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ABSTRACT

Continual Learning (CL) focuses on learning from dynamic and changing data
distributions while retaining previously acquired knowledge. Various methods
have been developed to address the challenge of catastrophic forgetting, includ-
ing regularization-based, Bayesian-based, and memory-replay-based techniques.
However, these methods lack a unified framework and common terminology for
describing their approaches. This research aims to bridge this gap by introducing a
comprehensive and overarching framework that encompasses and reconciles these
existing methodologies. Notably, this new framework is capable of encompass-
ing established CL approaches as special instances within a unified and general
optimization objective. An intriguing finding is that despite their diverse origins,
these methods share common mathematical structures. This observation highlights
the compatibility of these seemingly distinct techniques, revealing their intercon-
nectedness through a shared underlying optimization objective. Moreover, the
proposed general framework introduces an innovative concept called refresh learn-
ing, specifically designed to enhance the CL performance. This novel approach
draws inspiration from neuroscience, where the human brain often sheds outdated
information to improve the retention of crucial knowledge and facilitate the ac-
quisition of new information. In essence, refresh learning operates by initially
unlearning current data and subsequently relearning it. It serves as a versatile
plug-in that seamlessly integrates with existing CL methods, offering an adaptable
and effective enhancement to the learning process. Extensive experiments on CL
benchmarks and theoretical analysis demonstrate the effectiveness of the proposed
refresh learning.

1 INTRODUCTION

Continual learning (CL) is a dynamic learning paradigm that focuses on acquiring knowledge from
data distributions that undergo continuous changes, thereby simulating real-world scenarios where
new information emerges over time. The fundamental objective of CL is to adapt and improve a
model’s performance as it encounters new data while retaining the knowledge it has accumulated from
past experiences. This pursuit, however, introduces a substantial challenge: the propensity to forget
or overwrite previously acquired knowledge when learning new information. This phenomenon,
known as catastrophic forgetting (McCloskey & Cohen, 1989), poses a significant hurdle in achieving
effective CL. As a result, the development of strategies to mitigate the adverse effects of forgetting and
enable harmonious integration of new and old knowledge stands as a critical and intricate challenge
within the realm of CL research.

A plethora of approaches have been introduced to address the challenge of forgetting in CL. These
methods span a range of strategies, encompassing Bayesian-based techniques (Nguyen et al., 2018;
Kao et al., 2021), regularization-driven solutions (Kirkpatrick et al., 2017; Cha et al., 2021), and
memory-replay-oriented methodologies (Riemer et al., 2019; Buzzega et al., 2020). These methods
have been developed from distinct perspectives, but lacking a cohesive framework and a standardized
terminology for their formulation.

In the present study, we endeavor to harmonize this diversity by casting these disparate categories
of CL methods within a unified and general framework with the tool of Bregman divergence. As
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Table 1: A unified framework for CL. We define a generalized CL optimization objective as LCL =
LCE(x, y)+αDΦ(hθ(x), z)+βDΨ(θ,θold). Where α ≥ 0, β ≥ 0, LCE(x, y) is the loss function
on new task, DΦ(hθ(x), z) is output space regularization represented as a Bregman divergence
associated with function Φ, DΨ(θ,θold) is weight space regularization represented as a Bregman
divergence associated with function Ψ. Several existing representative CL methods can be recovered
from this general optimization objective by setting different Φ, Ψ and Bregman divergence.

Category Method Ref Recover Setting

Bayesian-based VCL Nguyen et al. (2018) α = 0,Ψ(p) =
∫
p(x) log p(x)dx

NCL Kao et al. (2021) Φ(p) =
∑i=n

i=1 pi log pi. Ψ = 1
2 ||θ||

2

Regularization-based EWC Kirkpatrick et al. (2017) α = 0,Ψ(θ) = 1
2θ

TFθ

CPR Cha et al. (2021) Φ(p) =
∑i=n

i=1 pi log pi

Memory-replay-based ER Chaudhry et al. (2019b) β = 0,Φ(p) =
∑i=n

i=1 pi log pi

DER Buzzega et al. (2020) β = 0,Φ(x) = ||x||2

Novel CL method Refresh Learning Ours Unlearn-relearn plug-in

outlined in Table 1, we introduce a generalized CL optimization objective. Our framework is
designed to flexibly accommodate this general objective, allowing for the recovery of a wide array of
representative CL methods across different categories. This is achieved by configuring the framework
according to specific settings corresponding to the desired CL approach. Through this unification,
we uncover an intriguing revelation: while these methods ostensibly belong to different categories,
they exhibit underlying mathematical structures that are remarkably similar. This revelation lays the
foundation for a broader and more inclusive CL approach. Our findings have the potential to open
avenues for the creation of a more generalized and effective framework for addressing the challenge
of knowledge retention in CL scenarios.

Our unified CL framework offers insights into the limitations of existing CL methods. It becomes
evident that current CL techniques predominantly address the forgetting issue by constraining model
updates either in the output space or the model weight space. However, they tend to prioritize the
preservation of existing knowledge while potentially neglecting the risk of over-memorization. Over-
emphasizing the retention of existing knowledge doesn’t necessarily lead to improved generalization,
as the network’s capacity may become occupied by outdated and less relevant information. This can
impede the acquisition of new knowledge and the effective recall of pertinent old knowledge.

To address this issue, we propose a refresh learning mechanism with a first unlearning, then relearn the
current loss function. This is inspired by two aspects. On one hand, forgetting can be beneficial for the
human brain in various situations, as it helps in efficient information processing and decision-making
(Davis & Zhong, 2017; Richards & Frankland, 2017; Gravitz, 2019; Wang et al., 2023b). One example
is the phenomenon known as ”cognitive load” (Sweller, 2011). Imagine a person navigating through
a new big city for the first time. They encounter a multitude of new and potentially overwhelming
information, such as street names, landmarks, and various details about the environment. If the
brain were to retain all this information indefinitely, it could lead to cognitive overload, making
it challenging to focus on important aspects and make decisions effectively. However, the ability
to forget less relevant details allows the brain to prioritize and retain essential information. Over
time, the person might remember key routes, important landmarks, and necessary information for
future navigation, while discarding less critical details. This selective forgetting enables the brain to
streamline the information it holds, making cognitive processes more efficient and effective. In this
way, forgetting serves as a natural filter, helping individuals focus on the most pertinent information
and adapt to new situations without being overwhelmed by an excess of irrelevant details. On
the other hand, CL involves adapting to new tasks and acquiring new knowledge over time. If a
model were to remember every detail from all previous tasks, it could quickly become impractical
and resource-intensive. Forgetting less relevant information helps in managing memory resources
efficiently, allowing the model to focus on the most pertinent knowledge (Feldman & Zhang, 2020).
Furthermore, catastrophic interference occurs when learning new information disrupts previously
learned knowledge. Forgetting less relevant details helps mitigate this interference, enabling the
model to adapt to new tasks without severely impacting its performance on previously learned tasks.
Our proposed refresh learning is designed as a straightforward plug-in, making it easily compatible
with existing CL methods. Its seamless integration capability allows it to augment the performance
of CL techniques, resulting in enhanced CL performance overall.

To illustrate the enhanced generalization capabilities of the proposed method, we conduct a compre-
hensive theoretical analysis. Our analysis demonstrates that refresh learning approximately minimizes
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the Fisher Information Matrix (FIM) weighted gradient norm of the loss function. This optimization
encourages the flattening of the loss landscape, ultimately resulting in improved generalization.
Extensive experiments conducted on various representative datasets demonstrate the effectiveness of
the proposed method. Our contributions are summarized as three-fold:

• We propose a generalized CL optimization framework that encompasses various CL ap-
proaches as special instances, including Bayesian-based, regularization-based, and memory-
replay-based CL methods, which provides a new understanding of existing CL methods.

• Building upon our unified framework, we derive a new refresh learning mechanism with
an unlearn-relearn scheme to more effectively combat the forgetting issue. The proposed
method is a simple plug-in and can be seamlessly integrated with existing CL methods.

• We provide in-depth theoretical analysis to prove the generalization ability of the proposed
refresh learning mechanism. Extensive experiments on several representative datasets
demonstrate the effectiveness and efficiency of refresh learning.

2 RELATED WORK

Continual Learning (CL) (van de Ven et al., 2022) aims to learn non-stationary data distribution.
Existing methods on CL can be classified into four classes. (1) Regularization-based methods
regularize the model weights or model outputs to mitigate forgetting. Representative works include
(Kirkpatrick et al., 2017; Zenke et al., 2017b; Chaudhry et al., 2018; Aljundi et al., 2018; Cha et al.,
2021; Wang et al., 2021; Yang et al., 2023a). (2) Bayesian-based methods enforce model parameter
posterior distributions not change much when learning new tasks. Representative works include
(Nguyen et al., 2018; Kurle et al., 2019; Kao et al., 2021; Henning et al., 2021; Pan et al., 2020;
Titsias et al., 2020; Rudner et al., 2022). (3) Memory-replay-based methods maintain a small memory
buffer which stores a small number of examples from previous tasks and then replay later to mitigate
forgetting. Representative works include (Lopez-Paz & Ranzato, 2017; Riemer et al., 2019; Chaudhry
et al., 2019c; Buzzega et al., 2020; Pham et al., 2021; Arani et al., 2022; Caccia et al., 2022; Wang
et al., 2022b;a; 2023c;a; Yang et al., 2023b). (4) Architecture-based methods dynamically update
the networks or utilize subnetworks to mitigate forgetting. Representative works include (Mallya &
Lazebnik, 2018; Serra et al., 2018; Li et al., 2019; Hung et al., 2019). Our work proposes a unified
framework to encompass various CL methods as special cases and offers a new understanding of
these CL methods.

Machine Unlearning (Guo et al., 2020; Wu et al., 2020; Bourtoule et al., 2021; Ullah et al., 2021)
refers to the process of removing or erasing previously learned information or knowledge from a
pre-trained model to comply with privacy regulations (Ginart et al., 2019). In contrast to existing
approaches focused on machine unlearning, which seek to entirely eliminate data traces from pre-
trained models, our refresh learning is designed to selectively and dynamically eliminate outdated or
less relevant information from CL model. This selective unlearning approach enhances the ability of
the CL model to better retain older knowledge while efficiently acquiring new task information.

3 PROPOSED FRAMEWORK AND METHOD

We present preliminary and problem setup in Section 3.1, our unified and general framework for CL
in Section 3.2, and our proposed refresh learning which is built upon and derived from the proposed
CL optimization framework in Section 3.3.

3.1 PRELIMINARY AND PROBLEM SETUP

Continual Learning Setup The standard CL problem involves learning a sequence of N tasks, repre-
sented as Dtr = {Dtr

1 ,Dtr
2 , · · · ,Dtr

N}. The training dataset Dtr
k for the kth task contains a collection

of triplets: (xk
i , y

k
i , Tk)

nk
i=1, where xk

i denotes the ith data example specific to task k, yki represents
the associated data label for xk

i , and Tk is the task identifier. The primary objective is to train a neural
network function, parameterized by θ, denoted as gθ(x). The goal is to achieve good performance
on the test datasets from all the learned tasks, represented as Dte = {Dte

1 ,Dte
2 , · · · ,Dte

N}, while
ensuring that knowledge acquired from previous tasks is not forgotten.
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Bregman Divergence Consider Φ: Ω → R as a strictly convex differentiable function and defined
on a convex set Ω. The Bregman divergence (Banerjee et al., 2005) related to Φ for two points p and
q within the set Ω can be understood as the discrepancy between the Φ value at point p and the value
obtained by approximating Φ using first-order Taylor expansion at q. It is defined as:

DΦ(p, q) = Φ(p)−Φ(q)− ⟨∇Φ(q),p− q⟩ (1)

where ∇Φ(q) is the gradient of Φ at q. ⟨, ⟩ denotes the dot product between two vectors. In the
upcoming section, we will employ Bregman divergence to construct a unified framework for CL.

3.2 A UNIFIED AND GENERAL FRAMEWORK FOR CL

In this section, we reformulate several established CL algorithms in terms of a general optimization
objective. Specifically, a more general CL optimization objective can be expressed as the following:

LCL = LCE(x, y)︸ ︷︷ ︸
new task

+αDΦ(hθ(x), z)︸ ︷︷ ︸
output space

+β DΨ(θ,θold)︸ ︷︷ ︸
weight space

(2)

where θ denotes the CL model parameters. LCE(x, y) is the cross-entropy loss on the labeled
data (x, y) for the current new task. α ≥ 0, β ≥ 0. The term DΦ(hθ(x), z) represents a form
of regularization in the output space of the CL model. It is expressed as the Bregman divergence
associated with the function Φ. The constant vector z serves as a reference value and helps us prevent
the model from forgetting previously learned tasks. Essentially, it is responsible for reducing changes
in predictions for tasks the model has learned before. On the other hand, DΨ(θ,θold) represents a
form of regularization applied to the weight space. It is also expressed as a Bregman divergence,
this time associated with the function Ψ. The term θold refers to the optimal model parameters that
were learned for older tasks. It is used to ensure that the model doesn’t adapt too rapidly to new tasks
and prevent the model from forgetting the knowledge of earlier tasks. Importantly, these second and
third terms in Eq. 2 work together to prevent forgetting of previously learned tasks. Additionally,
it’s worth noting that various existing CL methods can be seen as specific instances of this general
framework we’ve described above. Specifically, we cast VCL (Nguyen et al., 2018), NCL (Kao et al.,
2021), EWC (Kirkpatrick et al., 2017), CPR (Cha et al., 2021), ER (Chaudhry et al., 2019c) and
DER (Buzzega et al., 2020) as special instances of the optimization objective, Eq. (2). Due to space
constraints, we will only outline the essential steps for deriving different CL methods in the following.
Detailed derivations can be found in Appendix A.

ER as A Special Case Experience replay (ER) (Riemer et al., 2019; Chaudhry et al., 2019c) is a
memory-replay based method for mitigating forgetting in CL. We denote the network softmax output
as gθ(x) = softmax(uθ(x)) and y as the one-hot vector for the ground truth label. We use KL to
denote the KL-divergence between two probability distributions. We denote M as the memory buffer
which stores a small amount of data from previously learned tasks. ER optimizes the objective:

LCL = LCE(x, y) + αE(x,y)∈MLCE(x, y) (3)

In this case, in Eq. (2), we set β = 0. We take Φ to be the negative entropy function, i.e.,
Φ(p) =

∑i=n
i=1 pi log pi. We set p = gθ(x), i.e., the softmax probability output of the neural network

on the memory buffer data and q to be the one-hot vector of the ground truth class distribution. Then,
DΦ(p, q) = KL(gθ(x),y). We recovered the ER method.

DER as A Special Case DER (Buzzega et al., 2020) is a memory-replay based method. DER not only
stores the raw memory samples, but also stores the network logits for memory buffer data examples.
Specifically, it optimizes the following objective function:

LCL = LCE(x, y) + αE(x,y)∈M||uθ(x)− z||22 (4)

where uθ(x) is the network output logit before the softmax and z is the network output logit when
storing the memory samples. In this case, in Eq. (2), we set β = 0. We take Φ(x) = ||x||2. Then,
we set p = uθ(x) and q = z. Then, DΦ(p, q) = ||uθ(x)− z||22. We recover the DER method.

CPR as A Special Case CPR (Cha et al., 2021) is a regularization-based method and adds an entropy
regularization term to the CL model loss function. Specifically, it solves:

LCL = LCE(x, y)− αH(gθ(x)) + βDΨ(θ,θold) (5)
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Where H(gθ(x)) is the entropy function on the classifier class probabilities output. In Eq. (2), we
take Φ to be the negative entropy function, i.e., Φ(p) =

∑i=n
i=1 pi log pi. We set p = gθ(x), i.e., the

probability output of CL model on the current task data and q = v, i.e., the uniform distribution on
the class probability distribution. For the third term, we can freely set any proper regularization on
the weight space regularization. DΦ(p, q) = KL(gθ(x),v). We then recover the CPR method.

EWC as A Special Case Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), is a
regularization-based technique. It achieves this by imposing a penalty on weight updates using the
Fisher Information Matrix (FIM). The EWC can be expressed as the following objective:

LCL = LCE(x, y) + β(θ − θold)
TF (θ − θold) (6)

where θold is mean vector of the Gaussian Laplace approximation for previous tasks, F is the diagonal
of the FIM. In Eq. (2), we set α = 0, we take Ψ(θ) = 1

2θ
TFθ. We set p = θ and q = θold.

DΨ(p, q) = (θ − θold)
TF (θ − θold). Then, we recover the EWC method.

VCL as A Special Case Variational continual learning (VCL) (Nguyen et al., 2018) is a Bayesian-
based method for mitigating forgetting in CL. The basic idea of VCL is to constrain the current model
parameter distribution to be close to that of previous tasks. It optimizes the following objective.

LCL = LCE(x, y) + βKL(P (θ|D1:t), P (θold|D1:t−1)) (7)

where D1:t denotes the dataset from task 1 to t. P (θ|D1:t) is the posterior distribution of the model
parameters on the entire task sequence D1:t. P (θold|D1:t−1) is the posterior distribution of the model
parameters on the tasks D1:t−1. In this case, P (θ|D1:t) and P (θold|D1:t−1) are both continuous
distributions. In this case, in Eq. (2), we set α = 0. we take Ψ to be Ψ(p) =

∫
p(θ) log p(θ)dθ. We

then set p = P (θ|D1:t) and q = P (θold|D1:t−1). We then recover the VCL method.

Natural Gradient CL as A Special Case Natural Gradient CL (Osawa et al., 2019; Kao et al., 2021)
(NCL) is a Bayesian-based CL method. Specifically, NCL updates the CL model by the following
damped (generalized to be more stable) natural gradient:

θk+1 = θk − η(αF + βI)−1∇L(θ) (8)

where F is the FIM for previous tasks, I is the identity matrix and η is the learning rate. For the second
loss term in Eq. (2), we take Φ to be the negative entropy function, i.e., Φ(p) =

∑i=n
i=1 pi log pi. For

the third loss term in Eq. (2), we adopt the Ψ(θ) = 1
2 ||θ||

2. In Eq. (2), we employ the first-order
Taylor expansion to approximate the second loss term and employ the second-order Taylor expansion
to approximate the third loss term. We then recover the natural gradient CL method. Due to the space
limitations, we put the detailed theoretical derivations in Appendix A.6.

3.3 REFRESH LEARNING AS A GENERAL PLUG-IN FOR CL

The above unified CL framework sheds light on the limitations inherent in current CL methodologies.
It highlights that current CL methods primarily focus on addressing the problem of forgetting by
limiting model updates in either the output space or the model weight space. However, these methods
tend to prioritize preserving existing knowledge at the potential expense of neglecting the risk of
over-memorization. Overemphasizing the retention of old knowledge may not necessarily improve
generalization because it can lead to the network storing outdated and less relevant information,
which can hinder acquiring new knowledge and recalling important older knowledge.

In this section, we propose a general and novel plug-in, called refresh learning, for existing CL
methods to address the above-mentioned over-memorization. This approach involves a two-step
process: first, unlearning on the current mini-batch to erase outdated and unimportant information
contained in neural network weights, and then relearning the current loss function. The inspiration
for this approach comes from two sources. Firstly, in human learning, the process of forgetting
plays a significant role in acquiring new skills and recalling older knowledge, as highlighted in
studies like (Gravitz, 2019; Wang et al., 2023b). This perspective aligns with findings in neuroscience
(Richards & Frankland, 2017), where forgetting is seen as essential for cognitive processes, enhancing
thinking abilities, facilitating decision-making, and improving learning effectiveness. Secondly,
neural networks often tend to overly memorize outdated information, which limits their adaptability
to learn new and relevant data while retaining older information. This is because their model capacity
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becomes filled with irrelevant and unimportant data, impeding their flexibility in learning and recall,
as discussed in (Feldman & Zhang, 2020).

Our refresh learning builds upon the unified framework developed in Section 3.2. Consequently, we
obtain a class of novel CL methods to address the forgetting issue more effectively. It serves as a
straightforward plug-in and can be seamlessly integrated with existing CL methods, enhancing the
overall performance of CL techniques. We employ a probabilistic approach to account for uncertainty
during the unlearning step. To do this, we denote the posterior distribution of the CL model parameter
as ρ(θ) := P (θ|D), where := denotes a definition. This distribution is used to model the uncertainty
that arises during the process of unlearning, specifically on the current mini-batch data D.

The main objective is to minimize the KL divergence between the current CL model parameters
posterior and the target unlearned model parameter posterior. We denote the CL model parameter
posterior at time t as ρt, the target unlearned posterior as µ. The goal is to minimize KL(ρt||µ).
Following Wibisono (2018), we define the target unlearned posterior as a energy function µ = e−ω

and ω = −LCL. This KL divergence can be further decomposed as:

KL(ρt||µ) =
∫

ρt(θ) log
ρt(θ)

µ(θ)
dθ = −

∫
ρt(θ) logµ(θ)dθ +

∫
ρt(θ) log ρt(θ)dθ (9)

= H(ρt, µ)−H(ρt)

where H(ρt, µ) := −Eρt
logµ is the cross-entropy between ρt and µ. H(ρt) := −Eρt

log ρt is the
entropy of ρt. Then, we plug-in the above terms into Eq. (9), and obtain the following:

KL(ρt||µ) = −Eρt
logµ+ Eρt

log ρt = −Eρt
LCL + Eρt

log ρt (10)

The entire refresh learning includes both unlearning-relearning can be formulated as the following:

min
θ

EρoptLCL (relearn) (11)

s.t. ρopt = min
ρ

[E(ρ) = −EρLCL + Eρ log ρ] (unlearn) (12)

where Eq. (12) is to unlearn on the current mini-batch by optimizing an energy functional in function
space over the CL parameter posterior distributions. Given that the energy functional E(ρ), as
defined in Eq. (12), represents the negative loss of LCL, it effectively promotes an increase in loss.
Consequently, this encourages the unlearning of the current mini-batch data, steering it towards the
desired target unlearned parameter distribution. After obtaining the optimal unlearned CL model
parameter posterior distribution, ρopt, the CL model then relearns on the current mini-batch data by
Eq. (11). However, Eq. (12) involves optimization within the probability distribution space, and it is
typically challenging to find a solution directly. To address this challenge efficiently, we convert Eq.
(12) into a Partial Differential Equation (PDE) as detailed below.

By Fokker-Planck equation (Kadanoff, 2000), gradient flow of KL divergence is as following:

∂ρt
∂t

= div

(
ρt∇

δKL(ρt||µ)
δρ

(ρ)

)
(13)

div ·(q) :=
∑d

i=1 ∂ziqi(z) is the divergence operator operated on a vector-valued function q : Rd →
Rd, where zi and qi are the i th element of z and q. Then, since the first-variation of KL-divergence,
i.e., δKL(ρt||µ)

δρ (ρt) = log ρt

µ + 1 (Liu et al., 2022). We plug it into Eq. 13, and obtain the following:

∂ρt(θ)

∂t
= div(ρt(θ)∇(log

ρt(θ)

µ
+ 1)) = div(∇ρt(θ) + ρt(θ)∇ω) (14)

Then, (Ma et al., 2015) proposes a more general Fokker-Planck equation as following:

∂ρt(θ)

∂t
= div[([D(θ) +Q(θ)])(∇ρt(θ) + ρt(θ)∇ω)] (15)

where D(θ) is a positive semidefinite matrix and Q(θ) is a skew-symmetric matrix. We plug in the
defined ω = −LCL into the above equation, we can get the following PDE:

∂ρt(θ)

∂t
= div([D(θ) +Q(θ)])[−ρt(θ)∇LCL(θ) +∇ρt(θ)] (16)
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Intuitively, parameters that are less critical for previously learned tasks should undergo rapid unlearn-
ing to free up more model capacity, while parameters of higher importance should unlearn at a slower
rate. This adaptive unlearning of vital parameters ensures that essential information is retained. To
model this intuition, we set the matrix D(θ) = F−1, where F is the FIM on previous tasks and set
Q(θ) = 0 (Patterson & Teh, 2013). Eq. (16) illustrates that the energy functional decreases along the
steepest trajectory in probability distribution space to gradually unlearn the knowledge in current
data. By discretizing Eq. (16), we can obtain the following parameter update equation:

θj = θj−1 + γ[F−1∇LCL(θj−1)] +N (0, 2γF−1) (17)

Algorithm 1 Refresh Learning for General CL.

1: REQUIRE: model parameters θ, CL model learn-
ing rate η,

2: for k = 1 to K do (number of CL steps)
3: for j = 1 to J do (unlearn steps)
4: θj

k = θj−1
k + γ[F−1∇LCL(θj−1

k )] +

N (0, 2γF−1)
5: end for
6: θk+1 = θk − η∇LCL(θj

k) (relearn step)
7: end for

where in Eq. (17), the precondition matrix F−1

aims to regulate the unlearning process. Its pur-
pose is to facilitate a slower update of important
parameters related to previous tasks while al-
lowing less critical parameters to update more
rapidly. It’s important to note that the Hessian
matrix of KL divergence coincides with the FIM,
which characterizes the local curvature of param-
eter changes. In practice, this relationship is ex-
pressed as KL(p(x|θ)|p(x|θ + d)) ≈ 1

2d
TFd.

This equation identifies the steepest direction
for achieving the fastest unlearning of the output
probability distribution. To streamline computation and reduce complexity, we employ a diagonal
approximation of the FIM. It is important to note that the FIM is only computed once after training one
task, the overall computation cost of FIM is thus negligible. The parameter γ represents the unlearning
rate, influencing the pace of unlearning. Additionally, we introduce random noise N (0, 2γF−1) to
inject an element of randomness into the unlearning process, compelling it to thoroughly explore the
entire posterior distribution rather than converging solely to a single point estimation.

Refresh Learning As a Special Case Now, we derive our refresh learning as a special case of Eq. 2:

Lunlearn = LCE(x, y) + 2αDΦ(hθ(x), z) + βDΨ(θ,θold)︸ ︷︷ ︸
LCL

−αDΦ(hθ(x), z) (18)

In Eq. (18): we adopt the second-order Taylor expansion on DΦ(hθ(x), z) as the following:

DΦ(hθ(x), z) ≈ DΦ(hθk
(x), z) +∇θDΦ(hθk

(x), z)(θ − θk) +
1

2
(θ − θk)

TF (θ − θk) (19)

Since ∇θDΦ(hθ(x), z) is close to zero at the stationary point, i.e., θk, we thus only need to optimize
the leading quadratic term in Eq. 19. we adopt the first-order Taylor expansion on LCL as:

LCL(θ) ≈ LCL(θk) +∇θLCL(θk)(θ − θk) (20)

In summary, the approximate loss function for Eq. (18) can be expressed as the following:

Lunlearn ≈ ∇θLCL(θk)(θ − θk)−
α

2
(θ − θk)

TF (θ − θk) (21)

We then take the gradient with respect to θ for the RHS of the Eq. (21), we can obtain the following:

∇θLCL(θk)− αF (θ − θk) = 0 (22)

Solving the above equation leads to the following unlearning for the previously learned tasks:

θ′
k = θk +

1

α
F−1∇θLCL(θk) (23)

Equation (23) is nearly identical to Equation (17), with the only distinction being that Equation
(17) incorporates an additional random noise perturbation, which helps the CL model escape local
minima Raginsky et al. (2017) and saddle point Ge et al. (2015). The constant 1

α now takes on a new
interpretation, serving as the unlearning rate.

In summary, we name our proposed method as refresh, which reflects our new learning mechanism
that avoids learning outdated information. Algorithm 1 presents the general refresh learning method
with a unlearn-relearn framework for general CL. Line 3-5 describes the unlearn step for current loss
at each CL step. Line 6 describes the relearn step for current loss.
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4 THEORETICAL ANALYSIS

Our method can be interpreted theoretically and improves the generalization of CL by improving the
flatness of the loss landscape. Specifically, refresh learning can be characterized as the FIM weighted
gradient norm penalized optimization by the following theorem.
Theorem 4.1. With one step of unlearning by Eq. (17), refresh learning approximately minimize the
following FIM weighted gradient norm of the loss function. That is, solving Eq. (11) and Eq. (12)
approximately solves the following optimization:

min
θ

LCL(θ) + σ||∇LCL(θ)F−1|| (24)

where σ > 0 is a constant.

The above theorem shows that refresh learning seeks to minimize the FIM weighted gradient norm
of the loss function. This optimization objective promotes the flatness of the loss landscape since a
smaller FIM weighted gradient norm indicates flatter loss landscape. In practice, flatter loss landscape
has been demonstrated with significantly improved generalization (Izmailov et al., 2018). It is
important to note that our method is more flexible and efficient than minimizing the FIM weighted
gradient norm of the loss function since we can flexibly control the degree of unlearning with different
number of steps, which may involve higher order flatness of loss landscape. Furthermore, optimizing
Eq. (24) necessitates the calculation of the Hessian matrix, a computationally intensive task. In
contrast, our method offers a significant efficiency advantage as it does not require the computation
of the Hessian matrix. Due to the space limitations, we put detailed theorem proof in Appendix B.

5 EXPERIMENTS

5.1 SETUP

Datasets We perform experiments on various datasets, including CIFAR10 (10 classes), CIFAR100
(100 classes), Tiny-ImageNet (200 classes) and evaluate the effectiveness of our proposed methods in
task incremental learning (Task-IL) and class incremental learning (Class-IL). Following Buzzega et al.
(2020), we divided the CIFAR-10 dataset into five separate tasks, each containing two distinct classes.
Similarly, we partitioned the CIFAR-100 dataset into ten tasks, each has ten classes. Additionally, for
Tiny-ImageNet, we organized it into ten tasks, each has twenty classes.

Baselines We compare to the following baseline methods for comparisons. (1) Regularization-based
methods, including oEWC (Schwarz et al., 2018), synaptic intelligence (SI) (Zenke et al., 2017a),
Learning without Forgetting (LwF) (Li & Hoiem, 2018), Classifier-Projection Regularization (CPR)
(Cha et al., 2021), Gradient Projection Memory (GPM) (Saha et al., 2021). (2) Bayesian-based
methods, NCL (Kao et al., 2021). (3) Architecture-based methods, including HAT (Serra et al., 2018).
(4) Memory-based methods, including ER (Chaudhry et al., 2019b), A-GEM (Chaudhry et al., 2019a),
GSS (Aljundi et al., 2019), DER++ (Buzzega et al., 2020), HAL(Chaudhry et al., 2021).

Implementation Details We use ResNet18 (He et al., 2016) on the above datasets. We adopt the
hyperparameters from the DER++ codebase (Buzzega et al., 2020) as the baseline settings for all
the methods we compared in the experiments. Additionally, to enhance runtime efficiency in our
approach, we implemented the refresh mechanism, which runs every two iterations.

Evaluation Metrics We evaluate the performance of proposed refresh method by integrating with
several existing methods with (1) overall accuracy (ACC), which is the average accuracy across the
entire task sequence and (2) backward transfer (BWT), which measures the amount of forgetting
on previously learned tasks. If BWT > 0, which means learning on current new task is helpful for
improving the performance of previously learned tasks. If BWT ≤ 0, which means learning on
current new task can lead to forgetting previously learned tasks. Each experiment result is averaged
for 10 runs with mean and standard deviation.

5.2 RESULTS

We present the overall accuracy for task-IL and class-IL in Table 2. Due to space limitations, we
put BWT results in Table 9 in Appendix C.5. We can observe that with the refresh plug-in, the
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Table 2: Task-IL and class-IL overall accuracy on CIFAR10, CIFAR-100 and Tiny-ImageNet,
respectively with memory size 500. ’—’ indicates not applicable.

Algorithm CIFAR-10 CIFAR-100 Tiny-ImageNet
Method Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

fine-tuning 19.62± 0.05 61.02± 3.33 9.29± 0.33 33.78± 0.42 7.92± 0.26 18.31± 0.68
Joint train 92.20± 0.15 98.31± 0.12 71.32± 0.21 91.31± 0.17 59.99± 0.19 82.04± 0.10

SI 19.48± 0.17 68.05± 5.91 9.41± 0.24 31.08± 1.65 6.58± 0.31 36.32± 0.13
LwF 19.61± 0.05 63.29± 2.35 9.70± 0.23 28.07± 1.96 8.46± 0.22 15.85± 0.58
NCL 19.53± 0.32 64.49± 4.06 8.12± 0.28 20.92± 2.32 7.56± 0.36 16.29± 0.87
GPM —– 90.68± 3.29 —– 72.48± 0.40 —– —–
UCB —– 79.28± 1.87 —– 57.15± 1.67 —– —–
HAT —– 92.56± 0.78 —– 72.06± 0.50 —– —–

A-GEM 22.67± 0.57 89.48± 1.45 9.30± 0.32 48.06± 0.57 8.06± 0.04 25.33± 0.49
GSS 49.73± 4.78 91.02± 1.57 13.60± 2.98 57.50± 1.93 —– —–
HAL 41.79± 4.46 84.54± 2.36 9.05± 2.76 42.94± 1.80 —– —–

oEWC 19.49± 0.12 64.31± 4.31 8.24± 0.21 21.2± 2.08 7.42± 0.31 15.19± 0.82
oEWC+refresh 20.37 ± 0.65 66.89 ± 2.57 8.78 ± 0.42 23.31 ± 1.87 7.83 ± 0.15 17.32 ± 0.85
CPR(EWC) 19.61± 3.67 65.23± 3.87 8.42± 0.37 21.43± 2.57 7.67± 0.23 15.58± 0.91
CPR(EWC)+refresh 20.53 ± 2.42 67.36 ± 3.68 9.06 ± 0.58 22.90 ± 1.71 8.06 ± 0.43 17.90 ± 0.77
ER 57.74± 0.27 93.61± 0.27 20.98± 0.35 73.37± 0.43 9.99± 0.29 48.64± 0.46
ER+refresh 61.86 ± 1.35 94.15 ± 0.46 22.23 ± 0.73 75.45 ± 0.67 11.09 ± 0.46 50.85 ± 0.53
DER++ 72.70± 1.36 93.88± 0.50 36.37± 0.85 75.64± 0.60 19.38± 1.41 51.91± 0.68
DER+++refresh 74.42 ± 0.82 94.64 ± 0.38 38.49 ± 0.76 77.71 ± 0.85 20.81 ± 1.28 54.06 ± 0.79

performance of all compared methods can be further significantly improved. Notably, compared to
the strong baseline DER++, our method improves by more than 2% in many cases on CIFAR10,
CIFAR100 and Tiny-ImageNet. The performance improvement demonstrates the effectiveness and
general applicability of refresh mechanism, which can more effectively retain important information
from previously learned tasks since it can more effectively utilize model capacity to perform CL.

5.3 ABLATION STUDY AND HYPERPARAMETER ANALYSIS

Hyperparameter Analysis We evaluate the sensitivity analysis of the hyperparameters, the unlearning
rate γ and the number of unlearning steps J in Table 5 in Appendix. We can observe that with
increasing number of unlearning steps J , the CL performance only slightly improves and then
decreases but with higher computation cost. For computation efficiency, we only choose one step of
unlearning. We also evaluate the effect of the unlearning rate γ to the CL model performance.

Effect of Memory Size To evaluate the effect of different memory buffer size, we provide results in
Table 4 in Appendix. The results show that with larger memory size of 2000, our refresh plug-in also
substantially improves the compared methods.

Computation Efficiency To evaluate the efficiency of the proposed method, we evaluate and compare
DER+++refresh learning with DER++ on CIFAR100 in Table 8 in Appendix. This running time
indicates that refresh learning increases 0.81× cost compared to the baseline without refresh learning.
This shows our method is efficient and only introduces marginal computation cost.

6 CONCLUSION

This paper introduces an unified framework for CL. and unifies various existing CL approaches as
special cases. Additionally, the paper introduces a novel approach called refresh learning, which
draws inspiration from neuroscience principles and seamlessly integrates with existing CL methods,
resulting in enhanced generalization performance. The effectiveness of the proposed framework
and the novel refresh learning method is substantiated through a series of extensive experiments on
various CL datasets. This research represents a significant advancement in CL, offering a unified and
adaptable solution.

Acknowledgments This work was partially supported by NSF IIS 2347592, 2347604, 2348159,
2348169, DBI 2405416, CCF 2348306, CNS 2347617.
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Appendix

A RECAST EXISTING CL METHODS INTO OUR UNIFIED AND GENERAL
FRAMEWORK

LCL = LCE(x, y) + αDΦ(hθ(x), z) + βDΨ(θ,θold) (25)

The following is the definition of Bregman divergence:

DΦ(p, q) = Φ(p)−Φ(q)− ⟨∇Φ(q),p− q⟩ (26)

A.1 CAST CPR INTO THE GENERAL FRAMEWORK

In Eq. (25), we take Φ(p) =
∑i=n

i=1 pi log pi. Here, p and q are probability simplex, i.e.,
∑i=n

i=1 pi =

1 and
∑i=n

i=1 qi = 1. Then, we plug Φ(p) into Eq. (26). We can obtain the following equation:

DΦ(p, q) =

i=n∑
i=1

pi log pi −
i=n∑
i=1

qi log qi − ⟨log(q) + 1,p− q⟩ (27)

=

i=n∑
i=1

pi log pi −
i=n∑
i=1

pi log qi −
i=n∑
i=1

pi +

i=n∑
i=1

qi (28)

=

i=n∑
i=1

pi log
pi

qi
(29)

= −H(p) +H(p, q) (30)
= KL(p||q) (31)

where H(p) is the entropy for the probability distribution p. and H(p, q) is the cross entropy between
probability distributions p and q.

When we take the probability distribution p = gθ(x) , i.e., the CL model output probability
distribution over the classes, and q = v, i.e., the uniform distribution over the underlying classes,
DΦ(p, q) = KL(gθ(x),v). This precisely recovers the CPR method.

A.2 CAST EWC INTO THE GENERAL FRAMEWORK

In Eq. (25), we set α = 0, we take Ψ(θ) = 1
2θ

TFθ. We set p = θ and q = θold. where F is the
diagonal Fisher information matrix.

DΦ(p, q) = Φ(p)−Φ(q)− ⟨∇Φ(q),p− q⟩ (32)

=
1

2
θTFθ − 1

2
θT
oldFθold − ⟨θoldF,θ − θold⟩ (33)

=
1

2
θTFθ +

1

2
θT
oldFθold − ⟨θoldF,θ⟩ (34)

=
1

2
(θ − θold)

TF (θ − θold) (35)

Then, we recover the EWC method.

A.3 CAST DER INTO THE GENERAL FRAMEWORK

In Eq. (25), we set β = 0 and take Φ(p) = ||p||2
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DΦ(p, q) = Φ(p)−Φ(q)− ⟨∇Φ(q),p− q⟩ (36)

= ||p||2 − ||q||2 − ⟨2q,p− q⟩ (37)

= ||p||2 + ||q||2 − 2⟨p, q⟩ (38)

= (p− q)2 (39)

Next, we take p = uθ(x) and q = z. DΦ(p, q) = ||uθ(x) − z||2. Then, we recover the DER
method.

A.4 CAST ER INTO THE GENERAL FRAMEWORK

In Eq. (25), we set β = 0, we take p = y, i.e., the one-hot representation of the ground-truth label
and q = gθ(x), i.e., the CL model output probability distribution over the classes. Then, DΦ(p, q)
is equivalent to the cross-entropy loss H(p, q) according to Eq. (30). As a result, we recover the ER
method.

A.5 CAST VCL INTO THE GENERAL FRAMEWORK

In Eq. (25), we set α = 0, we take Ψ(p) =
∫
p(θ) log p(θ)dθ.

∫
p(θ)dθ = 1. Then, the following

Bregman divergence can be expressed as:

DΨ(p, q) = Ψ(p)−Ψ(q)− ⟨∇Ψ(q), p− q⟩ (40)

=

∫
p(θ) log p(θ)dθ −

∫
q(θ) log q(θ)dθ −

∫
(1 + log q(θ))(p(θ)− q(θ))dθ (41)

=

∫
p(θ) log p(θ)dθ −

∫
p(θ) log q(θ)dθ (42)

=

∫
p(θ) log

p(θ)

q(θ)
dθ (43)

= KL(p(θ)||q(θ)) (44)

Variational continual learning (VCL) Nguyen et al. (2018) is a Bayesian-based method for mitigating
forgetting in CL. The basic idea of VCL is to constrain the current model parameter distribution to be
close to that of previous tasks. It optimizes the following objective.

LCL = LCE(x, y) + βKL(P (θ|D1:t), P (θold|D1:t−1)) (45)

where D1:t denotes the dataset from task 1 to task t. P (θ|D1:t) is the posterior distribution of the
model parameters on the entire task sequence D1:t. P (θold|D1:t−1) is the posterior distribution
of the model parameters on the tasks D1:t−1. In this case, P (θ|D1:t) and P (θold|D1:t−1) are
both continuous distributions. In this case, in Eq. (2), we set α = 0. we take Ψ to be Ψ(p) =∫
p(θ) log p(θ)dθ. We then set p = P (θ|D1:t) and q = P (θold|D1:t−1). We then recover the VCL

method.

A.6 CAST NATURAL GRADIENT CL INTO THE GENERAL FRAMEWORK

In Eq. (25), we adopt the first-order Taylor expansion on the first loss term as the following:

LCE(θ) ≈ LCE(θk) +∇θLCE(θk)(θ − θk) (46)

For the second loss term in Eq. (25), we take Φ(p) =
∑i=n

i=1 pi log pi. z to be the ground truth
one-hot vector for the labeled data. Then, the second loss term is the cross entropy loss on the
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previously learned tasks. We adopt the second-order Taylor expansion on the second loss term as the
following:

DΦ(hθ(x), z) ≈ DΦ(hθk
(x), z) +∇θDΦ(hθk

(x), z)(θ − θk) +
1

2
(θ − θk)

TF (θ − θk) (47)

where F is the Fisher information matrix (FIM) of the loss DΦ(hθ(x), z) on previously learned
tasks. Since ∇θDΦ(hθ(x), z) is close to zero at the stationary point, i.e., θk, we thus only need to
optimize the quadratic term in Eq. 47.

For the third loss term in Eq. (25), we adopt the Ψ = 1
2 ||θ||

2. Thus, the third loss term becomes
DΨ(θ,θk) =

1
2 ||θ − θk||2.

In summary, the approximate loss function for Eq. (25) can be expressed as the following:

∇θLCE(θk)(θ − θk) +
α

2
(θ − θk)

TF (θ − θk) +
β

2
||θ − θk||2 (48)

We then apply first-order gradient method on the Eq. (48), we can obtain the following:

∇θLCE(θk) + α(θ − θk)F + β(θ − θk) = 0 (49)

We can obtain the following.

(αF + βI)θ = (αF + βI)(θk − ((αF + βI)−1∇θLCE(θk))) (50)

We can get the following natural gradient CL method.

θk+1 = θk − ((αF + βI)−1∇θLCE(θk)) (51)

when β = 0, the above equation recover the standard natural gradient CL method without damping
as the following:

θk+1 = θk − (αF )−1∇θLCE(θk) (52)

B THEOREM PROOF

Proof. Proof sketch: We outline our proof in the following. We denote the weighted gradient norm
regularized CL loss function as LGN (θ) and our refresh learning loss function as Lrefresh(θ). Then,
we calculate their gradient ∇θLGN (θ) and ∇θLrefresh(θ), respectively. Finally, we show their
gradient is approximately the same, i.e., ∇θLGN (θ) ≈ ∇θLrefresh(θ), then the conclusion follows.

(1) Calculate the gradient ∇θLGN (θ) We define the gradient norm regularized CL loss function
as:

LGN (θ) = LCL(θ) + σ||∇θLCL(θ)F−1|| (53)

Then, we take the derivative with respect to θ in Eq. (53), we got the following:

∇θ||∇θLCL(θ)F−1|| = ∇θ(||∇θLCL(θ)F−1||2) 1
2 (54)

=
1

2
(||∇θLCL(θ)F−1||2)− 1

2 (2∇θLCL(θ)F−1)∇2
θLCL(θ)F−1 (55)

=
∇θLCL(θ)F−1∇2

θLCL(θ)F−1

||∇θLCL(θ)F−1||
(56)

≈ ∇2
θLCL(θ)F−1 ∇θLCL(θ)

||∇θLCL(θ)||
(57)
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Table 4: Task-IL and class-IL overall accuracy on CIFAR-100 and Tiny-ImageNet, respectively
with memory size 2000. ’—’ indicates not applicable.

Algorithm CIFAR-100 Tiny-ImageNet
Method Class-IL Task-IL Class-IL Task-IL

ER 36.06± 0.72 81.09± 0.45 15.16± 0.78 58.19± 0.69
ER+refresh 37.29 ± 0.85 83.21 ± 1.23 16.93 ± 0.86 59.42 ± 0.51
DER++ 50.72± 0.71 82.43± 0.38 24.21± 1.09 62.22± 0.87
DER+++refresh 52.81 ± 0.80 84.05 ± 0.77 27.37 ± 1.53 64.31 ± 0.98

(2) Calculate the gradient ∇θLrefresh(θ) Then, we define the refresh learning loss function as
the following:

Lrefresh = LCL(θ + sδ) (58)

where, we set δ = F−1 ∇θLCL(θ)
||∇θLCL(θ)|| +N (0, 2γF−1). Then, we take the first-order Taylor expansion

on Lrefresh Zhao et al. (2022) as the following:

∇θLCL(θ + sδ) ≈ ∇θLCL(θ) +∇2
θLCL(θ)sδ (59)

∇2
θLCL(θ)δ = ∇2

θLCL(θ)F−1 ∇θLCL(θ)

||∇θLCL(θ)||
+N (0, 2γ[∇2

θLCL(θ)]2F−1) (60)

(3) Show that these two loss gradients are approximately the same, i.e., ∇θLGN (θ) ≈
∇θLrefresh(θ)

∇θLCL(θ + sδ) ≈ ∇θLCL(θ) +∇2
θLCL(θ)sδ (61)

= ∇θLCL(θ) + s∇2
θLCL(θ)F−1 ∇θLCL(θ)

||∇θLCL(θ)||
+N (0, 2γs2[∇2

θLCL(θ)]2F−1)

(62)

≈ ∇θLCL(θ) + s∇θ||∇θLCL(θ)F−1||+N (0, 2γ[∇2
θLCL(θ)]2F−1) (63)

where the additional random Gaussian noise in Eq. (63) helps the CL model escape local minima and
saddle points to achieve global minima solution. Furthermore, Eq. (63) indicates that

∇θLrefresh ≈ ∇θ[LCL(θ) + σ||∇θLCL(θ)F−1||] = ∇θLGN (θ) (64)

In other words, the gradient of the refresh learning approximately the same as that of weighted
gradient norm regularized CL loss function. The conclusion then follows.

C MORE EXPERIMENTAL RESULTS

C.1 RESULTS ON MNIST

Table 3: Domain-IL overall accuracy on P-MNIST and R-MNIST, respectively with memory size
500.

Algorithm P-MNIST R-MNIST
Method Domain-IL Domain-IL

oEWC 59.57± 2.37 77.35± 5.77
oEWC+refresh 61.23 ± 2.18 79.21 ± 4.98
ER 78.45± 0.72 88.91± 1.44
ER+refresh 80.28 ± 1.06 90.53 ± 1.67
DER++ 88.21± 0.39 92.77± 1.05
DER+++refresh 88.93 ± 0.58 93.28 ± 0.75
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C.2 RESULTS WITH MEMORY SIZE OF 2000

C.3 HYPERPARAMETER ANALYSIS

Table 5: Analysis of unlearning rate γ and number of unlearning steps J on CIFAR100 with task-IL.

γ 0.02 0.03 0.04
Accuracy 77.23 ± 0.97 77.71 ± 0.85 77.08 ± 0.90

J 1 2 3
Accuracy 77.71 ± 0.85 77.76 ± 0.82 75.93 ± 1.06

Table 6: Analysis of unlearning rate γ and number of unlearning steps J on CIFAR10 with task-IL.

γ 0.02 0.03 0.04
Accuracy 94.27 ± 0.42 94.64 ± 0.38 94.82 ± 0.51

J 1 2 3
Accuracy 94.64 ± 0.38 94.73 ± 0.43 93.50 ± 0.57

Table 7: Analysis of unlearning rate γ and number of unlearning steps J on Tiny-ImageNet with
task-IL.

γ 0.02 0.03 0.04
Accuracy 53.27 ± 0.72 54.06 ± 0.79 54.21 ± 0.83

J 1 2 3
Accuracy 54.06 ± 0.79 54.17 ± 0.91 52.29 ± 0.86

C.4 COMPUTATION EFFICIENCY

Table 8: Computational efficiency of refresh learning on CIFAR100 with one epoch training

CIFAR100 DER++ DER+++refresh
running time (seconds) 8.4 15.2

C.5 BACKWARD TRANSFER

We evaluate Backward Transfer (BWT) in Table 9.

Table 9: Backward Transfer of various methods with memory size 500.

Method CIFAR10 CIFAR100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

finetuning −96.39± 0.12 −46.24± 2.12 −89.68± 0.96 −62.46± 0.78 −78.94± 0.81 −67.34± 0.79

AGEM −94.01± 1.16 −14.26± 1.18 −88.5± 1.56 −45.43± 2.32 −78.03± 0.78 −59.28± 1.08
GSS −62.88± 2.67 −7.73± 3.99 −82.17± 4.16 −33.98± 1.54 —– —–
HAL −62.21± 4.34 −5.41± 1.10 −49.29± 2.82 −13.60± 1.04 —– —–

ER −45.35± 0.07 -3.54 ± 0.35 −74.84± 1.38 −16.81± 0.97 −75.24± 0.76 −31.98± 1.35
ER+refresh -40.89 ± 0.86 −3.97± 0.38 -73.78 ± 1.59 -15.65 ± 0.87 -74.49 ± 0.80 -30.06 ± 1.51
DER++ −22.38± 4.41 −4.66± 1.15 −53.89± 1.85 −14.72± 0.96 −64.6± 0.56 −27.21± 1.23
DER++ refresh -22.03 ± 3.89 -4.37 ± 1.25 -53.51 ± 0.70 -14.23 ± 0.75 -63.90 ± 0.61 -25.05 ± 1.05
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