
Understanding Representation Dynamics of Diffusion
Models via Low-Dimensional Modeling

Xiao Li∗
University of Michigan
xlxiao@umich.edu

Zekai Zhang∗
University of Michigan
zzekai@umich.edu

Xiang Li
University of Michigan
forkobe@umich.edu

Siyi Chen
University of Michigan
siyich@umich.edu

Zhihui Zhu
Ohio State University
zhu.3440@osu.edu

Peng Wang
University of Michigan
pengwa@umich.edu

Qing Qu
University of Michigan
qingqu@umich.edu

Abstract

Diffusion models, though originally designed for generative tasks, have demon-
strated impressive self-supervised representation learning capabilities. A particu-
larly intriguing phenomenon in these models is the emergence of unimodal repre-
sentation dynamics, where the quality of learned features peaks at an intermediate
noise level. In this work, we conduct a comprehensive theoretical and empirical
investigation of this phenomenon. Leveraging the inherent low-dimensionality
structure of image data, we theoretically demonstrate that the unimodal dynamic
emerges when the diffusion model successfully captures the underlying data dis-
tribution. The unimodality arises from an interplay between denoising strength
and class confidence across noise scales. Empirically, we further show that, in
classification tasks, the presence of unimodal dynamics reliably reflects the diffu-
sion model’s generalization: it emerges when the model generate novel images and
gradually transitions to a monotonically decreasing curve as the model begins to
memorize the training data.

1 Introduction

Diffusion models, a class of score-based generative models, have achieved great empirical success in
various tasks such as image and video generation, speech and audio synthesis, and solving inverse
problems [1–15]. In general, these models, consisting of forward and backward processes, learn
data distributions by simulating the non-equilibrium thermodynamic diffusion process [2, 16, 17].
Specifically, the forward process progressively adds Gaussian noise to training samples until they
are fully corrupted, while the backward process involves learning a score-based model to generate
samples from the noisy inputs [17, 18].

Beyond their strong generative capabilities, recent studies have revealed that diffusion models
also possess remarkable representation learning capabilities [19–24]. In particular, the internal
feature extractors of trained diffusion models have been shown to serve as powerful self-supervised
learners, achieving strong performance on downstream tasks such as classification [20, 21], semantic

∗The first two authors contributed equally to the work.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0.0 0.01 0.02 0.06 0.14 0.3 0.58 1.09 1.92
Time step (σt)

53.0

61.2

69.4

77.6

85.8

94.0

C
IF

A
R

10
 T

es
t a

cc
.

25.0

38.0

51.0

64.0

77.0

90.0

C
IF

A
R

10
0

Te
st

 a
cc

.

CIFAR10 CIFAR100

(a) Classification

0.01 0.03 0.1 0.28 0.48 1.12
Time step (σt)

0.49

0.498

0.505

0.512

0.52

FF
H

Q
 T

es
t m

Io
U

.

0.51

0.515

0.52

0.525

0.53

C
el

eb
A

 T
es

t m
Io

U
.

FFHQ CelebA

(b) Segmentation

Figure 1: Unimodal representation dynamics in diffusion-based representation learning tasks.
This unimodal representation pattern has been previously observed in diffusion-based representation
learning tasks; see [19, 20, 23]. To verify this, we train diffusion models on various datasets
and evaluate downstream performance using noisy images xt at different timesteps t. In both
classification and segmentation tasks, the performance consistently follows a unimodal trend, peaking
at intermediate noise levels. In (b), "mIoU" denotes mean Intersection over Union, a standard metric
used in segmentation tasks.

segmentation [19], and image alignment [23]. In many cases, these representations match or even
surpass those from specialized self-supervised methods, implying that diffusion models have the
potential to unify generative and discriminative learning in vision.

Alongside the empirical success, a prevalent phenomenon, which we refer to as the unimodal
representation dynamics, has been widely observed in diffusion models for representation learning
[19, 20, 23]: the quality of learned representations, as measured by downstream task performance,
follows a unimodal trend across noise levels. Specifically, the most effective features consistently
appear at an intermediate noise level, while performance degrades as inputs become either fully noisy
or entirely clean (see Figure 1). Despite being widely observed, the underlying cause of this unimodal
representation dynamic remains poorly understood.

Our contributions. In this work, we investigate the emergence of unimodal representation dynamics
in diffusion models and its cause. Our analysis characterizes how representation quality varies across
noise levels and offers new perspectives on how diffusion models, despite their generative design, can
excel at representation learning. Specifically, we conduct a comprehensive theoretical and empirical
study of unimodal representation dynamics in diffusion models. Motivated by the well-established
observation that natural image data typically reside on a low-dimensional manifold [25–27], we
examine the representation dynamics through how diffusion models learn from noisy mixtures of
low-rank Gaussian (MoLRG) distributions. We show that the emergence of unimodal representations
is intrinsically linked to the model’s ability to capture the underlying low-dimensional structure of
the data. Our key contributions are as follows:

• Mathematical framework for studying representation learning in diffusion models. To analyze
the representation dynamics, we provide a mathematical study of how diffusion models learn
from MoLRG distributions, where data lie on a union of low-dimensional subspaces. We adopt a
simplified yet analytically tractable network architecture that mimics key structural properties of
U-Net. Under this setting, we quantify the quality of learned representations via the Signal-to-Noise
Ratio (SNR) within the target subspace, enabling us to characterize how representation quality
evolves across timesteps in the diffusion process.

• Theoretical explanation for the emergence of unimodal dynamics. Leveraging the structures
of the MoLRG model, we prove that the unimodal pattern in representation quality naturally arises
when the model effectively captures the low-dimensional data distribution. We show that this
unimodal pattern is driven by an interplay between denoising strength and class separability that
varies with noise levels. There exists an intermediate diffusion timestep where class-irrelevant
components are maximally suppressed and class-relevant features are best preserved, resulting in
optimal representation quality.

2

• Empirical connection between unimodal dynamics and generalization. Empirically, we demon-
strate that the presence of unimodal representation dynamics serves as a reliable indicator of model
generalization in classification tasks. Specifically, the unimodal pattern consistently emerges when
the model generalizes well, but progressively vanishes as the model shifts toward memorizing the
training data.

Relationship to prior results. Recent empirical advances in leveraging diffusion models for down-
stream representation learning have gained significant attention. However, a theoretical understanding
of how diffusion models learn representations across different noise levels remains largely unex-
plored. Here, we focus on the results most relevant to our work and defer a more comprehensive
survey to Appendix A. A recent study by [24] takes initial steps in this direction by analyzing the
optimization dynamics of a two-layer CNN trained with diffusion loss on binary class data. Their
focus is on contrasting the learning behavior under denoising versus classification objectives, without
examining how representation quality evolves across timesteps. In contrast, our work characterizes
and compares representations learned at different timesteps, provides a deeper understanding of
diffusion-based representation learning and also extends to multi-class settings. A recent study by
[28] also investigates the influence of timesteps in diffusion-based representation learning, focusing
on attribute classification and counterfactual generation. In contrast, our work provides a theoretical
explanation and practical metric for the emergence of unimodal representation dynamics and shows
its relationship with data and model complexity and training iterations.

2 Problem setup

Basics of diffusion models. Diffusion models are a class of probabilistic generative models that
aim to reverse a progressive noising process by mapping an underlying data distribution pdata to a
Gaussian distribution. The forward diffusion process begins with clean data x0 ∼ pdata and adds
Gaussian noise over time t ∈ [0, 1], which can be described by the following stochastic differential
equation (SDE):

dxt = f(t)xt dt+ g(t) dwt,

where f(t) is the drift coefficient, g(t) is the diffusion coefficient, and {wt} is a standard Wiener
process. Then, one can verify that the noisy data satisfy xt = stx0+ stσtϵ with ϵ ∼ N (0, I), where
st and σt are scaling factors determined by f(t) and g(t). For ease of exposition, let pt(x) denote the
probability density function (pdf) of the noisy data xt for each t ∈ [0, 1]. In particular, p0 = pdata.
To simplify the analysis, we assume throughout the paper that st = 1.

The reverse process transforms noise back into clean data by leveraging the score function
∇ log pt(xt) and is governed by the reverse SDE [29]:

dxt =
(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t,

where {w̄t} is a Wiener process independent of {wt}. This enables diffusion models to generate
new samples from the underlying data distribution pdata by initializing from pure Gaussian noise and
iteratively denoising via the score function.

Training loss of diffusion models. Note that the score function ∇ log pt(xt) depends on the
unknown data distribution pdata. According to Tweedie’s formula [30], i.e.,

E [x0|xt] = xt + σ2
t∇ log pt(xt), (1)

we can alternatively estimate ∇ log pt(xt) by training a network xθ(xt, t), which is referred to as
denoising autoencoder (DAE), to approximate the posterior mean E[x0|xt] [20, 22, 31]. To learn the
network parameter θ, we minimize the following empirical loss:

min
θ

L(θ) :=
N∑
i=1

∫ 1

0

λt Eϵ∼N (0,In)

[∥∥∥xθ

(
x
(i)
0 + σtϵ, t

)
− x

(i)
0

∥∥∥2] dt, (2)

where x
(i)
0

i.i.d.∼ pdata for all i = 1, . . . , N denote the training samples and λt represents the weight
associated with each noise level.

3

3 Good distribution learning implies unimodal representation dynamics

Building on the setup introduced in Section 2, this section provides a mathematical framework
for analyzing the representation quality of diffusion models, and theoretically we characterize the
unimodal representation dynamics exhibited by diffusion models across noise levels. We validate our
theoretical findings on both synthetic and real-world datasets.

3.1 Assumptions of data distribution

Figure 2: An illustration of MoLRG with
different noise levels. We visualize sam-
ples drawn from noisy MoLRG with noise
levels δ = 0.1, 0.3 and K = 3.

In this work, we assume that the underlying data distri-
bution is low-dimensional, which follows a noisy version
of the mixture of low-rank Gaussians (MoLRG) [32–34],
defined as follows.

Assumption 1 (K-Class Noisy MoLRG Distribution). For
any sample x0 drawn from the noisy MoLRG distribution
with K subspaces, we have

x0 = U⋆
ka+ δŨ⋆

ke, with probability πk ≥ 0, (3)

where (i) U⋆
k ∈ On×dk denotes an orthonormal basis

of the k-th subspace for each k = 1, . . . ,K, Ũ⋆
k ∈ On×Dk is an orthonormal basis for the Dk-

dimensional subspace spanned by {U⋆
l : l ̸= k}; (ii) a i.i.d.∼ N (0, Idk

), e i.i.d.∼ N (0, IDk
) are

independent standard Gaussian vectors representing the latent signal and noise components of x0,
respectively; (iii) δ > 0 controls the data noise level, and (iv) πk ≥ 0 is the mixing proportion
satisfying

∑K
k=1 πk = 1.

One can verify that any sample x0 drawn from the above distribution satisfies:

x0 ∼
K∑

k=1

πkN
(
0,U⋆

kU
⋆⊤
k + δ2Ũ⋆

k Ũ
⋆⊤
k

)
As shown in Figure 2, data from MoLRG resides on a union of low-dimensional subspaces, each
following a Gaussian distribution with a low-rank covariance matrix representing its basis perturbed by
some noise. For simplicity, we assume equal subspace dimensions (d1 = · · · = dK = d), orthogonal
bases (i.e., U⋆⊤

k U⋆
l = 0 for k ̸= l), and uniform mixing weights (π1 = · · · = πK = 1/K).2

Additionally, the study of noisy MoLRG distributions is further motivated by the following facts:

• MoLRG captures the intrinsic low-dimensionality of image data. Although real-world image datasets
are high-dimensional in terms of pixel count and data volume, extensive empirical studies [25–27]
demonstrated that their intrinsic dimensionality is considerably lower. Additionally, recent work
[35, 36] has leveraged the intrinsic low-dimensional structure of real-world data to analyze the
convergence guarantees of diffusion model sampling. The MoLRG distribution, which models data
in a low-dimensional space with rank dk ≪ n, effectively captures this property.

• Latent diffusion models encourage the latent space toward a Gaussian distribution. State-of-the-art
large-scale diffusion models [37, 38] typically employ autoencoders [39] to project images into a
latent space, where a KL penalty encourages the learned latent distribution to approximate standard
Gaussians [3]. Furthermore, recent studies [22, 40] show that diffusion models can be trained to
leverage the intrinsic subspace structure of real-world data.

• Modeling the complexity of real-world image datasets. The noise term δŨ⋆
kei captures perturbations

outside the k-th subspace via the noise space Ũ⋆
k , analogous to insignificant attributes of real-world

images, such as the background of an image. While additional noise may be less significant for
representation learning, it plays a crucial role in enhancing the fidelity of generated samples.

2The assumptions of subspace orthogonality, equal subspace rank and uniform mixing weights are adopted
for analytical simplicity. Empirical results in Appendix C demonstrate that the unimodal dynamics persist when
these assumptions are relaxed.

4

In other words, our data model assumes that the overall dataset lies in a union of low-dimensional
subspaces, where each class is associated with a dominant class-specific subspace, and there exists a
shared subspace common across all classes that captures class-independent fine-grained details. This
shared–specific decomposition has been empirically supported in the context of subspace clustering
and representation learning [41, 42].

3.2 Network parametrization

To analyze how feature representations evolve across noise levels in diffusion models, we study the
following nonlinear network parameterization inspired from the MoLRG data assumption.. Specifically,
we parameterize the DAE xθ(xt, t) and its corresponding latent feature representation hθ(xt, t) as
follows:

xθ(xt, t) = Uhθ(xt, t), hθ(xt, t) = D(xt, t)U
⊤xt, D(xt, t) = diag

(
βt
1Id, . . . , β

t
KId

)
, (4)

where θ = {U} denotes a set of learnable parameters with U = [U1, · · · ,UK] ∈ On×Kd. Let
ζt =

1
1+σ2

t
and ξt = δ2

δ2+σ2
t

, where σt is the noise scaling in (1). Correspondingly, we parameterize
βt
l = ξt + (ζt − ξt)wl(xt, t) in (4) with

wl(xt, t) =
exp (gl(xt, t))∑K
s=1 exp (gs(xt, t))

, gl(xt, t) =
ζt
2σ2

t

∥U⊤
l xt∥2 +

ξt
2σ2

t

∥Ũ⊤
l xt∥2. (5)

This network architecture can be interpreted as a shallow U-Net [43] composed with a blockwise
mixture-of-experts [44] mechanism, or equivalently, a restricted form of self-attention, with the
following components:

• Low-dimensional projection. The input xt is projected into a latent space via a learned orthonormal
basis U⊤xt, which is partitioned into K groups of dimension d. Each block Ul can be viewed as
an individual expert operating on a distinct subspace of the input.

• Expert weighting. Each projected latent group is then reweighted by a coefficient βt
l , which

depends on the input xt and timestep t via a softmax function wl(xt, t). These coefficients form
the block-diagonal matrix D(xt, t), which scales each group independently. This structure can be
interpreted as a mixture-of-experts model [44], where the contribution of each expert is modulated
by the input. It may also be viewed as a restricted self-attention mechanism [45], where attention is
applied at the group level rather than individually, yielding the feature representations of the input
as in (4).

• Symmetric reconstruction. The modulated feature representation is projected back to the input
space via the same expert blocks U , forming a symmetric encoder–decoder architecture.

Moreover, this parameterization in (4) induces a time and data-dependent feature representation
hθ(xt, t), which enables systematic analysis of representation quality across noise scales.

3.3 A metric for measuring representation quality

To understand diffusion-based representation learning under the MoLRG data model, we define the
following signal-to-noise ratio (SNR) to measure the representation quality as follows.
Definition 1. Suppose the data x0 follows the noisy MoLRG introduced in Assumption 1. Without
loss of generality, let k ∈ [K] denote the true class of x0. For any trained DAE x̂θ parameterized as
in (4), we define:

SNR(x̂θ, t) := Ek

[
Ext

[∥U⋆
k ĥθ(xt, t)∥2| k]

Ext [∥x̂θ(xt, t)−U⋆
k ĥθ(xt, t)∥2| k]

]
. (6)

where x̂θ(xt, t) = U ĥθ(xt, t) denotes the decoded reconstruction, and U⋆
k is the basis matrix for

the true class data subspace.

This formulation measures how well the learned feature emphasizes the signal components aligned
with the true class subspace versus those aligned with irrelevant or confounding directions. Intuitively,
the numerator captures the energy of the feature projected onto the correct class subspace, while the

5

denominator measures the residual energy after removing this component from the reconstructed
signal. A higher SNR value at a given noise level t indicates that the representation ĥθ encodes more
discriminative structure with respect to the true class, implying better alignment with the downstream
classification objective.

3.4 Main theoretical results

Based upon the aforementioned setup, we show the following results to explain the unimodal
representation dynamics.
Proposition 1. Suppose the data x0 is drawn from a noisy MoLRG data distribution with K-class
and noise level δ introduced in Assumption 1. Then the optimal {U} minimizing the loss (2) is the
ground truth basis defined in (3), and the optimal DAE x̂⋆

θ(xt, t) admits the analytical form:

x̂⋆
θ(xt, t) =

K∑
l=1

w⋆
l (xt, t)

(
ζtU

⋆
l U

⋆⊤
l + ξtŨ

⋆
l Ũ

⋆⊤
l

)
xt, (7)

where w⋆
l (xt, t) are the coefficients in (5) when {U} = {U⋆

l }Kl=1.

Link to the fine-to-coarse generation shift. Since the U⋆
l -related component captures low-

dimensional class-relevant attributes and the Ũ⋆
l -related component captures small-scale, class-

irrelevant attributes, the optimal DAE exhibits a fine-to-coarse transition [46–48] in its output, where
the class-irrelevant attributes are progressively removed as the noise level σt increases. Specifically,
ζt =

1
1+σ2

t
quantifies the reduction rate of U⋆

l term while ξt = δ2

δ2+σ2
t

quantifies the reduction rate of

Ũ⋆
l term, as σt grows, ξt decays much more rapidly than ζt, indicating that the output retains more

class-related coarse information while discarding fine-grained, irrelevant details.

This phenomenon correspond to an important observation formalized in the next theorem: there exists
a balance timestep during the diffusion process, at which class-irrelevant components are maximally
suppressed while class-relevant component is preserved, yielding peak classification accuracy from
the feature. Substituting the optimal DAE formulation into (6), we can approximate the SNR in the
following theorem and analyze the unimodal dynamics via the approximation:
Theorem 1. (Informal) Suppose that the data x0 follows the noisy MoLRG introduced in Assumption 1.
Then the SNR of the optimal DAE x̂⋆

θ can be approximated as follows:

SNR(x̂⋆
θ, t) ≈

Ct

(K − 1)
·

(
1 +

σ2
t

δ2 h(ŵ
+
t , δ)

1 +
σ2
t

δ2 h(ŵ
−
t , δ)

)2

. (8)

Here, Ct is a monotonically decaying constant that has minimal impact to the overall unimodal
shape. The function h(w, δ) := (1− δ2)w + δ2 is monotonically increasing in w, where h(ŵ+

t , δ)
and h(ŵ−

t , δ) denote positive and negative class confidence rates with{
ŵ+

t (σt, δ) = Ek[Ext
[w⋆

k(xt, t) | k]],
ŵ−

t (σt, δ) = Ek[Ext
[w⋆

l (xt, t) | k ̸= l]],

which are the softmax coefficients assigned to the correct class k and the other classes l ̸= k.

We defer the formal statement of Theorem 1 and its proof to Appendix E.2. In the following, we
discuss the implications of our result.

The unimodal curve of SNR across noise levels. Intuitively, our theorem shows that a unimodal
curve is mainly induced by the interplay between the “denoising rate” σ2

t /δ
2 and the positive class

confidence rate h(ŵ+
t , δ) as the noise level σt increases. As observed in Figure 4, the “denoising rate”

(σ2
t /δ

2) increases monotonically with σt, while the class confidence rate h(ŵ+
t , δ) monotonically

declines. Initially, when σt is small, the class confidence rate remains relatively stable due to its flat
slope, and an increasing “denoising rate” improves the SNR. However, as indicated by (7), when
σt becomes too large, h(ŵ+

t , δ) quickly decays and approaches h(ŵ−
t , δ), leading to a drop in the

SNR. It is worth noting that though we are mainly characterizing the unimodal dynamics of an
approximation of SNR, in practice it closely mimic the trend of the actual SNR as in Figure 3b.

6

(a) SNR aligns with feature probing accuracy (b) Tightness of the derived approximation

Figure 3: Feature probing accuracy and associated SNR dynamics in MoLRG data. In panel(a)
we plot the probing accuracy and SNR with the feature obtained from a learned DAE x̂θ, both of
which exhibit a consistent unimodal pattern. The DAE is trained on a 3-class MoLRG dataset with data
dimension n = 50, subspace dimension d = 5, and noise scale δ = 0.2. Additionally, in panel(b)
we include the optimal SNR calculated from the optimal DAE x̂⋆

θ and the derived approximation in
Theorem 1 as a reference.

(a) CIFAR10 (b) TinyImageNet

Figure 5: Dynamics of feature accuracy and associated SNR on CIFAR10 and TinyImageNet.
Feature accuracy is plotted alongside SNR(x̂θ, t). Feature accuracy is evaluated on the test set,
while the empirical SNR is computed from the training set. Both exhibit an aligning unimodal
pattern. We use released EDM models [49] trained on the CIFAR10 [50] and ImageNet [51] datasets,
evaluating them on CIFAR10 and TinyImageNet [52], respectively. To compute SNR , we apply
PCA on the CIFAR10/TinyImageNet features to extract the basis Uls. Further details can be found in
Appendix D.

0.05 0.24 0.43 0.65 0.9 1.21 1.6 2.12
Time step (σt)

0.0

5.0

10.0

15.0

20.0

σ2
t /δ

2

h(ŵ +
t , δ)

0.8

0.9

1.0

Figure 4: Illustration of the interplay between the
denoising rate and the class confidence rate. The
settings follow Figure 3.

Alignment of SNR with representation learn-
ing performance. As shown in Figures 3
and 5, our theory derived from the noisy MoLRG
distribution effectively captures real-world phe-
nomena. Specifically, we conduct experiments
on both synthetic (i.e., noisy MoLRG) and real-
world datasets (i.e., CIFAR and ImageNet) to
measure SNR(x̂θ, t) as well as the feature prob-
ing accuracy. For feature probing, we use fea-
tures extracted at different timesteps as inputs
for linear probing. The results consistently show
that SNR(x̂θ, t) follows a unimodal pattern
across all cases, mirroring the trend observed
in feature probing accuracy as the noise scale increases. This alignment provides a formal justifica-
tion for previous empirical findings [19, 20, 23], which have reported a unimodal trajectory in the
representation dynamics of diffusion models with increasing noise levels. Detailed experimental
setups are provided in Appendix D.

4 Unimodal representation dynamics predicts model generalization

In the previous sections, we theoretically showed that when a diffusion model successfully captures
the low-dimensional distribution of the data, the unimodal representation dynamics emerge. In

7

0.0 0.01 0.02 0.06 0.14 0.3 0.59 1.09 1.92 3.26
Time steps (σt)

20

30

40

50

60

70

80

Fe
at

ur
e

Te
st

 a
cc

.

UNet-32

28

29

210

211

212

213

214

215

(a) UNet-32

28 29 210 211 212 213 214 215

Training dataset size

0.0

0.2

0.4

0.6

0.8

1.0
Generalization score

UNet-32
UNet-64

0.0

0.2

0.4

0.6

0.8

1.0

(b) Generalization score

0.0 0.01 0.02 0.06 0.14 0.3 0.59 1.09 1.92 3.26
Time steps (σt)

20

30

40

50

60

70

80

Feature Test acc.

UNet-64

28

29

210

211

212

213

214

215

(c) UNet-64

Figure 6: Representation dynamics across model and data sizes. We train DDPM-based UNet-32
and Unet-64 diffusion models on the CIFAR10 dataset using different training dataset sizes, ranging
from 28 to 215. The unimodal representation dynamics across noise levels consistently emerges in
the generalization regime (sufficient data size) and gradually disappears in smaller data settings.

this section, we investigate the opposite direction: can the presence of the unimodal representation
dynamics serve as a reliable prediction of good generalization of diffusion models?

Answering this question sheds light on the distribution learning capabilities of diffusion models and
is closely related to recent studies on their generalizability, which reveal that diffusion models operate
in two distinct regimes—generalization and memorization—depending on factors such as dataset
size, model capacity, and training duration [32, 53–56]. In the generalization regime, the model
captures the underlying data distribution and generates diverse, novel samples. In contrast, in the
memorization regime, it overfits to the training data and loses the ability to generate novel samples.
Further discussion on the generalization of diffusion models are provided in Appendix A.

In this section, using classification tasks as a case study, we empirically demonstrate that the presence
of unimodal representation dynamics reliably indicates generalization, while its gradual shift to a
monotonically decreasing trend indicates memorization. Specifically, we study the effects of data
size and model capacity in Section 4.1, and the effects of learning dynamics in Section 4.2.

4.1 Effects of dataset size and model capacity on representation dynamics

Recent studies [31, 53] have shown that diffusion models exhibit a phase transition from memorization
to generalization as the number of training samples increases. Specifically, when the network size
significantly exceeds the number of training samples, diffusion models tend to memorize rather
than capture the underlying low-dimensional data distribution [32, 53]. For fixed model capacity,
generalization typically emerges when the number of training data is larger than a certain threshold;
see Figure 6 (b). Here, we demonstrate that the representation dynamics undergo a similar transition
with data scaling. Specifically, we train UNet-32 and UNet-64 [43] models using varying training
dataset sizes to examine how their representation dynamics change across regimes. The generalization
score metric introduced in [53, 57] is used as a reference for quantifying model generalization.

As shown in Figure 6, we observe that reducing the training dataset size leads to a decrease in the
generalization score. Correspondingly, the unimodal representation dynamic becomes less obvious,
eventually transitioning into a monotonically decreasing curve (i.e., monotonic representation dy-
namics). These observations highlight a strong connection between representation and distribution
learning in diffusion models—specifically, the emergence of unimodal representation dynamics
aligns with the ability of the model to capture the underlying data distribution for achieving good
generalization.

4.2 Effects of learning dynamics on representation dynamics

Second, we investigate how learning dynamics influence representation dynamics and also general-
ization performance, particularly in the limited data regime (e.g., training size N = 212 as shown
in Figure 6 (b)). In this regime, recent studies [54–56] have shown that early stopping can improve

8

2.5m 5.0m 7.5m 10m 15m
Training Iteration (imgs)

65

70

75

Pe
ak

 F
ea

tu
re

 A
cc

.
10

15

20

FI
D

Peak Acc.
FID

(a) CIFAR10

2.5m 5.0m 7.5m 10m 15m
Training Iteration (imgs)

20

30

40

Pe
ak

 F
ea

tu
re

 A
cc

.

20

30

FI
D

Peak Acc.
FID

(b) CIFAR100

Figure 7: Negative correlation between peak classification accuracy and FID. We train UNet-128
diffusion models onN = 212 training samples from CIFAR10 and CIFAR100. As training progresses,
the peak representation accuracy across noise levels shows a consistent negative correlation with FID.

generalization performance. Specifically, these works observe an early learning phenomenon, where
generalization improves during the initial phase of training but deteriorates as the model begins to
memorize. As illustrated in Figure 7, this effect is reflected in the evolution of the FID score [58],
which initially decreases (indicating better generative quality) and then rises as memorization starts.
Notably, we find that this trend negatively correlates with the linear probing accuracy of learned
representations. This observation implies that representation quality could potentially serve as an
early-stopping criterion to prevent memorization in diffusion models trained on limited data without
relying on external models.

Moreover, we show that this early learning behavior can be captured by the transition between
unimodal and monotonic curves of representation dynamics during training. Experimentally, we
demonstrate this by training EDM-based diffusion models on subsets of CIFAR[50] using N = 212

training samples. Specifically, from Figure 8, we observe that the evolution of representation dynamics
during training can be divided into two distinct phases:

• Early phase of unimodal representation dynamics. In the early stage of training, the model learns
the underlying low-dimensional data distribution and is able to generalize. As predicted by our
theoretical analysis in Section 3, representation follows a unimodal dynamic across noise scales.
This unimodal dynamic is clearly observed before training iteration Iter ≤ 7.5M in Figure 8
(a). The generalization behavior is further supported by the new outputs of the model as shown
in Figure 8 (b), which more closely resemble those from a reference generalized model than the
nearest neighbors in the training set. Moreover, the peak representation quality improves steadily
during this phase as the model better captures the data distribution.

• Late phase of monotonic representation dynamics. However, as training progresses toward conver-
gence, the model begins to memorize the training samples, resulting in a reduced ability to capture
the underlying data distribution. This transition is obvious in the outputs of the model, which
increasingly replicate training examples (see Figure 8 (b) at Iter = 15M, 100M). During this
phase, the unimodal representation dynamics give way to a monotonic representation dynamics,
where representation quality consistently degrades as the noise level increases. Furthermore, as
shown in Figure 7, the learned features become less informative, and the peak probing accuracy
begins to decline.

5 Conclusion

In this work, we developed a mathematical framework for analyzing the representation dynamics
of diffusion models. By introducing the concept of SNR under a mixture of low-rank Gaussians,
we showed that the widely observed unimodal representation dynamic across noise scales emerges
naturally when diffusion models capture the underlying data distribution. This behavior arises from a
trade-off between denoising strength and class confidence across noise levels. Beyond theoretical
insights, our empirical results demonstrate that the emergence of unimodal representation dynamics
is closely linked to the model’s distribution learning and generalization ability. Specifically, this
unimodal pattern consistently appears when the model generalizes and gradually fades as the model
starts to memorize. Our findings take a step toward bridging the gap between generative modeling
and representation learning in diffusion models.

9

Figure 8: Representation learning and generative performance across training iterations. We
train a UNet-128 diffusion model on N = 212 training samples in CIFAR10, monitoring both
representation learning and generative performance as training progresses. A clear phase transition is
observed: early in training, the representations exhibit a unimodal pattern, and generated samples
resemble those of a generalizing EDM model, with no signs of memorization. As training continues,
the unimodal pattern gradually transitions to a monotonically decreasing trend, aligning with the
model’s shift toward memorizing the training data. "NN" denotes nearest neighbor in the training
dataset.

While our analysis captures key aspects of representation dynamics, it relies on simplified data
assumptions and model formulations that facilitate tractable derivations. Extending this framework to
more realistic data distributions and complex model architectures remains an important direction for
future work. Moreover, establishing a rigorous theoretical connection between the representation
geometry of diffusion models and their phase transition between generalization and memorization
remains an important and promising direction for future work.

Acknowledgment

We acknowledge funding support from NSF CAREER CCF-2143904, NSF CCF-2212066, NSF
CCF- 2212326, NSF IIS 2312842, NSF IIS 2402950, NSF IIS 2312840, NSF IIS 2402952, ONR
N00014-22-1-2529, ONR N000142512339, and MICDE Catalyst Grant. We also thank all the
anonymous reviewers for their valuable suggestions and fruitful discussions.

References
[1] Ismail Alkhouri, Shijun Liang, Rongrong Wang, Qing Qu, and Saiprasad Ravishankar.

Diffusion-based adversarial purification for robust deep mri reconstruction. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 12841–12845. IEEE, 2024.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[4] Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, and Qing
Qu. Improving training efficiency of diffusion models via multi-stage framework and tailored
multi-decoder architectures. In Conference on Computer Vision and Pattern Recognition 2024,
2024.

10

[5] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel
Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model
for video generation. In SIGGRAPH Asia 2024 Conference Papers, pages 1–11, 2024.

[6] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[7] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. Advances in neural information processing
systems, 33:17022–17033, 2020.

[8] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DIFFWAVE:
A versatile diffusion model for audio synthesis. In International Conference on Learning
Representations, 2021.

[9] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for
latent-based editing of real images. ACM Transactions on Graphics (TOG), 42(1):1–13, 2022.

[10] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
22500–22510, 2023.

[11] Siyi Chen, Huijie Zhang, Minzhe Guo, Yifu Lu, Peng Wang, and Qing Qu. Exploring low-
dimensional subspace in diffusion models for controllable image editing. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[12] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022.

[13] Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving
inverse problems with latent diffusion models via hard data consistency. In The Twelfth
International Conference on Learning Representations, 2024.

[14] Xiang Li, Soo Min Kwon, Ismail R Alkhouri, Saiprasad Ravishanka, and Qing Qu. De-
coupled data consistency with diffusion purification for image restoration. arXiv preprint
arXiv:2403.06054, 2024.

[15] Ruihan Yang and Stephan Mandt. Lossy image compression with conditional diffusion models.
Advances in Neural Information Processing Systems, 36:64971–64995, 2023.

[16] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

[17] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021.

[18] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[19] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Label-efficient semantic segmentation with diffusion models. In International Conference on
Learning Representations, 2022.

[20] Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders
are unified self-supervised learners. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15802–15812, 2023.

[21] Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan, Archana
Swaminathan, Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion models beat
gans on image classification. arXiv preprint arXiv:2307.08702, 2023.

11

[22] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion
models for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024.

[23] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan.
Emergent correspondence from image diffusion. Advances in Neural Information Processing
Systems, 36:1363–1389, 2023.

[24] Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the feature learning in diffusion models.
arXiv preprint arXiv:2412.01021, 2024.

[25] Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of
image representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3987–3996, 2019.

[26] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. In International Conference on Learning
Representations, 2021.

[27] Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion
model secretly knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611,
2022.

[28] Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, and Hanwang Zhang.
Exploring diffusion time-steps for unsupervised representation learning. In The Twelfth
International Conference on Learning Representations, 2024.

[29] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[30] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[31] Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization
in diffusion models arises from geometry-adaptive harmonic representations. In The Twelfth
International Conference on Learning Representations, 2024.

[32] Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models
learn low-dimensional distributions via subspace clustering. arXiv preprint arXiv:2409.02426,
2024.

[33] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applica-
tions. IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781,
2013.

[34] Peng Wang, Huikang Liu, Anthony Man-Cho So, and Laura Balzano. Convergence and
recovery guarantees of the k-subspaces method for subspace clustering. In International
Conference on Machine Learning, pages 22884–22918. PMLR, 2022.

[35] Zhihan Huang, Yuting Wei, and Yuxin Chen. Denoising diffusion probabilistic models are
optimally adaptive to unknown low dimensionality. arXiv preprint arXiv:2410.18784, 2024.

[36] Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion
models: Convergence in total variation. arXiv preprint arXiv:2501.12982, 2025.

[37] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[38] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller,
Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution
image synthesis. In The Twelfth International Conference on Learning Representations, 2024.

[39] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

12

[40] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion
generative models. In European Conference on Computer Vision, pages 274–289. Springer,
2022.

[41] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru
Erhan. Domain separation networks. Advances in neural information processing systems, 29,
2016.

[42] Tao Zhou, Changqing Zhang, Xi Peng, Harish Bhaskar, and Jie Yang. Dual shared-specific
multiview subspace clustering. IEEE transactions on cybernetics, 2019.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[44] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[46] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh
Yoon. Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11472–11481, 2022.

[47] Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical
theory of outline first, details later. arXiv preprint arXiv:2303.02490, 2023.

[48] Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion
models. arXiv preprint arXiv:2412.20292, 2024.

[49] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Proc. NeurIPS, 2022.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[51] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[52] Serena Yeung Li Fei-Fei, Justin Johnson. Cs231n: Convolutional neural networks for visual
recognition, 2015. http://cs231n.stanford.edu.

[53] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The
emergence of reproducibility and consistency in diffusion models. In Forty-first International
Conference on Machine Learning, 2023.

[54] Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of
diffusion models. Advances in Neural Information Processing Systems, 36:2097–2127, 2023.

[55] Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models
requires rethinking the hidden gaussian structure. Advances in Neural Information Processing
Systems, 37:57499–57538, 2024.

[56] Ricardo Baptista, Agnimitra Dasgupta, Nikola B Kovachki, Assad Oberai, and Andrew M
Stuart. Memorization and regularization in generative diffusion models. arXiv preprint
arXiv:2501.15785, 2025.

13

http://cs231n.stanford.edu

[57] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze.
A self-supervised descriptor for image copy detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14532–14542, 2022.

[58] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium–
supplementary material. Advances in Neural Information Processing Systems, 2017.

[59] Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In International Conference on
Machine Learning, 2008.

[60] Pascal Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

[61] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[62] B. Chandra and Rajesh Kumar Sharma. Adaptive noise schedule for denoising autoencoder.
In International Conference on Neural Information Processing, 2014.

[63] Krzysztof Geras and Charles Sutton. Scheduled denoising autoencoders. In International
Conference on Learning Representations (ICLR) 2015, 2015.

[64] Qianjun Zhang and Lei Zhang. Convolutional adaptive denoising autoencoders for hierarchical
feature extraction. Frontiers of Computer Science, 12:1140 – 1148, 2018.

[65] Arnu Pretorius, Steve Kroon, and Herman Kamper. Learning dynamics of linear denoising
autoencoders. In International Conference on Machine Learning, pages 4141–4150. PMLR,
2018.

[66] Harald Steck. Autoencoders that don’t overfit towards the identity. In Neural Information
Processing Systems, 2020.

[67] Daniel Kunin, Jonathan Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of
regularized linear autoencoders. In International conference on machine learning, pages
3560–3569. PMLR, 2019.

[68] Michael Fuest, Pingchuan Ma, Ming Gui, Johannes S Fischer, Vincent Tao Hu, and Bjorn Om-
mer. Diffusion models and representation learning: A survey. arXiv preprint arXiv:2407.00783,
2024.

[69] Kamil Deja, Tomasz Trzciński, and Jakub M Tomczak. Learning data representations with
joint diffusion models. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 543–559. Springer, 2023.

[70] Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF
Tan, and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based
image editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8839–8849, 2024.

[71] Chandramouli Sastry, Sri Harsha Dumpala, and Sageev Oore. Diffaug: A diffuse-and-denoise
augmentation for training robust classifiers. arXiv preprint arXiv:2306.09192, 2023.

[72] Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 18938–18949, 2023.

[73] Daiqing Li, Huan Ling, Amlan Kar, David Acuna, Seung Wook Kim, Karsten Kreis, Antonio
Torralba, and Sanja Fidler. Dreamteacher: Pretraining image backbones with deep generative
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16698–16708, 2023.

14

[74] Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank Fundel, and Björn Ommer.
Cleandift: Diffusion features without noise. arXiv preprint arXiv:2412.03439, 2024.

[75] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion
hyperfeatures: Searching through time and space for semantic correspondence. Advances in
Neural Information Processing Systems, 36, 2024.

[76] Korbinian Abstreiter, Sarthak Mittal, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou.
Diffusion-based representation learning. arXiv preprint arXiv:2105.14257, 2021.

[77] Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing
diffusion models. In International Conference on Machine Learning, pages 36336–36354.
PMLR, 2023.

[78] Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle,
James L McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck
diffusion models for representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23115–23127, 2024.

[79] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn.
Diffusion autoencoders: Toward a meaningful and decodable representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 10619–10629,
2022.

[80] Yujin Han, Andi Han, Wei Huang, Chaochao Lu, and Difan Zou. Can diffusion models learn
hidden inter-feature rules behind images?, 2025.

[81] Matthew Niedoba, Berend Zwartsenberg, Kevin Patrick Murphy, and Frank Wood. Towards
a mechanistic explanation of diffusion model generalization. In Forty-second International
Conference on Machine Learning, 2025.

[82] Artem Lukoianov, Chenyang Yuan, Justin Solomon, and Vincent Sitzmann. Locality in image
diffusion models emerges from data statistics. Advances in Neural Information Processing
Systems, 2025.

[83] Gabriel Raya and Luca Ambrogioni. Spontaneous symmetry breaking in generative diffusion
models. Advances in Neural Information Processing Systems, 2023.

[84] Giulio Biroli, Tony Bonnaire, Valentin De Bortoli, and Marc Mézard. Dynamical regimes of
diffusion models. Nature Communications, 2024.

[85] Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion
models reveals the hierarchical nature of data. Proceedings of the National Academy of
Sciences, 2025.

[86] Luca Ambrogioni. In search of dispersed memories: Generative diffusion models are associa-
tive memory networks. Entropy, 2024.

[87] Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories.
Physical Review Letters, 2024.

[88] Bao Pham, Gabriel Raya, Matteo Negri, Mohammed J Zaki, Luca Ambrogioni, and Dmitry
Krotov. Memorization to generalization: Emergence of diffusion models from associative
memory. arXiv preprint arXiv:2505.21777, 2025.

[89] Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Analysis of diffusion models for
manifold data. arXiv preprint arXiv:2502.04339, 2025.

[90] Beatrice Achilli, Enrico Ventura, Gianluigi Silvestri, Bao Pham, Gabriel Raya, Dmitry Krotov,
Carlo Lucibello, and Luca Ambrogioni. Losing dimensions: Geometric memorization in
generative diffusion. arXiv preprint arXiv:2410.08727, 2024.

[91] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
IEEE Conference on Computer Vision and Pattern Recognition, 2012.

15

[92] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

[93] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, pages 722–729, 2008.

[94] Anh-Dzung Doan, Bach Long Nguyen, Surabhi Gupta, Ian Reid, Markus Wagner, and Tat-Jun
Chin. Assessing domain gap for continual domain adaptation in object detection. Computer
Vision and Image Understanding, 238:103885, 2024.

[95] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[96] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2014.

[97] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

[98] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for
Generative Adversarial Networks . IEEE Transactions on Pattern Analysis & Machine
Intelligence, 43(12):4217–4228, 2021.

[99] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs
for improved quality, stability, and variation. In International Conference on Learning Repre-
sentations, 2018.

[100] tanelp. tiny-diffusion. https://github.com/tanelp/tiny-diffusion, 2022.

[101] Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

[102] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[103] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

16

https://github.com/tanelp/tiny-diffusion

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Later sections follow the structure of our main contributions as outlined in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We note that we have carefully discussed the analysis tools, assumptions and
the scope of experiments in our paper, certain assumptions and design choices (e.g., synthetic
data models, classification-focused benchmarks) may not capture the full complexity of all
applications. We highlight several promising directions for future work, including broader
task coverage and theoretical extensions, in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

17

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We discussed the assumption used in our analysis and provide the full set of
proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we discuss the experimental details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our work uses publically available datasets (such as CIFAR) and codebases
(such as EDM).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We primarily use publicly available pre-trained models for evaluation. For
models we train ourselves, the training setup is detailed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The main empirical results in our paper focus on revealing trends and dynamics,
rather than reporting relative accuracy difference.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we discuss the computing resources and other details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There’s no societal consequences of our work we feel must be highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We carefully cite the data/code/model assets we used in the paper and discuss
the license (if applicable) in Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets is released in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiments/research is involved in the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No such experiments/research is involved in the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

The Appendix is organized as follows: in Appendix A, we discuss related works; in Appendix B, we
present auxiliary findings that complement the main discussion; in Appendix C, we provide additional
complementary experiments; in Appendix D, we present the detailed experimental setups for the
empirical results in the paper. Lastly, in Appendix E, we provide proof details for Section 3.

A Related works

Denoising auto-encoders. Denoising autoencoders (DAEs) are trained to reconstruct corrupted
images to extract semantically meaningful information, which can be applied to various vision [59, 60]
and language downstream tasks [61]. Related to our analysis of the weight-sharing mechanism,
several studies have shown that training with a noise scheduler can enhance downstream performance
[62–64]. On the theoretical side, prior works have studied the learning dynamics [65, 66] and
optimization landscape [67] through the simplified linear DAE models.

Diffusion-based representation learning. Diffusion-based representation learning [68] has demon-
strated significant success in various downstream tasks, including image classification [20, 21, 69],
segmentation [19], correspondence [23], and image editing [70]. Using diffusion models for data
augmentation has also been shown to improve robustness against covariate shift [71]. To further
enhance the utility of diffusion features, knowledge distillation [72–75] methods have been proposed,
aiming to bypass the computationally expensive grid search for the optimal t in feature extraction
and improving downstream performance. Beyond directly using intermediate features from pre-
trained diffusion models, research efforts has also explored novel loss functions [76, 77] and network
modifications [78, 79] to develop more unified generative and representation learning capabilities
within diffusion models. The work [80] investigates whether diffusion models are capable of learning
latent inter-feature dependencies underlying image data. Unlike the aforementioned efforts, our work
focuses more on understanding the representation dynamic of diffusion models and its relationship
with model generalization.

Generalization of Diffusion Models. In this paper, we examine the relationship between a uni-
modal curve in representation-probing accuracy and the generalization of diffusion models, a topic of
active interest [31, 48, 53]. There has also been notable work on the mechanisms that enable diffusion
models to learn the underlying score function from discrete empirical samples [81, 82], thereby gen-
erating novel in-distribution samples (i.e., generalizing). We propose a representational perspective
on the generalization of diffusion models, together with corresponding measures (unimodality in
representation dynamics) for evaluating generalization.

The unimodality of representation-probing accuracy across time steps is also related to symmetry
breaking [83] and early-stopping generalization during sampling [84, 85] when the model learns
empirical score functions. This line of work further connects empirical DMs and dense associative
memory (AM) networks through their objectives and sampling behavior [86–88], where generalization
is interpreted as novel attraction sinks in AM, which is also related to Gaussian and spherical patterns
in the data. However, in this paper our focus is on learning a parameterized model with data from
a low-dimensional distribution, an assumption also used in [89, 90] (which links generalization to
adapting to low-dimensional data manifolds and learning local geometric components), rather than
on sampling.

B Auxiliary results

B.1 Extended results from Section 4.2

In Section 4.2, we showed that when training on limited data, the representation dynamics undergo
a clear phase transition: from a unimodal pattern to a monotonically decreasing trend, where the
diffusion model also exhibits a transition from generalization to increasingly memorize the training
data. Here, we provide additional empirical evidence supporting this insight.

We train UNet-based diffusion models using the DDPM++ architecture with the EDM configuration
[49] on the Oxford-IIIT Pet [91] and TinyImageNet [92] datasets, using training subsets of 3680 and
2048 images, respectively. Throughout training, we monitor both the evolution of representation
dynamics and generative outputs. As shown in Figure 9 and Figure 10, consistent with our findings

24

Figure 9: Representation learning and generative performance across training iterations for
Oxford-IIIT Pet dataset [91]. We train a UNet-128 diffusion model on 3680 training samples
in Oxford-IIIT Pet dataset, monitoring both representation learning and generative performance
as training progresses. A clear phase transition is observed: early in training, the representations
exhibit a unimodal pattern, and generated samples resemble those of a generalizing EDM model,
with no signs of memorization. As training continues, the unimodal pattern gradually transitions to a
monotonically decreasing trend, aligning with the model’s shift toward memorizing the training data.
"NN" denotes nearest neighbor in the training dataset.

in Section 4.2, we observe that in the early stages of training, the model exhibits a clear unimodal
pattern and generalizes well. As training continues, this unimodal structure gradually shifts into a
monotonically decaying trend, and the models start to increasingly replicate training examples.

B.2 Disentangling the role of input noise in representation dynamics

One might argue that the declining portion of the unimodal curve is simply due to the increasing noise
level σt, which makes the input xt progressively noisier, leading to a natural drop in classification
accuracy. However, we show that this noise-induced degradation alone does not account for the
observed representation dynamics.

Our theoretical analysis in Section 3 attributes the unimodal pattern to a fundamental trade-off
between denoising rate and class confidence rate across noise levels. To validate this explanation and
disentangle the effect of additive Gaussian noise, we conduct experiments where feature extraction
is performed directly on clean inputs x0 rather than noisy inputs xt. We show that the unimodal
behavior remains clearly observable even in the absence of injected noise, indicating that the dynamics
are not solely a consequence of input corruption. In fact, one can verify that SNR(x̂⋆

θ(x0), t) also
exhibits a unimodal trend—this can be shown through an analysis analogous to that of Theorem 1 for
SNR(x̂⋆

θ(xt), t).

To support this claim, we train EDM (with the VP configuration) [49] on CIFAR datasets and classical
DDPM [2] on CIFAR10 and Flowers-102 [93], and evaluate the representation quality using both
noisy inputs xt and clean inputs x0, as shown in Figure 11. For Figure 11(a), we select the layer that
yields the best accuracy, while for Figure 11(b), we directly use the bottleneck layer to demonstrate
that the observed unimodal behavior is not sensitive to layer choice. Across all settings, the unimodal
representation dynamics remain clearly visible, reinforcing that additive Gaussian noise is not the
sole factor responsible for this phenomenon.

We also visualize posterior estimation x̂θ across noise scales using both noisy and clean inputs.
Since diffusion models are trained to approximate the posterior mean at different noise levels,

25

Figure 10: Representation learning and generative performance across training iterations
for TinyImageNet [92]. We train a UNet-128 diffusion model on N = 211 training samples in
TinyImageNet, monitoring both representation learning and generative performance as training
progresses. A clear phase transition is observed: early in training, the representations exhibit a
unimodal pattern, and generated samples resemble those of a generalizing EDM model, with no signs
of memorization. As training continues, the unimodal pattern gradually transitions to a monotonically
decreasing trend, aligning with the model’s shift toward memorizing the training data. "NN" denotes
nearest neighbor in the training dataset.

(a) EDM (b) Classical DDPM

Figure 11: Unimodal representation dynamics persist when using clean inputs x0. We train EDM
and DDPM models on CIFAR and Flowers-102 datasets and evaluate feature quality using both noisy
inputs xt and clean inputs x0. Across all settings, the unimodal trend is consistently observed.

their representation features emerge as intermediate products of this denoising process. As such,
improvements or degradations in representation quality should be mirrored in the posterior estimates.

We visualize the posterior estimation results for clean inputs (x̂θ(x0, t)) and noisy inputs (x̂θ(xt, t))
across varying noise scales σt in Figure 12. In both cases, the posterior outputs undergo a clear
fine-to-coarse transition as σt increases. This supports our theoretical claim that as noise grows,
class-irrelevant attributes are gradually removed. The peak in representation quality occurs at an
intermediate point where class-essential structure is preserved while irrelevant details are suppressed.
When σt becomes too large, class confidence rate drops significantly, resulting in poor representations.
The additive noise σtϵ merely accelerates this degradation but is not the root cause.

26

Network Inputs

Posterior Estimation

(a) x̂θ(xt, t): Posterior estimation using noise image as inputs.

Network Inputs

Posterior Estimation

(b) x̂θ(x0, t): Posterior estimation using clean image as inputs.

Figure 12: Fine-to-coarse shift in posterior estimation. We use a pre-trained DDPM diffusion
model on CIFAR10 to visualize posterior estimation for clean inputs and noisy inputs across varying
noise scales σt. We can observe seemingly fine-to-coarse shifts in both figures.

0.0 0.02 0.14 0.58 1.92
Time step (σt)

20

40

60

80

Fe
at

ur
e

Te
st

 a
cc

.

0

1

2

3

4

SW
D

1e 6

Test acc. (Diffusion)
Test acc. (DAE)

SWD (Diffusion)
SWD (DAE)

(a) CIFAR10

0.0 0.02 0.14 0.58 1.92
Time step (σt)

0

20

40

60

Fe
at

ur
e

Te
st

 a
cc

.

0

1

2

3

4

SW
D

1e 6

Test acc. (Diffusion)
Test acc. (DAE)

SWD (Diffusion)
SWD (DAE)

(b) CIFAR100

Figure 13: Diffusion models exhibit higher and smoother feature accuracy and similarity
compared to individual DAEs. We train DDPM-based diffusion models and individual DAEs on the
CIFAR datasets and evaluate their representation learning performance. Feature accuracy, and feature
differences from the optimal features (indicated by ⋆) are plotted against increasing noise levels. The
results reveal an inverse correlation between feature accuracy and feature differences, with diffusion
models achieving both higher/smoother accuracy and smaller/smoother feature differences compared
to DAEs.

B.3 Weight sharing in diffusion models facilitates representation learning

While our theoretical analysis captures the emergence of unimodal representation dynamics under an
idealized network parameterization, an important future direction is to extend this framework to deeper
and more complex architectures. Real-world diffusion models often involve highly complex feature
transformations, and understanding how these interact with noise scales to influence representation
quality remains an open and valuable avenue for exploration.

In this section, we present some interesting preliminary results we found that may potentially
explain why diffusion models outperform classical denoising autoencoders (DAEs) in representation
learning: although both share the same denoising objective (2), diffusion models demonstrate superior
feature learning capabilities largely due to their inherent weight-sharing mechanism. Specifically, by
minimizing the loss across all noise levels, diffusion models enable parameter sharing and interaction
among denoising subcomponents, effectively creating an implicit "ensemble" effect. This interaction
enhances feature consistency and robustness across noise scales, leading to significantly improved
representation quality compared to DAEs [22], as illustrated in Figure 13.

27

Method MiniImageNet⋆ Test Acc. %

Label Noise Clean 20% 40% 60% 80%

MAE 73.7 70.3 67.4 62.8 51.5
EDM 67.2 62.9 59.2 53.2 40.1
EDM (Ensemble) 72.0 67.8 64.7 60.0 48.2
DiT 77.6 72.4 68.4 62.0 47.3
DiT (Ensemble) 78.4 75.1 71.9 66.7 56.3

Table 1: Comparison of test performance across different methods under varying label noise
levels. All compared models are publicly available and pre-trained on ImageNet-1K [51], evaluated
using MiniImageNet classes. Bold font highlights the best result in each scenario.

To test this, we trained 10 DAEs, each specialized for a single noise level, alongside a DDPM-based
diffusion model on CIFAR10 and CIFAR100. We compared feature quality using linear probing
accuracy and feature similarity relative to the optimal features at σt = 0.06 (where accuracy peaks)
via sliced Wasserstein distance (SWD) [94].

The results in Figure 13 confirm the advantage of diffusion models over DAEs. Diffusion models
consistently outperform DAEs, particularly in low-noise regimes where DAEs collapse into trivial
identity mappings. In contrast, diffusion models leverage weight-sharing to preserve high-quality
features, ensuring smoother transitions and higher accuracy as noise increases. This advantage is
further supported by the SWD curve, which reveals an inverse correlation between feature accuracy
and feature differences. Notably, diffusion model features remain significantly closer to their optimal
state across all noise levels, demonstrating superior representational capacity.

Our finding also aligns with prior results that sequentially training DAEs across multiple noise levels
improves representation quality [62–64]. Our ablation study further confirms that multi-scale training
is essential for improving DAE performance on classification tasks in low-noise settings (details in
Appendix C, Table 3).

Beyond the implicit feature ensembling effect, we further introduce a straightforward method that
explicitly ensembles features from multiple noise levels to enhance downstream task performance.
Our experiments demonstrate that this approach significantly improves robustness against label noise
in classification tasks, both in pre-training and transfer learning settings. For detailed methods and
results, we refer interested readers to Appendix B.4.

B.4 Feature ensembling across timesteps improves representation robustness

Our theoretical insights in Section 3 imply that features extracted at different timesteps capture
varying levels of granularity. Given the high linear separability of intermediate features, we propose
a simple ensembling approach across multiple timesteps to construct a more holistic representation
of the input. Specifically, in addition to the optimal timestep, we extract feature representations at
four additional timesteps—two from the coarse (larger σt) and two from the fine-grained (smaller σt)
end of the spectrum. We then train linear probing classifiers for each set and, during inference, apply
a soft-voting ensemble by averaging the predicted logits before making a final decision.(experiment
details in Appendix D)

We evaluate this ensemble method against results obtained from the best individual timestep, as well
as a self-supervised method MAE [95], on both the pre-training dataset and a transfer learning setup.
The results, reported in Table 1 and Table 2, demonstrate that ensembling significantly enhances
performance for both EDM [49] and DiT [37], consistently outperforming their vanilla diffusion
model counterparts and often surpassing MAE. More importantly, ensembling substantially improves
the robustness of diffusion models for classification under label noise.

C Additional Experiments

Validation of x̂⋆
approx approximation in Appendix E.2. In Theorem 2, we approximate the optimal

posterior estimation function x̂⋆
θ using x̂⋆

approx by taking the expectation inside the softmax with
respect to xt. To validate this approximation, we compare the SNR calculated from x̂⋆

θ and from
x̂⋆

approx using the definition in Proposition 1 and (10) in Appendix E.2, respectively. We use a fixed

28

Method Transfer Test Acc. %

CIFAR100 DTD Flowers102
Label Noise Clean 20% 40% 60% 80% Clean 20% 40% 60% 80% Clean 20% 40% 60% 80%

MAE 63.0 58.8 54.7 50.1 38.4 61.4 54.3 49.9 40.5 24.1 68.9 55.2 40.3 27.6 9.6
EDM 62.7 58.5 53.8 48.0 35.6 54.0 49.1 45.1 36.4 21.2 62.8 48.2 37.2 24.1 9.7
EDM (Ensemble) 67.5 64.2 60.4 55.4 43.9 55.7 49.5 45.2 37.1 22.0 67.8 53.9 41.5 25.0 10.4
DiT 64.2 58.7 53.5 46.4 32.6 65.2 59.7 53.0 43.8 27.0 78.9 65.2 52.4 34.7 13.3
DiT (Ensemble) 66.4 61.8 57.6 51.3 39.2 65.3 60.6 56.1 46.3 30.6 79.7 67.0 54.6 36.6 14.7

Table 2: Comparison of transfer learning performance across different methods under varying
label noise levels. All compared models are publicly available and pre-trained on ImageNet-1K [51],
evaluated on different downstream datasets. Bold font highlights the best result in each scenario.

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

100

101

K = 4

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

100

K = 6

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

100

K = 8

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

K = 10

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

d = 2

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

d = 5

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

d = 8

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

d = 10

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

101

102

= 0.1

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

101

= 0.2

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

10 1

100

= 0.3

SNR(x , t)
SNR(xapprox, t)

0.0 0.02 0.14 0.59 1.92 5.32
Time steps ()

2 × 10 1

3 × 10 1

4 × 10 1

= 0.5

SNR(x , t)
SNR(xapprox, t)

Figure 14: Comparison between SNR calculated using the optimal model x̂⋆
θ and the SNR cal-

culated with our approximation in Theorem 1. We generate MoLRG data and calculate SNR using
both the corresponding optimal posterior function x̂⋆

θ and our approximation x̂⋆
approx from Theorem 1.

Default parameters are set as n = 100, d = 5, K = 10, and δ = 0.3. In each row, we vary one
parameter while keeping the others fixed, comparing the actual and approximated SNR.

dataset size of 2400 and set the default parameters to n = 100, d = 5, K = 10, and δ = 0.3 to
generate MoLRG data. We then vary one parameter at a time while keeping the others constant, and
present the computed SNR in Figure 14. As shown, the approximated SNR score consistently aligns
with the actual score.

Visualization of the MoLRG posterior estimation and SNR across noise scales. In Figure 3, we
show that both the classification accuracy and SNR exhibit a unimodal trend for the MoLRG data. To
further illustrate this behavior, we provide a visualization of the posterior estimation and SNR at
different noise scales in Figure 15. In the plot, each class is represented by a colored straight line,
while deviations from these lines correspond to the δ-related noise term. Initially, increasing the
noise scale effectively cancels out the δ-related data noise, resulting in a cleaner posterior estimation
and improved probing accuracy. However, as the noise continues to increase, the class confidence
rate drops, leading to an overlap between classes, which ultimately degrades the feature quality and
probing performance.

Mitigating the performance gap between DAE and diffusion models. Throughout the empirical
results presented in this paper, we consistently observe a performance gap between individual
DAEs and diffusion models, especially in low-noise regions. Here, we use a DAE trained on the
CIFAR10 dataset with a single noise level σ = 0.002, using the NCSN++ architecture [49]. In

29

Figure 15: Visualization of posterior estimation, higher SNR correspondings to higher clas-
sification accuracy. The same MoLRG data is fed into the models; each row represents a different
denoising model, and each column corresponds to a different time step with noise scale (σt).

Table 3: Improve DAE representation performance at low noise region. A vanilla DAE trained on
the CIFAR10 dataset with a single noise level of σ = 0.002 serves as the baseline. We evaluate the
performance improvement of dropout regularization, EDM-based preconditioning, and multi-level
noise training (σ = {0.002, 0.012, 0.102}). Each technique is applied independently to assess its
contribution to performance enhancement.

Modifications Test acc.
Vanilla DAE 32.3

+Dropout (0.5) 35.3
+Dropout (0.9) 36.4

+Dropout (0.95) 38.1
+EDM preconditioning 49.2

+Multi-level noise training 58.6

the default setting, the DAE achieves a test accuracy of 32.3. We then explore three methods
to improve the test performance: (a) adding dropout, as noise regularization and dropout have
been effective in preventing autoencoders from learning identity functions [66]; (b) adopting EDM-
based preconditioning during training, including input/output scaling, loss weighting, etc.; and
(c) multi-level noise training, in which the DAE is trained simultaneously on three noise levels
[0.002, 0.012, 0.102]. Each modification is applied independently, and the results are reported in
Table 3. As shown, dropout helps improve performance, but even with a dropout rate of 0.95, the
improvement is minor. EDM-based preconditioning achieves moderate improvement, while multi-
level noise training yields the most promising results, demonstrating the benefit of incorporating the
diffusion process in DAE training.

Empirical robustness to assumption relaxation The data assumptions in Assumption 1 were
made to simplify the analysis and derive closed-form results. Empirically, we find that the unimodal
SNR trend remains robust when these assumptions are relaxed. To demonstrate this, we train our
parameterized DAE under binary MoLRG data while systematically violating each assumption. Unless
otherwise stated, each experiment uses the DAE network as introduced in Section 3.2 and a dataset
contains 30,000 samples generated with n = 50, d = 5, and δ = 0.2.

• Overlapping class subspaces. As shown in Table 4, we control the principal angle (θ) between
class subspaces and observe that overlap tends to reduce SNR across timesteps while the peak
remains stable. We conjecture that overlap can be viewed as introducing additional intrinsic noise
beyond the δ-related term, thereby affecting the SNR value.

• Varying subspace ranks. As shown in Table 5, we set the class subspace dimensions to d0 = 10
and d1 = 2. Intuitively, the higher-rank class retains more signal and is less sensitive to noise,
yielding higher and later-peaking SNR, while the low-rank class decays earlier.

• Non-uniform mixing weights. As shown in Table 6, we set π0 = 0.8 and π1 = 0.2 and observe
consistently higher SNR for the majority class. We conjecture that this may stem from both the

30

score function of the distribution and DAE training being biased toward denoising more frequent
samples.

Training Setting SNR @ σt
0.008 0.023 0.060 0.140 0.296 0.585 1.088 1.923

θ = 90◦ (Non-overlapping) 24.88 25.15 26.95 35.84 58.27 20.84 4.05 1.57
θ = 30◦ (Overlapping) 16.70 16.92 18.39 25.97 38.54 22.88 14.56 12.55

Table 4: Effect of overlapping class subspaces on SNR across noise levels.

Training Setting SNR @ σt
0.002 0.008 0.023 0.060 0.140 0.296 0.585 1.088 1.923

Class 0 (d0 = 10) 68.94 69.00 69.83 74.87 102.24 195.44 215.31 34.17 8.44
Class 1 (d1 = 2) 7.75 7.75 7.80 8.08 8.79 6.50 1.80 0.46 0.27

Overall SNR 24.12 24.13 24.28 25.21 28.19 23.34 8.18 2.84 1.45

Table 5: Effect of subspace rank variation on SNR across noise levels.

Training Setting SNR @ σt
0.002 0.008 0.023 0.060 0.140 0.296 0.585 1.088 1.923

Class 0 (π0 = 0.8) 52.35 52.43 52.98 56.74 75.61 134.76 72.38 13.56 4.50
Class 1 (π1 = 0.2) 12.15 12.16 12.31 13.10 17.49 23.91 6.05 1.17 0.52

Overall SNR 38.69 38.74 39.17 41.85 55.77 90.54 35.28 7.40 2.81

Table 6: Effect of non-uniform class mixing on SNR across noise levels.

Well-separated clusters. In our main analysis, we considered zero-mean Gaussian clusters. In
this section, we show that when the clusters are well separated, the unimodal trend disappears: both
classification accuracy and SNR decrease monotonically, peaking at t = 0. In this regime, the
dataset remains linearly separable throughout the denoising process, and both metrics are primarily
determined by the class means. Adding noise (increasing t) simply blurs the class boundaries, thereby
reducing separability. To verify this, we conduct an experiment on well-separated data and report the
results in Table 7, which clearly exhibit this monotonic behavior. These observations highlight the
importance of overlapping clusters in giving rise to the unimodal representation dynamics.

Unimodal dynamics beyond pixel space. The unimodal dynamics are not restricted to pixel-space
denoisers. In the table below, we analyze feature accuracy and SNR dynamics using the DiT-XL/2
[37] model on miniImageNet, and observe in Table 8 that the unimodal trend persists in this latent
diffusion model setting as well.

Projection-based classification analysis. In the main paper, our linear probing experiments always
use logistic regression classifiers with inner-product-based logits. Here, we re-ran the experiments
in Figure 5 using a projection-based classifier: for each class, we compute its principal subspace
[V1, . . . ,VK] from the training features, and classify each test sample by identifying the class whose
subspace captures the most projection energy, computed as argmaxk ∥h(xi)Vk∥2.

The results are shown in Table 9. While the projection-based classifier yields lower overall accuracy,
it reveals a more pronounced unimodal trend that aligns closely with the SNR dynamics.

D Experimental Details

In this section, we provide technical details for all the experiments in the main body of the paper.

31

σt 0.030 0.053 0.098 0.189 0.282 0.379 0.480 0.588 0.704 0.830 0.989 1.492

Acc 100.0 100.0 100.0 99.8 97.7 92.4 85.7 78.5 71.8 66.0 61.6 52.6
SNR 0.540 0.539 0.535 0.524 0.513 0.502 0.484 0.465 0.436 0.406 0.370 0.297

Table 7: Classification accuracy and SNR on well-separated clusters across diffusion noise levels.

σt 0.010 0.026 0.044 0.076 0.108 0.140 0.205

Acc 73.53 74.64 75.17 75.54 75.83 75.93 76.10
SNR 0.0369 0.0372 0.0375 0.0380 0.0382 0.0384 0.0387

σt 0.271 0.339 0.719 1.234 2.031 3.424 6.135

Acc 75.92 74.85 66.47 49.31 29.28 16.41 7.81
SNR 0.0384 0.0387 0.0350 0.0321 0.0282 0.0255 0.0211

Table 8: Feature accuracy and SNR dynamics for DiT-XL/2 on miniImageNet.

Assets license information. We primarily utilize the codebase of EDM [49], which is released
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)
license. We also use code from the GitHub repository accompanying [19], which is licensed under
the MIT License.

For the datasets, CIFAR datasets [50], ImageNet [51], Oxford 102 Flowers [93], and DTD [96] are
publicly available for academic use. The CelebA dataset [97] is released for non-commercial research
purposes only under a custom license. Oxford-IIIT Pet [91] is available under the CC BY-SA 4.0
license. The FFHQ dataset [98] is distributed by NVIDIA under the CC BY-NC-SA 4.0 license.

Computational resources. Most experiments are conducted on a single NVIDIA A40 GPU, except
for training on subsets of images (e.g., Figure 8), which is performed using two A40 GPUs.

Experimental details for Figure 1.

• Experimental details for Figure 1(a). We train diffusion models based on the unified framework
proposed by [49]. Specifically, we use the DDPM+ network, and use VP configuration for
Figure 1(a). [49] has shown equivalence between VP configuration and the traditional DDPM
setting, thus we call the models as DDPM* models. We train two models on CIFAR10 and
CIFAR100, respectively. After training, we evaluate the learned representations via linear probing.
For each noise level σ(t), we corrupt the clean input x0 with Gaussian noise to obtain xt =√
ᾱt(x0 + n), with n ∼ N

(
0, σ2

t I
)

and
√
ᾱt = 1/

√
σ2
t + 1. We then extract features from the

decoder’s ‘16x16 block1’ layer, which consistently yields the highest classification accuracy. A
logistic regression classifier is trained on these features using the training split and evaluated on the
test split. We perform the linear probe for each of the following noise levels: [0.002, 0.008, 0.023,
0.060, 0.140, 0.296, 0.585, 1.088, 1.923].

• Experimental details for Figure 1(b). We exactly follow the protocol in [19], using the same
datasets which are subsets of CelebA [97, 99] and FFHQ [98], the same training procedure, and the
same segmentation networks (MLPs). The only difference is that we use a newer latent diffusion
model [3] pretrained on CelebAHQ from Hugging Face and the noise are added to the latent
space. For feature extraction we concatenate the feature from the first layer of each resolution
in the UNet’s decoder (after upsampling them to the same resolution as the input). We perform
segmentation for each of the following noise levels:[0.010, 0.015, 0.030, 0.053, 0.098, 0.189, 0.282,
0.379, 0.480, 0.766, 1.123].

Experimental details for Figure 3 and Figure 15. For the MoLRG experiments, we train the our
parameterized model (4) following the setup provided in an open-source repository [100]. The model
is trained on a d = 5, n = 50,K = 3 and δ = 0.2 MoLRG dataset containing 12000 samples. Training
is conducted for 200 epochs using DDPM scheduling with T = 500, employing the Adam optimizer

32

Dataset Classifier Type σt = 0.008 0.023 0.060 0.140 0.296 0.585 1.088 1.923

CIFAR10 Logistic Regression 93.72 94.94 95.20 94.11 91.36 85.25 72.95 56.21
CIFAR10 Projection 86.95 90.36 90.93 90.78 88.48 82.82 70.53 53.84

Dataset Classifier Type σt = 0.008 0.023 0.060 0.140 0.296 0.585 1.088 1.923

TinyImageNet Logistic Regression 32.17 34.70 43.09 53.58 50.78 42.13 27.56 15.10
TinyImageNet Projection 12.89 14.38 24.10 34.78 34.88 30.02 20.99 12.64

Table 9: Logistic linear probing vs. projection-based classification accuracy on CIFAR10 (Top)
and TinyImageNet (Bottom) across diffusion noise levels.

with a learning rate of 5× 10−4. For SNR computation, we follow the definition in Section 3.3 since
we have access to the ground-truth basis for the MoLRG data, i.e., U⋆

1 ,U
⋆
2 , and U⋆

3 ∈ R50×5. For
probing we simply train a linear probe on the feature.

For both panels in Figure 3, we train our probe the same training set used for diffusion and test on
five different MoLRG datasets with 9000 samples generated with five different random seeds, reporting
the average accuracy and SNR at time steps [5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 240,
260, 280]. In Figure 15, we visualize the posterior estimations at time steps [5, 20, 60, 120, 260] by
projecting them onto the union of the first columns of U⋆

1 ,U
⋆
2 , and U⋆

3 (a 3D space), then further
projecting onto the 2D plane by a random 3× 2 matrix with orthonormal columns. The subtitles of
each visualization show the corresponding SNR calculated as explained above.

Experimental details for Figure 5. We use pre-trained EDM models [49] for CIFAR10 and
ImageNet, extracting feature representations from the best-performing layer at each timestep. For the
ImageNet model, features are extracted using images from classes in TinyImageNet [92]. Feature
accuracy is evaluated via linear probing. To compute the SNR metric, we first normalize the extracted
features by dividing each by its norm and subtracting the global mean. At each timestep, we perform
class-wise SVD on the normalized features and compute SNR as defined in Section 3.3. Specifically,
we use the top 5 right singular vectors of each class to form U⋆

k .

Experimental details for Figure 6. We use the DDPM++ network and VP configuration to train
diffusion models[49] on the CIFAR10 dataset, using two network configurations: UNet-32 and UNet-
64, by varying the embedding dimension of the UNet. Training dataset sizes range exponentially
from 28 to 215. For each dataset size, both UNet-32 and UNet-64 are trained on the same subset of
the training data. All models are trained with a duration of 50M images following the EDM training
setup. After training, we calculate the generalization score as described in [53], using 10K generated
images and the full training subset to compute the score.

Experimental details for Figure 7 and Figure 8. We use the DDPM++ architecture with the EDM
configuration to train a UNet-128 diffusion model [49] on CIFAR10 and CIFAR100, using 4096
image training subsets. We track the evolution of representation dynamics throughout training. For
Figure 7, FID [58] is computed using 50K generated samples compared against the full training
dataset. Classification accuracy is obtained by extracting features from the training subset and
evaluating a linear classifier on the full test set. Nearest neighbors are identified by computing the
smallest ℓ2 distance between each generated image and the training subset.

Experimental details for Figure 13. We train individual DAEs using the DDPM++ network and
VP configuration outlined in [49] at the following noise scales:

[0.002, 0.008, 0.023, 0.06, 0.14, 0.296, 0.585, 1.088, 1.923, 3.257].

Each model is trained for 500 epochs using the Adam optimizer [101] with a fixed learning rate of
1× 10−4. The sliced Wasserstein distance is computed according to the implementation described in
[94].

Experimental details for Table 1 and Table 2 For EDM, we use the official pre-trained checkpoints
on ImageNet 64× 64 from [49], and for DiT, we use the released DiT-XL/2 model pre-trained on

33

ImageNet 256 × 256 from [37]. As a baseline, we include the Hugging Face pre-trained MAE
encoder (ViT-B/16) [95].

For diffusion models, features are extracted from the layer and timestep that achieve the highest
probing accuracy, following [20]. After feature extraction, we adopt the probing protocol from [22],
passing the extracted features through a probe consisting of a BatchNorm1d layer followed by a linear
layer. To ensure fair comparisons, all input images are cropped or resized to 224× 224, matching the
resolution used for MAE training.

For ensembling, we extract features from two additional timesteps on either side of the optimal
timestep. Independent probes are trained on these timesteps, yielding five probes in total. At test
time, we apply a soft-voting ensemble by averaging the output logits from all five probes for the
final prediction. Specifically, let Wt ∈ RK×d be the linear classifier trained on features from
timestep t, and let ht ∈ Rd denote the feature representation of a sample at timestep t. Considering
neighboring timesteps t − 2, t − 1, t + 1, and t + 2, our ensemble prediction is computed as:
ŷ = arg max

(
1
5

∑t+2
t=t−2 Wtht

)
.

We evaluate each method under varying levels of label noise, ranging from 0% to 80%, by randomly
mislabeling the specified percentage of training labels before applying linear probing. Performance is
assessed on both the pre-training dataset and downstream transfer learning tasks. For pre-training
evaluation, we use the images and classes from MiniImageNet [102] to reduce computational cost.
For transfer learning, we evaluate on CIFAR100 [50], DTD [96], and Flowers102 [93].

E Proofs

We first provide some auxiliary results for proving Theorem 1.

E.1 Groud truth posterior mean

We begin by deriving the ground truth posterior mean E [x0|xt] under the MoLRG distribution. When
x0 follows the noisy MoLRG assumption, the optimal solution x̂⋆

θ(xt, t) to the training objective in
Eq. (2) is exactly the posterior mean E [x0|xt].
Proposition 2. Suppose the data x0 is drawn from a noisy MoLRG data distribution with K-class
and noise level δ introduced in Assumption 1. Then the optimal {U} minimizing the loss (2) is the
ground truth basis defined in (3), and the optimal DAE x̂⋆

θ(xt, t) admits the analytical form:

x̂⋆
θ(xt, t) =

K∑
l=1

w⋆
l (xt, t)

(
ζtU

⋆
l U

⋆⊤
l + ξtŨ

⋆
l Ũ

⋆⊤
l

)
xt, (9)

where ζt = 1
1+σ2

t
and ξt = δ2

δ2+σ2
t

, and

w⋆
l (xt, t) =

exp (g⋆l (xt, t))∑K
s=1 exp (g

⋆
s (xt, t))

, g⋆l (xt, t) =
ζt
2σ2

t

∥U⋆⊤
l xt∥2 +

ξt
2σ2

t

∥Ũ⋆⊤
l xt∥2.

Proof. By [103] we see that the ground-truth score/posterior estimator calculated from the pdf is the
global minimizer of the denoising score matching loss in (2), so here we first calculate the ground-
truth score of the noisy MoLRG distribution and the corresponding posterior. We follow the same proof

steps as in [32] Lemma 1 with a change of variable. Let ck =

[
ak

ek

]
and Ûk =

[
U⋆

k δŨ⋆
k

]
where d

and D denote the dimensions of signal space and noise space as in definition, we first compute the
conditional pdf

pt(x|Y = k)

=

∫
pt (x|Y = k, ck)N (ck;0, Id+D) dck

=

∫
pt(x|x0 = Ûkck)N (ck;0, Id+D) dck

34

=

∫
N (x; stÛkck, γ

2
t In)N (ck;0, Id+D) dck

=
1

(2π)n/2(2π)(d+D)/2γnt

∫
exp

(
− 1

2γ2t
∥x− stÛkck∥2

)
exp

(
−1

2
∥ck∥2

)
dck

=
1

(2π)n/2(2π)(d+D)/2γnt

∫
exp

(
− 1

2γ2t

(
x⊤x− 2stx

⊤Ûkck + s2tc
⊤
k Û

⊤
k Ûkck + γ2t c

⊤
k ck

))
dck

=
1

(2π)n/2γnt

(
s2t + γ2t
γ2t

)−d/2(
s2t δ

2 + γ2t
γ2t

)−D/2

exp

(
− 1

2γ2t
x⊤
(
In − s2t

s2t + γ2t
U⋆

kU
⋆⊤
k − s2t δ

2

s2t δ
2 + γ2t

Ũ⋆
k Ũ

⋆⊤
k

)
x

)
∫

1

(2π)d/2

(
γ2t

s2t + γ2t

)−d/2

exp

(
−s

2
t + γ2t
2γ2t

∥∥∥∥ak − st
s2t + γ2t

U⋆⊤
k x

∥∥∥∥2
)
dak

∫
1

(2π)D/2

(
γ2t

s2t δ
2 + γ2t

)−D/2

exp

(
−s

2
t δ

2 + γ2t
2γ2t

∥∥∥∥ek − stδ

s2t δ
2 + γ2t

Ũ⋆⊤
k x

∥∥∥∥2
)
dek

=
1

(2π)n/2
1

(s2t + γ2t)
d/2(s2t δ

2 + γ2t)
D/2

exp

(
− 1

2γ2t
x⊤
(
In − s2t

s2t + γ2t
U⋆

kU
⋆⊤
k − s2t δ

2

s2t δ
2 + γ2t

Ũ⋆
k Ũ

⋆⊤
k

)
x

)
=

1

(2π)n/2 det1/2(s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)

exp

(
−1

2
xT
(
s2tU

⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In

)−1

x

)
= N (x;0, s2tU

⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In),

where we repeatedly apply the pdf of multi-variate Gaussian and the second last equality uses
det(s2tU

⋆
kU

⋆⊤
k +s2t δ

2Ũ⋆
k Ũ

⋆⊤
k +γ2t In) = (s2t +γ

2
t)

d(s2t δ
2+γ2t)

D and (s2tU
⋆
kU

⋆⊤
k +s2t δ

2Ũ⋆
k Ũ

⋆⊤
k +

γ2t In)
−1 =

(
In − s2t/(s

2
t + γ2t)U

⋆
kU

⋆⊤
k − s2t δ

2/(s2t δ
2 + γ2t)Ũ

⋆
k Ũ

⋆⊤
k

)
/γ2t because of the Wood-

bury matrix inversion lemma. Hence, with P (Y = k) = πk for each k ∈ [K], we have

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In).

Now we can compute the score function

∇ log pt(x) =
∇pt(x)
pt(x)

=

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)(

− 1
γ2
t
x+

s2t
γ2
t (s

2
t+γ2

t)
U⋆

kU
⋆⊤
k x+

s2tδ
2

γ2
t (s

2
tδ

2+γ2
t)
Ũ⋆

k Ũ
⋆T
k x

)
∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)

= − 1

γ2t

x−

∑K
k=1 πkN (x;0, s2tUkU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)(

s2t
s2t+γ2

t
U⋆

kU
⋆⊤
k x) +

s2tδ
2

s2tδ
2+γ2

t
Ũ⋆

k Ũ
⋆⊤
k x)

)
∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)

 .

According to Tweedie’s formula, we have

E [x0|xt] =
xt + γ2t∇ log pt(xt)

st

=
st

s2t + γ2t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)U

⋆
kU

⋆⊤
k x

N (x;0, s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)

+
stδ

2

s2t δ
2 + γ2t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)Ũ

⋆
k Ũ

⋆⊤
k x

N (x;0, s2tU
⋆
kU

⋆⊤
k + s2t δ

2Ũ⋆
k Ũ

⋆⊤
k + γ2t In)

35

=
st

s2t + γ2t

∑K
k=1 πk exp

(
ϕt∥U⋆⊤

k xt∥2
)
exp

(
ψt∥Ũ⋆⊤

k xt∥2
)
U⋆

kU
⋆⊤
k xt∑K

k=1 πk exp
(
ϕt∥U⋆⊤

k xt∥2
)
exp

(
ψt∥Ũ⋆⊤

k xt∥2
)

+
stδ

2

s2t δ
2 + γ2t

∑K
k=1 πk exp

(
ϕt∥U⋆⊤

k xt∥2
)
exp

(
ψt∥Ũ⋆⊤

k xt∥2
)
Ũ⊤

k Ũ⋆⊤
k xt∑K

k=1 πk exp
(
ϕt∥U⋆⊤

k xt∥2
)
exp

(
ψt∥Ũ⋆⊤

k xt∥2
) ,

with ϕt = s2t/(2γ
2
t (s

2
t + γ2t)) and ψt = s2t δ

2/(2γ2t (s
2
t δ

2 + γ2t)). The final equality uses the pdf of
multi-variant Gaussian and the matrix inversion lemma discussed earlier. Since πk is consistent for
all k and st = 1, we have

E [x0|xt] =

K∑
k=1

w⋆
k(xt)

(
1

1 + σ2
t

U⋆
kU

⋆⊤
k +

δ2

δ2 + σ2
t

Ũ⋆
k Ũ

⋆⊤
k

)
xt

where w⋆
k(xt) :=

exp
(

1
2σ2

t (1+σ2
t)
∥U⋆⊤

k xt∥2 + δ2

2σ2
t (δ

2+σ2
t)
∥Ũ⋆⊤

k xt∥2
)

∑K
k=1 exp

(
1

2σ2
t (1+σ2

t)
∥U⋆⊤

k xt∥2 + δ2

2σ2
t (δ

2+σ2
t)
∥Ũ⋆⊤

k xt∥2
) .

Finally we show the equivalence between ground-truth posterior and our parameterized DAE when
its weights are just the ground truth basis. We begin by rewriting the optimal posterior function by
leveraging the fact that Ũ⋆

l :=
[
U⋆

1 · · · U⋆
l−1 U⋆

l+1 · · ·U⋆
K

]
E [x0|xt] =

K∑
l=1

w⋆
l (xt, t)

(
ζtU

⋆
l U

⋆⊤
l + ξtŨ

⋆
l Ũ

⋆⊤
l

)
xt

=

K∑
l=1

w⋆
l (xt, t)

ζtU⋆
l U

⋆⊤
l + ξt

∑
j ̸=l

U⋆
j U

⋆⊤
j

xt

=

K∑
l=1

w⋆
l (xt, t)

(
ζtU

⋆
l U

⋆⊤
l

)
+

K∑
l=1

(w⋆
l (xt, t)ξt

∑
j ̸=l

U⋆
j U

⋆⊤
j)xt

=

K∑
l=1

w⋆
l (xt, t)ζtU

⋆
l U

⋆⊤
l xt + ξt

∑
j ̸=l

w⋆
j (xt, t)U

⋆
l U

⋆⊤
l xt


=

K∑
l=1

(
w⋆

l (xt, t)ζtU
⋆
l U

⋆⊤
l xt + ξt (1− w⋆

l (xt, t))U
⋆
l U

⋆⊤
l xt

)
=

K∑
l=1

(ζtw
⋆
l (xt, t) + ξt(1− w⋆

l (xt, t)))U
⋆
l U

⋆⊤
l xt

=

K∑
l=1

[ξt + (ζt − ξt)w
⋆
l (xt, t)]U

⋆
l U

⋆⊤
l xt.

Now if we let U⋆ = [U1 U2 ... UK] ∈ On×Kd and D⋆(xt, t) = diag (β⋆
1Id, . . . , β

⋆
KId) to

be a block-diagonal matrix. Each β⋆
l is defined as β⋆

l = ξt + (ζt − ξt)w
⋆
l (xt, t), we can then write:

E [x0|xt] = U⋆D⋆(xt, t)U
⋆Txt.

Thus, the optimal solution for our network parametrization as defined in (4) is exactly E [x0|xt]. And
by such equivalence, the optimality of the DAE is induced.

E.2 Proof of Theorem 1

We first state the formal version of Theorem 1.

36

To simplify the calculation of SNR as introduced in Section 3.3 on feature representations, which
involves the expectation over the softmax term w⋆

k, we approximate x̂⋆
θ as follows:

x̂⋆
approx(x, t) =

K∑
k=1

ŵ⋆
k

(
ζtU

⋆
kU

⋆⊤
k + ξtŨ

⋆
k Ũ

⋆⊤
k

)
x,

where ŵ⋆
k :=

exp (Ext
[g⋆k(xt, t)])∑K

k=1 exp (Ext
[g⋆k(xt, t)])

, ζt =
1

1 + σ2
t

, ξt =
δ2

δ2 + σ2
t

,

and g⋆k(x, t) =
ζt
2σ2

t

∥U⋆⊤
k x∥2 + ξt

2σ2
t

∥Ũ⋆⊤
k x∥2.

(10)

In other words, we use ŵ⋆
k in (10) to approximate w⋆

k(xt, t) in Proposition 1 by taking expectation
inside the softmax with respect to xt. This allows us to treat ŵ⋆

k as a constant when calculating SNR,
making the analysis more tractable while maintaining E[∥U⋆

l ĥ
⋆
θ(xt, t)∥2] ≈ E[∥U⋆

l ĥ
⋆
approx(x0, t)∥2]

for all l ∈ [K]. We verify the tightness of this approximation at Appendix C (Figure 14). With this
approximation, we state the theorem as follows:
Theorem 2. Let data x0 be any arbitrary data point drawn from the MoLRG distribution defined in
Assumption 1 and let k denote the true class x0 belongs to. Then SNR introduced in Section 3.3
depends on the noise level σt in the following form:

SNR(x̂⋆
approx, t) =

1 + σ2
t

(K − 1)(δ2 + σ2
t)

·

(
1 +

σ2
t

δ2 h(ŵ
⋆
k, δ)

1 +
σ2
t

δ2 h(ŵ
⋆
l , δ)

)2

(11)

where h(w, δ) := (1− δ2)w + δ2. Since δ is fixed, h(w, δ) is a monotonically increasing function
with respect to w. Note that here δ represents the magnitude of the fixed intrinsic noise in the data
where σt denotes the level of additive Gaussian noise introduced during the diffusion training process.

Proof. Following the definition of SNR as defined in Section 3.3, Lemma 2 and the fact that
k ∼ Mult(K,πk) with π1 = · · · = πK = 1/K, we can write

SNR(x̂⋆
approx, t) =

Ext [∥U⋆
kU

⋆⊤
k x̂⋆

approx(xt, t)∥2]
Ext

[
∑

l ̸=k ∥U⋆
l U

⋆⊤
l x̂⋆

approx(xt, t)∥2]
=

Ext
[∥U⋆

kU
⋆⊤
k x̂⋆

approx(xt, t)∥2]∑
l ̸=k Ext

[∥U⋆
l U

⋆⊤
l x̂⋆

approx(xt, t)∥2]

=

(
ŵ⋆

k

1+σ2
t
+

(K−1)δ2ŵ⋆
l

δ2+σ2
t

)2
(1 + σ2

t)d

(K − 1)
(

ŵ⋆
l

1+σ2
t
+

δ2(ŵ⋆
k+(K−2)ŵ⋆

l)

δ2+σ2
t

)2
(δ2 + σ2

t)d

=
1 + σ2

t

(K − 1)(δ2 + σ2
t)

·
(

ŵ⋆
kδ

2 + ŵ⋆
kσ

2
t + (K − 1)δ2ŵ⋆

l + (K − 1)δ2ŵ⋆
l σ

2
t

ŵ⋆
l δ

2 + ŵ⋆
l σ

2
t + δ2ŵ⋆

k + (K − 2)δ2ŵ⋆
l + δ2ŵ⋆

kσ
2
t + (K − 2)δ2ŵ⋆

l σ
2
t

)2

=
1 + σ2

t

(K − 1)(δ2 + σ2
t)

·

(
δ2 + σ2

t

(
ŵ⋆

k + (K − 1)δ2ŵ⋆
l

)
δ2 + σ2

t (ŵ
⋆
l + δ2ŵ⋆

k + (K − 2)δ2ŵ⋆
l)

)2

=
1 + σ2

t

(K − 1)(δ2 + σ2
t)

·

(
1 +

σ2
t

δ2

(
(1− δ2)ŵ⋆

k + δ2(ŵ⋆
k + (K − 1)ŵ⋆

l)
)

1 +
σ2
t

δ2 ((1− δ2)ŵ⋆
l + δ2(ŵ⋆

l + ŵ⋆
k + (K − 2)ŵ⋆

l))

)2

=
1 + σ2

t

(K − 1)(δ2 + σ2
t)

·

(
1 +

σ2
t

δ2

(
(1− δ2)ŵ⋆

k + δ2
)

1 +
σ2
t

δ2 ((1− δ2)ŵ⋆
l + δ2)

)2

=
1 + σ2

t

(K − 1)(δ2 + σ2
t)

·

(
1 +

σ2
t

δ2 h(ŵ
⋆
k, δ)

1 +
σ2
t

δ2 h(ŵ
⋆
l , δ)

)2

.

where h(w, δ) := (1− δ2)w + δ2, and we set Ct =
1+σ2

t

(δ2+σ2
t)

.

37

Lemma 1. Let g1, g2, . . . , gK be a sequence of real-valued inputs, and fix an index k ∈ [K]. Assume
that gl = gj for all l, j ̸= k; that is, all entries except gk share the same value. Let the softmax
weights be defined as

wj =
exp(gj)∑K
j=1 exp(gj)

,

Then we have:

wk =
exp(gk − gl)

K − 1 + exp(gk − gl)
and wl =

1

K − 1 + exp(gk − gl)
for all l ̸= k.

Proof. The softmax weight for class k is:

wk =
exp(gk)∑K
j=1 exp(gj)

.

We simplify the denominator by factoring out exp(gl):

K∑
j=1

exp(gj) = exp(gk) +
∑
j ̸=k

exp(gl) = exp(gk) + (K − 1) exp(gl).

Therefore,

wk =
exp(gk)

exp(gk) + (K − 1) exp(gl)
=

1

1 + (K − 1) exp(gl − gk)
=

exp(gk − gl)

(K − 1) + exp(gk − gl)
.

For any l ̸= k, we similarly have:

wl =
exp(gl)

exp(gk) + (K − 1) exp(gl)
=

1

(K − 1) + exp(gk − gl)
.

This simple fact can also be proven by applying the log-sum-exp trick.

Lemma 2. Given the setup of aK-class MoLRG data distribution defined in (3), consider the following
approximate posterior mean function:

x̂⋆
approx(x, t) =

K∑
k=1

ŵ⋆
k

(
ζtU

⋆
kU

⋆⊤
k + ξtŨ

⋆
k Ũ

⋆⊤
k

)
x,

where ŵ⋆
k :=

exp (Ext [g
⋆
k(xt, t)])∑K

k=1 exp (Ext
[g⋆k(xt, t)])

, ζt =
1

1 + σ2
t

, ξt =
δ2

δ2 + σ2
t

,

and g⋆k(x, t) =
ζt
2σ2

t

∥U⋆⊤
k x∥2 + ξt

2σ2
t

∥Ũ⋆⊤
k x∥2.

That is, we consider a simplified form of the expected posterior mean from Proposition 1, where the
expectation is taken inside the softmax argument (i.e., over g⋆k(xt, t)) to obtain tractable approximate
weights ŵ⋆

k.

Under this approximation, for any sample x0 from class k, i.e., x0 = U⋆
kai + δŨ⋆

kei, we have:

Ext
[∥U⋆

kU
⋆⊤
k x̂⋆

approx(xt, t)∥2] =
(

ŵ⋆
k

1 + σ2
t

+
(K − 1)δ2ŵ⋆

l

δ2 + σ2
t

)2

(d+ σ2
t d) (12)

Ext
[∥U⋆

l U
⋆⊤
l x̂⋆

approx(xt, t)∥2] =
(

ŵ⋆
l

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵ⋆

l)

δ2 + σ2
t

)2

(δ2d+ σ2
t d) (13)

38

Ext
[∥x̂⋆

approx(xt, t)∥2] =
(

ŵ⋆
k

1 + σ2
t

+
(K − 1)δ2ŵ⋆

l

δ2 + σ2
t

)2

(d+ σ2
t d)︸ ︷︷ ︸

E ∥U⋆
kU

⋆⊤
k x̂⋆

approx(xt,t)∥2]

+ (K − 1)

(
ŵ⋆

l

1 + σ2
t

+
δ2(ŵ⋆

k + (K − 2)ŵ⋆
l)

δ2 + σ2
t

)2

(δ2d+ σ2
t d)︸ ︷︷ ︸

E[
∑K

l ̸=k U⋆
l U

⋆⊤
l x̂⋆

approx(xt,t)∥2]

(14)

and

ŵ⋆
k =

exp (Dt)

K − 1 + exp (Dt)
,

ŵ⋆
l =

1

K − 1 + exp (Dt)
.

(15)

for all class index l ̸= k, where Dt =
(1−δ2)d

2σ2
t (1+σ2

t)
.

Proof. Throughout the proof, we use the following notation for slices of vectors.

ei[a : b] Slices of vector ei from ath entry to bth entry.

We begin with the softmax terms. Since each class has its unique disjoint subspace, it suffices to
consider gk(x0, t) and gl(x0, t) for any l ̸= k. Let at = 1

2σ2
t (1+σ2

t)
and ct = δ2

2σ2
t (δ

2+σ2
t)

, we have:

E[g⋆k(xt, t)] = E[at∥U⋆⊤
k xt∥2 + ct∥Ũ⋆⊤

k xt∥2]
= E[at∥U⋆⊤

k (U⋆
kai + δŨ⋆⊤

k ei + σtϵi)∥2] + E[ct∥Ũ⋆⊤
k (U⋆

kai + δŨ⋆⊤
k ei + σtϵi)∥2]

= E[at∥ai + σtU
⋆⊤
k ϵi∥2] + E[ct∥δei + σtŨ

⋆⊤
k ϵi∥2]

= at(d+ σ2
t d) + ct

(
δ2(K − 1)d+ σ2

t (K − 1)d
)
.

where the last equality follows from ai
i.i.d.∼ N (0, Id), ei

i.i.d.∼ N (0, I(K−1)d) and ϵi
i.i.d.∼ N (0, In).

Without loss of generality, assume the j = k + 1, we have:

E[g⋆l (xt, t)] = E[at∥U⋆⊤
l xt∥2 + ct∥Ũ⋆⊤

l xt∥2]
= E[at∥U⋆⊤

l (U⋆
kai + δŨ⋆

kei + σtϵi)∥2] + E[ct∥Ũ⊥⊤
l (U⋆

kai + δŨ⋆
kei + σtϵi)∥2]

= E[at∥δei[1 : d] + σtŨ
⋆⊤
l ϵi∥2] + E

[
ct

∥∥∥ [ai

0 ∈ RD−d

]
+ δ

[
0 ∈ Rd

ei[d : D]]

]
+ σtŨ

⋆⊤
l ϵi

∥∥∥2]
= at

(
δ2d+ σ2

t d
)
+ ct

(
d+ δ2(K − 2)d+ σ2

t (K − 1)d
)
.

Hence we have

E[g⋆k(xt, t)]− E[g⋆l (xt, t)]

= at
(
d+ σ2

t d− δ2d− σ2
t d
)
+ ct

(
δ2(K − 1)d+ σ2

t (K − 1)d− d− δ2(K − 2)d− σ2
t (K − 1)d

)
= at(1− δ2)d+ ct(δ

2 − 1)d

=
(1− δ2)d

2σ2
t (1 + σ2

t)
+

δ2d(δ2 − 1)

2σ2
t (δ

2 + σ2
t)

=
(δ2 − 1)2d

2(1 + σ2
t)(δ

2 + σ2
t)
.

This, together with Lemma 1, yield (15).

Now we prove (12):

U⋆
kU

⋆⊤
k x̂⋆

approx(xt, t) = ŵ⋆
kU

⋆
kU

⋆⊤
k

(
1

1 + σ2
t

U⋆
kU

⋆⊤
k +

δ2

δ2 + σ2
t

Ũ⋆
k Ũ

⋆⊤
k

)
xt

39

+
∑
l ̸=k

ŵ⋆
l U

⋆
kU

⋆⊤
k

(
1

1 + σ2
t

U⋆
l U

⋆⊤
l +

δ2

δ2 + σ2
t

Ũ⋆
l Ũ

⋆⊤
l

)
xt

= ŵ⋆
k

(
1

1 + σ2
t

U⋆
kU

⋆⊤
k xt

)
+
∑
l ̸=k

ŵ⋆
l

(
δ2

δ2 + σ2
t

U⋆
kU

⋆⊤
k xt

)

=

(
ŵ⋆

k

1 + σ2
t

+
(K − 1) δ2ŵ⋆

l

δ2 + σ2
t

)
U⋆

kU
⋆⊤
k (U⋆

kai + δŨ⋆
kei + σtϵi)

=

(
ŵ⋆

k

1 + σ2
t

+
(K − 1) δ2ŵ⋆

l

δ2 + σ2
t

)(
U⋆

kai + σtU
⋆
kU

⋆⊤
k ϵi

)
Since Uk ∈ On×d:

E[∥U⋆
kU

⋆⊤
k x̂⋆

approx(xt, t)∥2] =
(

ŵk

1 + σ2
t

+
(K − 1) δ2ŵl

δ2 + σ2
t

)2 (
d+ σ2

t d
)
,

and similarly for (13):

U⋆
l U

⋆⊤
l x̂⋆

approx(xt, t) = ŵ⋆
kU

⋆
l U

⋆⊤
l

(
1

1 + σ2
t

U⋆
kU

⋆⊤
k +

δ2

δ2 + σ2
t

ŨkŨ
⋆T
k

)
xt

+ ŵ⋆
l U

⋆
l U

⋆⊤
l

(
1

1 + σ2
t

U⋆
l U

⋆⊤
l +

δ2

δ2 + σ2
t

ŨlŨ
⋆⊤
l

)
xt

+
∑
j ̸=k,l

ŵj
⋆U⋆

l U
⋆⊤
l

(
1

1 + σ2
t

U⋆
j U

⋆⊤
j +

δ2

δ2 + σ2
t

ŨjŨ
⋆⊤
j

)
xt

= ŵ⋆
k

(
δ2

δ2 + σ2
t

U⋆
l U

⋆⊤
l xt

)
+ ŵ⋆

l

(
1

1 + σ2
t

U⋆
l U

⋆⊤
l xt

)
+
∑
j ̸=k,l

ŵj
⋆

(
δ2

δ2 + σ2
t

U⋆
l U

⋆⊤
l xt

)

=

(
ŵ⋆

l

1 + σ2
t

+
δ2(ŵ⋆

k + (K − 2)ŵ⋆
j)

δ2 + σ2
t

)
U⋆

l U
⋆⊤
l (U⋆

kai + δŨ⋆
kei + σtϵi)

=

(
ŵ⋆

l

1 + σ2
t

+
δ2(ŵ⋆

k + (K − 2)ŵ⋆
l)

δ2 + σ2
t

)(
δU⋆

l ei[1 : d] + σtU
⋆
l U

⋆⊤
l ϵi

)
where the third equality follows since ŵ⋆

j = ŵ⋆
l for all j ̸= k, l. Further, we have:

E[∥U⋆
l U

⋆⊤
l x̂⋆

approx(xt, t)∥2] =
(

ŵ⋆
l

1 + σ2
t

+
δ2(ŵ⋆

k + (K − 2)ŵ⋆
l)

δ2 + σ2
t

)2 (
δ2d+ σ2

t d
)
.

Lastly, we prove (14). Given that the subspaces of all classes and the complement space are both
orthonormal and mutually orthogonal, we can write:

E[∥x̂⋆
approx(xt, t)∥2] = E[∥U⋆

kU
⋆⊤
k x̂⋆

approx(xt, t)∥2] + E[
∑
l ̸=k

∥U⋆
l U

⋆⊤
l x̂⋆

approx(xt, t)∥2] + E[∥U⊥U
T
⊥ x̂⋆

approx(xt, t)∥2]

where we define the noise space as U⊥ =
⋂K

k=1 U
⋆⊥
k ∈ On×(n−Kd), representing the directions

orthogonal to all class subspaces. Since U⊥ is orthogonal to each U⋆
l , the third term vanishes.

Combining the remaining terms, we obtain:

E[∥x̂⋆
approx(xt, t)∥2] =

(
ŵ⋆

k

1 + σ2
t

+
(K − 1)δ2ŵ⋆

l

δ2 + σ2
t

)2 (
d+ σ2

t d
)

+ (K − 1)

(
ŵ⋆

l

1 + σ2
t

+
δ2(ŵ⋆

k + (K − 2)ŵ⋆
l)

δ2 + σ2
t

)2 (
δ2d+ σ2

t d
)
.

40

	Introduction
	Problem setup
	Good distribution learning implies unimodal representation dynamics
	Assumptions of data distribution
	Network parametrization
	A metric for measuring representation quality
	Main theoretical results

	Unimodal representation dynamics predicts model generalization
	Effects of dataset size and model capacity on representation dynamics
	Effects of learning dynamics on representation dynamics

	Conclusion
	Related works
	Auxiliary results
	Extended results from subsec:withinmodel
	Disentangling the role of input noise in representation dynamics
	Weight sharing in diffusion models facilitates representation learning
	Feature ensembling across timesteps improves representation robustness

	Additional Experiments
	Experimental Details
	Proofs
	Groud truth posterior mean
	Proof of lem:main

