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Abstract

Object-centric representation learning aims to decompose visual scenes into fixed-
size vectors called “slots” or “object files”, where each slot captures a distinct
object. Current state-of-the-art models have shown remarkable success in object
discovery, particularly in complex real-world scenes, while also generalizing well
to unseen domains. However, these models suffer from a key limitation: they lack
controllability. Specifically, current object-centric models learn representations
based on their preconceived understanding of objects and parts, without allowing
user input to guide or modify which objects are represented. Introducing controlla-
bility into object-centric models could unlock a range of useful capabilities, such
as enabling models to represent scenes at variable levels of granularity based on
user specification. In this work, we propose a novel approach that conditions slot
representations through guided decomposition, paired with a novel contrastive
learning objective, to enable user-directed control over which objects are repre-
sented. Our method achieves such controllability without any mask supervision
and successfully binds to user-specified objects in complex real-world scenes.

1 Introduction

The goal of object-centric representation learning is to learn strong representations of the objects
present in a visual scene. This goal is achieved by decomposing a visual scene into its constituent
objects and representing each object as a distinct vector called a slot. Slot-based representations
are inherently compositional and support many complex downstream tasks such as dynamics
modeling [1, 2], control [3–6], and reasoning [7]. While initially these approaches for mainly limited
to synthetic domains, recent works [8, 9] have shown that they can be used to extract representation
in complex real-world scenes. Studies in cognitive neuroscience [10, 11] have also shown that
slot-based representations closely mirror human perception.

One fundamental limitation of existing unsupervised object-centric models [5, 8, 12–14] such as
Slot Attention (SA) [14] and DINOSAUR [8] is that they do not offer much control over the object
representations. For example, if a user is interested in extracting the representation of a particular
object in a scene, there is no way to query a model to do this. These methods allow control only
over the number of parts into which the scenes are decomposed but not over the semantic contents
of those parts. This lack of control over semantic content can be limiting, as these models always
extract a fixed scene decomposition. Such fixed decomposition is not very useful because certain
applications might require object representations at different levels of granularity. For instance, a
user may be interested in extracting the representation of the wheel of a car rather than the whole
car, or the entire car instead of just its parts.
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Moreover, in complex multi-object scenes, one may require representations of a particular subset of
objects. Such flexible representation is not achievable with current approaches because: 1) once the
slots are extracted from a scene, there is no way to know which objects they represent, and 2) given a
fixed scene decomposition, there is no guarantee that the object of interest will be extracted into an
independent slot. A fixed scene decomposition may group multiple objects into slots based on its
own preconceived understanding of objects and parts (e.g., based on the easiness of reconstructing
image regions using one slot).

To address these limitations, we propose introducing controllability into object-centric representation
learning. We achieve this by querying the model to represent specific objects in the image. The queries
can be in the form of object categories, referring expressions, or center of mass points. In the proposed
approach, we condition slots on queries that refer to specific objects in the scene. The main challenge
is to ensure that the slots conditioned on a specific query bind to the object referred to by that query.
We term the challenge of binding slots to specific objects the visual grounding problem [15, 16].
We find that this is not a trivial issue and introduce various architectural modifications along with
a contrastive loss to solve it. In our experiments, we demonstrate that the proposed approach can
successfully bind to objects referred to by user queries containing center of mass points, object
categories or referring expressions in complex real-world scenes with limited supervision.

2 Method

In this section, we describe the proposed approach for injecting controllability into existing object-
centric models. We present the visual depiction of our method in Figure 1.

In the setup that we consider here, the input consists of an image X and user-defined queries embedded
into vectors L = {lj}Mj=1, where lj ∈ RDemb . The expected object-centric representation of the image
X is a set of slots S = {si}Ni=1, where si ∈ RDslot . The first M slots (we assume that N ≤ M )
represent the object identified by the corresponding queries, while the remaining slots represent the
unspecified parts of the scene. This way, the obtained representation is a complete decomposition of
the whole image X , while still containing the parts that correspond to the user-specified queries L.

We consider two forms of controllability: language-based controllability and point-based controlla-
bility. For language-based controllability, we rely on the user to provide free-form text specifying
object category or object referring expressions whose visual representations are sought after. We
encode this text into a fixed-size vector embedding using LLM2Vec [17]. We use LLaMA-3-8B [18]
to obtain these embeddings. For point-based controllability, we rely on the user to point to the object
whose representations are sought after. We extract the coordinates of the corresponding point and
embed them into a fixed-size vector using a learnable linear transformation. These language and
point embeddings comprise the queries we feed into the model.

2.1 CTRL-O Architecture

Background We build the proposed approach based on DINOSAUR [8]. DINOSAUR uses Slot
Attention module [14] as the object discovery module. Slot Attention is an attention-based differen-
tiable clustering procedure which, given a grid of features H = {hk}Kk=1 obtained from an image
encoder f by processing an image H = f(X) (DINOv2 [19] in our case), outputs a set of slots S
such that each slot represents a distinct object in the image. We refer the reader to Appendix B for a
detailed description of DINOSAUR.

Query-based Slot Initialization The problem we are trying to solve is essentially a visual grounding
problem. Given the query corresponding to an object in the image, we want a slot to bind to exactly
that object. The most straightforward way to enforce grounding is to condition the slots directly on
the query corresponding to each object. Specifically, we achieve this by adding the object query
li to one of the slots (see Fig. 1, input to the Slot Attention Module). This approach is similar to
SAVi [20], which conditions each slot on the center of mass information for each object. However,
Kipf et al. [20] do not evaluate if the slots actually bind to the objects specified by the conditioning.
In our experiments, we find that simply conditioning the slots on the queries does not lead to correct
grounding; hence, a stronger signal is needed to ensure proper grounding.

Decoder Conditioning Similar to DINOSAUR, we use a broadcast MLP decoder to decode the slots
into patch features. The decoder decodes each slot separately into patch features. To further encourage
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Figure 1: (a) Overview of CTRL-O architecture.
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binding hits ARI mBO

CTRL-O ✓ ✓ ✗ ✗ 71.2 69.8 35.4

CTRL-O ✓ ✗ ✗ ✗ 8.1 34.52 22.42

CTRL-O ✓ ✗ ✗ ✓ 10.11 43.83 25.76

CTRL-O ✓ ✗ ✓ ✗ 56.3 44.8 27.3

CTRL-O ✓ ✗ ✓ ✓ 61.3 47.5 27.2

Table 1: Model Component Ablation for
Grounding. This table studies the importance
of various components for achieving strong
grounding. Here, we use COCO train set for
training and val set for evaluation.

Approach Model
ARI mBO
(%) (%)

Unsupervised

DINOSAUR (MLP Dec.) [8] 40.5 27.7
DINOSAUR (TF. Dec.) [8] 34.1 31.6
Stable-LSD [21] 35.0 30.4
SlotDiffusion [22] 37.3 31.4

Weakly Supervised
Stable-LSD (Bbox Supervision) [23] - 30.3
CTRL-O (Trained on COCO) 47.5 27.2

Table 2: Segmentation Performance. Com-
parison of CTRL-O with unsupervised and
weakly supervised object-centric approaches
on the COCO dataset.

controllability, we concatenate the slot output from the slot attention with the conditioning query for
that slot and then pass the resulting representation through an MLP whose output is then passed to the
broadcast decoder as shown in Figure 1 (a). This conditioning helps maintain consistency between
the object-specific representation in the slot and the reconstructed output, ensuring that the decoder
produces features that are semantically aligned with the intended query.

2.2 Control Contrastive Loss to Enforce Grounding

To enforce grounding, we introduce a novel contrastive loss, as illustrated in Figure 1 (b). The
intuition behind this objective as that if a slot si is conditioned on a query li corresponding to the
object oi, then we want the encoder features corresponding to the slot si to be close in embedding
space to the query li. To obtain the features corresponding to slot si, we take the features output of
the mapping network (learnable mapping g in Fig. 1 (a)) weighted by the attention scores of slot si
obtained from the last iteration of slot attention: pi =

∑K
k=1 aikhk, where aik denotes the attention

score of slot si on feature hk. We process pi using an MLP to output semb
i , which is used in the

contrastive loss. We consider semb
i and li to be a positive pair for the contrastive loss. We compute

the similarity between them using cosine similarity. The negatives consist of all (semb
i , lt), where

t ̸= i. Note that for the negatives, we consider all the conditioning queries across the entire batch.
Considering that there are T conditioning queries in the entire batch, the loss is formalized as follows:

LCC = − log
exp(semb

i · li/τ)∑T
t=1 exp(s

emb
i · lt/τ)

(1)

Here τ is the temperature, which is set to 0.1. We incorporate this loss in addition to the reconstruction
loss from DINOSAUR. For additional implementation details, see Appendix C.
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3 Experiments

In this section, we first demonstrate that the grounding problem which we tackle in this paper is not a
simple one by showing that even with full supervision i.e. using object mask annotations, models still
do not achieve perfect performance. Next, we show that the proposed approach with the contrastive
loss achieves decent grounding in complex real-world scenes with limited supervision.

Datasets We use COCO [24] and visual genome [25] as our main datasets to study. COCO consists of
natural scenes with multiple objects per scene. Objects in the scene are annotated using category labels
and bounding boxes, which provide center of mass coordinates for the queries and the contrastive
loss. Visual Genome also consists of equally challenging scenes. Additionally, the objects in the
scenes are annotated with referring expressions, which we use as queries for CTRL-O.

Metrics We use the usual metrics such as adjusted rand index (ARI) [26] and mean bounding overlap
(mBO) [27] to evaluate the object discovery performance of the model. To measure grounding, we
introduce a new metric called binding hits which measures accuracy of correct groundings for the
conditioned slots. Refer to Appendix D for more details regarding these metrics.

The Grounding Problem Controllability is a new paradigm for object-centric models that have not
been explored before. Hence, there are no baselines to which we can compare. Instead, here we try to
demonstrate the difficulty of the grounding problem and ablate over the components introduced in
Section 2 to understand their importance in achieving good grounding. We use the COCO dataset for
this comparison. We use both the center of mass and language categories for the queries. Table 1
presents the results for various ablations. For the model trained with GT masks (row 1 in Table 1),
we train it using a reconstruction loss between the predicted and the ground truth masks. Therefore,
it is a fully supervised model; hence, it serves as an upper bound for our approach. We can see
that it achieves strong segmentation performance (as indicated by ARI and mBO) but still cannot
achieve perfect grounding (indicated by Binding Hits), highlighting the difficulty of the grounding
problem. Out of the components introduced in Section 2, control contrastive loss is the most crucial
for good grounding, followed by decoder conditioning. Without the contrastive loss, the model has
no incentive to utilize the queries; hence, it does not achieve good binding.

Comparison to Existing Object-centric Models In Table 2, we compare CTRL-O to existing
object-centric models w.r.t segmentation performance. CTRL-O is a weakly supervised approach, as
conditioning on language or center-of-mass queries can be considered as a form of weak supervision
since we do not require dense labels for every object in an image. We compare to various unsupervised
approaches and one weakly supervised approach. We can see that CTRL-O achieves the highest
ARI, which means that it can decompose the scenes into objects very well. However, similar to
DINOSAUR it achieves a lower mBO as compared to other methods. This means that while it can
decompose scenes well, it does not output very sharp masks. We attribute this limitation to the base
DINOSAUR model, which also achieves lower mBO. However, CTRL-O is a general approach for
producing controllable object-centric representations, and it is not limited to DINOSAUR. Hence, we
could apply the proposed approach to other object-centric models like Stable LSD or Slot Diffusion,
which produce sharp masks and, thus, stronger mBO.

4 Conclusion

We have introduced CTRL-O, a controllable object-centric model that can be queried to extract
representations of specific objects in a scene. Through experimentation, we have shown that represen-
tations of specific objects can be extracted in complex real-world scenes based on a range of user
queries such as object categories, center of mass points, or referring expressions. This capability
expands the applicability of object-centric models to various real-world applications, which we have
not explored in this work. For example, one interesting task that CTRL-O enables is instance-based
retrieval. Let’s say a user is interested in retrieving all images containing a specific object-instance
specified by a user-provided image of that object-instance (e.g., more photos of a particular handbag).
Since CTRL-O provides a representation specific to that object-instance, this makes it feasible to
retrieve all images containing that specific object-instance. This can be very useful in domains such
as E-commerce. Furthermore, there can be other applications such as controllable image generation
[22, 23] where specific objects could be extracted from multiple images and composed to form a
single image. We leave the exploration of these applications for future work.
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APPENDIX

A Related Work

Object-Centric Models Unsupervised object-centric representation learning (OCL) gain a lot of
interest in recent years [5, 8, 9, 12–14, 20, 28–30]. OCL aims to extract meaningful entities from
unstructured sensory inputs and preserve this separation of information at the representational level.
Slot Attention [14] introduces an attention-based mechanism to decompose images into object-centric
representations. DINOSAUR [8] builds upon this by utilizing self-supervised DINO features [19, 31]
to enhance unsupervised object discovery. While DINOSAUR can effectively identify objects in
real-world data [24], it lacks mechanisms for top-down control over the representations. In contrast,
the CTRL-O enables controllable OCL by conditioning both the decoder and encoder on control
queries using minimal supervision during training for more abstract language-based queries. Some
works [20, 32] have explored conditioning in object-centric models. SAVi [20] uses bounding boxes
for the initial frame of video data and employs optical flow as a target for conditioning. CoSA [32]
conditions on unsupervised vector representations. However, these methods are often limited to
specific forms of conditioning and are primarily evaluated on synthetic datasets. Finally, several
recent works connect object-centric representations with language. Unsupervised Open-Vocabulary
Object Localization [33] and the Shatter and Gather [34] connect object representations with language
post-hoc, assigning language labels to discovered slots. By contrast, CTRL-O integrates language
and point conditioning directly into the learning process, learning object representations that could be
conditioned on user inputs during inference.

Binding in Vision-Language Models Traditional vision-language models rely on holistic feature
maps [35] or patch-level representations [36], lacking inherent object-centricity. Object detection
models like Mask R-CNN [37] output object-level segmentation and feature vectors but are con-
strained to predefined categories and lack cross-modal flexibility. Supervised vision-language models
(VLMs) such as ViLBERT [38], XVLM [39], Kosmos-2 [40], MDETR [41], UNITER [42], and
RegionCLIP [43] integrate region features but depend heavily on dense annotations and treat image
regions independently, without maintaining context across the scene. While datasets like COCO [24],
RefCOCO [15], and Visual Genome [44] offer rich text-visual alignments for VLMs, weakly su-
pervised binding methods [45–48] reduce the need for labeled data but often operate at a global
level or rely on region proposals for a closed set of objects (most commonly PASCAL VOC [49]),
limiting flexibility for open-vocabulary tasks. To address these challenges, we introduce a method
that decomposes images into object-centric slots conditioned by pre-trained language embeddings and
learnable point-based embeddings, enabling robust visual grounding, maintaining context across all
objects, and allowing precise manipulation at user-specified granularity through inputs like language
descriptions or point prompts.

B DINOSAUR Implementation Details

DINOSAUR uses a DINO [31] encoder to process the image into features. They rely on a feature
reconstruction loss to supervise the object discovery process. Throughout the training, the DINO
encoder is kept frozen. We adopt a similar approach, however we use a DINOv2 [19] encoder instead
of a DINO encoder. Additionally, we have added a learnable mapping network g, which is a 3-layer
Transformer after the frozen DINOv2 encoder. SA module is applied on top of the mapping output as
shown in Figure 1 (a).

C Implementation Details

Control Contrastive Loss For conditioning, we use either language or point information. However,
we assume that each image in our dataset consists of multiple object annotations, each containing
a center of mass annotation and a category or referring expression annotation. Therefore, we have
two separate contrastive losses - one each for the language information and the point information, as
shown in Figure 1 (b).
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Figure B.1: Overview of DINOSAUR architecture. The image is processed into a set of patch features
H by a frozen DINO ViT model. The Slot Attention module groups the encoded features into a set
of slots initialized by random queries sampled from the same Gaussian distribution with learnable
parameters. By contrast, CTRL-O is initialized by the combination of control queries for conditioned
slots and random queries for unconditioned slots. DINOSAUR is trained by reconstructing the DINO
features from the slots using MLP decoder [8].

Conditioning We run Slot Attention for a fixed number of slots N . However, in general, we may
not have the same number of queries per image. In such cases, we initialize a subset of the slots
with the given queries, and the rest are free to bind to any of the other objects in the scene. When
computing the contrastive loss, we only consider slots conditioned on some query.

D Metrics

FG-ARI The adjusted rand index (ARI) measures the similarity between two clusterings [26]. We
use the instance/object masks as the targets. We only compute this metric for pixels in the foreground
(hence, FG-ARI). Unlabeled pixels are treated as background.

mBO To compute the mBO [27], each predicted mask is assigned to the ground truth mask with
the highest overlap in terms of IoU. The mBO is computed as the average IoU of these mask pairs.

Binding Hits This metric measures controllable grounding. For binding hits, consider that a slot
si is conditioned on a query Li identifying an object oi with ground-truth mask mi. The broadcast
decoder of slot attention outputs a mask per slot. If the overlap between the predicted mask for slot si,
denoted as m̂i, and the ground truth mask mi is the highest among all pairs of predicted and ground
truth masks, it is considered as a hit (1) else it is considered as a miss (0). binding hits is measured as
the average number of hits across the dataset.
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