
these difficulties. These include employing second-order information to mitigate the quantization
error (Frantar et al., 2022); emphasizing the importance of so-called “salient” weights that correspond
to high-magnitude activations (Dettmers et al., 2023; Lin et al., 2023; Lee et al., 2024); separating
outliers and use mixed-precision (Kim et al., 2023; Huang et al., 2024; Egiazarian et al., 2024). Some
of the other LLM PTQ methods include (Jeon et al., 2023; Lee et al., 2023; Luo et al., 2023; Chee
et al., 2024). Note that many of these PTQ techniques focus primarily on weight quantization and
memory size reduction.

Function-preserving transformations Nagel et al. (2019) explored the idea of FPTs for CNN
quantization, observing that ReLU and per-channel scaling commute, which allows scaling of weights
across different layers. In the context of LLMs, Xiao et al. (2024) observe that activation quantization
is harder than weight quantization due to more outliers. They propose migrating problematic outliers
from the activations to the weights, using an online per-channel scaling factor for activations going
into linear layers. Wei et al. (2023) add a shift to the scaling, and use a grid search to find a scaler that
minimizes the mean-squared error per linear layer. Shao et al. (2024) extend this by including scaling
vectors for queries and keys, and using gradient descent to minimize the error per transformer block.

Chee et al. (2024) were the first to consider transforms that mix channels, albeit only for weight
quantization, focusing on vector quantization (Tseng et al., 2024) in later work. QuaRot (Ashkboos
et al., 2024a) shows randomized Hadamard transforms (RHTs) are effective at reducing outliers.
SpinQuant (Liu et al., 2024a) shows that different RHTs perform very differently, yet they cannot be
optimized. They extend QuaRot by adding two unconstrained rotation matrices, which are trained
to minimize the standard causal LM loss. Critically, these rotation matrices are placed such that
they can be merged with weights post-training, negating inference cost. Lin et al. (2024) use online
rotations consisting of fixed channel permutations and block diagonal rotations. OSTQuant (Hu
et al., 2025) use combinations of scaling vectors and rotations. Recently, FlatQuant (Sun et al., 2025)
introduced matrix multiplications with a Kronecker product of two smaller matrices. This provides a
transform that is both optimizable, and theoretically cheap to compute. In Appendix A we summarize
the associated costs for various transforms and an in-depth comparison of transforms in prior work.

3 METHOD

3.1 TRANSFORMS

We argue equivariances and independencies in pretrained models are key to developing better
FPTs, and should be explicitly exploited. Where a candidate FPT is equivariant w.r.t. pretrained
model operations, we have the freedom to choose whether to apply it before, or after said operation.
This can also influence whether the operation is mergeable. For example, Ashkboos et al. (2024b)
used the equivariance RMSNorm(XM) = RMSNorm(X)M for orthogonal M, to apply a rotation
matrix to the residual of LLMs, merging the transform and its inverse into the linear layers of each
transformer block. This is a powerful transform, yet it incurs no compute overhead. Understanding
equivariances and independencies in networks is thus essential for finding optimal trade-offs between
expressivity (P2) and inference cost P3. In this section, we will discuss three equivariances, and how
these offer three novel transforms.

3.1.1 PRE-ROPE TRANSFORM (MERGEABLE)

Reducing the bit width of KV cache and queries can significantly reduce memory footprint and
computational cost of attention, especially with longer context windows. Unfortunately, we cannot
naively merge transforms into the query and key projection weights, because modern LLMs use
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RoPE positional encodings (Su et al., 2024) (see Appendix C). We introduce a pair of pre-RoPE
transforms (Tk, T̄k), where Tk is applied to keys and T̄k can be interpreted as an inverse of Tk,
applied to the queries. The transforms consist of scaled 2× 2 rotation matrices, and applying these
to the query and key weights Pre-RoPE, the attention output remains unchanged. For simplicity we
first assume a single attention head. Denoting i, j ∈ N as the token indices and RoPE applied to
queries and keys as function f : Rd × N → Rd with f(x, i) = xRdhead

Θ,i (see details Appendix C),
the following holds:
Theorem 3.1. Let N = dhead/2, and Rn ∈ O(2) and sn ∈ R, for n = 1, ..., N . Define
Tk = diag(s) diag({Rn}Nn=1) and T̄k = diag(s−1) diag({Rn}Nn=1). Given query and key weights
(Wq,Wk) ∈ Rdin×dhead , define W̃q = WqT̄k and W̃k = WkTk. Now it holds:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨f(xiWq, i), f(xjWk, j)⟩

See Appendix C for the proof. In practice, for multi-head attention and grouped-query attention, we
can choose an independent transform for each key head. Assuming there are H key heads and mH
query heads for some m,H ∈ N (m = 1 for standard multihead attention), this means we have H
independent transforms as above. For the more typical grouped query-attention (m > 1), each key
head is attended to by multiple query heads, hence we need to repeat the corresponding Tk transform
across these heads. Generally, we can thus write:

s(h) ∈ Rd,R(h)
n ∈ O(2), ∀h, n (1)

T
(h)
k = diag(s(h)) diag({R(h)

n }Nn=1), (2)

Tk = diag({T(h)
k }Hh=1) (3)

T̄k = diag(T̄
(1)
k , ..., T̄

(1)
k︸ ︷︷ ︸

m×

, T̄
(2)
k , ..., T̄

(H)
k ), (4)

3.1.2 MULTIHEAD VALUE TRANSFORM (MERGEABLE)

Note that the attention probabilities A are of shape (B,mH, l1, l2) and the values are of size
(B,mH, l2, d). The batched matmul (BMM) multiplies these per sample, head, and token, and sum
this over l2. Note d plays no role in this BMM, consequently we are free to apply any invertible
transform to the d axis—in particular, for a single head, it holds that for any invertible matrix
T, the attention block output does not change upon merging T as follows: (A(XWv))Wo =
(A(X(WvT)))(T−1Wo). Note that the different heads in the values are independent, hence we can
apply a different transform to each attention head. Newer models use grouped-query attention, which
requires a bit of bookkeeping: we need to repeat the inverses per key head, across the corresponding
softmax heads. Assuming there are again H value heads (repeated to mH heads) and mH query
heads, we can choose any invertible T(h)

v ∈ Rd×d, and set:

Tv = diag({T(h)
v }Hh=1), (5)

T̄v = diag((T(1)
v )−1, ..., (T(1)

v )−1︸ ︷︷ ︸
m×

, (T(2)
v )−1, ..., (T(H)

v )−1), (6)

which are merged into respectively Wv and Wo weights.

3.1.3 PSEUDODYNAMIC RESIDUAL SCALING

In modern transformer blocks, the residual remains unnormalized—i.e. the LayerNorm or RMSNorm
that we apply to the input of the attention and FFN blocks, is not applied to the residual. In practice
this means each token of the residual can have a vastly different scale and is difficult to quantize.
Even if we do not quantize the residual, this implies that changing the residual representations of
tokens i and j may require vastly different scales of the output of the attention and FFN blocks if
the norm of i’s residual different than that of j’s. This may for example explain why the output of
the SwiGLU in the FFN (i.e. input of Wd) has serious outliers, see (Bondarenko et al., 2023) and
Appendix E, and that subsequent blocks can have similar outlier patterns, see Figure 2(a,b).

Quantization could thus be improved if only the residual was normalized. Fortunately, this can be
achieved at virtually no cost, without changing the output of the pretrained network. Moreover, we
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(a) Block 0 – Original
Kurtosis: 3128

(b) Block 1 – Original
Kurtosis: 2278

(c) Block 1 – With Sn

Kurtosis: 544 (-76.1%)

Figure 2: Dynamic scaling reduces intra-block outliers. We plot the intermediate FFN activations
of Llama 3.2 3B-it in the first two blocks (not visualizing the massive [BOS] outlier (Sun et al., 2024)).
In the zeroth block, there are some serious tokens with outliers (a). These outliers are absorbed
into the residual, and we observe the same tokens cause outliers one block later (b). By applying
S1 (scaling the FFN intermediate layer by the previous residual norm), we see that the outliers are
significantly reduced (c).

can apply a similar scaler inside the transformer blocks; this can reduce outliers for intra-block outlier
patterns (Figure 2)

Step 1: move RMSNorm. Let us index all the blocks in the transformer with n = 1, ..., N , where
we index the attention and MLP blocks separately (i.e. typically, N equals two times the number
of LLM transformer blocks). Let Xn denote the residual that bypasses a block, Yn the output of
a block, and Zn = Xn +Yn. Note, normally Xn+1 = Zn, and the transformer’s final output is
ZN . We move the RMSNorm, such that it is applied to the residual too. Let us use X̃n to denote
the new residuals. Moving the RMSNorm implies that the residuals are now scaled by a matrix
Sn = 1⊘ ||Xn||R of shape (batch, sequence length), where ⊘ denotes an element-wise division and
|| · ||R denotes the root-mean-square along the last dimension, || · ||R : x 7→ 1√

d
||x||2. In other words,

X̃n = Sn ⊙Xn, with ⊙ denoting the element-wise multiplication along the dimensions of Sn.

Step 2: rescale outputs feeding back into residuals. We do not want to change the network’s final
output. To ensure this, we need to make sure that anything that feeds back into the residual is rescaled
to the new normalized representation. We rescale the outputs Yn using the same scales, i.e. ensure:

Ỹn = Sn ⊙Yn, (7)

which then gives Z̃n = X̃n + Ỹn = Sn ⊙ Zn.

Note that (i) matrix multiplication, (ii) linear layers without bias1, and (iii) BMM all commute with a
scaler on the batch/sequence dimension. Consequently, we have a choice where we apply the scale,
see Figure 1. Importantly, this means we can apply the rescaling far into the attention and MLP
blocks, which we find reduces quantization error within these blocks.

Computing Sn. Note that for n > 1, Sn = 1⊘||Xn||R = 1⊘||Zn−1||R = 1⊘||Z̃n−1⊘Sn−1||R =

Sn−1⊘||Z̃n−1||R. The right-hand side means we can compute Sn based on Z̃n−1, instead of needing
to rescale the residual first back to Zn−1 explicitly. We get the recursive relationship:

S0 = 1 and Z̃0 = X1 (8)

Sn = Sn−1 ⊘ ||Z̃n−1||R n = 1, ..., N (9)

1We have not found any modern LLMs that use bias for the out and down projection layers.
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Step 3: rescale transformer output (in practice not needed). Note that Z̃N = Sn ⊙ ZN . To
ensure we get the same output as the original network, we should divide the very last output by Sn.
In practice we do not need to: the transformer is followed by the LM head, which starts with an
RMSNorm and hence removes the norm automatically.

3.1.4 OTHER TRANSFORMS

In addition to these new transforms, FPTQuant uses a rotation matrix Tr for rotating the residuals,
since this is completely mergeable and effective at reducing activation quantization error (Liu et al.,
2024a). Additionally, the notoriously bad activation quantization error at the down projection input
(see Appendix E and Table 3 in (Liu et al., 2024a)) warrants an online transform here; we use a
Hadamard transform as in (Ashkboos et al., 2024a; Chee et al., 2024), because it is cheap (Table 6).
We further use a per-channel scaler transform Tu that we merge into Wu and Wd, similar to (Hu
et al., 2025), which effectively rescales the channels before the Hadamard transform mixes them. An
illustration of all our transforms applied to a typical transformer block is shown in Figure 1.

3.2 OPTIMIZATION

3.2.1 LOCAL OPTIMIZATION

To reduce the worst outliers, we optimize all transforms first locally and independently—this improves
subsequent end-to-end training (Appendix F.2.1). We minimize the Lp norm of each transform’s
merged weights and use gradient descent. For example, for the residual rotation we optimize:

min
Tr

#layers∑
i=1

[ ∑
W∈{Wi

q,W
i
k,W

i
v,W

i
u,W

i
g}

||T−1
r W||p +

∑
W∈{Wi

o,W
i
d,W

i
g}

||WTr||p
]
, (10)

whilst for the PreRoPE transforms Ti
k of layer i, parameterized by Φi, we just minimize:

min
Φi

||Wi
qT̄

i
k||p + ||Wi

kT
i
k||p.

Since Tr affects all linear layers, we optimize it first (Eq 10). Locally optimized transforms are
merged into the weights, after which the next transform is optimized and so forth. We set p = 4,
following (Bondarenko et al., 2024), who showed L4 is good for determining the quantization grid.

3.2.2 END-TO-END OPTIMIZATION

We follow (Liu et al., 2024b) and use student-teacher training for reducing the quantization error
further. The original model’s weights are frozen. We train the student (the quantized model with
transforms) to approximate the teacher (the unquantized FP model), with Jensen-Shannon Divergence
loss:

min
Φ

EX [JSD[f(X), fΦ(X)], (11)

where f denotes the original model, fΦ the quantized model, and Φ includes both the transformation
and the quantization grid parameters. It is essential we include the latter—the grid cannot adapt to
the transformed input otherwise. Note that the original model weights are shared between student
and teacher, hence there is no additional memory footprint for the student-teacher framework. In
Appendix L we show that FPTQuant’s parametrization is stable, i.e. that even with noisy training
updates the function-preserving property (P1) holds.

The end-to-end student-teacher approach deviates from SpinQuant (Liu et al., 2024a) and
FlatQuant (Sun et al., 2025). SpinQuant uses the LLM’s original next-token prediction loss. Com-
pared to next-token prediction, student-teacher training: 1) provides more signal (i.e., for each data
point and sequence element, a full vector of probabilities, vs. a single label), and in turn this 2)
decreases overfitting. This is an important reason to avoid next-token prediction loss: although we
are working with transforms that in the absence of quantization do not change the model output, the
combination of the large number of parameters |Φ| and the quantization non-linearities (i.e. round-
ing), actually provide the transformed and quantized model with enough capacity to overfit—see
Appendix F.2.2. FlatQuant optimizes the mean squared error (MSE) per transformer block. This is
not directly applicable for transforms that may affect multiple blocks at once, for example a rotation
applied to the residual and merged into all linears, as used here and by (Ashkboos et al., 2024a; Liu
et al., 2024a).
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Figure 3: Static INT4 prefill speedup of FPTQuant on a single transformer block of Llama across different
model sizes (3B, 7B, 8B, 13B, and 70B), batch sizes (1 and 16), with 1024 sequence length.

4 EXPERIMENTS

Evaluation. We choose a range of models and settings to evaluate FPTQuant. We use Llama 2
7B/13B (Touvron et al., 2023) and Llama 3 8B (Grattafiori et al., 2024) to allow direct comparison to
reported results from QuaRot (Ashkboos et al., 2024a), SpinQuant (Liu et al., 2024a) and FlatQuant
(Sun et al., 2025). We add to this Llama 3.2 3B instruct—a newer and smaller model that is popular for
edge devices. Finally, we test other model families and bigger sizes including Ministral-8B (Mistral.ai,
2025) and Qwen2.5-32B (Yang et al., 2024) . We evaluate on Wikitext-2 (Merity et al., 2017), and
use LM-harness to evaluate the same Common Sense Reasoning tasks used in FlatQuant (Sun et al.,
2025): PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al.,
2019), ARC-e and ARC-c (Clark et al., 2018), and LAMBADA (Paperno et al., 2016). In Appendix H
we also include results for reasoning tasks (5-shot MMLU and GSM8K).

Baselines. We compare FPTQuant against the original floating point model (FP), PTQ using
rounding-to-nearest (RTN), RTN with optimizing the quantization ranges (RTN-opt), prior rotation-
based including QuaRot (Ashkboos et al., 2024a),SpinQuant (Liu et al., 2024a), OSTQuant (Hu et al.,
2025), and the more expensive but state-of-the-art FlatQuant (Sun et al., 2025).

Training Setup. For fair comparison, we use the same training and compute budget for all methods—
1024 steps with batch size 16 and sequence length 2048. We train on Wikitext-2 (Merity et al., 2017).
We found that end-to-end student-teacher training significantly improves generalization over next-
token prediction (see Appendix F.2.2), hence choose to use this for the RTN-opt, SpinQuant and
QuaRot baselines too. For each method and quantization setup we select hyper-parameters based on
the perplexity on the Wikitext-2 validation set.

Quantization Setup Transforms help with low-bit activation quantization, hence we study different
activation quantization settings—covering realistic deployment settings (Sec. 4.2), different bit
widths (Sec. 4.3), and dynamic activation quantization (Sec. 4.5). Weight quantization methods are
tangential to FPTQuant, hence we primarily use round-to-nearest (RTN). In Table 4 we study the
combination with the more advanced GPTQ (Frantar et al., 2022)

4.1 FPTQUANT IS FAST

Setup. We evaluate the runtime performance of our method and compare against other methods
using FTPs. We implement FPTQuant, SpinQuant, FlatQuant, and INT4 baseline using PyTorch
CUDA/12.1 and using INT4 CUTLASS kernels from QuaRot repository2. Note that QuaRot and

2https://github.com/spcl/QuaRot
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Table 1: FPTQuant excels for harder activation quantization settings. Exploring different activations
quantization settings on Llama 3.2 3B instruct. Left easy, right hard. Linears+KV is a popular setting and
simplest. +BMM input also quantizes the BMM inputs (queries and softmax output). All except residuals
includes all activations except for the residual. We report Wikitext perplexity—see Appendix G for 0-shot
performance and more models.

#Bits (W-A-KV) Method Linears+KV +BMM input All except residual
16-16-16 FP16 10.48 10.48 10.48

4-8-8
SpinQuant 11.71 10.88 11.73
FlatQuant 10.68 10.68 11.49
FPTQuant 10.78 10.56 10.99

4-4-4
SpinQuant 12.71 13.16 20.13
FlatQuant 11.38 12.30 18.60
FPTQuant 11.71 13.99 17.17

OSTQuant are about as fast as SpinQuant at inference time. QuaRot is slightly slower, since it has
an extra Hadamard transform applied to the head dimension (before Wo); OSTQuant is marginally
slower, since it uses online smoothing vectors after the RMSNorm (SpinQuant/FPTQuant merge
these into linear layers). For all methods we assume static INT4 quantization. All the measurements
are conducted on NVIDIA RTX 3080 Ti. We provide all our experiments on a single transformer
block as the whole model does not fit on a single GPU for big enough model size and/or the batch
size. We repeat each measurement 1000 times and report the mean speedup relative to FP16 baseline.
More details and additional results with using dynamic quantization are in Appendix I.

Results. Figure 3 shows the prefill speedup of FPTQuant across different batch sizes and model
sizes. For most configurations, we get 2.8–3.9× speedup over the FP16 implementation, which is
significantly faster than prior reported speedups of QuaRot and FlatQuant. The speedup is consistently
increasing with model size and batch size, as the computation becomes the main bottleneck. FPTQuant
is on par or faster than SpinQuant and consistently faster than FlatQuant, with a relative speedup of
15–29%. FPTQuant is also faster to train, see Appendix J.1. In all cases FPTQuant is within a 5–6%
to the INT4 upper bound.

4.2 FPTQUANT EXCELS AT HARD DEPLOYMENT SETTINGS

Motivation. There is a large decision space when choosing which activations to quantize. Prior
works (Ashkboos et al., 2024a; Liu et al., 2024a; Sun et al., 2025) focus on dynamic quantization
of linear inputs and KV cache. This deviates from LLM deployment in practice, which typically (i)
has better support for static activation quantization (see Appendix B for details); and (ii) quantizes
more intermediate activations for better speed, memory footprint (Tan et al., 2024; Shen et al., 2024).
In this experiment, we evaluate SpinQuant, FlatQuant, and FPTQuant for different static activation
quantization settings on Llama 3.2 3B instruct. We observe similar behaviour for Llama 3 8B and
Qwen 2.5 7B and zero-shot performance (Appendix G).

Results. We observe (Table 1) that FPTQuant performs comparably to baselines for quantization
settings with only linear inputs and KV cache quantize. It excels at the most challenging setting,
in which all activations within the attention and MLP block are quantized. FPTQuant slightly
underperforms baselines when queries and keys are quantized to 4 bit, since the Pre-RoPE transform
has less capacity to reduce quantizers here than the non-mergeable transforms of SpinQuant (R3) or
FlatQuant (Ph). In Appendix F we ablate the value of the different transforms used by FPTQuant.

4.3 MAIN RESULTS

Setup. In the previous section we saw that FPTQuant outperforms baselines comfortably for the
most realistic quantization settings. We extend our evaluation to more models and multiple bit-widths
for static quantization, focussing on the setting that FPTQuant did relatively worst: only Linears+KV.
In Appendix H we include standard deviations for a subset of these results, and include reasoning
metrics MMLU and GSM8K.
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Table 2: Static quantization. Comparison of the perplexity score on WikiText-2 (Merity et al., 2017) and
averaged accuracy on 6 Zero-shot Common Sense Reasoning tasks for Llama2-7B (L2-7B), Llama3.2-3B instruct
(L3.2-3B it), Llama3-8B (L3-8B), Ministral-8B instruct (M-8B it), Qwen2.5-32B (Q2.5-32B). SpinQuant did
not yet finish training for Q2.5-32B 4-4-4.

L2-7B L3.2-3B it L3-8B M-8B it Q2.5-32B
#Bits Method Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6

(W-A-KV) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑)
16-16-16 FP16 5.47 69.79 10.48 65.63 5.75 73.33 6.45 74.37 4.67 75.29

4-8-8

RTN 73.0 47.75 40.6 47.27 77.7 45.00 5.5e3 31.02 6.83 70.28
RTN-opt 7.11 56.93 11.20 61.09 7.32 67.35 10.13 51.97 5.72 75.15
QuaRot 6.22 63.43 10.89 63.12 7.04 67.60 6.76 73.41 5.28 76.24
SpinQuant 5.97 66.01 11.03 63.28 6.54 71.60 6.86 72.48 5.28 75.51
OSTQuant 6.49 61.85 11.05 62.48 6.56 71.46 6.82 72.87 5.28 75.96
FlatQuant 6.46 62.07 10.67 65.04 6.20 72.11 6.69 73.41 5.05 76.22
FPTQuant 5.85 65.96 10.65 64.00 6.27 72.72 6.72 73.59 5.12 77.51

4-8-4

RTN 526 38.61 128 40.40 127 41.46 5.1e3 30.29 8.08 65.79
RTN-opt 8.04 48.09 11.57 58.92 7.78 64.73 11.10 48.26 6.31 72.28
QuaRot 11.91 39.71 11.09 63.18 7.29 66.71 6.93 72.36 5.39 75.26
SpinQuant 6.45 59.28 11.47 59.04 7.43 65.56 7.04 71.52 5.42 76.18
OSTquant 7.01 55.66 11.28 61.44 7.17 68.37 6.99 71.25 5.38 74.53
FlatQuant 5.91 66.04 10.88 63.69 6.51 70.83 6.83 72.67 5.31 76.37
FPTQuant 6.05 62.68 11.12 62.42 6.78 69.46 7.04 71.10 5.37 75.76

4-4-4

RTN 2.4e3 39.13 2.2e3 29.17 1.6e5 37.67 1.7e5 29.33 1.8e6 29.83
RTN-opt 2.2e3 29.54 59.06 31.16 543 30.04 776 29.63 2.5e3 29.85
QuaRot 1218 30.21 12.81 54.38 19.72 42.76 8.34 64.68 7.51 68.01
SpinQuant 940 30.17 12.71 54.88 11.04 54.58 8.69 60.60
OSTQuant 519 30.75 13.41 52.43 9.66 56.69 10.00 50.88 8.39 66.84
FlatQuant 106 29.90 11.38 61.00 9.55 61.43 8.44 63.51 7.15 70.29
FPTQuant 603 29.76 11.71 59.46 9.74 52.96 8.49 63.69 6.98 70.60

Table 3: An impact of proposed transforms on Llama 3.2 3B it (W4A4KV4). For each setting, we tune the
LR and select the best one based on validation Wikitext perplexity. We repeat each experiment 3 times and report
mean and standard deviation. We report Wikitext perplexity, average 0-shot CSR, and 5-shot MMLU accuracies.

Transforms Wiki (↓) 0-shot6 (↑) MMLU (↑)
- 60.52±1.46 31.79±0.62 24.96±0.34

{Td,Tr,Tu} 12.78±0.08 54.50±1.43 35.46±1.18

{Td,Tr,Tu},Sn 12.57±0.32 55.38±0.69 36.88±0.95

{Td,Tr,Tu},Tk 12.45±0.25 55.05±1.12 38.33±1.09

{Td,Tr,Tu},Tv 11.84±0.03 58.34±0.25 41.54±0.88

FPTQuant (all) 11.80±0.07 58.87±0.74 44.64±0.25

Results. See Table 2. Similar to earlier results, FPTQuant almost always outperforms QuaRot
and SpinQuant. OSTQuant generally performs poorly—this is likely due to OSTQuant not being
strictly function-preserving, and having stability problems (Appendix L). In most cases FPTQuant
shows competitive performance to the significantly slower FlatQuant. However, we do note that for
the very challenging setup of W4A4KV4 and Llama 2 7B at W4A8KV4 the gap can sometimes be
bigger, especially for zero-shot accuracy. Note that FlatQuant with static quantization can sometimes
be unstable in the optimization, e.g. their W4A8KV8 Llama 2 7B results are worse than the more
difficult W4A8KV4 ones. We explore this instability further in Appendix L, where we do a sensitivity
analysis of the transforms. Also note that for W4A8KV8, we outperform FlatQuant, because the
mergeable FPTQuant transforms are better at reducing weight quantization error—at W4A8KV8,
this is relatively more important, since activation quantization is easier.

4.4 ABLATION OF PROPOSED TRANSFORMS

Setup. We explore the value of each transform. Let us take Llama 3.2 3B-it and the same quantiza-
tion setup as before, Linears+KV, at W4A4KV4. We subselect different transforms and repeat the
experiment for three seeds. We include more ablations in Appendix F.1.

Results. We find (Table 3) that each of the three transforms Sn, Tk, Tv helps reduce the perplexity
and improves the 0-shot CSR and 5-shot MMLU.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Dynamic quantization. We run the dynamic quantization experiment (W4A4KV4) from FlatQuant
(Table 1 and Table 2, (Sun et al., 2025)), reporting their results for baselines (marked *). §Using sequence length
of 2048. FPTQuant is on par or better than most of the baselines, except FlatQuant, yet FlatQuant is up to 29%
slower.

Llama 2 7B Llama 2 13B Llama 3 8B
Method Weight Wiki 0-shot6 Wiki 0-shot6 Wiki§ 0-shot6

Quantizer (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑)
FP16 - 5.47 69.79 4.88 72.55 6.14 73.33
SmoothQuant* RTN 83.1 - 35.9 - 210 -
QuaRot* RTN 8.56 57.73 6.10 66.25 10.60 61.34
SpinQuant* RTN 6.14 63.52 5.44 68.56 7.96 66.98
OSTQuant RTN 6.38 65.88 5.34 69.87 7.98 68.32
FlatQuant* RTN 5.79 67.96 5.12 71.42 6.98 71.23
FPTQuant RTN 5.97 66.06 5.37 69.81 7.67 68.41

QuaRot* GPTQ 6.10 65.01 5.40 68.91 8.16 65.79
SpinQuant* GPTQ 5.96 66.23 5.24 70.93 7.39 68.70
OSTQuant GPTQ 5.92 66.58 5.29 70.03 7.32 68.64
FlatQuant* GPTQ 5.78 67.47 5.11 71.64 6.90 71.33
FPTQuant GPTQ 6.07 66.44 5.35 69.97 7.60 68.70

4.5 DYNAMIC QUANTIZATION

Setup. We repeat the previous experiment with W4A4KV4 in a dynamic quantization setting. This
is identical to the FlatQuant setup, from which we report baseline results. For all methods, we
experiment with both round-to-nearest (RTN) and GPTQ for weight quantization. Since OSTQuant
only reports results with GPTQ, we used their codebase and provided commands 3 to generate results.
For OSTQuant and FPTQuant, we repeat each experiment for three seeds and report the median
perplexity and zero-shot accuracy.

Results. We observe (Table 4) that FPTQuant is consistently on par or better than all baselines
except FlatQuant. However, FPTQuant is up to 29% faster than FlatQuant.

5 DISCUSSION

FPTQuant. When choosing FPTs, there is a trade-off between expressivity (P2) and cost (P3):
more expressive transforms can help reduce quantization error, but incur overhead. By understanding
commutation properties of existing operations within the transformer, we have designed most of
FPTQuant’s transforms to be both expressive, yet mergeable into existing weights. In many settings,
the FPTs used by FPTQuant provide a good trade-off between accuracy and speed. For some
settings, one may prefer to combine FPTQuant with more expressive, non-mergeable transforms.
Choosing which FPTs to choose is largely dependent on the model, quantization setting, and resource
constraints. In Appendix K we provide some guidelines for practitioners who want to use FPTs for
quantizing their own models.

Limitations. We evaluated FPTQuant on LLMs from different generations and with different sizes.
While challenges and outlier patterns are often similar across different models (Bondarenko et al.,
2023; Kovaleva et al., 2021; Dettmers et al., 2022), it cannot be guaranteed that our insights and gains
equally translate to all LLMs.

Societal impact. We think FPTQuant has significant positive societal impact. FPTQuant empowers
the use of smaller bit widths, which reduces computational, energy, and environmental impact of
LLMs. Reduced LLM cost and memory footprint could make LLMs more accessible to economically-
disadvantaged populations, and could improve inference on edge devices (e.g. smartphones).

3https://github.com/BrotherHappy/OSTQuant
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A DETAILED TRANSFORMS COMPARISON

In Table 6 we include the representation and theoretical cost of existing transforms. In Table 7 we
review existing works, the transforms they use, and their placements.

Table 5 & Figure 4: Activation quantizers: aliases and locations.

Alias Location

ao Attention output
ap Attention probabilities
aw Attention weights
d Down projection output
g Gate projection output
gs SiLU output
k Key projection output
ke Key RoPE-embedded
mm Gate ⊙ up multiplication
na Norm self-attention
nm Norm MLP/FFN
o Output projection output
q Query projection output
qe Query RoPE-embedded
ra Residual addition self-attention
rm Residual addition MLP/FFN
u Up projection output
v Value projection output

Table 6: Comparing different transforms. Cost is measured in terms of a single matrix vector
multiplication, xM , where M ∈ Rn×n and row vector x ∈ Rn. Memory is total parameters.

Transform Cost Memory Matrix representation

Scaler O(n) n A = diag(s), with s ∈ Rn, si ̸= 0
Full matrix O(n2) n2 Any invertible matrix A ∈ Rn×n

Orthogonal O(n2) n2 A ∈ Rn×n s.t. AAT = I
Rotation O(n2) n2 A ∈ Rn×n s.t. AAT = I and det(A) = 1

Block diagonal (K blocks) O(n
2

K
) n2

K
A = diag(B1, ..., BK), with invertible
Bk ∈ R

n
K

× n
K , k = 1, ...,K

Kronecker O(n
√
n) ∼ 2n P = P1 ⊗ P2, with invertible Pi ∈ Rni×ni

and n1n2 = n (usually n1 ≈ n2 ≈
√
n)

Hadamard Transform (HT) O(n logn) 0 Hn = 1√
n

⊗log2 n
i=1

[
+1 +1
+1 −1

]
Randomized HT (RHT) O(n logn) n diag(s)Hn, with Bernoulli s ∈ {−1,+1}n
Block HT (K blocks) O(n log[n/K]) 0 A = diag({Hn/K}K)

B DISCUSSION ON STATIC VS DYNAMIC QUANTIZATION

Traditionally quantization literature and fixed-point accelerators always used static activation scaling
factors. However, most LLM quantization literature almost silently started assuming dynamic scaling
factors for activations. We call out the distinction here, since in practice it has a big impact on both
inference token rate and even which platforms are supported.

Static quantization fixes the maximum anticipated range of each quantized tensor ahead of
inference time. The quantization grid is determined based on a small calibration dataset, before fixing
the scale factors. At runtime, we need only apply these floating-point scale factors following integer
matrix multiplication (Nagel et al., 2021). However, despite the ubiquity of static quantization, all
prior work to date using FPTs for LLM quantization that we have surveyed (Section 2) assumes
dynamic quantization.
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Table 7: Function-preserving transform in LLM quantization literature. (R)HT: (randomized)
hadamard transform. CW: Channel-wise. E2E: end-to-end training, with either original [Label] or
student-teacher [ST] loss. For transform locations, see Table 5.

Work Transform style Transform location Mergeable Optimization

SmoothQuant CW Scaler na, nm True Local L∞
(Xiao et al., 2024)
Outlier supp+ CW Affine na, nm True Grid search
(Wei et al., 2023)
OmniQuant CW Affine na, nm, v True Block-wise
(Shao et al., 2024) CW Scaler (qe, ke) False† Block-wise
QuaRot HT mm‡, ao, (qe, ke) False -
(Ashkboos
et al., 2024a)

HT v True -
RHT ra, rm True -

SpinQuant RHT (qe, ke) R3, (mm) False -
(Liu et al., 2024a) Rotation merged into all

weights (R1)‡,
(v,out) (R2)

True E2E[Label]

DuQuant (Lin
et al., 2024)

Scaler+Permute+block-
wise rotate

linear weights/inputs False Iterative greedy

OSTQuant∗ Scaler+orthogonal na,nm,(v,out) True E2E[ST]
(Hu et al., 2025) HT (qe, ke), mm False -
FlatQuant Kronecker na (Pv), ao (Po),

nm (Pug), mm (Pd)
False E2E[Label]

(Sun et al., 2025) Full (qe, ke) (Ph) False E2E[Label]
Full (v,out) (Pv) True E2E[Label]

FPTQuant (us)‡ PreRoPE (q, k) True Local Lp+E2E[ST]
Full per head (v, out) True Local Lp+E2E[ST]
CW Scaler (up, down) True Local Lp+E2E[ST]
Sequence Scaler (ra, rm, ap, mm) False -

† Authors claim channel-wise scaling of queries and keys can be merged, which does not hold for non-additive positional encodings (e.g. RoPE).
‡We also use SpinQuant’s mergeable R1 rotation, and non-mergeable HT at mm. ∗OSTQuant also proposed a scaler before RoPE, but this does

not commute with RoPE and is thus not function-preserving.

Dynamic quantization (DQ) foregoes the calibration step and instead computes scale factors
dynamically at runtime for each token independently. This means we can set a large grid for tokens
with outliers, while keeping the grid small for tokens without outliers. While this obviously is a huge
boon for model performance, it unfortunately introduces a non-trivial compute cost.

DQ compute overhead. At inference time, DQ requires the minimum and maximum activation
values to be computed and reduced over the last dimension of the whole activation tensor, for each
token. The resulting scale factors must then be broadcast and applied to each value. This reduce-
broadcast operation can be relatively fast on a CPU, which operates on small chunks of data at a
time, such that the binary tree required for the reduction is manageable. However, GPUs and NPUs
typically process large tensors at once using custom hardware, and thus the reduction and broadcast
tree operations are deep and slow relative to the high throughput MAC operations themselves.

Lack of support for DQ. DQ is currently not natively supported on many popular hardware and
software stacks. For example, popular quantization packages such as Nvidia TensorRT (Corporation)
and PyTorch AO (PyTorch) do not support DQ. Edge hardware platforms also lack support for
DQ on their accelerators, including Qualcomm SnapDragon Qualcomm and Nvidia Deep Learning
Accelerator (DLA) Nvidia.

C PROOF THEOREM 1

RoPE background. RoPE’s (Su et al., 2024) aim is to modify the queries and keys, such that
the output of the query-key multiplication is dependent on their relative positions. RoPE achieves
this by multiplying queries and keys with a time-dependent rotation matrix, i.e. RoPE is a function
f : Rd×N → Rd with f(x, i) = xRdhead

Θ,i , where i denotes the token index, Θ the RoPE parameters,
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and dhead the head dimension. Matrix Rdhead

Θ,i is a block-diagonal matrix with N = dhead/2 blocks.
Each block n has size 2 × 2 and denotes a rotation of angle iθn of two dimensions. Denoting
a 2-dimensional rotation of angle θ by R

(2)
θ , we can thus write Rdhead

Θ,i = diag((Riθn)
N
n=1). As

desired, the product between embedded keys and queries depends only on their relative, not absolute,
position: ⟨f(qi, i), f(kj , j)⟩ = qiR

d
Θ,i−jk

⊺
j . We develop transforms that we can apply to queries

and keys, yet do not alter the output of the attention softmax. We design these to commute with
RoPE’s Rd

Θ,i for all i, so that they can be applied before RoPE and merged into Wq and Wk.

Theorem 3.1 Let N = dhead/2, and Rn ∈ O(2) and sn ∈ R, for n = 1, ..., N . Define
Tk = diag(s) diag({Rn}Nn=1) and T̄k = diag(s−1) diag({Rn}Nn=1). Given query and key weights
(Wq,Wk) ∈ Rdin×dhead , define W̃q = WqT̄k and W̃k = WkTk. Now it holds:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨f(xiWq, i), f(xjWk, j)⟩

Proof. First, let us prove that Tk commutes with Rdhead

Θ,i for any i and Θ. Both are block diagonal
(with blocks of size 2×2), so we can treat each block individually. For the individual blocks of Rd

Θ,i
and Tk, write Riθn and wnRϕn

. Trivially, scalars commute with matrices, i.e. wA = Aw for any
matrix A and w ∈ R. Additionally, 2 × 2 rotations commute, hence RiθnwnRϕn

= wnRϕn
Riθn .

As this holds for all blocks, Rdhead

Θ,i Tk = TkR
dhead

Θ,i .

Second, note that T̄kT
⊺
k = I ,4 since weights and rotations cancel out. Replacing Wq,Wk by

respectively W̃q and W̃k thus gives attention values:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨xiWqT̄kR
d
Θ,m,xjWkTkR

d
Θ,n⟩

= ⟨xiWqR
d
Θ,iT̄k,xjWkR

d
Θ,jTk⟩

= ⟨xiWqR
d
Θ,iT̄kT

⊺
k,xjWkR

d
Θ,j⟩

= ⟨f(xiWq, i), f(xjWk, j)⟩,

as desired.

Remark C.1. Note: Rd
Θ,i overall is a rotation matrix, however rotation matrices generally do not

commute unless they share the same axes of rotations. This motivates a transform that uses the same
block structure. Note also that a block-wise orthogonal matrix would not suffice, since orthogonal
matrices that are not rotations (i.e. that contain also a reflection) do not commute with rotations.

D EXPERIMENTAL DETAILS

General set-up. For all experiments and methods, we use batch size 16 with 2048 sequence length
for training. We train on Wikitext-2, for 1024 steps with cosine learning rate scheduler, 10% warm-up,
and learning rate based on validation PPL. For Qwen 2.5 32B, we use sequence length 512, and 512
steps. In all experiments, we use learnable weight and activation clipping, i.e. the quantization scale
and offset are parameters that are updated. We have found significant advantage to optimizing the
quantization grid end-to-end, as can be seen by the relatively good RTN-opt baseline in Table 2. For
Wikitext perplexity, we evaluate on sequence length 4096—except for Llama 2 7B/13B, for which
2048 is the maximum. We also report assuming sequence length 2048 for Llama 3 8B in Table 4, to
allow fair comparison with results from FlatQuant.

Baselines. This work focusses on FPTs. To really understand the value of the FPTs, and not just
better and more costly training, we have chosen to use the same training set-up for all methods. This
includes optimizing the quantization grid end-to-end. We have found that this significantly improved
the performance of some of the baselines—in particular QuaRot and RTN, which do not use any
optimization themselves. The only exception is the dynamic quantization experiment (Table 4): to
make direct comparison possible, we use the set-up and numbers from FlatQuant, which does not
optimize baselines.

4For single-headed attention, T̄k = T−1
k , but this is not true for grouped query attention (Eq. 1which is

typically used in LLMs.
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FPT Parametrization. We use torch.nn.utils.parametrizations.orthogonal to
parametrize orthogonal matrices with Cayley parametrization. Some FPTs use matrix inversions,
e.g. our Tv and FlatQuant’s Ph. To avoid computing the inverse during training, it is possible to
parametrize these matrices using a singular value decomposition instead, consisting of a diagonal
matrix and two orthogonal matrices. In practice, we have found that the added computation of the
orthogonality parametrization (which internally computes inverses in any case), leads to slower
training and worse results. To avoid potential instability problems with a direct inverse, we choose to
keep all transforms in double precision.

Quantizer range setting. Although we learn the quantization grids, a good initial quantization grid
improves training. We initialize the quantization grid during a range setting stage. For all experiments
and method, we pass 64 sequences through the unquantized network and choose a grid that minimizes
the Lp norm of the difference between the unquantized and would-be-quantized values. Note that
L∞ corresponds to minmax range setting, which is popular due to its simplicity. In practice, however,
we have found that p = 3 is better than either minmax, L4 or L2. We choose L3 range setting for all
experiments and also for baselines.

Hadamard non-powers of 2 FPTQuant, SpinQuant(Liu et al., 2024a), and QuaRot (Ashkboos
et al., 2024a) use Hadamard transforms. Hadamard transforms are simple to define for powers of
2, namely H2d =

⊗d
i=1

[
+1 +1
+1 −1

]
. For some non-powers of 2, there are Hadamard transforms, but

these are not implemented in popular packages like fast-hadamard-transform (Lab). The
simplest approach, and default behaviour in fast-hadamard-transform, is to pad with zeros
and discard added dimensions after applying the Hadamard transform. This is not correct for FPTs:
the added rows are necessary for mapping the transformed activations back to the original values, so
setting these rows to zero instead, will yield a different output.

To avoid problems with non-powers of 2, we take a block-wise Hadamard transform: we split
dimensions into K groups that are each a power of 2, and apply a standard Hadamard to each. The
residual and FFN hidden dimensions d in LLMs are typically 2n ×K with K small—the largest we
have found is K = 43 for the FFN hidden dimension in Llama 2 7B. The grouped Hadamard can
be parallelized efficiently by reshaping the channel dimension into two dimensions of sizes (K, 2n),
applying the Hadamard, and reshaping back. Using a grouped Hadamard reduces the mixing to within
groups, but we have found no evidence of a reduced ability to spread outliers due to this—probably
because group sizes are still always 256 (for Llama 2’s FFN hidden layer) or larger.

E QUANTIZATION ERROR PER QUANTIZER

In this section, we study the quantization sensitivity of individual weight and activation quantizers.

Setup We apply INT4 RTN quantization, without optimization, to a single quantizer location (see
Table 5 for notation) at a time, and report the WikiText-2 test perplexity. We follow the same protocol
for the range setting as in the main setup (Appendix D). For activation quantization study, we repeat
the experiment three times with different seeds (that affect the random selection of sequences for
range estimation) and report the mean value.

Observations In Table 8, we can see that each weight quantizer location adds about 0.1 perplexity,
on average, while the down projection stands out from the rest a bit more. We can also see that
the perplexity drop from quantizing all weights is roughly the sum of drops of individual weight
quantizers, meaning that the weight quantization noise is approximately additive.

From Table 9, however, we observe that activation quantization is significantly more challenging,
where often a single activation quantizer completely ruins the model performance. Specifically,
among the most problematic locations consistently for all models are down projection input/output
(mm, d), and residuals (ra, rm). Typically, those locations have the strongest outliers, which makes
them difficult to quantize with uniform affine quantization scheme.
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Table 8: Ablation on weight quantizers. We report WikiText-2 perplexity (lower is better).

Weight quantizers Llama 2-7B Llama 3.2-3B-it Llama 3-8B Qwen2.5-7B-it
none (FP16) 5.47 10.48 5.75 6.85

q_proj 5.567 10.434 5.795 6.914
k_proj 5.546 10.167 5.806 6.976
v_proj 5.545 10.485 5.865 6.984
o_proj 5.504 10.628 5.859 6.952
up_proj 5.520 10.691 5.925 7.047
down_proj 5.626 11.118 6.176 7.119
gate_proj 5.513 10.795 5.885 7.034

all 6.176 11.942 6.987 7.981

Table 9: Ablation on activation quantizers. We report WikiText-2 perplexity (lower is better). See
Figure 4 for placement of each quantizer.

Activation quantizers Llama 2-7B Llama 3.2-3B-it Llama 3-8B Qwen2.5-7B-it
none (FP16) 5.47 10.48 5.75 6.85

ao 37.9 17.1 19.6 8.10
ap 1.5e3 55.9 35.3 9.4e3
aw 6.05 12.3 6.67 4.7e4
d 8.5e7 9.0e3 2.3e5 1.4e5
g 36.6 25.5 29.5 9.35
gs 41.0 76.9 88.4 25.4
k 5.95 12.6 6.61 3.9e4
ke 6.02 13.6 6.90 3.3e4

mm 1.1e4 1.7e4 3.1e5 4.5e4
na 498 101 26.3 310
nm 235 156 122 8.2e3
o 294 997 1.5e3 762
q 5.71 12.3 6.83 10.9

qe 5.76 12.2 6.82 12.2
ra 3.4e4 1.3e5 1.3e5 3.6e4
rm 3.0e4 1.4e5 1.3e5 8.8e3
u 34.6 31.5 43.8 13.7
v 6.70 12.0 6.65 7.13

all 3.2e4 1.3e5 1.3e5 1.6e5

F ABLATION STUDIES

We introduce FPT Tv which is an in-place replacement for R2 (SpinQuant) and Pv (FlatQuant). We
also propose Tk, which has a similar aim as R3 (SpinQuant) and Ph (FlatQuant), but is mergeable.
At last, we introduce Tu, which is an addition to QuaRot/SpinQuant’s Hadamard transform before
the down projection. In this Appendix we ablate these FPTs.

F.1 TRANSFORM ABLATIONS

Tv . We introduce FPT Tv , which is both mergeable, but also very expressive—we can choose and
optimize any invertible dhead×dhead matrix for each attention head, giving in total H×dhead×dhead
degrees of freedom. This is much stronger than SpinQuant’s R2 (Liu et al., 2024a), which optimizes
a single orthogonal matrix across all value heads (about d2head/2 degrees of freedom). It is also
stronger than FlatQuant’s Pv, who propose two options for parametrizing Pv, either a Kronecker
or full matrix (see Table 6), but in both cases not chosen per head (max dhead × dhead degrees of
freedom).
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We ablate the value of Tv compared to Pv (full matrix) and R2. To isolate the effect of these FPTs,
we quantize only weights, V-cache, and input to the out projection layer (W4A4). We use the same
training set-up as in the main experiments.

We observe (Table 10) that Tv performs consistently better across models, in particular significantly
outperforming SpinQuant’s R2. Since all these options have the same inference cost—0, since they
are mergeable—we believe Tv should be a preferred choice.

Table 10: Tv is stronger than baseline FPTs. We compare against R2 and Pv from resp. SpinQuant
and FlatQuant, which are also transforms applied to values and mergeable into Wv and Wo. We
use W4A4KV4 with only weights, V-cache, and out projection input quantized, and report Wikitext
perplexity (lower is better).

FPT L3.2 3B-it L3 8B L2 7B
− (RTN-opt) 11.04 7.15 5.90
R2 (SpinQuant) 11.49 7.05 6.06
Pv (FlatQuant) 10.86 6.67 5.74
Tv (FPTQuant) 10.82 6.63 5.73

Tk. We conduct a similar ablation for Tk. Tk is merged into Wk and Wq, and can thus help
with key and query quantization. This is similar to R3 and Ph from respectively SpinQuant and
FlatQuant, although these transforms are applied online after the RoPE operator, and thus incur
overhead. However, these baselines FPTs are less restricted as a result, and can thus ensure more
mixing across channels.

We run a similar experiment as before, only quantizing weights, queries, and keys. We find (Table
11) that for 4-bit quantization of queries and keys, FPTQuant underperforms baselines due to the
more restrictive FPT and less mixing across channels. At W4A8, we find Tk performs on par with
baseline FPTs. This experiment clearly shows the expressivity and cost trade-off, P2 vs P3. In some
cases, especially when aggressive query-key quantization is beneficial, the overhead of R3 or Ph may
weigh up against their higher cost. In Table 12 we show that adding Ph indeed narrows the gap to
FlatQuant on the hardest quantization settings.

Table 11: Ablating Pre-RoPE. We quantize only weights and post-RoPE queries and keys and
compare the performance of three comparable FPTs. We find that the Pre-RoPE transform Tk

underperforms baselines at 4 bit quantization of the queries and keys. This is unsurprising—Tk is
designed to be mergeable before RoPE, but this results in a more constraint, and less expressive FPT.
We observe that at 8 bit queries and keys, Tk performs on par with baselines.

Quant FPT Llama 3.2 3B-it Llama 3 8B Llama 2 7B
Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6

4 − (RTN-opt) 11.20 62.41 7.11 68.88 5.86 66.11
R3 (SpinQuant) 10.78 63.19 6.63 70.47 5.69 68.03
Ph (FlatQuant) 10.82 63.53 6.62 70.75 5.68 67.83
Tk (FPTQuant) 11.03 62.53 6.92 69.22 5.83 66.46

8 − (RTN-opt) 10.71 64.59 6.45 72.06 5.64 68.56
R3 (SpinQuant) 10.70 64.42 6.44 71.04 5.64 68.27
Ph (FlatQuant) 10.71 64.88 6.44 72.00 5.65 68.26
Tk (FPTQuant) 10.71 64.66 6.44 71.32 5.65 68.38

Tu. The activations before the down projection layer have large outliers. A Hadamard transform at
this location has been shown to massively reduce the quantization error (Liu et al., 2024a; Ashkboos
et al., 2024a), as it mixes outliers across channels and hence whitens the activation distribution.
Whitening is more effective if variables (in this case, channels) have a similar scale. Our scaling
transform Tu achieves exactly this, whilst being completely mergeable.
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Table 12: Including online Ph (Sun et al., 2025) into FPTQuant narrows the gap to FlatQuant.
This incurs some additional overhead, but can be favourable for the hardest quantization settings. We
use the same setting as used in Table 2

#Bits Method Llama 3.2 3B-it Llama 3 8B Llama 2 7B
W-A-KV Wiki 0-shot Wiki 0-shot Wiki 0-shot

16-16-16 FP16 10.48 65.63 5.75 73.33 5.47 69.79
4-8-4 FlatQuant 10.88 63.69 6.51 70.83 5.91 66.04

FPTQuant 11.12 62.42 6.78 69.46 6.05 62.68
FPTQuant+Ph 10.81 62.91 6.63 70.12 5.98 63.04

4-4-4 FlatQuant 11.38 61.00 9.55 61.43 951 29.70
FPTQuant 11.71 59.27 9.74 52.96 940 29.65
FPTQuant+Ph 11.54 60.61 9.38 54.25 899 29.83

In this ablation, we test the performance of a Hadamard transform Td with and without Tu. We
use a randomized Hadamard transform for Td, as Liu et al. (2024a) find that even 1 and -1 scales
can perform better than non-randomized. Intuitively, Tu has large benefits over using randomized
Hadamard transforms: the randomized Hadamard discrete binary vector is not easy to optimize,
does not allow proper scaling down of high-variance channels, and has been shown to exhibit large
variance w.r.t. initialization (Liu et al., 2024a). We only quantize the down projection input and
weights (W4A4), but leave all other activations unquantized. We train for 512 steps with batch size 8
and sequence length 2048 optimizing quantization grid and Tu scalers, and run for three seeds.

In Table 13 we observe that adding Tu has a consistently significant positive effect on quantization
error. Like Liu et al. (2024a), we find that the randomized Hadamard transform has large variance,
yet we never observe it does better than when Tu is added. The largest benefit is observed for Llama
2 7B, which has significant outliers in activation before the down projection, which Tu can scale
down.

Table 13: Adding scaling transform Tu before the Hadamard transform Td significantly reduces
quantization error. Results for W4A4 quantization, with only the input to the down projection
quantized. QuaRot and SpinQuant use Td only.

FPT Llama 3.2 3B-it Llama 3 8B Llama 2 7B
Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6

− 121 ±18 30.63 ±0.35 4958 ±2399 29.88 ±0.21 787 ±160 29.9 ±0.19

Td 12.16 ±0.64 56.62 ±2.15 10.75 ±0.62 60.6 ±0.82 83.8 ±55.5 31.15 ±0.84

Tu,Td 10.84 ±0.02 63.83 ±0.18 7.5 ±0.23 67.86 ±0.95 11.8 ±3.3 43.13 ±4.95

F.2 OPTIMIZATION

F.2.1 LOCAL OPTIMIZATION

In Section 3.2.1 we proposed a simple data-free and cheap local optimization strategy. Here, we ablate
the value of this for overall training stability and speed. We train Llama 3.2 3B-it with FPTQuant
end-to-end, with and without first locally optimizing for 200 steps (see Eq. 10). We repeat the
experiment for [0, 32, 128, 256, 512] number of end-to-end training steps. As before, we use batch
size 16 and sequence length 2048, and 10% warm-up steps.

We observe (Figure 5) that local optimization significantly improves pre-training performance. More
importantly, the better initialization advantage persists during end-to-end training, partly due to a
more stable training process. With larger number of end-to-end steps, local optimization becomes
less beneficial. Locally optimizing all transforms sequentially for 200 steps each takes only about 9
minutes (equivalent in wall time to about 20 end-to-end training steps), and this could be reduced
further by parallelizing. Consequently, we find that local optimization is a simple approach to make
end-to-end training faster and more efficient.
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(a) Wiki (b) 0-shot6

Figure 5: Local optimization (Section 3.2.1) leads to more stable and faster end-to-end training.
We train FPTQuant on Llama 3.2 3B instruct with and without local optimization, for different
number of end-to-end training steps.

Choosing p. During local optimization, we minimize the Lp of merged weights. In Table 14 we
ablate different values of p for the same setting as before, evaluating the performance before and after
end-to-end training. We find that no Lp performs significantly better than another—though not using
local optimization ("No opt") does significantly worse on average and has a large variance. As before
(Figure 5), this shows that local optimization improves training stability, though the choice of p is
less important.

Table 14: Influence of p on local Lp optimization. We run FPTQuant with different local opti-
mization losses Lp (and without local optimization, no opt). We use Llama 3.2 3B-it with the same
settings as the main experiment (Section 4.3). We use 3 seeds. For some runs, only one MMLU
evaluation finished. In these cases we leave out the standard deviation.

#Bits p Before end-to-end training After end-to-end training
(W-A-KV) Wiki 0-Shot6 MMLU Wiki 0-Shot6 MMLU

4-8-4

No opt 12.70 ±0.41 54.27 ±0.45 28.63 11.18 ±0.02 60.65 ±0.10 47.80
2 11.90 ±0.03 56.84 ±0.89 38.74 ±1.44 11.10 ±0.02 61.96 ±0.25 50.21
3 11.79 ±0.08 57.75 ±0.13 43.95 ±1.20 11.20 ±0.04 61.43 ±0.48 50.96 ±0.62

4 11.83 ±0.03 59.62 ±0.54 45.06 ±0.67 11.19 ±0.03 62.01 ±0.34 50.63 ±1.92

5 11.82 ±0.03 58.97 ±0.30 45.94 ±1.42 11.26 ±0.05 61.86 ±0.34 50.45 ±1.04

6 11.78 ±0.03 58.23 ±0.08 43.91 ±0.46 11.17 ±0.02 61.83 ±0.51 51.02 ±0.25

4-4-4

No opt 4114 ±321 29.63 ±0.54 24.55 ±0.55 12.70 ±0.41 54.27 ±0.45 28.63
2 340.01 ±17.42 31.36 ±0.15 24.76 ±0.24 11.90 ±0.03 56.84 ±0.89 38.74 ±1.44

3 401.93 ±35.12 30.84 ±0.15 24.50 ±0.15 11.79 ±0.08 57.75 ±0.13 43.95 ±1.20

4 435.74 ±78.71 30.40 ±0.53 24.84 ±0.46 11.83 ±0.03 59.62 ±0.54 45.06 ±0.67

5 340.46 ±2.87 31.10 ±0.29 25.27 11.82 ±0.03 58.97 ±0.30 45.94 ±1.42

6 448.20 ±41.51 31.21 ±0.10 24.03 11.78 ±0.03 58.23 ±0.08 43.91 ±0.46

F.2.2 STUDENT-TEACHER TRAINING.

We compare the value of end-to-end training in a student teacher fashion (E2E[ST]), versus the
original next-token prediction loss (E2E[label]) used in e.g. SpinQuant (Liu et al., 2024a). We take
Llama 3.2 3B instruct and use the same set-up as before—training on Wikitext with sequence length
2048, 1024 training steps, and batch size 16.
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We observe (Table 15) that next-token prediction leads to consistently better Wikitext perplexity. This
makes sense: the loss for next token prediction is highly similar to the loss of Wikitext perplexity, and
since we train and evaluate on (different splits of) Wikitext, the next-token prediction loss fine-tunes
the FPT weights and quantization grid to directly minimize this loss. However, we also observe that
for FPTs with learnable transforms and hence more capacity (SpinQuant, FPTQuant), the next-token
prediction leads to significantly worse 0-shot performance, which indicates that the next-token
prediction loss generalizes poorly to tasks that are different than the training set. In other words,
the next-token prediction loss allows the model to overfit to the target task. Student-teacher training
does not allow the same level of overfitting, since the output is fitted to match the whole unquantized
output vector. This also has the added value that a whole vector of probabilities (student-teacher
training) provides more signal than a one-hot label (next-token prediction).

It may seem counterintuitive that FPTs can lead to such overfitting, since they are designed to preserve
the model function (P1). However, note that most FPTs have a large number of trainable parameters
(Table 6), which together with a learnable quantization grid, including activation clipping, entails a
large capacity to change the function post-quantization. For example, next-token prediction could
relatively easily decrease the loss by increasing the probability of words that are typical Wikitext
lingo (which could be achieved through simple clipping of non-typical tokens). Student-teacher loss
would not benefit from this, since even for untypical tokens, it needs to match the output probability.

FPTs are appealing because they do not alter the model’s function significantly and do not require
significant training. The tendency of next-token prediction to overfit to the training task is undesirable
to this end; overfitting alters the model function significantly, and to avoid it we would need to
train for longer with more tasks. Consequently, we discourage researchers from using next-token
prediction for training FPTs, unless they desire to fine-tune to a specific training set.

Table 15: Student-teacher training of FPTs is better for generalization than next-token pre-
diction. We compare two end-to-end training approaches on Llama 3.2 3B instruct (W4A4KV4
static quantization): next-token prediction, e.g., used in SpinQuant, versus student-teacher training.
We observe that for learnable FPTs (SpinQuant, FPTQuant), next-token prediction is able to fit the
training set (Wikitext) better, leading to lower Wikitext perplexity. However, this does not general-
ize—the 0-shot common-sense reasoning performance of these models is consistently lower than
their student-teacher equivalent.

Loss Method Wiki 0-Shot6

E2E[label] RTN-opt 46.29 32.98
E2E[ST] RTN-opt 46.84 31.16
E2E[label] SpinQuant 11.23 50.58
E2E[ST] SpinQuant 12.71 54.88
E2E[label] FPTQuant 11.58 51.73
E2E[ST] FPTQuant 11.71 59.27

G QUANTIZATION SETTINGS EXTENDED

We extend Table 1 to include 0-shot performance and extra models. Table 16 includes Llama 3.2 3B
instruct and Llama 3 8B, as well as Qwen 2.5 7B instruct (Yang et al., 2024). The latter deteriorates
significantly for all transforms at 4-bit activations, due to more challenging activation distributions—
see Table 9. Consequently, we use W4A4KV4 for the Llama models, but W4A8KV8 for Qwen.

H REASONING PERFORMANCE AND STANDARD DEVIATIONS

To give insight into the stability of methods and significance of results, we repeat the experiment of
Table 2 for Llama 3.2 3B instruct for multiple seeds and estimate standard deviation. We also include
reasoning metrics 5-shot MMLU and GSM8K. This gives Table 17
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Table 16: FPTQuant does better at harder quantization settings. Table 1 extended. Exploring different
activations quantization settings with W4KV4A4 (Llama 3.2 3B instruct and Llama 3 8B) and W4A8KV8
(Qwen 2.5 7B instruct). Linears+KV is the setting used in (Ashkboos et al., 2024a; Liu et al., 2024a; Sun et al.,
2025). +BMM input also quantizes the inputs to the attention batched matmuls. All except residual includes all
intermediate activations, except for residual. We see that FPTQuant tends to underform slightly on +BMM, due
to the Pre-RoPE transform being cheaper, but less expressive,t than baseline FPTs. This is compensated on the
strictest setting, where FPTQuant almost consistently outperforms both baselines.

L3.2 3B-it L3 8B Q2.5 7B-it
Quant Method Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6

(↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑)

Linear+KV
Spinquant 12.73 52.85 11.04 54.58 7.66 71.95
FlatQuant 11.37 61.32 9.55 61.00 7.47 72.69
FPTQuant 12.78 54.27 9.74 59.27 7.61 71.80

+BMM
Spinquant 12.47 53.96 17.57 37.84 7.87 70.74
FlatQuant 12.30 57.64 15.42 44.21 7.51 72.04
FPTQuant 13.72 49.66 12.14 45.09 7.74 69.53

All except residual
Spinquant 20.83 39.94 52.27 34.04 9.23 65.95
FlatQuant 18.64 46.43 23.45 41.19 9.24 66.78
FPTQuant 16.95 44.77 18.51 41.84 8.44 68.17

Table 17: More metrics and standard deviations. Llama 3.2 3B-it W4A4KV4 and W4A8KV4
static quantization, run with 3 seeds to provide an estimate of standard deviation.

# Bits Method Wiki 0-shot6 5-shot MMLU GSM8K
(W-A-KV) (↓) (↑) (↑) (↑)

16-16-16 FP16 10.48 65.63 59.69 28.20
4-8-4 RTN-opt 11.68±0.07 58.65±0.47 46.45±1.04 12.56±2.13

QuaRot 11.03±0.03 62.71±0.23 51.68±0.50 18.52±1.95
SpinQuant 11.50±0.07 61.96±0.11 52.14±0.41 22.29±1.02
FlatQuant 10.90±0.02 63.84±0.70 55.46±0.26 22.59±0.75
FPTQuant 11.06±0.02 62.95±0.53 52.62±0.48 18.57±1.68

4-4-4 RTN-opt 64.86±4.09 32.48±0.18 24.98±0.18 1.14±0.06
QuaRot 13.25±0.58 51.32±2.41 35.72±1.96 3.74±1.27
SpinQuant 13.04±0.08 53.44±0.48 38.17±0.73 5.61±0.61
FlatQuant 11.49±0.06 60.07±0.84 49.01±1.29 17.25±0.34
FPTQuant 11.82±0.03 59.43±0.45 43.71±0.22 12.38±0.66

Overall, we see that in line with the main paper’s results, FPTQuant outperforms baselines SpinQuant
and QuaRot almost consistently. Especially on the low bitwidth W4A4KV4, FPTQuant improves
over SpinQuant/QuaRot very significantly. The more expensive FlatQuant performs comparably to
FPTQuant for Wiki and 0-shot, but outperforms FPTQuant on the more sensitive reasoning tasks.

I DETAILED BENCHMARKING RESULTS

In this section, we provide additional details on runtime performance setup and evaluation of our
method using dynamic quantization in comparison to other methods using FTPs.

Setup We implement FPTQuant, SpinQuant, FlatQuant, and INT4 baselines (using static and
dynamic quantization) using PyTorch CUDA/12.1 and using INT4 CUTLASS kernels from QuaRot
repository5. All the measurements are conducted on NVIDIA RTX 3080 Ti. We provide all our
experiments on a single transformer block as the whole model does not fit on a single GPU for big
enough model size and/or the batch size. We repeat each measurement 1000 times and report the
mean speedup relative to FP16 baseline.

5https://github.com/spcl/QuaRot
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Figure 6: Dynamic INT4 prefill speedup of FPTQuant on a single transformer block of LLaMA
models across different sizes (3B, 7B, 8B, 13B, and 70B), and batch sizes (1 and 16). We use a
sequence length of 1024.

Specifically, we use CUTLASS kernels for quantization/de-quantization and linear layers. Because
there is no native INT4 support on Nvidia hardware yet, we use INT8 storage, where each entry
represents a pair of INT4 numbers (“double-packed” representation). The kernel for a linear layer,
for instance, takes two packed tensors representing weights and activations and computes the matmul
assuming INT32 accumulator. Note that query-key and softmax-value BMMs, which are crucial
part of the computation, as well as elementwise multiplication in SwiGLU are not quantized in our
simulations, and instead are kept in FP16.

Dynamic INT4 runtime Figure 6 shows the prefill speedup of FPTQuant across different batch
sizes and model sizes, assuming dynamic INT4 quantization. For most configurations, we still
get a solid 2.4× – 3.8× speedup over the FP16 implementation. The speedup is again consistently
increasing with model size and batch size, as the computation becomes the main bottleneck. FPTQuant
is on par or faster than SpinQuant and consistently faster than FlatQuant, with a relative speedup of
11-21%. Similar to static case, FPTQuant is once again within a 3-6% to the INT4 upper bound.

J COMPUTE RESOURCES

J.1 TRAINING COST

Although the FPTQuant transforms are mergeable (except Hadamard transform Td), we need to
consider their training cost.

We detail the training times of the runs from Table 2. For all methods, we trained with a batch size of
4, sequence length 2048, and gradient checkpointing per transformer block, which allowed us to run
on a single A100 GPU. We time total training and average over 1024× 4 steps (i.e., 1024 training
steps with gradient accumulation of 4), see Table 18.

Table 18: Average training time per step (seconds) across different models and methods.

Method Llama 3.2 3B it Llama 3 8B Llama 2 7B
RTN-opt 4.5 7.7 7.3
QuaRot 5.3 8.7 8.4
SpinQuant 7.9 12.0 11.6
FlatQuant 10.3 13.7 19.5
FPTQuant 7.1 12.6 18.3
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The results are unsurprising. RTN-opt only optimizes the quantization parameters and is trivially
the fastest. QuaRot achieves almost the same time—it only adds static Hadamard Transforms to
RTN-opt, which incurs virtually no cost.

SpinQuant is significantly more expensive than QuaRot, because it optimizes the relatively high-
dimensional rotation matrix Tr (R1 in their paper). This is more expensive than a standard matrix mul-
tiplication at training time, since it requires internally parametrizing the rotation matrix using either
Cayley or matrix exponentials (see torch.nn.utils.parametrizations.orthogonal).
On average, FPTQuant is slightly slower than SpinQuant. This makes sense, considering FPTQuant
includes more optimizable transforms in addition to rotation transform Tr. Note that even the most
expensive training of FPTQuant (Llama 2 7B for 4096 steps) takes less than 1 single GPU day. Most
expensive is FlatQuant, which includes multiple non-mergeable, trainable transforms, including
multiple explicit reshapes of activations.

The relative training time of FPTQuant can decrease further with a bit of optimization when sequence
length, batch size, or gradient accumulation increase—since all new FPTQuant transforms are
mergeable (except the cheap dynamic per-token scaler), they can be merged into the weights prior to
passing data and thus do not scale with input size. In contrast, FlatQuant transforms almost always
have a forward transform applied online at both training and inference time, and thus scale linearly
with the input batch size and sequence length.

Note: local optimization (Section 3.2.1) of FPTQuant is negligible; until convergence takes around 8
minutes for Llama 2 7B (1<% of training).

J.2 TRAINING COST OF INVERSE Tv

We may wonder about the cost of the inverse of transform Tv. Surprisingly, the inverse of Tv

is cheap to compute during training. This is partly because of the dimension dhead = 128 (for
tested models), and partly because it can be computed in parallel across the heads. In Table 19 we
time the inverse forward and backward passes, compared to SpinQuant’s rotation (parametrized in
torch.nn.utils.parametrizations.orthogonal). We find that an inverse is cheaper
to compute and backpropagate through than parametrized rotations.

SVD for inverse. Large head dimensions can also be supported efficiently by using a singular value
decomposition (SVD) to parametrize Tv during training. For one head h, we parametrize:

Th
v = U diag(s)V, with s a vector and U,V ∈ O(dhead)

This requires rotation reparametrizations and more memory, but the inverse is simpler:

Th
v = VT diag(s−1)UT

In our experiments, however, the SVD parametrization was slower and not more accurate than the
direct inverse (see Table 19), even for very large head dimensions. This is probably due to the need
for two orthogonal matrix parametrizations. Hence, in all the paper’s experiments we use the direct
inverse.

J.3 TOTAL COMPUTE COST FOR PAPER

All the experiments were executed on a single Nvidia A100 GPU equipped with 80GB of VRAM.
Models of sizes 3B, 7B and 8B needed respectively around 9.1, 14.5, and 16.5 hours of training with
FPTQuant, assuming the main setup with 1024 training steps, sequence length 2048, and a total batch
size of 16 = 4 (per-device batch size) ×4 (gradient accumulation). For obtaining all the results in the
paper, including the ablations, we needed 69.8 GPU days (A100). Including preliminary experiments
that did not make it in the final paper and hyperparameter tuning we estimate the total compute costs
of this research to approximately 386 GPU days.

K GUIDE TO CHOOSING FPTS

When choosing FPTs, there is a trade-off between expressivity (P2) and cost ( P3). With FPTQuant,
we have aimed to find maximally expressive FPTs that are mergeable or very cheap. FlatQuant is
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Table 19: Benchmarking cost of different transform operations for various sizes. Benchmarking
was performed 1000 times with 5 repeats using torch.utils.benchmark, with input size
(1024, 8, dim) on an A100. Typical head sizes are 64/128. We observe that the direct inverse is fast.
Rotations are slightly slower due to expensive parametrizations (Cayley or matrix exponentials). SVD
decomposition for the inverse is even more expensive due to modelling two orthogonal matrices.

Operation Dim Forward (ms) Forward + Backward (ms)
Inverse (direct) 64 0.463±0.009 1.405±0.010
Inverse (via SVD) 64 1.031±0.006 2.586±0.011
Rotation (Cayley) 64 0.439±0.003 1.523±0.008
Rotation (matrix exp) 64 0.443±0.006 2.706±0.030
Inverse (direct) 128 0.623±0.008 2.014±0.022
Inverse (via SVD) 128 1.322±0.008 3.536±0.020
Rotation (Cayley) 128 0.584±0.002 2.200±0.016
Rotation (matrix exp) 128 0.438±0.004 2.877±0.013
Inverse (direct) 1024 4.916±0.011 34.765±0.329
Inverse (via SVD) 1024 8.611±0.009 41.090±0.456
Rotation (Cayley) 1024 4.678±0.004 35.869±0.526
Rotation (matrix exp) 1024 1.454±0.005 51.086±2.286

a strong baseline that regularly outperforms FPTQuant, although this incurs a cost. Fortunately, in
practice we can choose on a case-by-case basis which FPTs to include. Here we provide a high-level
guide to adding FPTs to your own model.

1. Explore. Evaluate quantization error per quantizer placement (e.g. Appendix E)
2. Choose transforms. Based on step 1, choose which FPTs to add:

(a) Attention and FFN input. R1 (SpinQuant) and Pa, Pd (FlatQuant) are similar trans-
forms. The first is shared across all layers of the model, whilst FlatQuant’s are not.
However, an orthogonal matrix R1 has about d2/2 degrees of freedom, whereas each of
FlatQuant’s Kronecker transforms only has about 2d degrees of freedom.6 Additionally,
R1 is mergeable, whereas Pa and Pd are not. As a result of this, R1 should have
preference unless a per-layer independent FPT like Pa, Pd is warranted—e.g. if some
layers have much higher quantization error than others.

(b) Keys and queries. Depending on how difficult queries and keys are to quantize, one
can choose Tk, R3 (SpinQuant), or Ph (FlatQuant), in increasing order of expense and
power (see Appendix F.1)

(c) Values. The Tv transform is more expressive than baselines and as a result better at
reducing quantization error (Appendix F). Since it is mergeable and hence free, this
should always be used for improving value and out projection input

(d) Down projection input. For many networks, these activations are the trickiest to
quantize (Appendix E), which usually warrants an online transform (e.g. Hadamard). If
a Hadamard is used, adding the mergeable Tu improves quantization further (Appendix
F.1).

(e) Residual A dynamic residual scaler S can aid quantization if the residual has large
outliers in particular tokens. There are multiple possible placements for S (Section
3.1.3), e.g. on the softmax output and after SwiGLU.

3. Initialize FPTs. Initialize transforms, e.g. as a Welsh-Hadamard matrix or identity.
4. Locally optimize FPTs. Locally optimizing transforms improves performance and reduces

training time, whilst incurring very little cost (Appendix F.2.1).
5. Set quantization range. Set the initial quantization grid, e.g. using L3 minimization

(Appendix D). It is important to only set the grid now, so that initialized FPTs can be taken
into account when choosing this grid.

6Of course, this ignores that more degrees of freedom does not necesarilly mean the same space of possible
transforms is navigated—e.g. FlatQuant does not have an orthogonality constraint. Nonetheless, we have found
R1 to perform comparable as Pa, Pd.
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Table 20: FPTQuant is function-preserving, and is stable during optimization. We add i.i.d.
Gaussian noise N(0, σ) to all transform parameters, keeping parametrization constraints (e.g. orthog-
onality) intact. We observe that SpinQuant and FPTQuant remain completely constant—even for
larger noise, the output of the model remains the same (as desired by P1)

σ → 0 0.1 0.3 1.0 3.0
L3.2-1B-it

SpinQuant 13.16±0.00 13.16±0.00 13.16±0.00 13.16±0.00 13.16±0.00

OSTQuant 13.16±0.00 13.20±0.02 19.01±4.92 3.1±0.7 · 104 4.1±1.5 · 104
FlatQuant 13.16±0.00 13.16±0.00 13.18±0.02 5.5±7.5 · 105 2.6±4.5 · 102
FPTQuant 13.16±0.00 13.16±0.00 13.16±0.00 13.16±0.00 13.16±0.00

L3.2-3B-it
SpinQuant 11.05±0.00 11.05±0.00 11.05±0.00 11.05±0.00 11.05±0.00

OSTQuant 11.05±0.01 11.06±0.05 14.58±1.78 1.4±0.5 · 104 1.4±0.5 · 104
FlatQuant 11.05±0.00 11.05±0.00 11.63±1.07 1.5±2.9 · 105 1.3±2.5 · 105
FPTQuant 11.05±0.00 11.05±0.00 11.05±0.00 11.05±0.00 11.05±0.00

L3 8B
SpinQuant 6.14±0.00 6.14±0.00 6.14±0.00 6.14±0.00 6.14±0.00

OSTQuant 6.14±0.00 6.15±0.00 8.02±1.12 2.7±1.5 · 104 3.2±1.4 · 104
FlatQuant 6.14±0.00 6.14±0.00 6.35±0.14 8.8±11 · 105 4.8±5.6 · 105
FPTQuant 6.14±0.00 6.14±0.00 6.14±0.00 6.14±0.00 6.14±0.00

6. Train end-to-end. Train the FPTs and quantization grid end-to-end, with the unquantized
outputs as target.

L FUNCTION-PRESERVATION AND SENSITIVITY ANALYSIS TO NOISY
TRAINING

The function-preserving property (desideratum P1) of FPTs is useful because it reduces the capacity
to change the pretrained model’s output, and consequently can avoid overfitting to calibration data.
We have conducted a sensitivity analysis to show the function-preserving properties of different
transforms without quantization. This also gives insight into training stability—if the output of the
model is stable w.r.t. the parametrization of transforms, it means noisier gradient updates are less
likely to lead to unstable training.

We take the initialized transforms, and simulate noisy training dynamics by perturbing the parameters;
we add i.i.d. Gaussian noise with standard deviation σ ∈ {0, 0.1, 0.3, 1.0, 3.0} to each transform
parameter. Naturally, we ensure the parametrizations remain correct—i.e. that an orthogonal matrix
remains orthogonal (using ‘torch.nn.utils.parametrization‘). We do not add quantizers, since we want
to test desideratum P1. We run it for three model sizes, of 1B, 3B, and 8B parameters, and for 5 seeds.
See Table 20.

SpinQuant and FPTQuant are very stable—even when we completely randomize the transform
parameters, we are ensured that the function-preserving properties are in fact, preserved, and that
output is stable. FlatQuant is theoretically function-preserving, but is less stable: their approach
consists of 6 transforms per transformer block, which each have 1 or 2 online matrix inversions. The
latter can result in floating point precision issues which destroy the function-preservation, roughly
observed from σ = 0.3 (for Llama 3.2 3B-it) and completely destroying the model performance at
σ = 1. We have found this is not an issue during training as long as a small learning rate is chosen
(i.e. the noise is small and the optimizer can correct errors in later steps).

OSTQuant is not function-preserving; it uses smoothing transforms that do not cancel each other
out. For example, their Sqk transform does not commute with RoPE, and hence the query and key
transforms do not cancel out (i.e. no function-preservation). We see this in the results. Smoothing
vectors are initialized as identities, hence without noise the model works as expected (yields identical
output to the original full precision network). When the transform weights are updated even with
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relatively small noise (σ = 0.3), the model is no longer function-preserving and deviates significantly
from the original model. This also means that the model has capacity to overfit the training data.
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