Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling

Xiao Li*

University of Michigan xlxiao@umich.edu

Siyi Chen

University of Michigan siyich@umich.edu

Zekai Zhang*

University of Michigan zzekai@umich.edu

Zhihui Zhu

Ohio State University zhu. 3440@osu.edu

Qing Qu

University of Michigan qingqu@umich.edu

Xiang Li

University of Michigan forkobe@umich.edu

Peng Wang

University of Michigan pengwa@umich.edu

Abstract

Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the diffusion model's generalization: it emerges when the model generate novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.

1 Introduction

Diffusion models, a class of score-based generative models, have achieved great empirical success in various tasks such as image and video generation, speech and audio synthesis, and solving inverse problems [1–15]. In general, these models, consisting of forward and backward processes, learn data distributions by simulating the non-equilibrium thermodynamic diffusion process [2, 16, 17]. Specifically, the forward process progressively adds Gaussian noise to training samples until they are fully corrupted, while the backward process involves learning a score-based model to generate samples from the noisy inputs [17, 18].

Beyond their strong generative capabilities, recent studies have revealed that diffusion models also possess remarkable representation learning capabilities [19–24]. In particular, the internal feature extractors of trained diffusion models have been shown to serve as powerful self-supervised learners, achieving strong performance on downstream tasks such as classification [20, 21], semantic

^{*}The first two authors contributed equally to the work.

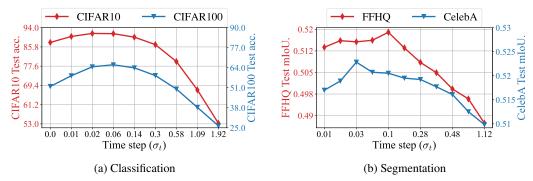


Figure 1: Unimodal representation dynamics in diffusion-based representation learning tasks. This unimodal representation pattern has been previously observed in diffusion-based representation learning tasks; see [19, 20, 23]. To verify this, we train diffusion models on various datasets and evaluate downstream performance using noisy images x_t at different timesteps t. In both classification and segmentation tasks, the performance consistently follows a unimodal trend, peaking at intermediate noise levels. In (b), "mIoU" denotes mean Intersection over Union, a standard metric used in segmentation tasks.

segmentation [19], and image alignment [23]. In many cases, these representations match or even surpass those from specialized self-supervised methods, implying that diffusion models have the potential to unify generative and discriminative learning in vision.

Alongside the empirical success, a prevalent phenomenon, which we refer to as the *unimodal representation dynamics*, has been widely observed in diffusion models for representation learning [19, 20, 23]: the quality of learned representations, as measured by downstream task performance, follows a unimodal trend across noise levels. Specifically, the most effective features consistently appear at an intermediate noise level, while performance degrades as inputs become either fully noisy or entirely clean (see Figure 1). Despite being widely observed, the underlying cause of this unimodal representation dynamic remains poorly understood.

Our contributions. In this work, we investigate the emergence of unimodal representation dynamics in diffusion models and its cause. Our analysis characterizes how representation quality varies across noise levels and offers new perspectives on how diffusion models, despite their generative design, can excel at representation learning. Specifically, we conduct a comprehensive theoretical and empirical study of unimodal representation dynamics in diffusion models. Motivated by the well-established observation that natural image data typically reside on a low-dimensional manifold [25–27], we examine the representation dynamics through how diffusion models learn from noisy mixtures of low-rank Gaussian (MoLRG) distributions. We show that the emergence of unimodal representations is intrinsically linked to the model's ability to capture the underlying low-dimensional structure of the data. Our key contributions are as follows:

- Mathematical framework for studying representation learning in diffusion models. To analyze the representation dynamics, we provide a mathematical study of how diffusion models learn from MoLRG distributions, where data lie on a union of low-dimensional subspaces. We adopt a simplified yet analytically tractable network architecture that mimics key structural properties of U-Net. Under this setting, we quantify the quality of learned representations via the Signal-to-Noise Ratio (SNR) within the target subspace, enabling us to characterize how representation quality evolves across timesteps in the diffusion process.
- Theoretical explanation for the emergence of unimodal dynamics. Leveraging the structures of the MoLRG model, we prove that the unimodal pattern in representation quality naturally arises when the model effectively captures the low-dimensional data distribution. We show that this unimodal pattern is driven by an interplay between denoising strength and class separability that varies with noise levels. There exists an intermediate diffusion timestep where class-irrelevant components are maximally suppressed and class-relevant features are best preserved, resulting in optimal representation quality.

• Empirical connection between unimodal dynamics and generalization. Empirically, we demonstrate that the presence of unimodal representation dynamics serves as a reliable indicator of model generalization in classification tasks. Specifically, the unimodal pattern consistently emerges when the model generalizes well, but progressively vanishes as the model shifts toward memorizing the training data.

Relationship to prior results. Recent empirical advances in leveraging diffusion models for down-stream representation learning have gained significant attention. However, a theoretical understanding of how diffusion models learn representations across different noise levels remains largely unexplored. Here, we focus on the results most relevant to our work and defer a more comprehensive survey to Appendix A. A recent study by [24] takes initial steps in this direction by analyzing the optimization dynamics of a two-layer CNN trained with diffusion loss on binary class data. Their focus is on contrasting the learning behavior under denoising versus classification objectives, without examining how representation quality evolves across timesteps. In contrast, our work characterizes and compares representations learned at different timesteps, provides a deeper understanding of diffusion-based representation learning and also extends to multi-class settings. A recent study by [28] also investigates the influence of timesteps in diffusion-based representation learning, focusing on attribute classification and counterfactual generation. In contrast, our work provides a theoretical explanation and practical metric for the emergence of unimodal representation dynamics and shows its relationship with data and model complexity and training iterations.

2 Problem setup

Basics of diffusion models. Diffusion models are a class of probabilistic generative models that aim to reverse a progressive noising process by mapping an underlying data distribution p_{data} to a Gaussian distribution. The forward diffusion process begins with clean data $x_0 \sim p_{\text{data}}$ and adds Gaussian noise over time $t \in [0, 1]$, which can be described by the following stochastic differential equation (SDE):

$$d\mathbf{x}_t = f(t)\mathbf{x}_t dt + g(t) d\mathbf{w}_t,$$

where f(t) is the drift coefficient, g(t) is the diffusion coefficient, and $\{w_t\}$ is a standard Wiener process. Then, one can verify that the noisy data satisfy $x_t = s_t x_0 + s_t \sigma_t \epsilon$ with $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, where s_t and σ_t are scaling factors determined by f(t) and g(t). For ease of exposition, let $p_t(x)$ denote the probability density function (pdf) of the noisy data x_t for each $t \in [0, 1]$. In particular, $p_0 = p_{\text{data}}$. To simplify the analysis, we assume throughout the paper that $s_t = 1$.

The reverse process transforms noise back into clean data by leveraging the score function $\nabla \log p_t(x_t)$ and is governed by the reverse SDE [29]:

$$d\mathbf{x}_t = (f(t)\mathbf{x}_t - g^2(t)\nabla \log p_t(\mathbf{x}_t)) dt + g(t)d\bar{\mathbf{w}}_t,$$

where $\{\bar{w}_t\}$ is a Wiener process independent of $\{w_t\}$. This enables diffusion models to generate new samples from the underlying data distribution p_{data} by initializing from pure Gaussian noise and iteratively denoising via the score function.

Training loss of diffusion models. Note that the score function $\nabla \log p_t(x_t)$ depends on the unknown data distribution p_{data} . According to Tweedie's formula [30], i.e.,

$$\mathbb{E}\left[\boldsymbol{x}_0|\boldsymbol{x}_t\right] = \boldsymbol{x}_t + \sigma_t^2 \nabla \log p_t(\boldsymbol{x}_t),\tag{1}$$

we can alternatively estimate $\nabla \log p_t(x_t)$ by training a network $x_\theta(x_t, t)$, which is referred to as denoising autoencoder (DAE), to approximate the posterior mean $\mathbb{E}[x_0|x_t]$ [20, 22, 31]. To learn the network parameter θ , we minimize the following empirical loss:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) := \sum_{i=1}^{N} \int_{0}^{1} \lambda_{t} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}_{n})} \left[\left\| \boldsymbol{x}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{0}^{(i)} + \sigma_{t} \boldsymbol{\epsilon}, t \right) - \boldsymbol{x}_{0}^{(i)} \right\|^{2} \right] dt,$$
 (2)

where $x_0^{(i)} \stackrel{i.i.d.}{\sim} p_{\text{data}}$ for all $i=1,\ldots,N$ denote the training samples and λ_t represents the weight associated with each noise level.

3 Good distribution learning implies unimodal representation dynamics

Building on the setup introduced in Section 2, this section provides a mathematical framework for analyzing the representation quality of diffusion models, and theoretically we characterize the unimodal representation dynamics exhibited by diffusion models across noise levels. We validate our theoretical findings on both synthetic and real-world datasets.

3.1 Assumptions of data distribution

In this work, we assume that the underlying data distribution is *low-dimensional*, which follows a noisy version of the mixture of low-rank Gaussians (MoLRG) [32–34], defined as follows.

Assumption 1 (K-Class Noisy MoLRG Distribution). For any sample x_0 drawn from the noisy MoLRG distribution with K subspaces, we have

$$x_0 = U_k^{\star} a + \delta \widetilde{U}_k^{\star} e$$
, with probability $\pi_k \ge 0$, (3)

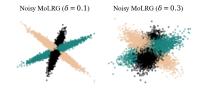


Figure 2: An illustration of MoLRG with different noise levels. We visualize samples drawn from noisy MoLRG with noise levels $\delta=0.1,\ 0.3$ and K=3.

where (i) $\mathbf{U}_k^{\star} \in \mathcal{O}^{n \times d_k}$ denotes an orthonormal basis of the k-th subspace for each $k=1,\ldots,K,\ \widetilde{\mathbf{U}}_k^{\star} \in \mathcal{O}^{n \times D_k}$ is an orthonormal basis for the D_k -dimensional subspace spanned by $\{\mathbf{U}_l^{\star}: l \neq k\}$; (ii) $\mathbf{a} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mathbf{0},\mathbf{I}_{d_k}), \mathbf{e} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mathbf{0},\mathbf{I}_{D_k})$ are independent standard Gaussian vectors representing the latent signal and noise components of \mathbf{x}_0 , respectively; (iii) $\delta > 0$ controls the data noise level, and (iv) $\pi_k \geq 0$ is the mixing proportion satisfying $\sum_{k=1}^K \pi_k = 1$.

One can verify that any sample x_0 drawn from the above distribution satisfies:

$$oldsymbol{x}_0 \sim \sum_{k=1}^K \pi_k \mathcal{N}\left(oldsymbol{0}, oldsymbol{U}_k^{\star} oldsymbol{U}_k^{\star op} + \delta^2 ilde{oldsymbol{U}}_k^{\star} ilde{oldsymbol{U}}_k^{\star op}
ight)$$

As shown in Figure 2, data from MoLRG resides on a union of low-dimensional subspaces, each following a Gaussian distribution with a low-rank covariance matrix representing its basis perturbed by some noise. For simplicity, we assume equal subspace dimensions $(d_1 = \cdots = d_K = d)$, orthogonal bases (i.e., $\boldsymbol{U}_k^{\star \top} \boldsymbol{U}_l^{\star} = \mathbf{0}$ for $k \neq l$), and uniform mixing weights $(\pi_1 = \cdots = \pi_K = 1/K)$. Additionally, the study of noisy MoLRG distributions is further motivated by the following facts:

- MoLRG captures the intrinsic low-dimensionality of image data. Although real-world image datasets are high-dimensional in terms of pixel count and data volume, extensive empirical studies [25–27] demonstrated that their intrinsic dimensionality is considerably lower. Additionally, recent work [35, 36] has leveraged the intrinsic low-dimensional structure of real-world data to analyze the convergence guarantees of diffusion model sampling. The MoLRG distribution, which models data in a low-dimensional space with rank $d_k \ll n$, effectively captures this property.
- Latent diffusion models encourage the latent space toward a Gaussian distribution. State-of-the-art large-scale diffusion models [37, 38] typically employ autoencoders [39] to project images into a latent space, where a KL penalty encourages the learned latent distribution to approximate standard Gaussians [3]. Furthermore, recent studies [22, 40] show that diffusion models can be trained to leverage the intrinsic subspace structure of real-world data.
- Modeling the complexity of real-world image datasets. The noise term $\delta \tilde{U}_k^{\star} e_i$ captures perturbations outside the k-th subspace via the noise space \tilde{U}_k^{\star} , analogous to insignificant attributes of real-world images, such as the background of an image. While additional noise may be less significant for representation learning, it plays a crucial role in enhancing the fidelity of generated samples.

²The assumptions of subspace orthogonality, equal subspace rank and uniform mixing weights are adopted for analytical simplicity. Empirical results in Appendix C demonstrate that the unimodal dynamics persist when these assumptions are relaxed.

In other words, our data model assumes that the overall dataset lies in a union of low-dimensional subspaces, where each class is associated with a dominant class-specific subspace, and there exists a shared subspace common across all classes that captures class-independent fine-grained details. This shared–specific decomposition has been empirically supported in the context of subspace clustering and representation learning [41, 42].

3.2 Network parametrization

To analyze how feature representations evolve across noise levels in diffusion models, we study the following nonlinear network parameterization inspired from the MoLRG data assumption.. Specifically, we parameterize the DAE $\boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)$ and its corresponding latent feature representation $\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)$ as follows:

$$\boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) = \boldsymbol{U}\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t), \ \boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) = \boldsymbol{D}(\boldsymbol{x}_t, t)\boldsymbol{U}^{\top}\boldsymbol{x}_t, \ \boldsymbol{D}(\boldsymbol{x}_t, t) = \operatorname{diag}\left(\beta_1^t \boldsymbol{I}_d, \dots, \beta_K^t \boldsymbol{I}_d\right),$$
 (4)

where $\boldsymbol{\theta} = \{\boldsymbol{U}\}$ denotes a set of learnable parameters with $\boldsymbol{U} = [\boldsymbol{U}_1, \cdots, \boldsymbol{U}_K] \in \mathcal{O}^{n \times Kd}$. Let $\zeta_t = \frac{1}{1+\sigma_t^2}$ and $\xi_t = \frac{\delta^2}{\delta^2+\sigma_t^2}$, where σ_t is the noise scaling in (1). Correspondingly, we parameterize $\beta_l^t = \xi_t + (\zeta_t - \xi_t) w_l(\boldsymbol{x}_t, t)$ in (4) with

$$w_l(\boldsymbol{x}_t, t) = \frac{\exp(g_l(\boldsymbol{x}_t, t))}{\sum_{s=1}^K \exp(g_s(\boldsymbol{x}_t, t))}, \quad g_l(\boldsymbol{x}_t, t) = \frac{\zeta_t}{2\sigma_t^2} \|\boldsymbol{U}_l^\top \boldsymbol{x}_t\|^2 + \frac{\xi_t}{2\sigma_t^2} \|\tilde{\boldsymbol{U}}_l^\top \boldsymbol{x}_t\|^2.$$
 (5)

This network architecture can be interpreted as a shallow U-Net [43] composed with a blockwise mixture-of-experts [44] mechanism, or equivalently, a restricted form of self-attention, with the following components:

- Low-dimensional projection. The input x_t is projected into a latent space via a learned orthonormal basis $U^{\top}x_t$, which is partitioned into K groups of dimension d. Each block U_l can be viewed as an individual expert operating on a distinct subspace of the input.
- Expert weighting. Each projected latent group is then reweighted by a coefficient β_l^t , which depends on the input x_t and timestep t via a softmax function $w_l(x_t, t)$. These coefficients form the block-diagonal matrix $D(x_t, t)$, which scales each group independently. This structure can be interpreted as a mixture-of-experts model [44], where the contribution of each expert is modulated by the input. It may also be viewed as a restricted self-attention mechanism [45], where attention is applied at the group level rather than individually, yielding the feature representations of the input as in (4).
- Symmetric reconstruction. The modulated feature representation is projected back to the input space via the same expert blocks *U*, forming a symmetric encoder–decoder architecture.

Moreover, this parameterization in (4) induces a time and data-dependent feature representation $h_{\theta}(x_t, t)$, which enables systematic analysis of representation quality across noise scales.

3.3 A metric for measuring representation quality

To understand diffusion-based representation learning under the MoLRG data model, we define the following signal-to-noise ratio (SNR) to measure the representation quality as follows.

Definition 1. Suppose the data x_0 follows the noisy MoLRG introduced in Assumption 1. Without loss of generality, let $k \in [K]$ denote the true class of x_0 . For any trained DAE \hat{x}_{θ} parameterized as in (4), we define:

$$SNR(\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}, t) := \mathbb{E}_{k} \left[\frac{\mathbb{E}_{\boldsymbol{x}_{t}}[\|\boldsymbol{U}_{k}^{\star}\hat{\boldsymbol{h}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t)\|^{2}|k]}{\mathbb{E}_{\boldsymbol{x}_{t}}[\|\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t) - \boldsymbol{U}_{k}^{\star}\hat{\boldsymbol{h}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t)\|^{2}|k]} \right].$$
(6)

where $\hat{x}_{\theta}(x_t, t) = U \hat{h}_{\theta}(x_t, t)$ denotes the decoded reconstruction, and U_k^{\star} is the basis matrix for the true class data subspace.

This formulation measures how well the learned feature emphasizes the signal components aligned with the true class subspace versus those aligned with irrelevant or confounding directions. Intuitively, the numerator captures the energy of the feature projected onto the correct class subspace, while the

denominator measures the residual energy after removing this component from the reconstructed signal. A higher SNR value at a given noise level t indicates that the representation \hat{h}_{θ} encodes more discriminative structure with respect to the true class, implying better alignment with the downstream classification objective.

3.4 Main theoretical results

Based upon the aforementioned setup, we show the following results to explain the unimodal representation dynamics.

Proposition 1. Suppose the data x_0 is drawn from a noisy MoLRG data distribution with K-class and noise level δ introduced in Assumption 1. Then the optimal $\{U\}$ minimizing the loss (2) is the ground truth basis defined in (3), and the optimal DAE $\hat{x}^{\star}_{\theta}(x_t, t)$ admits the analytical form:

$$\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}^{\star}(\boldsymbol{x}_{t},t) = \sum_{l=1}^{K} w_{l}^{\star}(\boldsymbol{x}_{t},t) \left(\zeta_{t} \boldsymbol{U}_{l}^{\star} \boldsymbol{U}_{l}^{\star \top} + \xi_{t} \widetilde{\boldsymbol{U}}_{l}^{\star} \widetilde{\boldsymbol{U}}_{l}^{\star \top} \right) \boldsymbol{x}_{t}, \tag{7}$$

where $w_l^{\star}(\mathbf{x}_t, t)$ are the coefficients in (5) when $\{\mathbf{U}\} = \{\mathbf{U}_l^{\star}\}_{l=1}^K$.

Link to the fine-to-coarse generation shift. Since the U_l^* -related component captures low-dimensional class-relevant attributes and the \widetilde{U}_l^* -related component captures small-scale, class-irrelevant attributes, the optimal DAE exhibits a fine-to-coarse transition [46–48] in its output, where the class-irrelevant attributes are progressively removed as the noise level σ_t increases. Specifically, $\zeta_t = \frac{1}{1+\sigma_t^2}$ quantifies the reduction rate of U_l^* term while $\xi_t = \frac{\delta^2}{\delta^2+\sigma_t^2}$ quantifies the reduction rate of \widetilde{U}_l^* term, as σ_t grows, ξ_t decays much more rapidly than ζ_t , indicating that the output retains more class-related coarse information while discarding fine-grained, irrelevant details.

This phenomenon correspond to an important observation formalized in the next theorem: there exists a balance timestep during the diffusion process, at which class-irrelevant components are maximally suppressed while class-relevant component is preserved, yielding peak classification accuracy from the feature. Substituting the optimal DAE formulation into (6), we can approximate the SNR in the following theorem and analyze the unimodal dynamics via the approximation:

Theorem 1. (Informal) Suppose that the data x_0 follows the noisy MoLRG introduced in Assumption 1. Then the SNR of the optimal DAE \hat{x}^*_{θ} can be approximated as follows:

$$SNR(\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}^{\star}, t) \approx \frac{C_t}{(K-1)} \cdot \left(\frac{1 + \frac{\sigma_t^2}{\delta^2} h(\hat{w}_t^+, \delta)}{1 + \frac{\sigma_t^2}{\delta^2} h(\hat{w}_t^-, \delta)} \right)^2.$$
 (8)

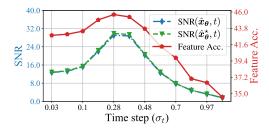
Here, C_t is a monotonically decaying constant that has minimal impact to the overall unimodal shape. The function $h(w, \delta) := (1 - \delta^2)w + \delta^2$ is monotonically increasing in w, where $h(\hat{w}_t^+, \delta)$ and $h(\hat{w}_t^-, \delta)$ denote positive and negative class confidence rates with

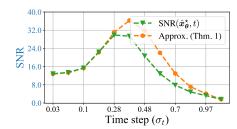
$$\begin{cases} \hat{w}_t^+(\sigma_t, \delta) &= \mathbb{E}_k[\mathbb{E}_{\boldsymbol{x}_t}[w_k^{\star}(\boldsymbol{x}_t, t) \mid k]], \\ \hat{w}_t^-(\sigma_t, \delta) &= \mathbb{E}_k[\mathbb{E}_{\boldsymbol{x}_t}[w_l^{\star}(\boldsymbol{x}_t, t) \mid k \neq l]], \end{cases}$$

which are the softmax coefficients assigned to the correct class k and the other classes $l \neq k$.

We defer the formal statement of Theorem 1 and its proof to Appendix E.2. In the following, we discuss the implications of our result.

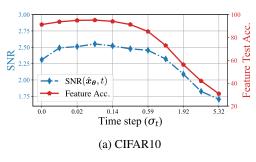
The unimodal curve of SNR across noise levels. Intuitively, our theorem shows that a unimodal curve is mainly induced by the interplay between the "denoising rate" σ_t^2/δ^2 and the positive class confidence rate $h(\hat{w}_t^+, \delta)$ as the noise level σ_t increases. As observed in Figure 4, the "denoising rate" (σ_t^2/δ^2) increases monotonically with σ_t , while the class confidence rate $h(\hat{w}_t^+, \delta)$ monotonically declines. Initially, when σ_t is small, the class confidence rate remains relatively stable due to its flat slope, and an increasing "denoising rate" improves the SNR. However, as indicated by (7), when σ_t becomes too large, $h(\hat{w}_t^+, \delta)$ quickly decays and approaches $h(\hat{w}_t^-, \delta)$, leading to a drop in the SNR. It is worth noting that though we are mainly characterizing the unimodal dynamics of an approximation of SNR, in practice it closely mimic the trend of the actual SNR as in Figure 3b.





- (a) SNR aligns with feature probing accuracy
- (b) Tightness of the derived approximation

Figure 3: **Feature probing accuracy and associated** SNR **dynamics in** MoLRG **data.** In panel(a) we plot the probing accuracy and SNR with the feature obtained from a learned DAE \hat{x}_{θ} , both of which exhibit a consistent unimodal pattern. The DAE is trained on a 3-class MoLRG dataset with data dimension n=50, subspace dimension d=5, and noise scale $\delta=0.2$. Additionally, in panel(b) we include the optimal SNR calculated from the optimal DAE \hat{x}_{θ}^{\star} and the derived approximation in Theorem 1 as a reference.



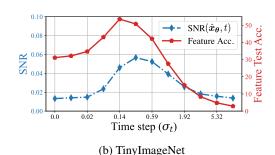


Figure 5: **Dynamics of feature accuracy and associated** SNR **on CIFAR10 and TinyImageNet.** Feature accuracy is plotted alongside SNR(\hat{x}_{θ}, t). Feature accuracy is evaluated on the test set, while the empirical SNR is computed from the training set. Both exhibit an aligning unimodal pattern. We use released EDM models [49] trained on the CIFAR10 [50] and ImageNet [51] datasets, evaluating them on CIFAR10 and TinyImageNet [52], respectively. To compute SNR, we apply PCA on the CIFAR10/TinyImageNet features to extract the basis U_l s. Further details can be found in Appendix D.

Alignment of SNR with representation learning performance. As shown in Figures 3 and 5, our theory derived from the noisy MoLRG distribution effectively captures real-world phenomena. Specifically, we conduct experiments on both synthetic (i.e., noisy MoLRG) and realworld datasets (i.e., CIFAR and ImageNet) to measure $\mathrm{SNR}(\hat{x}_{\theta},t)$ as well as the feature probing accuracy. For feature probing, we use features extracted at different timesteps as inputs for linear probing. The results consistently show that $\mathrm{SNR}(\hat{x}_{\theta},t)$ follows a unimodal pattern across all cases, mirroring the trend observed

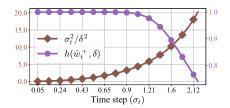


Figure 4: Illustration of the interplay between the denoising rate and the class confidence rate. The settings follow Figure 3.

in feature probing accuracy as the noise scale increases. This alignment provides a formal justification for previous empirical findings [19, 20, 23], which have reported a unimodal trajectory in the representation dynamics of diffusion models with increasing noise levels. Detailed experimental setups are provided in Appendix D.

4 Unimodal representation dynamics predicts model generalization

In the previous sections, we theoretically showed that when a diffusion model successfully captures the low-dimensional distribution of the data, the unimodal representation dynamics emerge. In

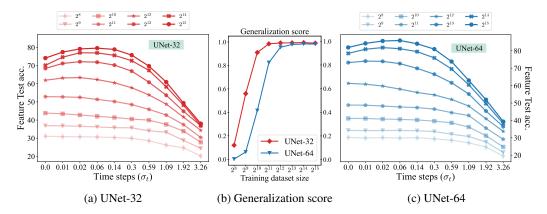


Figure 6: Representation dynamics across model and data sizes. We train DDPM-based UNet-32 and Unet-64 diffusion models on the CIFAR10 dataset using different training dataset sizes, ranging from 2^8 to 2^{15} . The unimodal representation dynamics across noise levels consistently emerges in the generalization regime (sufficient data size) and gradually disappears in smaller data settings.

this section, we investigate the opposite direction: can the presence of the unimodal representation dynamics serve as a reliable prediction of good generalization of diffusion models?

Answering this question sheds light on the distribution learning capabilities of diffusion models and is closely related to recent studies on their generalizability, which reveal that diffusion models operate in two distinct regimes—generalization and memorization—depending on factors such as dataset size, model capacity, and training duration [32, 53–56]. In the generalization regime, the model captures the underlying data distribution and generates diverse, novel samples. In contrast, in the memorization regime, it overfits to the training data and loses the ability to generate novel samples. Further discussion on the generalization of diffusion models are provided in Appendix A.

In this section, using classification tasks as a case study, we empirically demonstrate that the presence of unimodal representation dynamics reliably indicates generalization, while its gradual shift to a monotonically decreasing trend indicates memorization. Specifically, we study the effects of data size and model capacity in Section 4.1, and the effects of learning dynamics in Section 4.2.

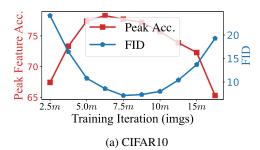
4.1 Effects of dataset size and model capacity on representation dynamics

Recent studies [31, 53] have shown that diffusion models exhibit a phase transition from memorization to generalization as the number of training samples increases. Specifically, when the network size significantly exceeds the number of training samples, diffusion models tend to memorize rather than capture the underlying low-dimensional data distribution [32, 53]. For fixed model capacity, generalization typically emerges when the number of training data is larger than a certain threshold; see Figure 6 (b). Here, we demonstrate that the representation dynamics undergo a similar transition with data scaling. Specifically, we train UNet-32 and UNet-64 [43] models using varying training dataset sizes to examine how their representation dynamics change across regimes. The generalization score metric introduced in [53, 57] is used as a reference for quantifying model generalization.

As shown in Figure 6, we observe that reducing the training dataset size leads to a decrease in the generalization score. Correspondingly, the unimodal representation dynamic becomes less obvious, eventually transitioning into a monotonically decreasing curve (i.e., *monotonic representation dynamics*). These observations highlight a strong connection between representation and distribution learning in diffusion models—specifically, the emergence of unimodal representation dynamics aligns with the ability of the model to capture the underlying data distribution for achieving good generalization.

4.2 Effects of learning dynamics on representation dynamics

Second, we investigate how learning dynamics influence representation dynamics and also generalization performance, particularly in the limited data regime (e.g., training size $N=2^{12}$ as shown in Figure 6 (b)). In this regime, recent studies [54–56] have shown that *early stopping* can improve



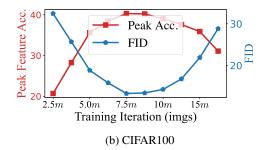


Figure 7: Negative correlation between peak classification accuracy and FID. We train UNet-128 diffusion models on $N=2^{12}$ training samples from CIFAR10 and CIFAR100. As training progresses, the peak representation accuracy across noise levels shows a consistent negative correlation with FID.

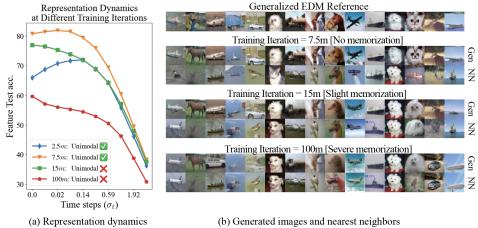
generalization performance. Specifically, these works observe an early learning phenomenon, where generalization improves during the initial phase of training but deteriorates as the model begins to memorize. As illustrated in Figure 7, this effect is reflected in the evolution of the FID score [58], which initially decreases (indicating better generative quality) and then rises as memorization starts. Notably, we find that this trend negatively correlates with the linear probing accuracy of learned representations. This observation implies that representation quality could potentially serve as an early-stopping criterion to prevent memorization in diffusion models trained on limited data without relying on external models.

Moreover, we show that this early learning behavior can be captured by the transition between unimodal and monotonic curves of representation dynamics during training. Experimentally, we demonstrate this by training EDM-based diffusion models on subsets of CIFAR[50] using $N=2^{12}$ training samples. Specifically, from Figure 8, we observe that the evolution of representation dynamics during training can be divided into two distinct phases:

- Early phase of unimodal representation dynamics. In the early stage of training, the model learns the underlying low-dimensional data distribution and is able to generalize. As predicted by our theoretical analysis in Section 3, representation follows a unimodal dynamic across noise scales. This unimodal dynamic is clearly observed before training iteration Iter ≤ 7.5M in Figure 8 (a). The generalization behavior is further supported by the new outputs of the model as shown in Figure 8 (b), which more closely resemble those from a reference generalized model than the nearest neighbors in the training set. Moreover, the peak representation quality improves steadily during this phase as the model better captures the data distribution.
- Late phase of monotonic representation dynamics. However, as training progresses toward convergence, the model begins to memorize the training samples, resulting in a reduced ability to capture the underlying data distribution. This transition is obvious in the outputs of the model, which increasingly replicate training examples (see Figure 8 (b) at Iter = 15M, 100M). During this phase, the unimodal representation dynamics give way to a monotonic representation dynamics, where representation quality consistently degrades as the noise level increases. Furthermore, as shown in Figure 7, the learned features become less informative, and the peak probing accuracy begins to decline.

5 Conclusion

In this work, we developed a mathematical framework for analyzing the representation dynamics of diffusion models. By introducing the concept of SNR under a mixture of low-rank Gaussians, we showed that the widely observed unimodal representation dynamic across noise scales emerges naturally when diffusion models capture the underlying data distribution. This behavior arises from a trade-off between denoising strength and class confidence across noise levels. Beyond theoretical insights, our empirical results demonstrate that the emergence of unimodal representation dynamics is closely linked to the model's distribution learning and generalization ability. Specifically, this unimodal pattern consistently appears when the model generalizes and gradually fades as the model starts to memorize. Our findings take a step toward bridging the gap between generative modeling and representation learning in diffusion models.



(a) Representation dynamics (b) Generated images and nearest neighbors at different training iterations at different training iterations

Figure 8: Representation learning and generative performance across training iterations. We train a UNet-128 diffusion model on $N=2^{12}$ training samples in CIFAR10, monitoring both representation learning and generative performance as training progresses. A clear phase transition is observed: early in training, the representations exhibit a unimodal pattern, and generated samples resemble those of a generalizing EDM model, with no signs of memorization. As training continues, the unimodal pattern gradually transitions to a monotonically decreasing trend, aligning with the model's shift toward memorizing the training data. "NN" denotes nearest neighbor in the training dataset.

While our analysis captures key aspects of representation dynamics, it relies on simplified data assumptions and model formulations that facilitate tractable derivations. Extending this framework to more realistic data distributions and complex model architectures remains an important direction for future work. Moreover, establishing a rigorous theoretical connection between the representation geometry of diffusion models and their phase transition between generalization and memorization remains an important and promising direction for future work.

Acknowledgment

We acknowledge funding support from NSF CAREER CCF-2143904, NSF CCF-2212066, NSF CCF-2212326, NSF IIS 2312842, NSF IIS 2402950, NSF IIS 2312840, NSF IIS 2402952, ONR N00014-22-1-2529, ONR N000142512339, and MICDE Catalyst Grant. We also thank all the anonymous reviewers for their valuable suggestions and fruitful discussions.

References

- [1] Ismail Alkhouri, Shijun Liang, Rongrong Wang, Qing Qu, and Saiprasad Ravishankar. Diffusion-based adversarial purification for robust deep mri reconstruction. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 12841–12845. IEEE, 2024.
- [2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- [3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2022.
- [4] Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, and Qing Qu. Improving training efficiency of diffusion models via multi-stage framework and tailored multi-decoder architectures. In Conference on Computer Vision and Pattern Recognition 2024, 2024.

- [5] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video generation. In *SIGGRAPH Asia 2024 Conference Papers*, pages 1–11, 2024.
- [6] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.
- [7] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. Advances in neural information processing systems, 33:17022–17033, 2020.
- [8] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DIFFWAVE: A versatile diffusion model for audio synthesis. In *International Conference on Learning Representations*, 2021.
- [9] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based editing of real images. *ACM Transactions on Graphics (TOG)*, 42(1):1–13, 2022.
- [10] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 22500–22510, 2023.
- [11] Siyi Chen, Huijie Zhang, Minzhe Guo, Yifu Lu, Peng Wang, and Qing Qu. Exploring low-dimensional subspace in diffusion models for controllable image editing. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [12] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems, 35:25683–25696, 2022.
- [13] Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse problems with latent diffusion models via hard data consistency. In *The Twelfth International Conference on Learning Representations*, 2024.
- [14] Xiang Li, Soo Min Kwon, Ismail R Alkhouri, Saiprasad Ravishanka, and Qing Qu. Decoupled data consistency with diffusion purification for image restoration. arXiv preprint arXiv:2403.06054, 2024.
- [15] Ruihan Yang and Stephan Mandt. Lossy image compression with conditional diffusion models. *Advances in Neural Information Processing Systems*, 36:64971–64995, 2023.
- [16] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning*, pages 2256–2265. PMLR, 2015.
- [17] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*, 2021.
- [18] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4), 2005.
- [19] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Label-efficient semantic segmentation with diffusion models. In *International Conference on Learning Representations*, 2022.
- [20] Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders are unified self-supervised learners. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15802–15812, 2023.
- [21] Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan, Archana Swaminathan, Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion models beat gans on image classification. *arXiv preprint arXiv:2307.08702*, 2023.

- [22] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion models for self-supervised learning. *arXiv* preprint arXiv:2401.14404, 2024.
- [23] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent correspondence from image diffusion. *Advances in Neural Information Processing Systems*, 36:1363–1389, 2023.
- [24] Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the feature learning in diffusion models. *arXiv preprint arXiv:2412.01021*, 2024.
- [25] Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of image representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3987–3996, 2019.
- [26] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension of images and its impact on learning. In *International Conference on Learning Representations*, 2021.
- [27] Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion model secretly knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611, 2022.
- [28] Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, and Hanwang Zhang. Exploring diffusion time-steps for unsupervised representation learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [29] Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.
- [30] Bradley Efron. Tweedie's formula and selection bias. *Journal of the American Statistical Association*, 106(496):1602–1614, 2011.
- [31] Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffusion models arises from geometry-adaptive harmonic representations. In *The Twelfth International Conference on Learning Representations*, 2024.
- [32] Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models learn low-dimensional distributions via subspace clustering. *arXiv preprint arXiv:2409.02426*, 2024.
- [33] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications. *IEEE transactions on pattern analysis and machine intelligence*, 35(11):2765–2781, 2013.
- [34] Peng Wang, Huikang Liu, Anthony Man-Cho So, and Laura Balzano. Convergence and recovery guarantees of the k-subspaces method for subspace clustering. In *International Conference on Machine Learning*, pages 22884–22918. PMLR, 2022.
- [35] Zhihan Huang, Yuting Wei, and Yuxin Chen. Denoising diffusion probabilistic models are optimally adaptive to unknown low dimensionality. *arXiv* preprint arXiv:2410.18784, 2024.
- [36] Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion models: Convergence in total variation. *arXiv preprint arXiv:2501.12982*, 2025.
- [37] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings* of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.
- [38] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.
- [39] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

- [40] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion generative models. In *European Conference on Computer Vision*, pages 274–289. Springer, 2022.
- [41] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. Advances in neural information processing systems, 29, 2016
- [42] Tao Zhou, Changqing Zhang, Xi Peng, Harish Bhaskar, and Jie Yang. Dual shared-specific multiview subspace clustering. *IEEE transactions on cybernetics*, 2019.
- [43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pages 234–241. Springer, 2015.
- [44] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
- [45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- [46] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon. Perception prioritized training of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11472–11481, 2022.
- [47] Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory of outline first, details later. *arXiv preprint arXiv:2303.02490*, 2023.
- [48] Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models. *arXiv preprint arXiv:2412.20292*, 2024.
- [49] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In *Proc. NeurIPS*, 2022.
- [50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- [51] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pages 248–255. Ieee, 2009.
- [52] Serena Yeung Li Fei-Fei, Justin Johnson. Cs231n: Convolutional neural networks for visual recognition, 2015. http://cs231n.stanford.edu.
- [53] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The emergence of reproducibility and consistency in diffusion models. In *Forty-first International Conference on Machine Learning*, 2023.
- [54] Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion models. Advances in Neural Information Processing Systems, 36:2097–2127, 2023.
- [55] Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models requires rethinking the hidden gaussian structure. *Advances in Neural Information Processing Systems*, 37:57499–57538, 2024.
- [56] Ricardo Baptista, Agnimitra Dasgupta, Nikola B Kovachki, Assad Oberai, and Andrew M Stuart. Memorization and regularization in generative diffusion models. arXiv preprint arXiv:2501.15785, 2025.

- [57] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-supervised descriptor for image copy detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14532–14542, 2022.
- [58] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium—supplementary material. *Advances in Neural Information Processing Systems*, 2017.
- [59] Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In *International Conference on Machine Learning*, 2008.
- [60] Pascal Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *J. Mach. Learn. Res.*, 11:3371–3408, 2010.
- [61] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 2020.
- [62] B. Chandra and Rajesh Kumar Sharma. Adaptive noise schedule for denoising autoencoder. In *International Conference on Neural Information Processing*, 2014.
- [63] Krzysztof Geras and Charles Sutton. Scheduled denoising autoencoders. In *International Conference on Learning Representations (ICLR)* 2015, 2015.
- [64] Qianjun Zhang and Lei Zhang. Convolutional adaptive denoising autoencoders for hierarchical feature extraction. *Frontiers of Computer Science*, 12:1140 1148, 2018.
- [65] Arnu Pretorius, Steve Kroon, and Herman Kamper. Learning dynamics of linear denoising autoencoders. In *International Conference on Machine Learning*, pages 4141–4150. PMLR, 2018.
- [66] Harald Steck. Autoencoders that don't overfit towards the identity. In *Neural Information Processing Systems*, 2020.
- [67] Daniel Kunin, Jonathan Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of regularized linear autoencoders. In *International conference on machine learning*, pages 3560–3569. PMLR, 2019.
- [68] Michael Fuest, Pingchuan Ma, Ming Gui, Johannes S Fischer, Vincent Tao Hu, and Bjorn Ommer. Diffusion models and representation learning: A survey. arXiv preprint arXiv:2407.00783, 2024.
- [69] Kamil Deja, Tomasz Trzciński, and Jakub M Tomczak. Learning data representations with joint diffusion models. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 543–559. Springer, 2023.
- [70] Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF Tan, and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based image editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8839–8849, 2024.
- [71] Chandramouli Sastry, Sri Harsha Dumpala, and Sageev Oore. Diffaug: A diffuse-and-denoise augmentation for training robust classifiers. *arXiv* preprint arXiv:2306.09192, 2023.
- [72] Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 18938–18949, 2023.
- [73] Daiqing Li, Huan Ling, Amlan Kar, David Acuna, Seung Wook Kim, Karsten Kreis, Antonio Torralba, and Sanja Fidler. Dreamteacher: Pretraining image backbones with deep generative models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16698–16708, 2023.

- [74] Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank Fundel, and Björn Ommer. Cleandift: Diffusion features without noise. *arXiv preprint arXiv:2412.03439*, 2024.
- [75] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion hyperfeatures: Searching through time and space for semantic correspondence. Advances in Neural Information Processing Systems, 36, 2024.
- [76] Korbinian Abstreiter, Sarthak Mittal, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou. Diffusion-based representation learning. *arXiv preprint arXiv:2105.14257*, 2021.
- [77] Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing diffusion models. In *International Conference on Machine Learning*, pages 36336–36354. PMLR, 2023.
- [78] Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle, James L McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck diffusion models for representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 23115–23127, 2024.
- [79] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition, pages 10619–10629, 2022.
- [80] Yujin Han, Andi Han, Wei Huang, Chaochao Lu, and Difan Zou. Can diffusion models learn hidden inter-feature rules behind images?, 2025.
- [81] Matthew Niedoba, Berend Zwartsenberg, Kevin Patrick Murphy, and Frank Wood. Towards a mechanistic explanation of diffusion model generalization. In *Forty-second International Conference on Machine Learning*, 2025.
- [82] Artem Lukoianov, Chenyang Yuan, Justin Solomon, and Vincent Sitzmann. Locality in image diffusion models emerges from data statistics. *Advances in Neural Information Processing Systems*, 2025.
- [83] Gabriel Raya and Luca Ambrogioni. Spontaneous symmetry breaking in generative diffusion models. *Advances in Neural Information Processing Systems*, 2023.
- [84] Giulio Biroli, Tony Bonnaire, Valentin De Bortoli, and Marc Mézard. Dynamical regimes of diffusion models. *Nature Communications*, 2024.
- [85] Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion models reveals the hierarchical nature of data. *Proceedings of the National Academy of Sciences*, 2025.
- [86] Luca Ambrogioni. In search of dispersed memories: Generative diffusion models are associative memory networks. *Entropy*, 2024.
- [87] Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. *Physical Review Letters*, 2024.
- [88] Bao Pham, Gabriel Raya, Matteo Negri, Mohammed J Zaki, Luca Ambrogioni, and Dmitry Krotov. Memorization to generalization: Emergence of diffusion models from associative memory. *arXiv* preprint arXiv:2505.21777, 2025.
- [89] Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Analysis of diffusion models for manifold data. *arXiv preprint arXiv:2502.04339*, 2025.
- [90] Beatrice Achilli, Enrico Ventura, Gianluigi Silvestri, Bao Pham, Gabriel Raya, Dmitry Krotov, Carlo Lucibello, and Luca Ambrogioni. Losing dimensions: Geometric memorization in generative diffusion. *arXiv preprint arXiv:2410.08727*, 2024.
- [91] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2012.

- [92] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.
- [93] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729, 2008.
- [94] Anh-Dzung Doan, Bach Long Nguyen, Surabhi Gupta, Ian Reid, Markus Wagner, and Tat-Jun Chin. Assessing domain gap for continual domain adaptation in object detection. *Computer Vision and Image Understanding*, 238:103885, 2024.
- [95] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16000–16009, 2022.
- [96] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In *Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2014.
- [97] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
- [98] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 43(12):4217–4228, 2021.
- [99] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved quality, stability, and variation. In *International Conference on Learning Repre*sentations, 2018.
- [100] tanelp. tiny-diffusion. https://github.com/tanelp/tiny-diffusion, 2022.
- [101] Diederik P Kingma. Adam: A method for stochastic optimization. In *International Conference on Learning Representations*, 2015.
- [102] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. *Advances in neural information processing systems*, 29, 2016.
- [103] Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Later sections follow the structure of our main contributions as outlined in the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We note that we have carefully discussed the analysis tools, assumptions and the scope of experiments in our paper, certain assumptions and design choices (e.g., synthetic data models, classification-focused benchmarks) may not capture the full complexity of all applications. We highlight several promising directions for future work, including broader task coverage and theoretical extensions, in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We discussed the assumption used in our analysis and provide the full set of proof in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we discuss the experimental details in Appendix D.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our work uses publically available datasets (such as CIFAR) and codebases (such as EDM).

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We primarily use publicly available pre-trained models for evaluation. For models we train ourselves, the training setup is detailed in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No

Justification: The main empirical results in our paper focus on revealing trends and dynamics, rather than reporting relative accuracy difference.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes, we discuss the computing resources and other details in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms the NeurIPS Code of Ethics. Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine Learning. There's no societal consequences of our work we feel must be highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We carefully cite the data/code/model assets we used in the paper and discuss the license (if applicable) in Appendix D.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No new assets is released in the paper.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiments/research is involved in the paper.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No such experiments/research is involved in the paper.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

The Appendix is organized as follows: in Appendix A, we discuss related works; in Appendix B, we present auxiliary findings that complement the main discussion; in Appendix C, we provide additional complementary experiments; in Appendix D, we present the detailed experimental setups for the empirical results in the paper. Lastly, in Appendix E, we provide proof details for Section 3.

A Related works

Denoising auto-encoders. Denoising autoencoders (DAEs) are trained to reconstruct corrupted images to extract semantically meaningful information, which can be applied to various vision [59, 60] and language downstream tasks [61]. Related to our analysis of the weight-sharing mechanism, several studies have shown that training with a noise scheduler can enhance downstream performance [62–64]. On the theoretical side, prior works have studied the learning dynamics [65, 66] and optimization landscape [67] through the simplified linear DAE models.

Diffusion-based representation learning. Diffusion-based representation learning [68] has demonstrated significant success in various downstream tasks, including image classification [20, 21, 69], segmentation [19], correspondence [23], and image editing [70]. Using diffusion models for data augmentation has also been shown to improve robustness against covariate shift [71]. To further enhance the utility of diffusion features, knowledge distillation [72–75] methods have been proposed, aiming to bypass the computationally expensive grid search for the optimal t in feature extraction and improving downstream performance. Beyond directly using intermediate features from pretrained diffusion models, research efforts has also explored novel loss functions [76, 77] and network modifications [78, 79] to develop more unified generative and representation learning capabilities within diffusion models. The work [80] investigates whether diffusion models are capable of learning latent inter-feature dependencies underlying image data. Unlike the aforementioned efforts, our work focuses more on understanding the representation dynamic of diffusion models and its relationship with model generalization.

Generalization of Diffusion Models. In this paper, we examine the relationship between a unimodal curve in representation-probing accuracy and the generalization of diffusion models, a topic of active interest [31, 48, 53]. There has also been notable work on the mechanisms that enable diffusion models to learn the underlying score function from discrete empirical samples [81, 82], thereby generating novel in-distribution samples (i.e., *generalizing*). We propose a representational perspective on the generalization of diffusion models, together with corresponding measures (unimodality in representation dynamics) for evaluating generalization.

The unimodality of representation-probing accuracy across time steps is also related to symmetry breaking [83] and early-stopping generalization during sampling [84, 85] when the model learns empirical score functions. This line of work further connects empirical DMs and dense associative memory (AM) networks through their objectives and sampling behavior [86–88], where generalization is interpreted as novel attraction sinks in AM, which is also related to Gaussian and spherical patterns in the data. However, in this paper our focus is on learning a parameterized model with data from a low-dimensional distribution, an assumption also used in [89, 90] (which links generalization to adapting to low-dimensional data manifolds and learning local geometric components), rather than on sampling.

B Auxiliary results

B.1 Extended results from Section 4.2

In Section 4.2, we showed that when training on limited data, the representation dynamics undergo a clear phase transition: from a unimodal pattern to a monotonically decreasing trend, where the diffusion model also exhibits a transition from generalization to increasingly memorize the training data. Here, we provide additional empirical evidence supporting this insight.

We train UNet-based diffusion models using the DDPM++ architecture with the EDM configuration [49] on the Oxford-IIIT Pet [91] and TinyImageNet [92] datasets, using training subsets of 3680 and 2048 images, respectively. Throughout training, we monitor both the evolution of representation dynamics and generative outputs. As shown in Figure 9 and Figure 10, consistent with our findings

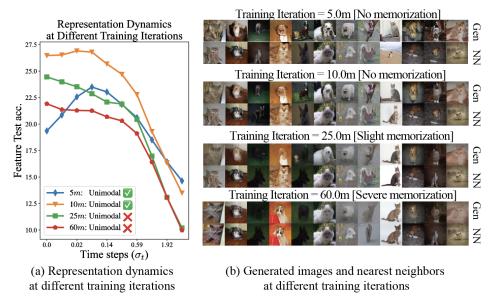


Figure 9: Representation learning and generative performance across training iterations for Oxford-IIIT Pet dataset [91]. We train a UNet-128 diffusion model on 3680 training samples in Oxford-IIIT Pet dataset, monitoring both representation learning and generative performance as training progresses. A clear phase transition is observed: early in training, the representations exhibit a unimodal pattern, and generated samples resemble those of a generalizing EDM model, with no signs of memorization. As training continues, the unimodal pattern gradually transitions to a monotonically decreasing trend, aligning with the model's shift toward memorizing the training data. "NN" denotes nearest neighbor in the training dataset.

in Section 4.2, we observe that in the early stages of training, the model exhibits a clear unimodal pattern and generalizes well. As training continues, this unimodal structure gradually shifts into a monotonically decaying trend, and the models start to increasingly replicate training examples.

B.2 Disentangling the role of input noise in representation dynamics

One might argue that the declining portion of the unimodal curve is simply due to the increasing noise level σ_t , which makes the input x_t progressively noisier, leading to a natural drop in classification accuracy. However, we show that this noise-induced degradation alone does not account for the observed representation dynamics.

Our theoretical analysis in Section 3 attributes the unimodal pattern to a fundamental trade-off between denoising rate and class confidence rate across noise levels. To validate this explanation and disentangle the effect of additive Gaussian noise, we conduct experiments where feature extraction is performed directly on clean inputs x_0 rather than noisy inputs x_t . We show that the unimodal behavior remains clearly observable even in the absence of injected noise, indicating that the dynamics are not solely a consequence of input corruption. In fact, one can verify that $SNR(\hat{x}^*_{\theta}(x_0), t)$ also exhibits a unimodal trend—this can be shown through an analysis analogous to that of Theorem 1 for $SNR(\hat{x}^*_{\theta}(x_t), t)$.

To support this claim, we train EDM (with the VP configuration) [49] on CIFAR datasets and classical DDPM [2] on CIFAR10 and Flowers-102 [93], and evaluate the representation quality using both noisy inputs x_t and clean inputs x_0 , as shown in Figure 11. For Figure 11(a), we select the layer that yields the best accuracy, while for Figure 11(b), we directly use the bottleneck layer to demonstrate that the observed unimodal behavior is not sensitive to layer choice. Across all settings, the unimodal representation dynamics remain clearly visible, reinforcing that additive Gaussian noise is not the sole factor responsible for this phenomenon.

We also visualize posterior estimation \hat{x}_{θ} across noise scales using both noisy and clean inputs. Since diffusion models are trained to approximate the posterior mean at different noise levels,

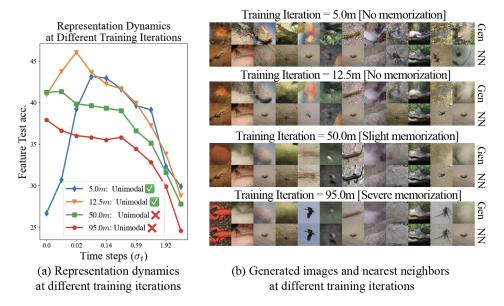


Figure 10: Representation learning and generative performance across training iterations for TinyImageNet [92]. We train a UNet-128 diffusion model on $N=2^{11}$ training samples in TinyImageNet, monitoring both representation learning and generative performance as training progresses. A clear phase transition is observed: early in training, the representations exhibit a unimodal pattern, and generated samples resemble those of a generalizing EDM model, with no signs of memorization. As training continues, the unimodal pattern gradually transitions to a monotonically decreasing trend, aligning with the model's shift toward memorizing the training data. "NN" denotes nearest neighbor in the training dataset.

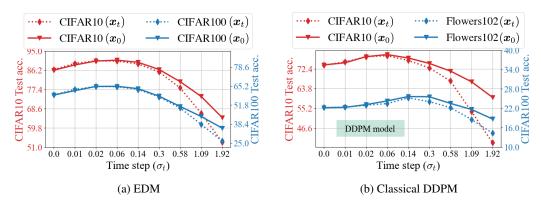
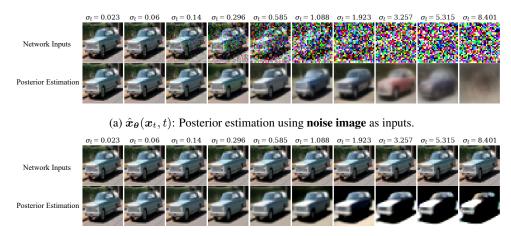


Figure 11: Unimodal representation dynamics persist when using clean inputs x_0 . We train EDM and DDPM models on CIFAR and Flowers-102 datasets and evaluate feature quality using both noisy inputs x_t and clean inputs x_0 . Across all settings, the unimodal trend is consistently observed.

their representation features emerge as intermediate products of this denoising process. As such, improvements or degradations in representation quality should be mirrored in the posterior estimates.

We visualize the posterior estimation results for clean inputs $(\hat{x}_{\theta}(x_0, t))$ and noisy inputs $(\hat{x}_{\theta}(x_t, t))$ across varying noise scales σ_t in Figure 12. In both cases, the posterior outputs undergo a clear fine-to-coarse transition as σ_t increases. This supports our theoretical claim that as noise grows, class-irrelevant attributes are gradually removed. The peak in representation quality occurs at an intermediate point where class-essential structure is preserved while irrelevant details are suppressed. When σ_t becomes too large, class confidence rate drops significantly, resulting in poor representations. The additive noise $\sigma_t \epsilon$ merely accelerates this degradation but is not the root cause.



(b) $\hat{x}_{\theta}(x_0, t)$: Posterior estimation using **clean image** as inputs.

Figure 12: **Fine-to-coarse shift in posterior estimation.** We use a pre-trained DDPM diffusion model on CIFAR10 to visualize posterior estimation for clean inputs and noisy inputs across varying noise scales σ_t . We can observe seemingly fine-to-coarse shifts in both figures.

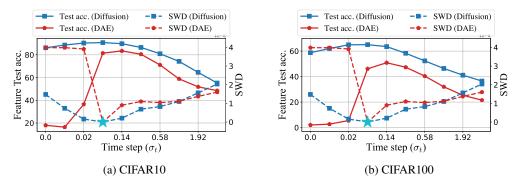


Figure 13: **Diffusion models exhibit higher and smoother feature accuracy and similarity compared to individual DAEs.** We train DDPM-based diffusion models and individual DAEs on the CIFAR datasets and evaluate their representation learning performance. Feature accuracy, and feature differences from the optimal features (indicated by \star) are plotted against increasing noise levels. The results reveal an inverse correlation between feature accuracy and feature differences, with diffusion models achieving both higher/smoother accuracy and smaller/smoother feature differences compared to DAEs.

B.3 Weight sharing in diffusion models facilitates representation learning

While our theoretical analysis captures the emergence of unimodal representation dynamics under an idealized network parameterization, an important future direction is to extend this framework to deeper and more complex architectures. Real-world diffusion models often involve highly complex feature transformations, and understanding how these interact with noise scales to influence representation quality remains an open and valuable avenue for exploration.

In this section, we present some interesting preliminary results we found that may potentially explain why diffusion models outperform classical denoising autoencoders (DAEs) in representation learning: although both share the same denoising objective (2), diffusion models demonstrate superior feature learning capabilities largely due to their inherent weight-sharing mechanism. Specifically, by minimizing the loss across all noise levels, diffusion models enable parameter sharing and interaction among denoising subcomponents, effectively creating an implicit "ensemble" effect. This interaction enhances feature consistency and robustness across noise scales, leading to significantly improved representation quality compared to DAEs [22], as illustrated in Figure 13.

Method	MiniImageNet* Test Acc. %										
Label Noise	Clean	20%	40%	60%	80%						
MAE	73.7	70.3	67.4	62.8	51.5						
EDM	67.2	62.9	59.2	53.2	40.1						
EDM (Ensemble)	72.0	67.8	64.7	60.0	48.2						
DiT	77.6	72.4	68.4	62.0	47.3						
DiT (Ensemble)	78.4	75.1	71.9	66.7	56.3						

Table 1: Comparison of test performance across different methods under varying label noise levels. All compared models are publicly available and pre-trained on ImageNet-1K [51], evaluated using MiniImageNet classes. Bold font highlights the best result in each scenario.

To test this, we trained 10 DAEs, each specialized for a single noise level, alongside a DDPM-based diffusion model on CIFAR10 and CIFAR100. We compared feature quality using linear probing accuracy and feature similarity relative to the optimal features at $\sigma_t = 0.06$ (where accuracy peaks) via sliced Wasserstein distance (SWD) [94].

The results in Figure 13 confirm the advantage of diffusion models over DAEs. Diffusion models consistently outperform DAEs, particularly in low-noise regimes where DAEs collapse into trivial identity mappings. In contrast, diffusion models leverage weight-sharing to preserve high-quality features, ensuring smoother transitions and higher accuracy as noise increases. This advantage is further supported by the SWD curve, which reveals an inverse correlation between feature accuracy and feature differences. Notably, diffusion model features remain significantly closer to their optimal state across all noise levels, demonstrating superior representational capacity.

Our finding also aligns with prior results that sequentially training DAEs across multiple noise levels improves representation quality [62–64]. Our ablation study further confirms that multi-scale training is essential for improving DAE performance on classification tasks in low-noise settings (details in Appendix C, Table 3).

Beyond the implicit feature ensembling effect, we further introduce a straightforward method that explicitly ensembles features from multiple noise levels to enhance downstream task performance. Our experiments demonstrate that this approach significantly improves robustness against label noise in classification tasks, both in pre-training and transfer learning settings. For detailed methods and results, we refer interested readers to Appendix B.4.

B.4 Feature ensembling across timesteps improves representation robustness

Our theoretical insights in Section 3 imply that features extracted at different timesteps capture varying levels of granularity. Given the high linear separability of intermediate features, we propose a simple ensembling approach across multiple timesteps to construct a more holistic representation of the input. Specifically, in addition to the optimal timestep, we extract feature representations at four additional timesteps—two from the coarse (larger σ_t) and two from the fine-grained (smaller σ_t) end of the spectrum. We then train linear probing classifiers for each set and, during inference, apply a soft-voting ensemble by averaging the predicted logits before making a final decision.(experiment details in Appendix D)

We evaluate this ensemble method against results obtained from the best individual timestep, as well as a self-supervised method MAE [95], on both the pre-training dataset and a transfer learning setup. The results, reported in Table 1 and Table 2, demonstrate that ensembling significantly enhances performance for both EDM [49] and DiT [37], consistently outperforming their vanilla diffusion model counterparts and often surpassing MAE. More importantly, ensembling substantially improves the robustness of diffusion models for classification under label noise.

C Additional Experiments

Validation of \hat{x}_{approx}^{\star} **approximation in Appendix E.2.** In Theorem 2, we approximate the optimal posterior estimation function \hat{x}_{θ}^{\star} using \hat{x}_{approx}^{\star} by taking the expectation inside the softmax with respect to x_t . To validate this approximation, we compare the SNR calculated from \hat{x}_{θ}^{\star} and from \hat{x}_{approx}^{\star} using the definition in Proposition 1 and (10) in Appendix E.2, respectively. We use a fixed

Method		Transfer Test Acc. %													
		CIFAR100					DTD			Flowers102					
Label Noise	Clean	20%	40%	60%	80%	Clean	20%	40%	60%	80%	Clean	20%	40%	60%	80%
MAE	63.0	58.8	54.7	50.1	38.4	61.4	54.3	49.9	40.5	24.1	68.9	55.2	40.3	27.6	9.6
EDM	62.7	58.5	53.8	48.0	35.6	54.0	49.1	45.1	36.4	21.2	62.8	48.2	37.2	24.1	9.7
EDM (Ensemble)	67.5	64.2	60.4	55.4	43.9	55.7	49.5	45.2	37.1	22.0	67.8	53.9	41.5	25.0	10.4
DiT	64.2	58.7	53.5	46.4	32.6	65.2	59.7	53.0	43.8	27.0	78.9	65.2	52.4	34.7	13.3
DiT (Ensemble)	66.4	61.8	57.6	51.3	39.2	65.3	60.6	56.1	46.3	30.6	79.7	67.0	54.6	36.6	14.7

Table 2: Comparison of transfer learning performance across different methods under varying label noise levels. All compared models are publicly available and pre-trained on ImageNet-1K [51], evaluated on different downstream datasets. Bold font highlights the best result in each scenario.

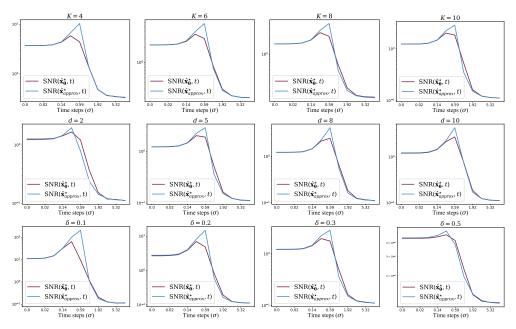


Figure 14: Comparison between SNR calculated using the optimal model \hat{x}^{\star}_{θ} and the SNR calculated with our approximation in Theorem 1. We generate MoLRG data and calculate SNR using both the corresponding optimal posterior function \hat{x}^{\star}_{θ} and our approximation \hat{x}^{\star}_{approx} from Theorem 1. Default parameters are set as n=100, d=5, K=10, and $\delta=0.3$. In each row, we vary one parameter while keeping the others fixed, comparing the actual and approximated SNR.

dataset size of 2400 and set the default parameters to $n=100,\,d=5,\,K=10,$ and $\delta=0.3$ to generate MoLRG data. We then vary one parameter at a time while keeping the others constant, and present the computed SNR in Figure 14. As shown, the approximated SNR score consistently aligns with the actual score.

Visualization of the MoLRG posterior estimation and SNR across noise scales. In Figure 3, we show that both the classification accuracy and SNR exhibit a unimodal trend for the MoLRG data. To further illustrate this behavior, we provide a visualization of the posterior estimation and SNR at different noise scales in Figure 15. In the plot, each class is represented by a colored straight line, while deviations from these lines correspond to the δ -related noise term. Initially, increasing the noise scale effectively cancels out the δ -related data noise, resulting in a cleaner posterior estimation and improved probing accuracy. However, as the noise continues to increase, the class confidence rate drops, leading to an overlap between classes, which ultimately degrades the feature quality and probing performance.

Mitigating the performance gap between DAE and diffusion models. Throughout the empirical results presented in this paper, we consistently observe a performance gap between individual DAEs and diffusion models, especially in low-noise regions. Here, we use a DAE trained on the CIFAR10 dataset with a single noise level $\sigma = 0.002$, using the NCSN++ architecture [49]. In

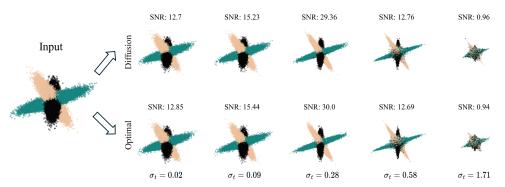


Figure 15: Visualization of posterior estimation, higher SNR correspondings to higher classification accuracy. The same MoLRG data is fed into the models; each row represents a different denoising model, and each column corresponds to a different time step with noise scale (σ_t).

Table 3: Improve DAE representation performance at low noise region. A vanilla DAE trained on the CIFAR10 dataset with a single noise level of $\sigma = 0.002$ serves as the baseline. We evaluate the performance improvement of dropout regularization, EDM-based preconditioning, and multi-level noise training ($\sigma = \{0.002, 0.012, 0.102\}$). Each technique is applied independently to assess its contribution to performance enhancement.

Modifications	Test acc.
Vanilla DAE	32.3
+Dropout (0.5)	35.3
+Dropout (0.9)	36.4
+Dropout (0.95)	38.1
+EDM preconditioning	49.2
+Multi-level noise training	58.6

the default setting, the DAE achieves a test accuracy of 32.3. We then explore three methods to improve the test performance: (a) adding dropout, as noise regularization and dropout have been effective in preventing autoencoders from learning identity functions [66]; (b) adopting EDM-based preconditioning during training, including input/output scaling, loss weighting, etc.; and (c) multi-level noise training, in which the DAE is trained simultaneously on three noise levels [0.002, 0.012, 0.102]. Each modification is applied independently, and the results are reported in Table 3. As shown, dropout helps improve performance, but even with a dropout rate of 0.95, the improvement is minor. EDM-based preconditioning achieves moderate improvement, while multi-level noise training yields the most promising results, demonstrating the benefit of incorporating the diffusion process in DAE training.

Empirical robustness to assumption relaxation The data assumptions in Assumption 1 were made to simplify the analysis and derive closed-form results. Empirically, we find that the unimodal SNR trend remains robust when these assumptions are relaxed. To demonstrate this, we train our parameterized DAE under binary MoLRG data while systematically violating each assumption. Unless otherwise stated, each experiment uses the DAE network as introduced in Section 3.2 and a dataset contains 30,000 samples generated with n=50, d=5, and $\delta=0.2$.

- Overlapping class subspaces. As shown in Table 4, we control the principal angle (θ) between class subspaces and observe that overlap tends to reduce SNR across timesteps while the peak remains stable. We conjecture that overlap can be viewed as introducing additional intrinsic noise beyond the δ -related term, thereby affecting the SNR value.
- Varying subspace ranks. As shown in Table 5, we set the class subspace dimensions to $d_0 = 10$ and $d_1 = 2$. Intuitively, the higher-rank class retains more signal and is less sensitive to noise, yielding higher and later-peaking SNR, while the low-rank class decays earlier.
- Non-uniform mixing weights. As shown in Table 6, we set $\pi_0 = 0.8$ and $\pi_1 = 0.2$ and observe consistently higher SNR for the majority class. We conjecture that this may stem from both the

score function of the distribution and DAE training being biased toward denoising more frequent samples.

Training Setting	SNR @ σ_t							
	0.008	0.023	0.060	0.140	0.296	0.585	1.088	1.923
$\theta = 90^{\circ}$ (Non-overlapping)	24.88	25.15	26.95	35.84	58.27	20.84	4.05	1.57
$\theta = 30^{\circ}$ (Overlapping)	16.70	16.92	18.39	25.97	38.54	22.88	14.56	12.55

Table 4: Effect of overlapping class subspaces on SNR across noise levels.

Training Setting		SNR @ σ_t										
	0.002	0.008	0.023	0.060	0.140	0.296	0.585	1.088	1.923			
Class $0 (d_0 = 10)$	68.94	69.00	69.83	74.87	102.24	195.44	215.31	34.17	8.44			
Class 1 ($d_1 = 2$)	7.75	7.75	7.80	8.08	8.79	6.50	1.80	0.46	0.27			
Overall SNR	24.12	24.13	24.28	25.21	28.19	23.34	8.18	2.84	1.45			

Table 5: Effect of subspace rank variation on SNR across noise levels.

Training Setting		SNR @ σ_t										
	0.002	0.008	0.023	0.060	0.140	0.296	0.585	1.088	1.923			
Class 0 ($\pi_0 = 0.8$)	52.35	52.43	52.98	56.74	75.61	134.76	72.38	13.56	4.50			
Class 1 ($\pi_1 = 0.2$)	12.15	12.16	12.31	13.10	17.49	23.91	6.05	1.17	0.52			
Overall SNR	38.69	38.74	39.17	41.85	55.77	90.54	35.28	7.40	2.81			

Table 6: Effect of non-uniform class mixing on SNR across noise levels.

Well-separated clusters. In our main analysis, we considered zero-mean Gaussian clusters. In this section, we show that when the clusters are well separated, the unimodal trend disappears: both classification accuracy and SNR decrease monotonically, peaking at t=0. In this regime, the dataset remains linearly separable throughout the denoising process, and both metrics are primarily determined by the class means. Adding noise (increasing t) simply blurs the class boundaries, thereby reducing separability. To verify this, we conduct an experiment on well-separated data and report the results in Table 7, which clearly exhibit this monotonic behavior. These observations highlight the importance of overlapping clusters in giving rise to the unimodal representation dynamics.

Unimodal dynamics beyond pixel space. The unimodal dynamics are not restricted to pixel-space denoisers. In the table below, we analyze feature accuracy and SNR dynamics using the DiT-XL/2 [37] model on miniImageNet, and observe in Table 8 that the unimodal trend persists in this latent diffusion model setting as well.

Projection-based classification analysis. In the main paper, our linear probing experiments always use logistic regression classifiers with inner-product-based logits. Here, we re-ran the experiments in Figure 5 using a projection-based classifier: for each class, we compute its principal subspace $[V_1,\ldots,V_K]$ from the training features, and classify each test sample by identifying the class whose subspace captures the most projection energy, computed as $\arg\max_k \|h(x_i)V_k\|^2$.

The results are shown in Table 9. While the projection-based classifier yields lower overall accuracy, it reveals a more pronounced unimodal trend that aligns closely with the SNR dynamics.

D Experimental Details

In this section, we provide technical details for all the experiments in the main body of the paper.

σ_t (0.030	0.053	0.098	0.189	0.282	0.379	0.480	0.588	0.704	0.830	0.989	1.492
Acc SNR (71.8 0.436			

Table 7: Classification accuracy and SNR on well-separated clusters across diffusion noise levels.

σ_t	0.010	0.026	0.044	0.076	0.108	0.140	0.205
Acc SNR	73.53 0.0369	74.64 0.0372	75.17 0.0375	75.54 0.0380	75.83 0.0382	75.93 0.0384	76.10 0.0387
σ_t	0.271	0.339	0.719	1.234	2.031	3.424	6.135
		74.85 0.0387					

Table 8: Feature accuracy and SNR dynamics for DiT-XL/2 on miniImageNet.

Assets license information. We primarily utilize the codebase of EDM [49], which is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) license. We also use code from the GitHub repository accompanying [19], which is licensed under the MIT License.

For the datasets, CIFAR datasets [50], ImageNet [51], Oxford 102 Flowers [93], and DTD [96] are publicly available for academic use. The CelebA dataset [97] is released for non-commercial research purposes only under a custom license. Oxford-IIIT Pet [91] is available under the CC BY-SA 4.0 license. The FFHQ dataset [98] is distributed by NVIDIA under the CC BY-NC-SA 4.0 license.

Computational resources. Most experiments are conducted on a single NVIDIA A40 GPU, except for training on subsets of images (e.g., Figure 8), which is performed using two A40 GPUs.

Experimental details for Figure 1.

- Experimental details for Figure 1(a). We train diffusion models based on the unified framework proposed by [49]. Specifically, we use the DDPM+ network, and use VP configuration for Figure 1(a). [49] has shown equivalence between VP configuration and the traditional DDPM setting, thus we call the models as DDPM* models. We train two models on CIFAR10 and CIFAR100, respectively. After training, we evaluate the learned representations via linear probing. For each noise level $\sigma(t)$, we corrupt the clean input x_0 with Gaussian noise to obtain $x_t = \sqrt{\overline{\alpha}_t}(x_0 + n)$, with $n \sim \mathcal{N}\left(0, \sigma_t^2 \mathbf{I}\right)$ and $\sqrt{\overline{\alpha}_t} = 1/\sqrt{\sigma_t^2 + 1}$. We then extract features from the decoder's '16x16 block1' layer, which consistently yields the highest classification accuracy. A logistic regression classifier is trained on these features using the training split and evaluated on the test split. We perform the linear probe for each of the following noise levels: [0.002, 0.008, 0.023, 0.060, 0.140, 0.296, 0.585, 1.088, 1.923].
- Experimental details for Figure 1(b). We exactly follow the protocol in [19], using the same datasets which are subsets of CelebA [97, 99] and FFHQ [98], the same training procedure, and the same segmentation networks (MLPs). The only difference is that we use a newer latent diffusion model [3] pretrained on CelebAHQ from Hugging Face and the noise are added to the latent space. For feature extraction we concatenate the feature from the first layer of each resolution in the UNet's decoder (after upsampling them to the same resolution as the input). We perform segmentation for each of the following noise levels:[0.010, 0.015, 0.030, 0.053, 0.098, 0.189, 0.282, 0.379, 0.480, 0.766, 1.123].

Experimental details for Figure 3 and Figure 15. For the MoLRG experiments, we train the our parameterized model (4) following the setup provided in an open-source repository [100]. The model is trained on a d=5, n=50, K=3 and $\delta=0.2$ MoLRG dataset containing 12000 samples. Training is conducted for 200 epochs using DDPM scheduling with T=500, employing the Adam optimizer

Dataset	Classifier Type c	$\sigma_t = 0.008$	0.023	0.060	0.140	0.296	0.585	1.088	1.923
CIFAR10 L CIFAR10	ogistic Regression Projection	93.72 86.95	94.94 90.36	95.20 90.93	94.11 90.78	91.36 88.48	85.25 82.82	72.95 70.53	56.21 53.84
Dataset	Classifier Type	$\sigma_t = 0.008$	0.023	0.060	0.140	0.296	0.585	1.088	1.923
TinyImageNet TinyImageNet		32.17 12.89	34.70 14.38		53.58 34.78	50.78 34.88	42.13 30.02	27.56 20.99	15.10 12.64

Table 9: Logistic linear probing vs. projection-based classification accuracy on CIFAR10 (Top) and TinyImageNet (Bottom) across diffusion noise levels.

with a learning rate of 5×10^{-4} . For SNR computation, we follow the definition in Section 3.3 since we have access to the ground-truth basis for the MoLRG data, i.e., $\boldsymbol{U}_1^{\star}, \boldsymbol{U}_2^{\star}$, and $\boldsymbol{U}_3^{\star} \in \mathbb{R}^{50 \times 5}$. For probing we simply train a linear probe on the feature.

For both panels in Figure 3, we train our probe the same training set used for diffusion and test on five different MoLRG datasets with 9000 samples generated with five different random seeds, reporting the average accuracy and SNR at time steps [5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 240, 260, 280]. In Figure 15, we visualize the posterior estimations at time steps [5, 20, 60, 120, 260] by projecting them onto the union of the first columns of U_1^{\star}, U_2^{\star} , and U_3^{\star} (a 3D space), then further projecting onto the 2D plane by a random 3×2 matrix with orthonormal columns. The subtitles of each visualization show the corresponding SNR calculated as explained above.

Experimental details for Figure 5. We use pre-trained EDM models [49] for CIFAR10 and ImageNet, extracting feature representations from the best-performing layer at each timestep. For the ImageNet model, features are extracted using images from classes in TinyImageNet [92]. Feature accuracy is evaluated via linear probing. To compute the SNR metric, we first normalize the extracted features by dividing each by its norm and subtracting the global mean. At each timestep, we perform class-wise SVD on the normalized features and compute SNR as defined in Section 3.3. Specifically, we use the top 5 right singular vectors of each class to form U_k^{\star} .

Experimental details for Figure 6. We use the DDPM++ network and VP configuration to train diffusion models[49] on the CIFAR10 dataset, using two network configurations: UNet-32 and UNet-64, by varying the embedding dimension of the UNet. Training dataset sizes range exponentially from 2⁸ to 2¹⁵. For each dataset size, both UNet-32 and UNet-64 are trained on the same subset of the training data. All models are trained with a duration of 50M images following the EDM training setup. After training, we calculate the generalization score as described in [53], using 10K generated images and the full training subset to compute the score.

Experimental details for Figure 7 and Figure 8. We use the DDPM++ architecture with the EDM configuration to train a UNet-128 diffusion model [49] on CIFAR10 and CIFAR100, using 4096 image training subsets. We track the evolution of representation dynamics throughout training. For Figure 7, FID [58] is computed using 50K generated samples compared against the full training dataset. Classification accuracy is obtained by extracting features from the training subset and evaluating a linear classifier on the full test set. Nearest neighbors are identified by computing the smallest ℓ_2 distance between each generated image and the training subset.

Experimental details for Figure 13. We train individual DAEs using the DDPM++ network and VP configuration outlined in [49] at the following noise scales:

```
[0.002, 0.008, 0.023, 0.06, 0.14, 0.296, 0.585, 1.088, 1.923, 3.257].
```

Each model is trained for 500 epochs using the Adam optimizer [101] with a fixed learning rate of 1×10^{-4} . The sliced Wasserstein distance is computed according to the implementation described in [94].

Experimental details for Table 1 and Table 2 For EDM, we use the official pre-trained checkpoints on ImageNet 64×64 from [49], and for DiT, we use the released DiT-XL/2 model pre-trained on

ImageNet 256×256 from [37]. As a baseline, we include the Hugging Face pre-trained MAE encoder (ViT-B/16) [95].

For diffusion models, features are extracted from the layer and timestep that achieve the highest probing accuracy, following [20]. After feature extraction, we adopt the probing protocol from [22], passing the extracted features through a probe consisting of a BatchNorm1d layer followed by a linear layer. To ensure fair comparisons, all input images are cropped or resized to 224×224 , matching the resolution used for MAE training.

For ensembling, we extract features from two additional timesteps on either side of the optimal timestep. Independent probes are trained on these timesteps, yielding five probes in total. At test time, we apply a soft-voting ensemble by averaging the output logits from all five probes for the final prediction. Specifically, let $\boldsymbol{W}_t \in \mathbb{R}^{K \times d}$ be the linear classifier trained on features from timestep t, and let $\boldsymbol{h}_t \in \mathbb{R}^d$ denote the feature representation of a sample at timestep t. Considering neighboring timesteps t-2, t-1, t+1, and t+2, our ensemble prediction is computed as: $\hat{y} = \arg\max\left(\frac{1}{5}\sum_{t=t-2}^{t+2} \boldsymbol{W}_t \boldsymbol{h}_t\right)$.

We evaluate each method under varying levels of label noise, ranging from 0% to 80%, by randomly mislabeling the specified percentage of training labels before applying linear probing. Performance is assessed on both the pre-training dataset and downstream transfer learning tasks. For pre-training evaluation, we use the images and classes from MiniImageNet [102] to reduce computational cost. For transfer learning, we evaluate on CIFAR100 [50], DTD [96], and Flowers102 [93].

E Proofs

We first provide some auxiliary results for proving Theorem 1.

E.1 Groud truth posterior mean

We begin by deriving the ground truth posterior mean $\mathbb{E}[x_0|x_t]$ under the MoLRG distribution. When x_0 follows the noisy MoLRG assumption, the optimal solution $\hat{x}_{\theta}^{\star}(x_t, t)$ to the training objective in Eq. (2) is exactly the posterior mean $\mathbb{E}[x_0|x_t]$.

Proposition 2. Suppose the data x_0 is drawn from a noisy MoLRG data distribution with K-class and noise level δ introduced in Assumption 1. Then the optimal $\{U\}$ minimizing the loss (2) is the ground truth basis defined in (3), and the optimal DAE $\hat{x}_{\theta}^{*}(x_t, t)$ admits the analytical form:

$$\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}^{\star}(\boldsymbol{x}_{t},t) = \sum_{l=1}^{K} w_{l}^{\star}(\boldsymbol{x}_{t},t) \left(\zeta_{t} \boldsymbol{U}_{l}^{\star} \boldsymbol{U}_{l}^{\star \top} + \xi_{t} \widetilde{\boldsymbol{U}}_{l}^{\star} \widetilde{\boldsymbol{U}}_{l}^{\star \top} \right) \boldsymbol{x}_{t}, \tag{9}$$

where $\zeta_t = \frac{1}{1+\sigma_t^2}$ and $\xi_t = \frac{\delta^2}{\delta^2 + \sigma_t^2}$, and

$$w_l^{\star}(\boldsymbol{x}_t,t) = \frac{\exp\left(g_l^{\star}(\boldsymbol{x}_t,t)\right)}{\sum_{s=1}^K \exp\left(g_s^{\star}(\boldsymbol{x}_t,t)\right)}, \quad g_l^{\star}(\boldsymbol{x}_t,t) = \frac{\zeta_t}{2\sigma_t^2} \|\boldsymbol{U}_l^{\star\top}\boldsymbol{x}_t\|^2 + \frac{\xi_t}{2\sigma_t^2} \|\widetilde{\boldsymbol{U}}_l^{\star\top}\boldsymbol{x}_t\|^2.$$

Proof. By [103] we see that the ground-truth score/posterior estimator calculated from the pdf is the global minimizer of the denoising score matching loss in (2), so here we first calculate the ground-truth score of the noisy MoLRG distribution and the corresponding posterior. We follow the same proof

steps as in [32] Lemma 1 with a change of variable. Let $c_k = \begin{bmatrix} a_k \\ e_k \end{bmatrix}$ and $\widehat{U}_k = \begin{bmatrix} U_k^{\star} & \delta \widetilde{U}_k^{\star} \end{bmatrix}$ where d and D denote the dimensions of signal space and noise space as in definition, we first compute the conditional pdf

$$p_t(\boldsymbol{x}|Y=k)$$

$$= \int p_t(\boldsymbol{x}|Y=k,\boldsymbol{c}_k) \mathcal{N}(\boldsymbol{c}_k;\boldsymbol{0},\boldsymbol{I}_{d+D}) d\boldsymbol{c}_k$$

$$= \int p_t(\boldsymbol{x}|\boldsymbol{x}_0 = \widehat{\boldsymbol{U}}_k \boldsymbol{c}_k) \mathcal{N}(\boldsymbol{c}_k;\boldsymbol{0},\boldsymbol{I}_{d+D}) d\boldsymbol{c}_k$$

$$\begin{split} &= \int \mathcal{N}(\boldsymbol{x}; s_{t} \widehat{\boldsymbol{U}}_{k} \boldsymbol{c}_{k}, \gamma_{t}^{2} \boldsymbol{I}_{n}) \mathcal{N}\left(\boldsymbol{c}_{k}; \boldsymbol{0}, \boldsymbol{I}_{d+D}\right) d\boldsymbol{c}_{k} \\ &= \frac{1}{(2\pi)^{n/2} (2\pi)^{(d+D)/2} \gamma_{t}^{n}} \int \exp\left(-\frac{1}{2\gamma_{t}^{2}} \|\boldsymbol{x} - s_{t} \widehat{\boldsymbol{U}}_{k} \boldsymbol{c}_{k}\|^{2}\right) \exp\left(-\frac{1}{2} \|\boldsymbol{c}_{k}\|^{2}\right) d\boldsymbol{c}_{k} \\ &= \frac{1}{(2\pi)^{n/2} (2\pi)^{(d+D)/2} \gamma_{t}^{n}} \int \exp\left(-\frac{1}{2\gamma_{t}^{2}} \left(\boldsymbol{x}^{\top} \boldsymbol{x} - 2s_{t} \boldsymbol{x}^{\top} \widehat{\boldsymbol{U}}_{k} \boldsymbol{c}_{k} + s_{t}^{2} \boldsymbol{c}_{k}^{\top} \widehat{\boldsymbol{U}}_{k}^{\top} \widehat{\boldsymbol{U}}_{k} \boldsymbol{c}_{k} + \gamma_{t}^{2} \boldsymbol{c}_{k}^{\top} \boldsymbol{c}_{k}\right)\right) d\boldsymbol{c}_{k} \\ &= \frac{1}{(2\pi)^{n/2} \gamma_{t}^{n}} \left(\frac{s_{t}^{2} + \gamma_{t}^{2}}{\gamma_{t}^{2}}\right)^{-d/2} \left(\frac{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}}{\gamma_{t}^{2}}\right)^{-D/2} \exp\left(-\frac{1}{2\gamma_{t}^{2}} \boldsymbol{x}^{\top} \left(\boldsymbol{I}_{n} - \frac{s_{t}^{2}}{s_{t}^{2} + \gamma_{t}^{2}} \boldsymbol{U}_{k}^{*} \boldsymbol{U}_{k}^{*}^{\top} - \frac{s_{t}^{2} \delta^{2}}{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_{k}^{*}^{\top}\right) \boldsymbol{x}\right) \\ &\int \frac{1}{(2\pi)^{d/2}} \left(\frac{\gamma_{t}^{2}}{s_{t}^{2} + \gamma_{t}^{2}}\right)^{-d/2} \exp\left(-\frac{s_{t}^{2} + \gamma_{t}^{2}}{2\gamma_{t}^{2}} \left\|\boldsymbol{a}_{k} - \frac{s_{t}}{s_{t}^{2} + \gamma_{t}^{2}} \boldsymbol{U}_{k}^{*} \boldsymbol{T}_{k}^{\top}\right\|^{2}\right) d\boldsymbol{a}_{k} \\ &\int \frac{1}{(2\pi)^{D/2}} \left(\frac{\gamma_{t}^{2}}{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}}\right)^{-D/2} \exp\left(-\frac{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}}{2\gamma_{t}^{2}} \left\|\boldsymbol{e}_{k} - \frac{s_{t} \delta}{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}} \widetilde{\boldsymbol{U}}_{k}^{*} \boldsymbol{T}_{k}^{\top}\right\|^{2}\right) d\boldsymbol{e}_{k} \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{(s_{t}^{2} + \gamma_{t}^{2})^{d/2} (s_{t}^{2} \delta^{2} + \gamma_{t}^{2})^{D/2}} \exp\left(-\frac{1}{2\gamma_{t}^{2}} \boldsymbol{x}^{\top} \left(\boldsymbol{I}_{n} - \frac{s_{t}^{2}}{s_{t}^{2} \delta^{2} + \gamma_{t}^{2}} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_{k}^{*}^{\top}\right) \boldsymbol{x}\right) \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{\det^{1/2} (s_{t}^{2} \boldsymbol{U}_{k}^{*} \boldsymbol{U}_{k}^{*}^{\top} + s_{t}^{2} \delta^{2} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_{k}^{*}^{\top} + \gamma_{t}^{2} \boldsymbol{I}_{n})} \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{\det^{1/2} (s_{t}^{2} \boldsymbol{U}_{k}^{*} \boldsymbol{U}_{k}^{*}^{\top} + s_{t}^{2} \delta^{2} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_{k}^{*}^{\top} + \gamma_{t}^{2} \boldsymbol{I}_{n})} \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{\det^{1/2} (s_{t}^{2} \boldsymbol{U}_{k}^{*} \boldsymbol{U}_{k}^{*}^{\top} + s_{t}^{2} \delta^{2} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_{k}^{*}^{\top} + \gamma_{t}^{2} \boldsymbol{I}_{n})} \\ &= \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}; \boldsymbol{s}_{t}^{2} \boldsymbol{U}_{k}^{*} \boldsymbol{U}_{k}^{*}^{\top} + s_{t}^{2} \delta^{2} \widetilde{\boldsymbol{U}}_{k}^{*} \widetilde{\boldsymbol{U}}_$$

where we repeatedly apply the pdf of multi-variate Gaussian and the second last equality uses $\det(s_t^2 \boldsymbol{U}_k^\star \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^\star \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n) = (s_t^2 + \gamma_t^2)^d (s_t^2 \delta^2 + \gamma_t^2)^D \text{ and } (s_t^2 \boldsymbol{U}_k^\star \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^\star \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n) = (s_t^2 + \gamma_t^2)^d (s_t^2 \delta^2 + \gamma_t^2)^D \text{ and } (s_t^2 \boldsymbol{U}_k^\star \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^\star \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n)^{-1} = \left(\boldsymbol{I}_n - s_t^2/(s_t^2 + \gamma_t^2)\boldsymbol{U}_k^\star \boldsymbol{U}_k^{\star \top} - s_t^2 \delta^2/(s_t^2 \delta^2 + \gamma_t^2)\widetilde{\boldsymbol{U}}_k^\star \widetilde{\boldsymbol{U}}_k^{\star \top}\right)/\gamma_t^2 \text{ because of the Woodbury matrix inversion lemma. Hence, with } \mathbb{P}(Y = k) = \pi_k \text{ for each } k \in [K], \text{ we have } \mathbb{P}(X = k) = 0$

$$p_t(\boldsymbol{x}) = \sum_{k=1}^K p_t(\boldsymbol{x}|Y=k) \mathbb{P}(Y=k) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x};\boldsymbol{0}, s_t^2 \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n).$$

Now we can compute the score function

$$\nabla \log p_t(\boldsymbol{x}) = \frac{\nabla p_t(\boldsymbol{x})}{p_t(\boldsymbol{x})} = \frac{\sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n)}{\sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} \boldsymbol{x} + \frac{s_t^2 \delta^2}{\gamma_t^2 (s_t^2 \delta^2 + \gamma_t^2)} \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x})} \\ = -\frac{1}{\gamma_t^2} \left(\boldsymbol{x} - \frac{\sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n)}{\sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k \boldsymbol{U}_k^{\star \top} + s_t^2 \delta^2 \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} + \gamma_t^2 \boldsymbol{I}_n)} \right) \\ = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k \boldsymbol{U}_k^{\star \top} \boldsymbol{x}) + \frac{s_t^2 \delta^2}{s_t^2 \delta^2 + \gamma_t^2} \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x})}{\sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, s_t^2 \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} \boldsymbol{x}) + \frac{s_t^2 \delta^2}{s_t^2 \delta^2 + \gamma_t^2} \widetilde{\boldsymbol{U}}_k^{\star} \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x})} \right)} \right).$$

According to Tweedie's formula, we have

$$\begin{split} \mathbb{E}\left[\boldsymbol{x}_{0}|\boldsymbol{x}_{t}\right] &= \frac{\boldsymbol{x}_{t} + \gamma_{t}^{2}\nabla\log p_{t}(\boldsymbol{x}_{t})}{s_{t}} \\ &= \frac{s_{t}}{s_{t}^{2} + \gamma_{t}^{2}} \frac{\sum_{k=1}^{K} \pi_{k}\mathcal{N}(\boldsymbol{x};\boldsymbol{0},s_{t}^{2}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + s_{t}^{2}\delta^{2}\boldsymbol{\widetilde{U}}_{k}^{\star}\boldsymbol{\widetilde{U}}_{k}^{\star\top} + \gamma_{t}^{2}\boldsymbol{I}_{n})\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\boldsymbol{x}}{\mathcal{N}(\boldsymbol{x};\boldsymbol{0},s_{t}^{2}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + s_{t}^{2}\delta^{2}\boldsymbol{\widetilde{U}}_{k}^{\star}\boldsymbol{\widetilde{U}}_{k}^{\star\top} + \gamma_{t}^{2}\boldsymbol{I}_{n})} \\ &+ \frac{s_{t}\delta^{2}}{s_{t}^{2}\delta^{2} + \gamma_{t}^{2}} \frac{\sum_{k=1}^{K} \pi_{k}\mathcal{N}(\boldsymbol{x};\boldsymbol{0},s_{t}^{2}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + s_{t}^{2}\delta^{2}\boldsymbol{\widetilde{U}}_{k}^{\star}\boldsymbol{\widetilde{U}}_{k}^{\star\top} + \gamma_{t}^{2}\boldsymbol{I}_{n})\boldsymbol{\widetilde{U}}_{k}^{\star}\boldsymbol{\widetilde{U}}_{k}^{\star\top}\boldsymbol{x}}{\mathcal{N}(\boldsymbol{x};\boldsymbol{0},s_{t}^{2}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + s_{t}^{2}\delta^{2}\boldsymbol{\widetilde{U}}_{k}^{\star}\boldsymbol{\widetilde{U}}_{k}^{\star\top} + \gamma_{t}^{2}\boldsymbol{I}_{n})} \end{split}$$

$$= \frac{s_t}{s_t^2 + \gamma_t^2} \frac{\sum_{k=1}^K \pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \exp\left(\psi_t \| \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \boldsymbol{U}_k^{\star} \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t}{\sum_{k=1}^K \pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \exp\left(\psi_t \| \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t \|^2\right)} + \frac{s_t \delta^2}{s_t^2 \delta^2 + \gamma_t^2} \frac{\sum_{k=1}^K \pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \exp\left(\psi_t \| \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \widetilde{\boldsymbol{U}}_k^{\top} \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t}{\sum_{k=1}^K \pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right) \exp\left(\psi_t \| \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t \|^2\right)},$$

with $\phi_t = s_t^2/(2\gamma_t^2(s_t^2+\gamma_t^2))$ and $\psi_t = s_t^2\delta^2/(2\gamma_t^2(s_t^2\delta^2+\gamma_t^2))$. The final equality uses the pdf of multi-variant Gaussian and the matrix inversion lemma discussed earlier. Since π_k is consistent for all k and $s_t = 1$, we have

$$\begin{split} \mathbb{E}\left[\boldsymbol{x}_{0}|\boldsymbol{x}_{t}\right] &= \sum_{k=1}^{K} w_{k}^{\star}(\boldsymbol{x}_{t}) \left(\frac{1}{1+\sigma_{t}^{2}} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} + \frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}} \widetilde{\boldsymbol{U}}_{k}^{\star} \widetilde{\boldsymbol{U}}_{k}^{\star\top}\right) \boldsymbol{x}_{t} \\ \text{where } w_{k}^{\star}(\boldsymbol{x}_{t}) &:= \frac{\exp\left(\frac{1}{2\sigma_{t}^{2}(1+\sigma_{t}^{2})} \|\boldsymbol{U}_{k}^{\star\top} \boldsymbol{x}_{t}\|^{2} + \frac{\delta^{2}}{2\sigma_{t}^{2}(\delta^{2}+\sigma_{t}^{2})} \|\widetilde{\boldsymbol{U}}_{k}^{\star\top} \boldsymbol{x}_{t}\|^{2}\right)}{\sum_{k=1}^{K} \exp\left(\frac{1}{2\sigma_{t}^{2}(1+\sigma_{t}^{2})} \|\boldsymbol{U}_{k}^{\star\top} \boldsymbol{x}_{t}\|^{2} + \frac{\delta^{2}}{2\sigma_{t}^{2}(\delta^{2}+\sigma_{t}^{2})} \|\widetilde{\boldsymbol{U}}_{k}^{\star\top} \boldsymbol{x}_{t}\|^{2}\right)}. \end{split}$$

Finally we show the equivalence between ground-truth posterior and our parameterized DAE when its weights are just the ground truth basis. We begin by rewriting the optimal posterior function by leveraging the fact that $\widetilde{U}_l^\star := \begin{bmatrix} U_1^\star & \cdots & U_{l-1}^\star & U_{l+1}^\star & \cdots & U_K^\star \end{bmatrix}$

$$\mathbb{E}\left[\boldsymbol{x}_{0}|\boldsymbol{x}_{t}\right] = \sum_{l=1}^{K} w_{l}^{\star}(\boldsymbol{x}_{t},t) \left(\zeta_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top} + \xi_{t}\tilde{\boldsymbol{U}}_{l}^{\star}\tilde{\boldsymbol{U}}_{l}^{\star\top}\right) \boldsymbol{x}_{t}$$

$$= \sum_{l=1}^{K} w_{l}^{\star}(\boldsymbol{x}_{t},t) \left(\zeta_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top} + \xi_{t}\sum_{j\neq l}\boldsymbol{U}_{j}^{\star}\boldsymbol{U}_{j}^{\star\top}\right) \boldsymbol{x}_{t}$$

$$= \sum_{l=1}^{K} w_{l}^{\star}(\boldsymbol{x}_{t},t) \left(\zeta_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\right) + \sum_{l=1}^{K} (w_{l}^{\star}(\boldsymbol{x}_{t},t)\xi_{t}\sum_{j\neq l}\boldsymbol{U}_{j}^{\star}\boldsymbol{U}_{j}^{\star\top}) \boldsymbol{x}_{t}$$

$$= \sum_{l=1}^{K} \left(w_{l}^{\star}(\boldsymbol{x}_{t},t)\zeta_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t} + \xi_{t}\sum_{j\neq l}w_{j}^{\star}(\boldsymbol{x}_{t},t)\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}\right)$$

$$= \sum_{l=1}^{K} \left(w_{l}^{\star}(\boldsymbol{x}_{t},t)\zeta_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t} + \xi_{t} \left(1 - w_{l}^{\star}(\boldsymbol{x}_{t},t)\right)\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}\right)$$

$$= \sum_{l=1}^{K} \left(\zeta_{t}w_{l}^{\star}(\boldsymbol{x}_{t},t) + \xi_{t} \left(1 - w_{l}^{\star}(\boldsymbol{x}_{t},t)\right)\right)\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}$$

$$= \sum_{l=1}^{K} \left[\xi_{t} + \left(\zeta_{t} - \xi_{t}\right)w_{l}^{\star}(\boldsymbol{x}_{t},t)\right]\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}.$$

Now if we let $U^\star = [U_1 \quad U_2 \quad \dots \quad U_K] \in \mathcal{O}^{n \times Kd}$ and $D^\star(\boldsymbol{x}_t, t) = \operatorname{diag}(\beta_1^\star \boldsymbol{I}_d, \dots, \beta_K^\star \boldsymbol{I}_d)$ to be a block-diagonal matrix. Each β_l^\star is defined as $\beta_l^\star = \xi_t + (\zeta_t - \xi_t) w_l^\star(\boldsymbol{x}_t, t)$, we can then write:

$$\mathbb{E}\left[\boldsymbol{x}_0|\boldsymbol{x}_t\right] = \boldsymbol{U}^{\star}\boldsymbol{D}^{\star}(\boldsymbol{x}_t,t)\boldsymbol{U}^{\star T}\boldsymbol{x}_t.$$

Thus, the optimal solution for our network parametrization as defined in (4) is exactly $\mathbb{E}[x_0|x_t]$. And by such equivalence, the optimality of the DAE is induced.

E.2 Proof of Theorem 1

We first state the formal version of Theorem 1.

To simplify the calculation of SNR as introduced in Section 3.3 on feature representations, which involves the expectation over the softmax term w_k^* , we approximate \hat{x}_{θ}^* as follows:

$$\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x},t) = \sum_{k=1}^{K} \hat{w}_{k}^{\star} \left(\zeta_{t} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} + \xi_{t} \widetilde{\boldsymbol{U}}_{k}^{\star} \widetilde{\boldsymbol{U}}_{k}^{\star \top} \right) \boldsymbol{x},$$

$$\text{where } \hat{w}_{k}^{\star} := \frac{\exp\left(\mathbb{E}_{\boldsymbol{x}_{t}}[g_{k}^{\star}(\boldsymbol{x}_{t},t)]\right)}{\sum_{k=1}^{K} \exp\left(\mathbb{E}_{\boldsymbol{x}_{t}}[g_{k}^{\star}(\boldsymbol{x}_{t},t)]\right)}, \ \zeta_{t} = \frac{1}{1 + \sigma_{t}^{2}}, \ \xi_{t} = \frac{\delta^{2}}{\delta^{2} + \sigma_{t}^{2}},$$

$$\text{and } g_{k}^{\star}(\boldsymbol{x},t) = \frac{\zeta_{t}}{2\sigma_{t}^{2}} \|\boldsymbol{U}_{k}^{\star \top} \boldsymbol{x}\|^{2} + \frac{\xi_{t}}{2\sigma_{t}^{2}} \|\widetilde{\boldsymbol{U}}_{k}^{\star \top} \boldsymbol{x}\|^{2}.$$

In other words, we use \hat{w}_k^{\star} in (10) to approximate $w_k^{\star}(\boldsymbol{x}_t,t)$ in Proposition 1 by taking expectation inside the softmax with respect to \boldsymbol{x}_t . This allows us to treat \hat{w}_k^{\star} as a constant when calculating SNR, making the analysis more tractable while maintaining $\mathbb{E}[\|\boldsymbol{U}_l^{\star}\hat{\boldsymbol{h}}_{\boldsymbol{\theta}}^{\star}(\boldsymbol{x}_t,t)\|^2] \approx \mathbb{E}[\|\boldsymbol{U}_l^{\star}\hat{\boldsymbol{h}}_{approx}^{\star}(\boldsymbol{x}_0,t)\|^2]$ for all $l \in [K]$. We verify the tightness of this approximation at Appendix C (Figure 14). With this approximation, we state the theorem as follows:

Theorem 2. Let data x_0 be any arbitrary data point drawn from the MoLRG distribution defined in Assumption 1 and let k denote the true class x_0 belongs to. Then SNR introduced in Section 3.3 depends on the noise level σ_t in the following form:

$$SNR(\hat{\boldsymbol{x}}_{approx}^{\star}, t) = \frac{1 + \sigma_t^2}{(K - 1)(\delta^2 + \sigma_t^2)} \cdot \left(\frac{1 + \frac{\sigma_t^2}{\delta^2} h(\hat{w}_k^{\star}, \delta)}{1 + \frac{\sigma_t^2}{\delta^2} h(\hat{w}_l^{\star}, \delta)}\right)^2$$
(11)

where $h(w, \delta) := (1 - \delta^2)w + \delta^2$. Since δ is fixed, $h(w, \delta)$ is a monotonically increasing function with respect to w. Note that here δ represents the magnitude of the fixed intrinsic noise in the data where σ_t denotes the level of additive Gaussian noise introduced during the diffusion training process.

Proof. Following the definition of SNR as defined in Section 3.3, Lemma 2 and the fact that $k \sim \text{Mult}(K, \pi_k)$ with $\pi_1 = \cdots = \pi_K = 1/K$, we can write

$$\begin{split} \text{SNR}(\hat{x}_{approx}^{\star},t) &= \frac{\mathbb{E}_{x_{t}}[\|U_{k}^{\star}U_{k}^{\star\top}\hat{x}_{approx}^{\star}(x_{t},t)\|^{2}]}{\mathbb{E}_{x_{t}}[\sum_{l\neq k}\|U_{l}^{\star}U_{k}^{\star\top}\hat{x}_{approx}^{\star}(x_{t},t)\|^{2}]} = \frac{\mathbb{E}_{x_{t}}[\|U_{k}^{\star}U_{k}^{\star\top}\hat{x}_{approx}^{\star}(x_{t},t)\|^{2}]}{\sum_{l\neq k}\mathbb{E}_{x_{t}}[\|U_{l}^{\star}U_{l}^{\star\top}\hat{x}_{approx}^{\star}(x_{t},t)\|^{2}]} \\ &= \frac{\left(\frac{\hat{w}_{k}^{\star}}{1+\sigma_{t}^{2}} + \frac{(K-1)\delta^{2}\hat{w}_{l}^{\star}}{\delta^{2}+\sigma_{t}^{2}}\right)^{2}(1+\sigma_{t}^{2})d}{(K-1)\left(\frac{\hat{w}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{w}_{k}^{\star}+(K-2)\hat{w}_{l}^{\star})}{\delta^{2}+\sigma_{t}^{2}}\right)^{2}\left(\delta^{2}+\sigma_{t}^{2}\right)d} \\ &= \frac{1+\sigma_{t}^{2}}{(K-1)(\delta^{2}+\sigma_{t}^{2})} \cdot \left(\frac{\hat{w}_{k}^{\star}\delta^{2}+\hat{w}_{k}^{\star}\sigma_{t}^{2}+(K-1)\delta^{2}\hat{w}_{l}^{\star}+(K-1)\delta^{2}\hat{w}_{l}^{\star}+K-2)\delta^{2}\hat{w}_{l}^{\star}+K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}\sigma_{t}^{2}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}\sigma_{t}^{2}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}\sigma_{t}^{2}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{k}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+\delta^{2}\hat{w}_{l}^{\star}+(K-2)\delta^{2}\hat{w}_{l}^{\star}+\delta^{$$

where
$$h(w,\delta) := (1-\delta^2)w + \delta^2$$
, and we set $C_t = \frac{1+\sigma_t^2}{(\delta^2+\sigma_t^2)}$.

Lemma 1. Let g_1, g_2, \ldots, g_K be a sequence of real-valued inputs, and fix an index $k \in [K]$. Assume that $g_l = g_j$ for all $l, j \neq k$; that is, all entries except g_k share the same value. Let the softmax weights be defined as

$$w_j = \frac{\exp(g_j)}{\sum_{j=1}^K \exp(g_j)},$$

Then we have:

$$w_k = \frac{\exp(g_k - g_l)}{K - 1 + \exp(g_k - g_l)}$$
 and $w_l = \frac{1}{K - 1 + \exp(g_k - g_l)}$ for all $l \neq k$.

Proof. The softmax weight for class k is:

$$w_k = \frac{\exp(g_k)}{\sum_{j=1}^K \exp(g_j)}.$$

We simplify the denominator by factoring out $\exp(g_l)$:

$$\sum_{j=1}^{K} \exp(g_j) = \exp(g_k) + \sum_{j \neq k} \exp(g_l) = \exp(g_k) + (K-1)\exp(g_l).$$

Therefore,

$$w_k = \frac{\exp(g_k)}{\exp(g_k) + (K-1)\exp(g_l)} = \frac{1}{1 + (K-1)\exp(g_l - g_k)} = \frac{\exp(g_k - g_l)}{(K-1) + \exp(g_k - g_l)}.$$

For any $l \neq k$, we similarly have:

$$w_l = \frac{\exp(g_l)}{\exp(g_k) + (K - 1)\exp(g_l)} = \frac{1}{(K - 1) + \exp(g_k - g_l)}.$$

This simple fact can also be proven by applying the log-sum-exp trick.

Lemma 2. Given the setup of a K-class MoLRG data distribution defined in (3), consider the following approximate posterior mean function:

$$\begin{split} \hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x},t) &= \sum_{k=1}^{K} \hat{w}_{k}^{\star} \left(\zeta_{t} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} + \xi_{t} \widetilde{\boldsymbol{U}}_{k}^{\star} \widetilde{\boldsymbol{U}}_{k}^{\star \top} \right) \boldsymbol{x}, \\ where \ \hat{w}_{k}^{\star} &:= \frac{\exp \left(\mathbb{E}_{\boldsymbol{x}_{t}}[g_{k}^{\star}(\boldsymbol{x}_{t},t)] \right)}{\sum_{k=1}^{K} \exp \left(\mathbb{E}_{\boldsymbol{x}_{t}}[g_{k}^{\star}(\boldsymbol{x}_{t},t)] \right)}, \ \zeta_{t} &= \frac{1}{1 + \sigma_{t}^{2}}, \ \xi_{t} = \frac{\delta^{2}}{\delta^{2} + \sigma_{t}^{2}}, \\ and \ g_{k}^{\star}(\boldsymbol{x},t) &= \frac{\zeta_{t}}{2\sigma_{t}^{2}} \|\boldsymbol{U}_{k}^{\star \top} \boldsymbol{x}\|^{2} + \frac{\xi_{t}}{2\sigma_{t}^{2}} \|\widetilde{\boldsymbol{U}}_{k}^{\star \top} \boldsymbol{x}\|^{2}. \end{split}$$

That is, we consider a simplified form of the expected posterior mean from Proposition 1, where the expectation is taken inside the softmax argument (i.e., over $g_k^{\star}(\mathbf{x}_t,t)$) to obtain tractable approximate weights \hat{w}_k^{\star} .

Under this approximation, for any sample x_0 from class k, i.e., $x_0 = U_k^* a_i + \delta \widetilde{U}_k^* e_i$, we have:

$$\mathbb{E}_{\boldsymbol{x}_{t}}[\|\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \left(\frac{\hat{w}_{k}^{\star}}{1+\sigma_{t}^{2}} + \frac{(K-1)\delta^{2}\hat{w}_{l}^{\star}}{\delta^{2}+\sigma_{t}^{2}}\right)^{2}(d+\sigma_{t}^{2}d)$$
(12)

$$\mathbb{E}_{\boldsymbol{x}_{t}}[\|\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star^{\top}}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \left(\frac{\hat{w}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{w}_{k} + (K-2)\hat{w}_{l}^{\star})}{\delta^{2} + \sigma_{t}^{2}}\right)^{2}(\delta^{2}d + \sigma_{t}^{2}d)$$
(13)

$$\mathbb{E}_{\boldsymbol{x}_{t}}[\|\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \underbrace{\left(\frac{\hat{w}_{k}^{\star}}{1+\sigma_{t}^{2}} + \frac{(K-1)\delta^{2}\hat{w}_{l}^{\star}}{\delta^{2}+\sigma_{t}^{2}}\right)^{2}(d+\sigma_{t}^{2}d)}_{\mathbb{E}\|\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}]} + \underbrace{(K-1)\left(\frac{\hat{w}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{w}_{k}^{\star} + (K-2)\hat{w}_{l}^{\star})}{\delta^{2}+\sigma_{t}^{2}}\right)^{2}(\delta^{2}d+\sigma_{t}^{2}d)}_{\mathbb{E}[\sum_{l\neq k}^{K}U_{l}^{\star}U_{l}^{\star}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}]}$$

$$(14)$$

and

$$\hat{w}_k^{\star} = \frac{\exp(D_t)}{K - 1 + \exp(D_t)},$$

$$\hat{w}_l^{\star} = \frac{1}{K - 1 + \exp(D_t)}.$$
(15)

for all class index $l \neq k$, where $D_t = \frac{(1-\delta^2)d}{2\sigma_*^2(1+\sigma_*^2)}$.

Proof. Throughout the proof, we use the following notation for slices of vectors.

 $e_i[a:b]$ Slices of vector e_i from ath entry to bth entry.

We begin with the softmax terms. Since each class has its unique disjoint subspace, it suffices to consider $g_k(x_0,t)$ and $g_l(x_0,t)$ for any $l \neq k$. Let $a_t = \frac{1}{2\sigma_t^2(1+\sigma_t^2)}$ and $c_t = \frac{\delta^2}{2\sigma_t^2(\delta^2+\sigma_t^2)}$, we have:

$$\mathbb{E}[g_k^{\star}(\boldsymbol{x}_t, t)] = \mathbb{E}[a_t \|\boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t\|^2 + c_t \|\widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{x}_t\|^2]$$

$$= \mathbb{E}[a_t \|\boldsymbol{U}_k^{\star \top} (\boldsymbol{U}_k^{\star} \boldsymbol{a}_i + \delta \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{e}_i + \sigma_t \boldsymbol{\epsilon}_i)\|^2] + \mathbb{E}[c_t \|\widetilde{\boldsymbol{U}}_k^{\star \top} (\boldsymbol{U}_k^{\star} \boldsymbol{a}_i + \delta \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{e}_i + \sigma_t \boldsymbol{\epsilon}_i)\|^2]$$

$$= \mathbb{E}[a_t \|\boldsymbol{a}_i + \sigma_t \boldsymbol{U}_k^{\star \top} \boldsymbol{\epsilon}_i\|^2] + \mathbb{E}[c_t \|\delta \boldsymbol{e}_i + \sigma_t \widetilde{\boldsymbol{U}}_k^{\star \top} \boldsymbol{\epsilon}_i\|^2]$$

$$= a_t (d + \sigma_t^2 d) + c_t (\delta^2 (K - 1)d + \sigma_t^2 (K - 1)d).$$

where the last equality follows from $a_i \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_d), e_i \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_{(K-1)d})$ and $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$. Without loss of generality, assume the j = k+1, we have:

$$\mathbb{E}[g_l^{\star}(\boldsymbol{x}_t, t)] = \mathbb{E}[a_t \|\boldsymbol{U}_l^{\star \top} \boldsymbol{x}_t\|^2 + c_t \|\widetilde{\boldsymbol{U}}_l^{\star \top} \boldsymbol{x}_t\|^2]$$

$$= \mathbb{E}[a_t \|\boldsymbol{U}_l^{\star \top} (\boldsymbol{U}_k^{\star} \boldsymbol{a}_i + \delta \widetilde{\boldsymbol{U}}_k^{\star} \boldsymbol{e}_i + \sigma_t \boldsymbol{\epsilon}_i)\|^2] + \mathbb{E}[c_t \|\widetilde{\boldsymbol{U}}_l^{\perp \top} (\boldsymbol{U}_k^{\star} \boldsymbol{a}_i + \delta \widetilde{\boldsymbol{U}}_k^{\star} \boldsymbol{e}_i + \sigma_t \boldsymbol{\epsilon}_i)\|^2]$$

$$= \mathbb{E}[a_t \|\delta \boldsymbol{e}_i[1:d] + \sigma_t \widetilde{\boldsymbol{U}}_l^{\star \top} \boldsymbol{\epsilon}_i\|^2] + \mathbb{E}\left[c_t \|\begin{bmatrix} \boldsymbol{a}_i \\ \boldsymbol{0} \in \mathbb{R}^{D-d} \end{bmatrix} + \delta \begin{bmatrix} \boldsymbol{0} \in \mathbb{R}^d \\ \boldsymbol{e}_i[d:D] \end{bmatrix} + \sigma_t \widetilde{\boldsymbol{U}}_l^{\star \top} \boldsymbol{\epsilon}_i\|^2\right]$$

$$= a_t \left(\delta^2 d + \sigma_t^2 d\right) + c_t \left(d + \delta^2 (K - 2) d + \sigma_t^2 (K - 1) d\right).$$

Hence we have

$$\mathbb{E}[g_k^*(\boldsymbol{x}_t, t)] - \mathbb{E}[g_l^*(\boldsymbol{x}_t, t)] \\
= a_t \left(d + \sigma_t^2 d - \delta^2 d - \sigma_t^2 d\right) + c_t \left(\delta^2 (K - 1)d + \sigma_t^2 (K - 1)d - d - \delta^2 (K - 2)d - \sigma_t^2 (K - 1)d\right) \\
= a_t (1 - \delta^2)d + c_t (\delta^2 - 1)d \\
= \frac{(1 - \delta^2)d}{2\sigma_t^2 (1 + \sigma_t^2)} + \frac{\delta^2 d(\delta^2 - 1)}{2\sigma_t^2 (\delta^2 + \sigma_t^2)} = \frac{(\delta^2 - 1)^2 d}{2(1 + \sigma_t^2)(\delta^2 + \sigma_t^2)}.$$

This, together with Lemma 1, yield (15)

Now we prove (12):

$$\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t) = \hat{w}_{k}^{\star}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\left(\frac{1}{1+\sigma_{t}^{2}}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + \frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\widetilde{\boldsymbol{U}}_{k}^{\star}\widetilde{\boldsymbol{U}}_{k}^{\star\top}\right)\boldsymbol{x}_{t}$$

$$\begin{split} & + \sum_{l \neq k} \hat{w}_{l}^{\star} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} \left(\frac{1}{1 + \sigma_{t}^{2}} \boldsymbol{U}_{l}^{\star} \boldsymbol{U}_{l}^{\star\top} + \frac{\delta^{2}}{\delta^{2} + \sigma_{t}^{2}} \widetilde{\boldsymbol{U}}_{l}^{\star} \widetilde{\boldsymbol{U}}_{l}^{\star\top} \right) \boldsymbol{x}_{t} \\ & = \hat{w}_{k}^{\star} \left(\frac{1}{1 + \sigma_{t}^{2}} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} \boldsymbol{x}_{t} \right) + \sum_{l \neq k} \hat{w}_{l}^{\star} \left(\frac{\delta^{2}}{\delta^{2} + \sigma_{t}^{2}} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} \boldsymbol{x}_{t} \right) \\ & = \left(\frac{\hat{w}_{k}^{\star}}{1 + \sigma_{t}^{2}} + \frac{(K - 1) \delta^{2} \hat{w}_{l}^{\star}}{\delta^{2} + \sigma_{t}^{2}} \right) \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} (\boldsymbol{U}_{k}^{\star} \boldsymbol{a}_{i} + \delta \widetilde{\boldsymbol{U}}_{k}^{\star} \boldsymbol{e}_{i} + \sigma_{t} \boldsymbol{\epsilon}_{i}) \\ & = \left(\frac{\hat{w}_{k}^{\star}}{1 + \sigma_{t}^{2}} + \frac{(K - 1) \delta^{2} \hat{w}_{l}^{\star}}{\delta^{2} + \sigma_{t}^{2}} \right) \left(\boldsymbol{U}_{k}^{\star} \boldsymbol{a}_{i} + \sigma_{t} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star\top} \boldsymbol{\epsilon}_{i} \right) \end{split}$$

Since $U_k \in \mathcal{O}^{n \times d}$:

$$\mathbb{E}[\|\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \left(\frac{\hat{w}_{k}}{1+\sigma_{t}^{2}} + \frac{(K-1)\delta^{2}\hat{w}_{l}}{\delta^{2}+\sigma_{t}^{2}}\right)^{2} \left(d+\sigma_{t}^{2}d\right),$$

and similarly for (13):

$$\begin{split} \boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t) &= \hat{\boldsymbol{w}}_{k}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{U}_{l}^{\star\top} \left(\frac{1}{1+\sigma_{t}^{2}}\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top} + \frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\tilde{\boldsymbol{U}}_{k}\tilde{\boldsymbol{U}}_{k}^{\star\top}\right)\boldsymbol{x}_{t} \\ &+ \hat{\boldsymbol{w}}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{U}_{l}^{\star\top} \left(\frac{1}{1+\sigma_{t}^{2}}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top} + \frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\tilde{\boldsymbol{U}}_{l}\tilde{\boldsymbol{U}}_{l}^{\star\top}\right)\boldsymbol{x}_{t} \\ &+ \sum_{j\neq k,l} \hat{\boldsymbol{w}}_{j}^{\star}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top} \left(\frac{1}{1+\sigma_{t}^{2}}\boldsymbol{U}_{j}^{\star}\boldsymbol{U}_{j}^{\star\top} + \frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\tilde{\boldsymbol{U}}_{j}\tilde{\boldsymbol{U}}_{j}^{\star\top}\right)\boldsymbol{x}_{t} \\ &= \hat{\boldsymbol{w}}_{k}^{\star} \left(\frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}\right) + \hat{\boldsymbol{w}}_{l}^{\star} \left(\frac{1}{1+\sigma_{t}^{2}}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}\right) + \sum_{j\neq k,l} \hat{\boldsymbol{w}}_{j}^{\star} \left(\frac{\delta^{2}}{\delta^{2}+\sigma_{t}^{2}}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{x}_{t}\right) \\ &= \left(\frac{\hat{\boldsymbol{w}}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{\boldsymbol{w}}_{k}^{\star} + (K-2)\hat{\boldsymbol{w}}_{j}^{\star})}{\delta^{2}+\sigma_{t}^{2}}\right) \boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top} (\boldsymbol{U}_{k}^{\star}\boldsymbol{a}_{i} + \delta\tilde{\boldsymbol{U}}_{k}^{\star}\boldsymbol{e}_{i} + \sigma_{t}\boldsymbol{\epsilon}_{i}) \\ &= \left(\frac{\hat{\boldsymbol{w}}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{\boldsymbol{w}}_{k}^{\star} + (K-2)\hat{\boldsymbol{w}}_{l}^{\star})}{\delta^{2}+\sigma_{t}^{2}}\right) \left(\delta\boldsymbol{U}_{l}^{\star}\boldsymbol{e}_{i}[1:d] + \sigma_{t}\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\boldsymbol{\epsilon}_{i}\right) \end{split}$$

where the third equality follows since $\hat{w}_i^{\star} = \hat{w}_l^{\star}$ for all $j \neq k, l$. Further, we have:

$$\mathbb{E}[\|\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \left(\frac{\hat{w}_{l}^{\star}}{1+\sigma_{\star}^{2}} + \frac{\delta^{2}(\hat{w}_{k}^{\star} + (K-2)\hat{w}_{l}^{\star})}{\delta^{2} + \sigma_{\star}^{2}}\right)^{2} \left(\delta^{2}d + \sigma_{t}^{2}d\right).$$

Lastly, we prove (14). Given that the subspaces of all classes and the complement space are both orthonormal and mutually orthogonal, we can write:

$$\mathbb{E}[\|\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \mathbb{E}[\|\boldsymbol{U}_{k}^{\star}\boldsymbol{U}_{k}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] + \mathbb{E}[\sum_{l\neq k}\|\boldsymbol{U}_{l}^{\star}\boldsymbol{U}_{l}^{\star\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] + \mathbb{E}[\|\boldsymbol{U}_{\perp}\boldsymbol{U}_{L}^{\top}\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}]$$

where we define the noise space as $U_{\perp} = \bigcap_{k=1}^{K} U_{k}^{\star \perp} \in \mathcal{O}^{n \times (n-Kd)}$, representing the directions orthogonal to all class subspaces. Since U_{\perp} is orthogonal to each U_{l}^{\star} , the third term vanishes. Combining the remaining terms, we obtain:

$$\mathbb{E}[\|\hat{\boldsymbol{x}}_{approx}^{\star}(\boldsymbol{x}_{t},t)\|^{2}] = \left(\frac{\hat{w}_{k}^{\star}}{1+\sigma_{t}^{2}} + \frac{(K-1)\delta^{2}\hat{w}_{l}^{\star}}{\delta^{2}+\sigma_{t}^{2}}\right)^{2} \left(d+\sigma_{t}^{2}d\right) + (K-1)\left(\frac{\hat{w}_{l}^{\star}}{1+\sigma_{t}^{2}} + \frac{\delta^{2}(\hat{w}_{k}^{\star} + (K-2)\hat{w}_{l}^{\star})}{\delta^{2}+\sigma_{t}^{2}}\right)^{2} \left(\delta^{2}d+\sigma_{t}^{2}d\right).$$