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Abstract

Recent advances in deep learning have enabled fast and accurate prediction of1

protein-ligand binding poses through methods such as Uni-Mol Docking. These2

techniques utilize deep neural networks to predict interatomic distances between3

proteins and ligands. Subsequently, ligand conformations are generated to satisfy4

the predicted distance constraints. However, directly optimizing atomic coordinates5

often results in distorted, and thus invalid, ligand geometries; which are disastrous6

in actual drug development. We introduce UMD-fit as a practical solution to7

this problem applicable to all distance-based methods. We demonstrate it as an8

improvement to Uni-Mol Docking, which retains the overall distance prediction9

pipeline while optimizing ligand positions, orientations, and torsion angles instead.10

Experimental evidence shows that UMD-fit resolves the vast majority of invalid11

conformation issues while maintaining accuracy.12

1 Introduction13

Molecular docking refers to the precise prediction of protein-ligand binding configurations. Successful14

docking methods enable vast applications in drug design, from fast virtual screening of small15

molecules to improved insights of structure-activity relationships (SAR), which can help medicinal16

chemists understand the binding mechanism of molecules with target proteins . Traditional docking17

software, such as AutoDock Vina and Schrödinger GLIDE, [8, 3], has relied on algorithms that18

optimize the conformation and orientation of the ligand within the protein binding site. However, they19

are unable to describe certain interactions due to the simplified scoring functions owing to maintain a20

reasonable cost and speed [10]. Recent advances in deep learning shed light on new possibilities for21

predicting ligand binding poses. When applied to molecular docking, they could model large, highly22

flexible ligands such as peptides and long-range interactions without incurring in prohibitive costs,23

enabling higher accuracy than traditional docking methods.24

Recently, many studies have proposed deep learning-based protein-ligand complex structure predic-25

tion, achieving significant improvements in quantitative metrics such as RMSD [6, 2, 12]. However,26

as pointed out by [1] they have considerable defects in the rationality of small molecule conformations27

such as abnormal bond lengths, changes in chirality or wrong geometries in aromatic rings; which28

is unacceptable in drug development applications and hinders their applicability in SAR studies.29

Therefore, an optimization method to prevent these issues that respects the flexibility around rotatable30

bonds and preserves the stereochemistry, thus producing plausible ligand conformations by default,31

would increase reliability and adoption of deep learning in molecular docking.32

Herein, we identify many of the issues related to unreasonable ligand conformations pointed out33

by [1] to be a consequence of direct optimization of coordinates over a model-parametrized loss34

function; and propose UMD-fit these problems in protein-ligand binding pose prediction. UMD-fit35

optimizes ligand translation, orientation, and inner torsion angles instead of directly optimizing36
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atomic coordinates. Stereochemical configurations are also enforced during the optimization process.37

This allows the resulting conformation to intrinsically meet rigid geometry requirements. To address38

issues arising from equivalence between atoms, we used the symmetric RMSD as the final metric.39

We combined Uni-Mol Docking[12] and UMD-fit (Uni-Mol Docking with fit conformations) for a40

practical application, modifying the final optimization from the predicted distance matrix, while41

maintaining the rest of the inference pipeline intact. Experiments with different sets of protein-ligand42

complexes confirmed the improved plausibility of predictions while showing little degradation in43

quantitative metrics such as RMSD.44

2 Methods45

Uni-Mol Docking. We adapted the trained model in Uni-Mol [12] and modified the inputs and46

optimization process in the inference setup. To briefly summarize, the original model presents three47

main blocks: a protein pocket module, a ligand module, and a joint protein-ligand block which48

predicts a final inter-atomic distance matrix. Specifically, the distance matrix has shape dij ∈ RN×N ,49

where N = Nl + Np the sum of protein and ligand atoms. Ligand conformations in terms of50

atomic coordinates (Cl = {c1, · · · , cNl
}⊤ ∈ RNl×3) are then obtained by means of gradient-based51

optimization with a weighted loss function and the LBFGS optimizer. The optimization problem is52

formulated in Uni-Mol Docking as53

min
C

Nl∑
i,j=1

∥∥ci − cj∥ − dij∥22 · wij , wij =

{
1 if dij < 8.0Å
0 otherwise

(1)

without further introducing geometric constraints. The major difference between UMD-fit and54

Uni-Mol Docking is that we use a different parameterization for ligand conformations.55

6+T Parametrization. Instead of using free gas parameterization of conformations like56

Uni-Mol Docking[12] or [6], i.e. directly optimizing atomic coordinates, UMD-fit introduces the57

6+T parameterization which retains the intrinsic degrees of freedom (d.o.f.) of ligand conformations.58

As is well-known in rigid docking (rigid protein, flexible molecule), the protein-ligand structure59

can be accurately described by the molecular conformation of the ligand with T torsional d.o.f.60

(t1, · · · , tT ), and the relative pose of the ligand to the protein, parameterized as a roto-translation61

(R,x) ∈ SO(3) × R3 with 6 d.o.f.. This new parameterization introduces a total of 6 + T d.o.f.,62

much lower than the 3×Nl d.o.f. in the free gas parameterization. The optimization problem can63

then be formulated as64

min
R,x,{ti}T

r=1

Nl∑
i,j=1

∥∥c̃i − c̃j∥ − dij∥22 · wij , wij =

{
1 if dij < 8.0Å
0 otherwise

(2)

where atomic coordinates {c̃i}Nl
i=1 are obtained from (R,x, {ti}Tr=1) and known rigid parameters65

of bond lengths and angles in a differentiable manner. As such, optimizing Eq. (2) is equivalent to66

optimizing Eq. (1) under the geometric constraints of rigid substructures, thus yielding more realistic67

ligand conformations. Notably, similar approaches have been explored in other recent deep docking68

methods [4, 2]. Crucially, we further introduce a kabsch alignment after torsion updates, thus making69

the degree of freedoms in translation, rotation and torsional orthogonal in the tangent space. This70

step is not needed for practical convergence, although it accelerates it. The process is exemplified in71

pseudo-code in the appendix. Unlike previous works which used gradient-free techniques such as72

differential evolution[4, 7], we keep differentiability and use the LBFGS algorithm as in [12] for fast73

convergence.74

Stereochemistry Preservation. Previous work [13] described an inexpensive protocol to produce75

diverse molecular conformations with open source library RDKit[5]. A similar process was used76

for the generation of diverse conformers as an input to Uni-Mol [12]. However, we identified that77

some molecules exhibit changes in stereochemistry when their torsions are randomized following the78

protocol in [13]. Let a torsion be composed by atoms i, j, k, l the RDKit torsion update utility only79

rotates l and its linked atoms. This is problematic when k has multiple atoms bonded as it can change80

the stereochemistry. Therefore the torsion update was modified such that under a torsion update all81

atoms closer to k than j would move together, thus ensuring all the resulting diverse conformers82

presented the same stereochemistry.83
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3 Results84

Evaluation. The datasets used for evaluation were CASF-2016 [9] test set and the PoseBusters [1]85

set. In both datasets, the same protocol settings described in [12] except for the optimization routine86

was followed. Mean RMSD and percentage of compounds with RMSD lower than different cutoffs87

(0.5, 1.0, 1.5, 2.0, 3.0, 5.0 Å) are used as the primary performance quantitative metric to control88

potential degradation relative to the baseline model. For qualitative and quantitative assessment of89

outputs plausibility, as well as error identification, we use adapted scripts from [1]. Notably, we90

introduce an improvement over the original Uni-Mol paper[12] in the RMSD calculation, as we91

introduce symmetric RMSD ("symRMSD") to take into account symmetric molecular structures and92

not incur in excessive penalties.93

Representative unrealistic conformations caused by the original method proposed in [12] and their94

plausible counterparts with 6+T+S strategy are depicted Figure 1, (left) as well as a docking result95

showcasing poor chemical accuracy in specific functional groups of Uni-Mol Docking baseline96

despite the correct overall placement, and the correction under the 6+T+S strategy (right).97

(a) (b) (c) (d)

Figure 1: Uni-Mol Docking (green) and UMD-fit (fuchsia) outputs. (a) abnormal ring geometries in
the phenyl and benzene core (PDB: 3MSS). (b) invalid bond lengths, ring geometries (purine) and
chirality changes (hydrofuran) (PDB: 3AG9). (c) invalid bond lengths and internal steric clashes in

terminal groups (trimethyl, amidine) (PDB: 1LPG). (d) docking result of Uni-Mol Docking and
UMD-fit against human focal adhesion kinase (FAK) (PDB: 6YT6) (grey); where the baseline

presents unrealistic geometries in the sulfonamide group, and the oxidanylidene is not in the same
plane as the indole, contrary to what is expected for an aromatic ring.

Quantitative results for the PoseBusters set are shown in Table 1, and details on the failure modes98

following the [1] report style are given in Figure 2 for both PoseBusters and CASF-2016 test set.99

A plausibility comparison between UMD-fit and relevant deep learning methods evaluated in [1] is100

provided in Table 2. CASF-2016 test set quantitative results are detailed in the Appendix.101

As shown in Figure 2, UMD-fit addresses the majority of failing plausibility checks resulting in102

unphysical conformations, except the steric clashes with the protein. UMD-fit can effectively increase103

the number of total protein-ligand complexes with a correct pose (RMSD ≤ 2.0 Å) passing automated104

plausibility tests by more than 2-fold, in the CASF-2016 test set, and a similar relative improvement105

is observed for the PoseBusters test set. Furthermore, as evidenced in Table 1, UMD-fit which106

builds on top of the 6+T protocol does not negatively affect the overall RMSD of the docking107

method in a significant way, especially when symmetric RMSD is considered, indicating that the108

6+T parametrization is not an obstacle for accurate conformer optimization when combined with the109

LBFGS optimizer, even under complex and non-smooth loss functions.110

Table 1: Performance for baseline Uni-Mol Docking and 6+T+S strategy in the PoseBusters set
% ≤ symRMSD

Strategy RMSD (Å) symRMSD (Å) 0.5Å 1.0Å 1.5Å 2.0Å 3.0Å 5.0Å

Baseline 3.59 3.51 0.93 12.61 28.97 39.01 59.35 75.70
UMD-fit 3.62 3.53 1.40 10.98 28.73 40.42 57.24 74.53
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Figure 2: Failure mode analysis of Uni-Mol inference in the CASF-2016 [9] test set (left) and
PoseBusters [1] set (right) with baseline (top) and UMD-fit (bottom) strategies.

Table 2: Plausibility of predictions in the PoseBusters set (428 complexes); comparison data from [1]
Method UMD-fit DiffDock[2] DeepDock[7] TankBind[6] Uni-Mol[12]

# RMSD ≤ 2Å 175 162 72 64 98
# Passing all tests 75 58 20 11 8

4 Discussion111

For the challenging PoseBusters set, there is a difference in the performance reported in this work112

and that of [1] for the Uni-Mol Docking baseline, which might be explained by differences in the113

inference protocol. We followed the protocol described in the original Uni-Mol paper [12] for both114

the CASF-2016 [9], where the results are in line with the original paper, and the PoseBusters [1] set.115

The described improvements make UMD-fit, when coupled with Uni-Mol Docking, the best-116

performing machine learning method of those reported in [1] for the PoseBusters test set as shown117

in Table 2, followed by DiffDock [2], with the caveat that UMD-fit has been combined with a118

pocket-only model whereas DiffDock is a whole protein docking model. UMD-fitis also model119

agnostic, being applicable to 3 ([12, 7, 6]) out of 5 deep learning models tested in [1] Further work120

might explore the combination of an automated pocket finding tool or a whole protein docking model121

and UMD-fit for extension to blind docking.122

Among predictions below 2Å RMSD in UMD-fit, the majority of remaining failure cases can be rooted123

to steric clashes between the ligand and protein atoms. Such cases could be resolved by combining124

a learning method like UMD-fit and a more physics-inspired traditional docking method such as125

UniDock with biased docking. Recent works have explored this direction with great success[11].126

Nonetheless, a substantial drop in performance can be observed when comparing the CASF-2016[9]127

test set and the PoseBusters set, in line with results from [1] showing reduced performance of machine128

learning models compared to classical docking algorithms. The performance gap can be explained129

by the low difficulty of CASF-2016[9] test set, already pointed out by [14], and by the lack of130

generalization of ML docking models. Such an issue might benefit from more work characterizing131

the data efficiency and extrapolation ability of different architectures and training regimes.132
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