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Reproducibility Summary1

Scope of reproducibility2

Our work attempts to verify two methods to mitigate forms of inequality in ride-pooling platforms proposed in the paper3

Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling [1]: (1) integrating fairness constraints4

into the objective functions and (2) redistributing income of drivers. We extend this paper by testing for robustness to a5

change in the neighbourhood selection process by using actual Manhattan neighbourhoods and we use corresponding6

demographic data to examine differences in service based on ethnicity.7

Methodology8

The authors of the paper provide preprocessed data and code implemented in TensorFlow, which we transform into9

PyTorch. Experiments in this reproducibility study can be divided into 3 parts: (1-2) we reproduce the results regarding10

objective functions and income redistribution using data and settings provided in the paper and code; (3) we apply this11

approach to the same data grouped into Manhattan neighbourhoods. Further, we examine discrepancies between service12

rates of different ethnicities using neighbourhood-specific demographic data as a proxy for this protected information.13

Results14

The results in the original paper regarding different objective functions were reproduced within a margin of error. Also,15

income redistribution is able to reduce wage inequality, albeit to a lesser degree. The objective functions appear to be16

sensitive to the neighbourhood selection mechanism. While the results of the rider-fairness objective functions are17

maintained, performance of the driver-fairness objective functions declines. There appear to be only small differences18

in service rates between ethnicities, while rider-side fairness seems to mitigate inequalities the most. However, this is19

only achieved by worsening the service for well-served neighbourhoods instead of improving it for underserved ones.20

What was easy21

The simulation logic as well as the training and testing procedures in the provided code were straightforward to execute.22

What was difficult23

To be able to run the authors’ code we needed to make several changes to it. Moreover, specific parts of the original24

research were not explicitly mentioned in the paper. Another point of difficulty was the absence of preprocessing code25

which was not detailed properly and could not be fully reproduced. The reproducibility of the paper relied on the26

provided code, communication with the authors as well as previous works.27

Communication with original authors28

We contacted the authors about the preprocessed data that was not hosted online due to licensing issues. They supplied29

it as well as responded very quickly and provided clarifications on the parameters and their values in the code.30

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction31

Ride-pooling, where drivers can service multiple requests from riders simultaneously, is becoming increasingly popular32

[2]. Since resources are shared, ride-pooling has the potential to reduce the aggregate VKT ("vehicle kilometres33

travelled") and with that reduce petroleum usage and carbon dioxide emissions [3]. To efficiently perform the matching34

of riders and drivers, machine learning algorithms are used [4], which optimise for income maximisation. However, with35

respect to ride pooling, previous works have observed a gender wage gap [5] as well as majority Asian and Hispanic36

neighbourhoods being associated with less service compared to white neighbourhoods [6]. Therefore, alternative37

fairness notions could also be useful.38

Shah et al. [7] introduces an algorithm to solve the ride-pooling matching problem, which maximises the number of39

rider requests serviced based on a Markov decision process (MDP) in combination with deep learning. The authors of40

the paper Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling [1] extend this work to compare41

multiple objective functions, defined on different fairness metrics. Next to that, they investigate the use of income42

redistribution. In this reproducibility study, we attempt to verify their results and extend their experiments.43

2 Scope of reproducibility44

The main contribution of the paper is introducing and evaluating measures to deal with the fairness issues arising in45

ride-pooling. In our reproducibility study, we first focus on reimplementing their code (implemented in TensorFlow [8])46

in PyTorch [9] and compare the results we achieve to their findings. The main claims made in the original paper are:47

• The authors claim that they extend the MDP-based framework (introduced in [7]) by incorporating different48

definitions of fairness to perform non-myopic optimisation. By incorporating fairness measures into the49

objective function, driver and rider inequality can be reduced while maintaining or even improving profitability.50

• The state-of-the-art objective function [7] can outperform the fairness objective functions in certain settings in51

terms of rider-fairness and increase the average income of drivers at the cost of a higher variance.52

• Income redistribution can be used to reduce wage inequality while avoiding the free-rider problem and53

guaranteeing a minimum wage for drivers.54

The mathematical proof guaranteeing the minimum wage is not verified in our study. In addition to testing for55

reproducibility, we examine the robustness of the approach to changes in the neighbourhood selection method using56

actual tabulation areas. Using demographic data, we investigate whether the fairness objective functions are fair to all57

ethnicities. To investigate these aspects of the paper, we followed these steps:58

1. We inspect the provided codebase and identify, analyse and solve any barriers to running the code.59

2. Next, we transform the code to the PyTorch framework, matching the functionality as well as possible.60

3. With the PyTorch version we attempt to reproduce the results using the dataset preprocessed by the authors.61

To investigate potential differences, we use different seeds to examine the effect of randomness.62

4. To test the method’s robustness we utilise the authors’ approach on actual neighbourhoods in Manhattan63

and, using the neighbourhood demographic compositions (since individual protected data is confidential), we64

explore whether the introduced objective functions mitigate potential inequalities between ethnic groups.65

3 Theoretical background66

The paper we are reproducing extends the method proposed in [7]. The latter presents Neural Approximate Dynamic67

Programming (NeurADP), which uses offline-online learning and approximates dynamic programming to match drivers68

and riders non-myopically. The following subsections explain NeurADP and the two extensions proposed in [1],69

fairness-based objective functions and income redistribution.70

3.1 NeurADP: Neural Approximate Dynamic Programming71

NeurADP uses neural network-based value function approximation and updates it using the Bellman equation [10]. To72

break temporal dependencies between samples, mini-batch experience replay is used [11].73
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The neural network is used to rank feasible actions for each agent. To receive the optimal choices, an integer linear74

program (ILP) is solved considering the top 150 feasible actions. To update the neural network, the authors use a target75

network and Double Q-learning [12]. The value function over individual vehicles is learned offline. When the approach76

is running online, the model computes the driver-rider assignment that maximises the value function computed in the77

offline phase. Further details regarding the neural network inputs and its architecture are in Appendix A.78

3.2 Fairness-based objective functions79

Prior work used profitability metrics as objective functions. The authors introduce two new objective functions to80

improve both driver-side and rider-side fairness [1] and compare them using different evaluation strategies.81

Profitability objectives There are two profitability measures used: the number of riders serviced (o1) and the total82

income (o2).83

o1(R,W ) =

n∑
i=1

|pi|+ |si|, o2(R,W ) =

n∑
i=1

∑
u∈pi∪si

Eg,e + δ︸ ︷︷ ︸
πi

(1)

The total number of rides serviced by driver i consists of the number of ongoing requests |pi| and completed requests84

|si|. The total income is calculated by adding the incomes πi of the individual drivers i. The income for any request u85

is the sum of the variable cost Eg,e (depending on the start and end locations g and e) and the fixed part of ride-pooling86

pricing, represented by the constant δ.87

Fairness objectives The authors define two fairness metrics for rider-side (o3) and driver-side (o4) fairness.88

o3(R,W ) = −λVar
(
hj

kj

)
+

n∑
i=1

πi o4(R,W ) = −λVar(πi) +

n∑
i=1

πi (2)

The former is quantified by the variance of the success rates which is computed by the ratio between serviced and total89

requests
(

hj

kj

)
originating in neighbourhood j. Each crossing is mapped to one of H neighbourhoods. o4 is based on90

the spread of incomes πi. Both objective functions incorporate the total income o2 into the equation, λ controls the91

importance of the variance term.92

Evaluation strategy To measure the effect of different objective functions, the authors introduce two fairness metrics.93

They evaluate rider-fairness by comparing the overall and minimum success rates across neighbourhoods. By contrast,94

they utilise the income distributions to assess driver-fairness.95

3.3 Income redistribution96

The authors also introduce an income redistribution scheme to mitigate income fluctuation and inequality in driver97

wages. To help estimate the true contribution of each driver, Shapley values [13] are used. In this ride-pooling setting, a98

Shapley value can be intuitively interpreted as the average profit lost when a specific driver does not contribute.99

To reduce the difference between a driver’s pre-redistribution income πi, and Shapley value vi, the authors use100

a risk parameter, 0 ≤ r ≤ 1, which designates what fraction of a driver’s income is kept. The model collects101 ∑n
=1(1 − r)πi from all drivers and redistributes it proportional to the difference between their value and earnings,102

which is max(0, vi − rπi). The driver’s income after redistribution, qi, is103

qi = rvi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)vj (3)

Evaluation strategy To measure the correlation between the Shapley value and income after redistribution, the gain104

metric gi is defined as the ratio of change in qi to vi when vi is doubled. The gain g is calculated as the average over gi.105

To test the effect of income redistribution, the authors determine gain and the standard deviation of the ratio of qi to vi106

for varying values of r. The most desirable outcome is that the driver’s redistribution value is as close as possible to107

their Shapley value, i.e. std = 0 and that if they double their contribution, they double their earnings after redistribution,108

i.e. g = 1.109
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4 Methodology110

In this section, the approaches used in our reproducibility study are outlined.111

4.1 Datasets112

The following shows the original dataset and the demographic data to the Manhattan neighbourhoods.113

4.1.1 NYC yellow taxi data Manhattan114

Similar to [1], we use the dataset ’Yellow taxi trip records’ from New York City [14] for training and evaluation. The115

original dataset contains pick-up and drop-off coordinates for taxi passengers. We follow the assumption of the original116

paper that the spatial and temporal distribution of rider requests between ride-pooling and taxi rides are similar. The117

preprocessing done in [1] consists of the following steps. First, the dataset of New York City is filtered to only comprise118

trips starting and ending in Manhattan. Next, the coordinates are discretised into |L| locations, which are identified by119

taking the street network of the city from openstreetmap [15] using osmnx with ’drive’ as network type. We take the120

largest strongly connected component of the network discarding nodes that do not have outgoing edges.121

The resulting network has 4373 locations (street intersections) and 9540 edges. The pick-up time is converted to122

batches of requests corresponding to the minutes. Furthermore, the locations are grouped into 10 neighbourhoods using123

K-means clustering [16]. The dataset contains on average 322714 requests in a day (on weekdays) and 19820 requests124

during the peak hour. The preproccessed dataset was not publicly available, although mentioned otherwise in the paper.125

The authors confirmed that this was due to licensing issues and provided us with the preprocessed data. The model is126

trained using the data from March 26th - 28th 2016. The fairness objective functions are tested on the data from April127

4th.128

4.1.2 Demographics by Neighborhood Tabulation Area129

The dataset "Demographics by Neighborhood Tabulation Area" for New York City [17] allows us to investigate130

whether the ride demand of racial or ethnic minorities is indeed satisfied in the same way. It contains demographic131

data for each neighborhood tabulation area (NTA) in New York City. A NTA is an area for which census data is132

gathered. The demographic data relevant to this report are the race/ethnicity percentages per neighbourhood, namely133

Hispanic/Latino, White, Black/African-American, Asian, Other. Instead of running K-means clustering to obtain the134

neighbourhoods, we take the neighbourhoods corresponding to these NTA areas in Manhattan. This results in 29 instead135

of 10 neighbourhoods for Manhattan. To be able to determine which nodes in the graph are situated in which NTA,136

we made use of the "2010 Neighborhood Tabulation Areas" dataset [18] which contains coordinates specifying an137

approximation of the polygon shape of each neighbourhood.138

4.2 Code139

Our implementation is based on the code of the paper which is publicly available at GitHub 1. The repository was140

updated after we started reproducing the paper, but we refer to the commit specified above unless stated otherwise.141

The published code is not functioning and does not include the preprocessing steps. However, the main framework142

for testing and training is provided and hyperparameters can be configured using setting files. We re-implemented the143

model in the PyTorch framework [9], ensuring that the default behaviour of TensorFlow which was implicitly used in144

the authors’ implementation is replicated. This includes weight initialisation and hyperparameters of the optimiser. To145

transfer the masking mechanism used to pad the sequences, we employed PyTorch’s packed sequence implementation.146

Since the new framework does not support backwards LSTM, we used a bidirectional LSTM and ignored the forward147

pass to achieve the same functionality. In accordance with the original code, we used the CPLEX optimiser [19] to148

solve the ILP. To support the number of drivers and, therefore, bigger linear systems, the academic or commercial149

version is necessary. There were some rare situations in which the ILP failed to satisfy the constraints (one or two150

agents were not assigned any actions) which led to an error. This was fixed by assigning the "take no action" action to151

those agents. In addition, we implemented the preprocessing steps on the original dataset found at [14], as this code152

1https://github.com/naveenr414/ijcai-rideshare/tree/78d81d0f417ad4fd54ea2e967010bb221fc4e177
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was not available. For this, we perform the same steps indicated in Section 4.1.1, but we simplified the estimation of the153

travel times as this was not clear from the paper. Our code is available at GitHub. 2154

4.3 Hyperparameters155

Focusing on reproducing the original paper [1], we tried to stay close to the original paper’s approach and did not perform156

hyperparameter optimisation. Hyperparameter values missing in the paper (e.g. minimum number of experiences and157

samples) were retrieved from the authors’ code. Additionally, there were inconsistencies, when some hyperparameters158

had different values in different parts of code (e.g. embedding dimension). In this case, we reached out to the authors159

for clarification. More details on hyperparameters are in Appendix C.160

4.4 Computational requirements161

To increase the available computational resources, we used multiple computers with different hardware (see Table 5 in162

the Appendix). In general, the training time is dominated by the simulation of the environment and solving the ILP. The163

training of the neural network plays only a minor role. Hence, GPUs are not crucial for training, the training time is164

mostly determined by the single-core performance of the CPU. A run consisting of training on three days and testing on165

one typically takes about 2.5 to 3 hours. In total, running all experiments took 202 hours.166

4.5 Experimental setup167

Setting Value
Number of drivers 50 , 200
Objective function Driver, rider, requests, income

Lambda Driver: 0, 1/6 , 2/6 , 3/6 , 4/6 , 5/6 , 6/6
Rider : 108, 109, 1010

Training days 3
Testing days 1

Table 1: Settings used for the experiments

Experiment 1 To reproduce the results regarding168

claims 1 and 2, different settings are needed, pre-169

sented in Table 1. All combinations of these set-170

tings are used. The requests and income objective171

functions do not have lambda values. Furthermore,172

the embeddings are trained (further details are in173

Appendix A.1). We use the same training/testing174

split as in the paper (described in Section 4.1), and175

evaluate the results based on overall and minimum176

success rates as well as income distribution.177

To test if the differences between our findings and178

the original results are caused by randomness, we rerun the experiments using different seeds. Due to limited resources,179

we rerun only a subset of setting combinations. Further details can be found in Appendix B.180

Experiment 2 In accordance with the original paper, the results of the first experiments are reused to evaluate the181

income redistribution for claim 3. The analysis is focused on the 200 drivers with the requests objective function using182

gain and standard deviation (see Section 3.3).183

Experiment 3 To test robustness we use the 29 predefined neighbourhoods and train the models using the configurations184

of experiment 1 for only 200 drivers. To incorporate the demographic data for the analysis presented in step 4 (see185

Section 2), we map the results per neighbourhood to the five different ethnicities, under the assumption that the186

distribution of ethnicities living in a neighbourhood corresponds to the distributions of riders’ ethnicities. For each187

group, we calculate the mean across all neighbourhoods weighted by the percentage of this group living in that area. This188

results in five different values per objective function. The higher this value is, the more requests of the corresponding189

group are serviced. Since we are interested in the difference across groups, we subtract the average of this rate. Values190

above zero indicate a group that is serviced above average and, hence, could be interpreted as advantaged. In addition,191

we evaluate the overall, minimum and per neighbourhood success rates.192

5 Results193

In the following, we will present the results of the three different experiments.194

2https://github.com/reproducibilityaccount/reproducing-ridesharing
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5.1 Reproducibility result 1 - Fairness objective functions195

Looking at our findings in Figure 1, we conclude that for 50 drivers the results for the rider-fairness metric can be196

reproduced, the success rates for the different objective functions match. Using the driver-fairness objective function197

improves both the success rate and the rider equality.198
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Figure 1: Comparison of objective functions for different number of drivers, λ not included, reflecting the original paper
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Figure 2: Comparison of income distributions (λ = 4
6 for driver-

side fairness and λ = 109 for rider-side fairness)

For 200 drivers, there are minor discrepancies be-199

tween our results and the original. They can, how-200

ever, be explained by stochasticity introduced by201

different seeds. However, for rider-fairness with202

λ = 1010, the difference can not be explained by203

randomness. The requests objective function often204

results in more profit and better rider equality.205

For each objective function, the payment distribu-206

tion for 200 drivers is shown in Figure 2. The vari-207

ance of the distributions are similar in magnitude,208

the means however are slightly shifted. Looking209

at the differences between the results for different210

seeds, this could be explained by randomness. The driver-fairness objective function is able to reduce the variance in211

income between drivers, but the profitability is also decreased. Appendix E shows the results presented in the original212

paper, the results of the different seeded runs are visualised in Figure 10.213

5.2 Reproducibility result 2 - Income redistribution214

The authors’ findings regarding the effect that varying the risk parameter r has on the gain and the standard deviation215

of the ratio qi
vi

were not reproducible on the basis of the information in the paper alone, nor were they immediately216

reproducible from the code itself. Upon further communication with the authors, they updated their code. There was217

also a typo in the formula given in Equation 3 (Equation 12 in [1]). The correct equation is:218

qi = rπi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)πj , (4)

where it can be seen that the use of Shapley values in the first term and last factor have been replaced by the amounts219

before redistribution. With these corrections in place, our experiments yielded the results seen in Figure 3. For values220

of 0.4 ≤ r ≤ 0.6 the gain is non-zero whilst maintaining a spread close to zero for the redistribution income to Shapley221

value ratio. In the original paper, this condition held for values of 0.5 ≤ r ≤ 0.9. Furthermore, the magnitude of the222

gain is far smaller at the point at which the spread begins to increase. This indicates that when r = 0.6, drivers only223

receive a 40% increase in their wages whilst still earning close to their true contribution. This is in contrast with the224

original, where, for r = 0.9, drivers receive an 80% increase in their wages while minimising the free-rider problem.225

This leads us to conclude that the results of this redistribution scheme were not reproducible in this setting. The original226

results are shown in Figure 8 in the Appendix.227
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Figure 3: Comparison of the gain metric and the standard deviation of the income to value ratio for different values of
risk parameter r

5.3 Results for Manhattan neighbourhoods and incorporating demographic data228
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Figure 4: Analysis of results incorporating demographic data

We retrained the model (see Section 4.5). Comparing the resulting Figure 4 to previous findings in Figure 1, we observe229

that by changing the neighbourhoods the performance of the driver-fairness objective functions deteriorates the most.230

The rider-fairness objective functions share some similarities between the two experiments but the latter now performs231

best in terms of fairness across neighbourhoods (minimum request success rate).232
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Figure 5: Success rate per neighbourhood (λ = 0.5 for driver-
fairness, λ = 1010 for rider-fairness)

The right plot in Figure 4 shows that there are small233

differences in the percentage of requests serviced234

per ethnicity. The rider-fairness objective function235

for λ = 1010 seems to be best at mitigating inequal-236

ity. However, as seen in the left plot, rider-fairness237

results in low success rates. This might indicate that238

the objective function merely lowers success rates239

for otherwise well-serviced neighbourhoods rather240

than improving under-serviced ones.241

To confirm this, we visualised the success rate per242

neighbourhood and objective function (see Figure 5).243

It can be seen that rider-fairness indeed exhibits no-244

tably reduced variance but also a lower mean when245

compared to the other objective functions which246

tend to have an upward skew. This shows that rather247

than benefiting under-serviced neighbourhoods, ap-248

plying rider-fairness only lessens the success rate of249

well-served ones.250
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6 Discussion251

Combining the results from the reproducibility experiments (experiments 1 and 2 in Section 4.5), we find that the first252

claim mentioned in Section 2 is supported by our results for 50 drivers. Furthermore, our results substantiate the second253

claim. The ‘requests’ objective function can improve the rider-fairness for 200 drivers. Additionally, it results in the254

highest average income per driver but exhibits a higher variance than the driver-fairness objective function. These255

observations are in accordance with the ones of the original paper.256

For the 200 drivers setting, specific results were more sensitive to sources of stochasticity than for 50 drivers. After257

inspecting the code, we found that the minimum number of experiences needed to start the training of the neural network258

is never exceeded for the 50 drivers setup. In the 200 drivers configuration, it is reached and hence the neural network259

is trained. Since the weights of the model are randomly initialised, it might converge to a different local minimum260

which yields a different value function. This could explain the variance in the corresponding results. For 50 drivers, in261

contrast, no learning is involved. Hence, the result goes through a randomly initialised model. Weights are typically262

initialised to preserve the mean and variance of the input, which should be unaffected by the specific seed used. This263

could explain the strong similarity between our results and the original results for the 50 drivers setup.264

Differences found in reproducing the income redistribution scheme may also be accounted for by the above. However,265

while our results are not exactly the same, the third claim still holds, although to a considerably lesser degree than in the266

original paper.267

When employing the actual Manhattan neighbourhoods, the relative standing of the various objective functions was268

different compared to the ones determined by K-Means. This indicates that the proposed method is sensitive to the269

neighbourhood selection mechanism. Looking at the demographic data, it can be seen that all objective functions270

exhibit small differences between ethnicities. These, however, could be attributed to stochasticity.271

In any case, rider-fairness results in the least variance across ethnicities at the price of mean success rate. However,272

this result does not imply that rider-fairness achieves this low variance by better servicing neighbourhoods with a273

lower percentage of accepted requests, but rather by servicing better-served neighbourhoods less well. Importantly, the274

ethnicity-based analyses are built on the assumption that the distribution of the ethnicities of residents and riders in a275

neighbourhood is similar. However, ride pooling might be used by other people like commuters or tourists. Furthermore,276

there could be differences between the ethnic populations regarding the percentage of ride-sharing users.277

6.1 What was easy278

Part of the code, namely the simulation logic, did not need any modifications. This logic is responsible for telling279

drivers of possible rides to accept as well as executing the drivers’ choices and keeping the simulation consistent with280

respect to the existing constraints. The training and testing procedure was also straightforward to execute.281

6.2 What was difficult282

The codebase was not originally executable and required modifications. In addition to that, several aspects of the283

original research were not explicitly mentioned in the paper. Although, in the end, we were able to reproduce most284

results, this would not have been possible without consulting either the code, the authors or the paper about NeurADP285

[7]. Another challenge was the absence of preprocessing code which together with the lack of a detailed description in286

the paper (specifically for travel time estimates) made its implementation difficult. With the limited time resources we287

had, we did not succeed in testing if our preprocessing implementation affected the results.288

6.3 Communication with original authors289

The authors were very helpful, kind and responded very quickly, often within the same day. This was a very important290

factor in the production of this reproducibility report as the preprocessed data could not be hosted online due to licensing291

issues. Furthermore, they also provided useful clarifications with respect to the parameters used in the code and292

discrepancies between different parameter values in different places. The authors also updated the codebase following293

our discussions.294
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Appendix340

A Neural network details341

The inputs to the neural network model are the current location of the vehicle, the information about the remaining delay,342

and locations for the current requests that have been accepted. First, authors order them according to their trajectory343

and feed them as inputs to an LSTM [20] after an embedding layer. The embeddings for the locations are calculated344

separately and are the byproduct of a two-layer neural network that attempts to estimate the travel times between two345

locations (see Appendix A.1).346

Additional inputs to the neural network are the information about the current decision epoch, the number of vehicles in347

the vicinity of the vehicle of interest and the total number of requests that arrived in the epoch. This information is348

used to stabilise learning because the value of being in a given state is dependent on the competition it faces from other349

drivers when it is in that state. These inputs are concatenated with the output of the LSTM from the previous paragraph350

and, after 2 dense layers, used to predict the value. An overview of the details of the neural network can be seen in351

Table 2.352

locations of vehicle and its
accepted requests delay

decision time number of total number

↓ ↓
vehicles in vicinity of requestsEmbedding (100) Linear Layer (100)

↓ ↓
locations embedding time embedding

↓
LSTM

↓
path embedding

↓
Linear Layer (300)

↓
ELU
↓

Linear Layer (300)
↓

ELU
↓

Linear Layer (1)
↓

value
Table 2: Overview of the value approximation neural network. The model layers (with output dimensions in brackets)
are presented in bold.
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A.1 Embeddings training353

In accordance with paper [7], the embedding model, shown in Table 3, was trained for 1000 epochs with batch size354

1024 and Adam optimiser with default settings. The training also utilises early stopping with patience 15.355

origin location destination location
↓ ↓

Embedding Embedding
↓ ↓

origin embedding destination embedding
Concat(origin embedding, destination embedding)

↓
Linear Layer (100)

↓
ELU
↓

Linear Layer (1)
↓

travel time estimate
Table 3: Embedding Model. The model layers (with output dimensions in brackets) are presented in bold.

B Seeds356

The settings selected for seeded runs, have to meet several conditions. First of all, we wanted to rerun at least one357

setting for all four objective functions. Next to that, for the rider-fairness, we rerun all lambda values because this358

objective function differed the most between our results and the original paper’s. For the driver-fairness, we only chose359

a lambda value of 4/6, since all lambda values yield similar results and only this one is used to examine both, driver-360

and rider-side fairness metrics.361

By default, the seed 874 is used. If further seeds are used for experiments, the following four are utilised: 688701,362

490013, 423376, 191758.363

C Hyperparameters364

Hyperparameter names Values
number of locations: |L| 4461

number of neighbourhoods: H 10
max. capacity of driver: m 4

ride-pooling pricing: δ 5
pick up delay 300
drop off delay 600

min. replay buffer size 5 ∗ 105 / (number of riders)
number of samples 3

gamma: γ 0.9
Table 4: Hyperparameter values.
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D Hardware configurations365

Name CPU GPU RAM
Setup 1 i5-8600k GTX1080 16 GB
Setup 2 i7-1165G7 - 32 GB
Setup 3 Apple-M1 - 16 GB

LISA clustera Intel Xeon Silver 4110 GTX1080 Ti 32 GB
Table 5: Hardware configurations used.

aOne Nvidia GTX1080Ti GPU with 3 CPUs provided by SURFsara’s LISA cluster. For more info see: https://userinfo.
surfsara.nl/systems/lisa/description

E Results of the original paper366

Figure 6: Figure of the original paper [1] comparing objective functions for different number of drivers.

Figure 7: Figure of the original paper [1] comparing the distribution of incomes for different objective functions (λ = 4
6

for driver-side fairness and λ = 109 for rider-side fairness.)
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Figure 8: Figure of the original paper [1] comparing the gain metric to the standard deviation of the redistributed income
to Shapley value ratio for different values of r.

F Results for different seeds367
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Figure 9: Comparison of objective functions for 200 drivers with five different seeds. Each configuration is modelled
as a bivariate Gaussian distribution. The λ values for the rider-fairness are (from left to right): 1010, 109, 108, for the
driver-fairness: λ = 4

6 .
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Figure 10: Comparing the distribution of incomes for different objective functions with five different seeds (λ = 4
6 for

driver-side fairness and λ = 109 for rider-side fairness.)
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