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ABSTRACT

As neural architectures continue to grow in complexity and scale, the development
of advanced optimization techniques has become increasingly important. Telepor-
tation has recently emerged as a principled approach for accelerating the conver-
gence of gradient descent-based algorithms by traversing loss-invariant level sets
to identify parameterizations with favorable geometric properties. Although prior
teleportation methods have achieved notable success in feedforward and convolu-
tional networks, extending these techniques to Transformer architectures presents
unique challenges. In particular, existing approaches typically assume the sym-
metry structure of vanilla attention, overlooking the critical role of positional en-
codings, which fundamentally reshape architectural symmetries and render earlier
analyses inapplicable. To address this gap, we present a systematic study of tele-
portation in Transformer-based models. We first characterize how the architectural
symmetry of multihead attention is modified under two widely used positional en-
coding schemes—sinusoidal and rotary—and provide a comprehensive description
of the resulting symmetry groups. Guided by these insights, we introduce a tele-
portation framework tailored to Transformers and evaluate its effectiveness across
diverse configurations, datasets, and modalities. Our results demonstrate the ver-
satility of teleportation, elucidate the interplay between positional encoding and
architectural symmetry in Transformer optimization, and establish a foundation
for the principled development of teleportation algorithms that fully exploit the
symmetry structure of Transformer architectures.

1 INTRODUCTION

Training modern deep learning models, particularly large-scale architectures such as Transformers,
is highly resource-intensive, requiring extensive computation and energy. As models and datasets
grow, accelerating optimization has become a central research challenge with direct implications for
feasibility and scalability. To address this challenge, a number of research directions have sought
to improve training speed and stability. Early work focused on optimization algorithms such as
momentum-based methods (Sutskever et al., 2013), Adam (Adam et al., 2014), and its variants like
AdamW (Loshchilov & Hutter, 2017). Beyond refining the optimization algorithm itself, subse-
quent research has explored more fundamental changes to the training dynamics, such as directly
manipulating the parameter space to escape challenging geometries.

Teleportation. Recently, teleportation has been proposed as a principled approach to accelerate
optimization by exploiting architectural symmetries that reparameterize neural networks without
changing their functional capacity (Armenta & Jodoin, 2021; Saul, 2023). Unlike conventional
gradient-based methods that advance through incremental updates, teleportation directly moves pa-
rameters to functionally equivalent states, thereby improving convergence efficiency (Zhao et al.,
2022a; Mishkin et al., 2023) while also facilitating broader exploration of the loss landscape in
contexts such as generalization (Zhao et al., 2022a) and privacy (Mabheri et al., 2025).

Functional Equivalence. The effectiveness of teleportation fundamentally relies on functional
equivalence, which asserts that distinct parameter configurations can realize the same network func-
tion (Armenta & Jodoin, 2021; Saul, 2023). This perspective explains why teleportation preserves
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Figure 1: (Left) Partition of the parameter space into functional equivalence classes, as stated in
Section 2. (Right) Illustration of teleportation in the optimization process: a point is mapped to
another parameterization that realizes the same function but alters the optimization dynamics and
trajectory, potentially leading the optimizer to a different local minimum.

expressivity and identifies the admissible directions along which parameters may vary without alter-
ing the underlying function. This principle has been applied across diverse architectures, including
multilayer perceptrons (Zhao et al., 2022a; Mishkin et al., 2024; Zhao et al., 2023), convolutional
networks (Armenta et al., 2023; Mabheri et al., 2025), recurrent models such as LSTMs in rein-
forcement learning (Zamir et al., 2025), and continual learning frameworks with low-rank adapta-
tion (Zhou et al., 2025). In contrast, only a few studies have investigated teleportation for Trans-
formers, and these remain confined to small-scale settings such as MNIST, time-series forecasting,
and Penn Treebank (Wu et al., 2025), leaving large-scale training largely unexplored. A key rea-
son is that functional equivalence in attention-based models has been scarcely studied, with existing
analyses limited to vanilla multihead attention (Tran et al., 2025; Knyazev et al., 2024).

Attention and Positional Encoding. The effectiveness of token teleportation in Transformers cru-
cially depends on positional encoding, since self-attention is permutation invariant and requires
explicit order information (Vaswani et al., 2017). Early approaches adopted Absolute Positional
Encodings (APEs), either sinusoidal or learnable, which became standard in BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), and ViT (Dosovitskiy et al., 2020). However, APEs generalize
poorly to longer sequences (Press et al., 2021; Dai et al., 2019). To overcome this, Relative Positional
Encodings (RPEs) (Shaw et al., 2018) were introduced, encoding pairwise distances directly into at-
tention and yielding improved robustness in Transformer-XL, T5, and DeBERTa (Dai et al., 2019;
Raffel et al., 2020; He et al., 2020). More recently, Rotary Positional Encoding (RoPE) (Su et al.,
2024) extended this principle by embedding relative information through rotational transformations
of query—key vectors, enabling translation equivariance and superior extrapolation. Its strong em-
pirical performance has made RoPE a central component in modern large-scale models (Touvron
et al., 2023; Chowdhery et al., 2023; Bai et al., 2025; Yang et al., 2025).

Contributions. Motivated by this line of work, we study the functional equivalence of Multihead
Attention with positional encoding (PE), examining how it alters the symmetry structure of attention
and its implications for teleportation training. The paper is organized as follows:

1. In Section 2, we examine the parameter space of a parameterized function, characterize its
associated symmetry group, and introduce the formal notion of maximality within symmetry
groups, establishing a direct connection to Functional Equivalence. We then compare with the
finding on symmetry of vanilla attention in literature.

2. In Section 3, we analyze how positional encodings alter the internal structure of attention. We
focus primarily on the most widely used encodings, Absolute PE and Relative PE. In particular,
we study sinusoidal PE as a representative of APE and rotary PE as a representative of RPE,
and show why results from the vanilla case do not extend directly to these settings. We then
present our finding that fully characterizes the symmetry of attention with widely used PE.

3. In Section 4, we introduce our teleportation method based on sampling minimal perturbations
along current optimization directions. This approach improves stability of teleportation steps
while significantly reducing computational overhead compared to Hessian-based methods.

4. In Section 5, we report experimental results showing that our algorithm accelerates conver-
gence, improves performance, and enhances generalization. We also present ablation studies
that identify effective teleportation configurations across datasets of different scales.
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A table of notation, theoretical foundations, and experimental details are provided in the Appendix.

2  FUNCTIONAL EQUIVALENCE AND MAXIMAL SYMMETRY GROUP

In this section, we formalize the parameter space of a parameterized function and its associated
symmetry groups, culminating in the definition of maximal symmetry groups, which provide a prin-
cipled link to Functional Equivalence (FE). We then specialize to Multihead Attention, examining
how this notion of maximality aligns with prior analyses.

2.1 PARAMETER SPACE, SYMMETRY GROUP, AND ITS MAXIMALITY

Parameter space. Let f(-;6) be a function parameterized by # € © = RY™, The set O is referred
to as the parameter space (or weight space) of f. Assume a group G acts on ©. For each § € O,
define the set of parameter vectors yielding functionally equivalent models:

0] ={feco|f(:0)=/r0}CcO. e
The parameter space serves as a surrogate for the underlying function class, and the mapping
6 — f(-;0) is non-injective, since distinct parameter configurations may correspond to identical
behaviors. This is illustrated in Figure 1. FE is therefore concerned with characterizing the sets [6].

As explicit enumeration is infeasible, a principled strategy is to interpret these equivalence classes
as orbits under a group action on O, leading naturally to the notion of the symmetry group of f.

Symmetry group. Let a group G act on ©. For 6 € O, the G-orbit of § is defined as GO := {g6 |
g € G} C ©. We now state the following definition.

Definition 2.1 (Symmetry Group). A group G is called a symmetry group of the function f if
G C [¢] for all § € ©. Equivalently, for every g € G and 6 € ©, one has f(-; g0) = f(-;0).

The phrase “a symmetry group” reflects that multiple such groups may exist. In particular, any sub-
group of a symmetry group is itself a symmetry group. Our objective is to represent the equivalence
classes [0] in terms of G-orbits. To develop intuition, we begin with two preliminary observations.

First observation. Consider the function f(-;a,b): R — R defined by x +— abx, parameterized by
0 = (a,b) € © = R2 It is immediate that (a, b) and (@, b) yield the same function if and only if
ab = ab. This naturally suggests a group action: let R* denote the multiplicative group of nonzero
real numbers, and define the action of ¢ € R* on (a,b) € R? by ¢ (a,b) = (ac,c™1b). Itis
straightforward to verify that R* is a symmetry group of f. However, it does not fully capture the
equivalence classes. Indeed, for (a,b) € R? with ab # 0, one has

[(a,b)] = {(a,b) € R?* | ab = ab} = {(ac,c™'b) | c € R*} = R*(a,b). (2)

In contrast, for (a,b) € R? with ab = 0, one has [(a,b)] = R*(1,0) U R*(0,1) U R*(0,0).
Hence, R* provides an almost complete description of the functional partition, but does not account
for the degenerate subset {(a,b) € R? : ab = 0}. It is difficult to identify a larger natural group
whose action extends to cover these exceptional cases.

Second observation. From classical group theory, any partition of a set can be realized as the orbit
decomposition of a suitable group action. Hence, there always exists a group G with an action on
O such that its orbits coincide with the functional partition. Nevertheless, constructing such a group
generally requires explicit transformations, which are often intractable and impractical. In parame-
terized models, where O is a finite-dimensional real vector space, it is natural to restrict attention to
group actions induced by standard operations such as addition, multiplication, or permutation.

These two observations highlight a trade-off: the tractability of the group action versus the expres-
sive capacity of the functional partition. This motivates the notion of maximal symmetry groups.
Maximal symmetry group. We now introduce the notion of a maximal symmetry group.

Definition 2.2 (Maximal symmetry group). (informal) For generic parameters, the symmetry group
G fully captures functional equivalence, up to a sufficiently small exceptional set.

In other words, let € denote a sufficiently small subset of ©, and consider the restricted domain
O\ €. The group action of G on © naturally restricts to © \ €. Then, for all §,6 € © \ ¢ such that
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f(;0) = f(-;0), there exists g € G with § = gf. Hence, although there may exist parameters in ©
for which G does not capture FE, this exceptional set is negligible, and G may still be regarded
as characterizing FE on ©. The subset ¢ is typically taken to be the zero set of finitely many
nonzero polynomials, i.e., a proper real algebraic variety, in line with prior work on FE in neural
architectures (Hecht-Nielsen, 1990; Fefferman & Markel, 1993; Bui Thi Mai & Lampert, 2020).
Definition 2.3 (Maximal symmetry group). A symmetry group G is called maximal if there exists a
proper real algebraic variety ¢ C O such that, for all 8,6 € © \ €, whenever f(-;60) = f(-;6), there
exists g € G with 6 = g6.

Remark 2.4. In the earlier example of f(-;a,b), lete = {(a,b) € R? : ab = 0}. Here ¢ forms a
proper real algebraic variety, and the group R* serves as a maximal symmetry group of f.

2.2 THE CASE OF MULTIHEAD ATTENTION

Parameter space. Let d denote the token dimension, L the sequence length, and / the number of
heads, where all are positive integers. Define the space of token sequences as S = LS RE*4,
For a fixed head dimension dj, let WiQ, WE WY WP € R for each i € [h], and set
0 = (W2, WK WY, WP)h_|. Given an input sequence x = (z1,...,27)7 € REXd c 8,
the Multihead Attention (MHA) mechanism with h heads is defined by

h
MHA (x: ) = 3 softmax ((xWiQ) (xWiK)T) (xWY) (WO)T. 3)

Here, the softmax operator is applied row-wise to the similarity matrix (xWiQ)(xWiK )T € REXL,
producing the attention for x. Each row forms a probability distribution that determines the relative
influence of all input tokens on a given output token. In practice, the head dimension is set to

dy, = d/h. The parameter space of the MultiHead map is then © = (Rdth)‘lh.

Maximal symmetry group. Define the following group Gy := Sj, x (GL(dj,) x GL(d}))". This
group is exactly the direct product of the permutation group S}, with h copies of GL(d}) x GL(d},).
Each element g € Ga can be written as g == (o, (U;, V;)™_,), where o € S}, and U;, V; € GL(dy,).
The group Gy acts naturally on the parameter space © as follows:

h

= Q T. WK -1V T. 1170 -1
99 = (W‘T(l) . UZ ’W”(i) ’ Ui ’Wo(i) sz aWﬂ(i) V; )i:l' “4)

It is evident that GG serves as a symmetry group of the MHA map. The reasoning is as follows: the
general linear action cancels within the matrix multiplications, while the permutation action induced
by o commutes with addition. Furthermore, GG is maximal, as formalized in the following result.

Theorem 2.5 (See Tran et al. (2025)). Consider two MHA maps with h heads, parameterized by
0= (W2, WE WY WO and§ = (W2, WK WY WP)r_, in©, respectively. Assume that

i i Ji=1
1. All matrices WiQ, WiK , VVZ-V7 WZ-O and WZQ, WZK , Wiv, Wio, for all feasible i, are of rank d,.
2. From 0, the matrices {WZ-Q(WiK YT}, are pairwise distinct. The same condition holds for 0.

If the two MHA maps are identical, there exists g € G such that 6 = gf.

Remark 2.6. Note that the conditions on # and # in Theorem 2.5 can both be expressed as the
vanishing of finitely many nonzero polynomials. This corresponds precisely to the real algebraic
variety ¢ introduced in Definition 2.3 of maximal symmetry groups.

3 ON THE EFFECT OF POSITIONAL ENCODING ON SYMMETRY GROUPS

Our investigation examines how positional encodings (PEs) alter the structure of attention. In par-
ticular, we focus on sinusoidal encoding and rotary encoding, which serve as canonical examples of
absolute and relative positional encoding approaches.

3.1 THE SETTING OF ABSOLUTE POSITIONAL ENCODING

Sinusoidal Encoding. Within Absolute PEs, positional information is encoded through a sequence
of vectors p = {p;}32, C R?. For the sinusoidal encoding proposed in the Transformer architecture
(Vaswani et al., 2017), the entries of each p,,, € R are specified as
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. m m
Pm .2k = S1 (W) ,and Py, ok41 = COS (W) s )
for 0 < k < d/2. For an input sequence x € S of length L, i.e., x = (x1,...,27)" € REX?, the
positional encoding is applied additively, thatis X +p = (z1 +p1,...,or +pr) " (this is an abuse

of notation), which is then supplied as input to the multihead attention, yielding MHAspg (x: 6) =
MHA (x + p: ). Under this formulation, PE does not alter the internal mechanism of the MHA
map in Equation (3); rather, it simply translates the inputs. The mapping x — x + p is bijective on
S. As aresult, incorporating sinusoidal PE has no effect on the functional equivalence analysis, and
the equivalence classes remain exactly the same as in the absence of positional encoding.

3.2 THE SETTING OF RELATIVE POSITIONAL ENCODING

Rotary Positional Encoding. We turn to the Rotary Positional Encoding (RoPE) (Su et al., 2024).
For each token position n, we specify the block-diagonal rotation matrix R,, € R% X by

R — dia cos(nyy) —sin(np;) cos(npg, ;2)  —sin(neq, /2) ©)
n = dlag sin(ngy)  cos(ngr) | 77777 |sin(ngg, 2)  cos(npg, /2) ’

where ¢; = 10000~20=1/4 for i € [d},/2]. We omit, for clarity, the explicit subscript for the head
size dj,. Noting that R,, = (R;1)", the multihead attention with RoPE takes the form

h
MHARepe(x : 0) = Z softmax ((XWLQRm) (xWiKRn)'r) - (xwY) W)
=1

WY WP )

n

Il
.M?

s
I
-

softmax [mm W,Q R,_n (WiK)TxT}
m,n=1,...,.L

Analysis of RoPE in Relation to Internal Structure and Symmetry. The parameterization and
parameter domain of MHAROPE match those of the vanilla MHA, but the action of GAtt on © is
no longer symmetric. Specifically, for § € © and g € Gay, one generally has MHARqpg(-; 6) #
MHAR.pg(+; g8). The underlying cause is that, while WY and W still interact multiplicatively
as in the vanilla case, WiQ and WX are now separated by the relative rotary matrix R,,_,. This
insertion blocks the cancellation of GL(d},) group actions, and thus the invariance property fails

Symmetry Group. To define the symmetry group, first, for i € [dj, /2], define matrices P;, J; €
R *dr each being block-diagonal with dj, /2 consecutive 2 x 2 diagonal blocks:

. 1 0 . 0 -1
P; = diag O,...,O,{O 1},0,...,0 , J; =diag (0,...,0,{1 0},O,...,O . (8
i-th block i-th block

Now define the following group

dn /2

H(dy,) == {{U = Z(aiPi + b;J;) € R&Xdn 2 (g, b;) € R2\ {(0,0)}, i € [dh/Q]}. ©)
i=1

Verifying directly, H(d},) forms an abelian subgroup of GL(d},), and moreover it is isomorphic to

(C*)/2, where C* denotes the multiplicative group of nonzero complex numbers. In particular,
for each n, the rotary matrix R,, belongs to H(d},). We proceed to define

Grop = Sp x (H(dp,) x GL(dp))" . (10)

Thus, Grepg is clearly a subgroup of G ay. Furthermore, the natural action of G A, on O restricts to
GRropE, yielding a valid group action on ©. Crucially, this action preserves the behavior of MHARepE,
so that GRoPE forms a symmetry group of MHARqpg.

Remark 3.1. The argument proceeds as follows. In comparison with the vanilla MultiHead map,
aside from the head permutation o and the product structure of WY and W2, the only modification
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concerns the interaction of VViQ with W Using the fact that H(d},) is abelian and that R,, € H(d},),
we obtain

WRUDR,WSKU™HT =WRUTR,(U)T(WS)T
=WPERUT(U )T (WT =WER, WS A
Thus, the product inside the softmax of the MultiHeadgepg map is invariant under GRrepg.-

We now show that Gropg constitutes a maximal symmetry group of MHARpE.

Theorem 3.2 (Maximality of Gropg). Consider two MHARpg maps with h heads, parameterized
by = (W2, WE WY WO and§ = (W2, W2, WY, WO)h_|, respectively. Assume that

7 7

1. In the initial MHARpg map, the h families listed below contain only nonzero matrices,
{WRWE)T + WEWRTHWRR W) heznzo } » for i € [h),
and these form h mutually distinct families. An analogous condition applies to the second map.
2. All matrices WZQ, WE WY WP and WZQ, WE WY WO, for all feasible i, are of rank dj,.
If the two MHARpg maps are identical, then there exists g € G such that 0= g0.

The proof of Theorem 3.2 is provided in Appendix B. Since the proof is lengthy and relies on
several key lemmas, we outline the main steps here. First, MHARqpg is reformulated in the form
of an exponential polynomial, and techniques from this area are applied to derive relations among
the parameters. Next, a structural property of the rotary matrix, established in Lemma B.12 of
Appendix B.6, is used to refine the analysis of these relations. Finally, this refinement enables us to
recover the existence of the group elements that connect the two parameter sets.

Remark 3.3. As H(d},) is significantly smaller than GL(d},), the expressive class of MHARqpg
strictly exceeds that of MHA or MHAapg. This observation gives theoretical support for the
widespread use of RoPE in attention models.

4 TELEPORTATION VIA MINIMAL PERTURBATION

In this section, we explore the integration of teleportation techniques into optimization methods.

Given a parameterized function f(-;8) with § € ©, let G be a symmetry group of f. Our goal is to
minimize the loss function £(#). During optimization, at teleportation steps K C {0,...,T — 1},
prior work uses expensive Hessian-based methods (Zhao et al., 2022a; Mishkin et al., 2024) to find
an optimal g € G. Such methods suffer from high memory costs (Nilsen et al., 2019) and numerical
instability (Etmann, 2019). Instead, we propose a simpler, sampling-based alternative.

While weight perturbations that increase the gradient norm can improve performance (Hochreiter &
Schmidhuber, 1997; Armenta et al., 2023), the underlying mechanism involves large transformations
that alter gradient dynamics. Such drastic changes, even when loss-preserving, risk moving the
optimizer into unfavorable regions and impairing convergence and generalization.

In contrast, we argue that small perturbations alongside a standard optimizer (e.g., SGD or Adam)
promote faster convergence. Small perturbations keep the optimization trajectory aligned with the
optimizer’s guidance, avoiding disruptive shifts. This approach balances the exploration from tele-
portation with the stability required for efficient convergence. Formally, let the symmetry group G
be equipped with a metric d;. We define the ball of radius o > 0 around the identity id¢ as:

Bg(a) ={g € G: da(g,ide) < a}. 12)
Each teleportation step is now performed within this ball B¢ («), ensuring that the applied transfor-
mation remains within a controlled perturbation range. Therefore, the optimal g is given by:

g — argmax][ (VL) ol (13)
9E€Bg(a)
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To avoid the prohibitive cost of solving the intractable optimization in Eq. (13), we adopt a sampling-
based approach to update g. With a fixed budget of M samples, the teleportation update is:

g — argmax {[[(VL)lgsoll2:- - (VL)lgusollz}- (14)

For the general linear group GL(n)-a metric space whose metric is induced from the space of n x n
matrices—we sample near the identity by constructing a diagonal matrix as follows diag(z1, . .., z,),
where each diagonal entry z; is sampled from U/ ([1—a, 14-a]). This creates controlled perturbations
near the identity matrix. Furthermore, if the current parameters 6, already have a high gradient norm
compared to their symmetric neighbors, they are likely in a favorable optimization region. Further
teleportation could then create an excessively large gradient, pushing the optimizer into an unstable
region of the loss (Zhao et al., 2022a; Mishkin et al., 2024). To mitigate this risk, we impose a
stability condition: teleportation is applied only if a majority of samples increase the gradient norm.
Let S, be the set of such samples:

Se=A{g9€ g1, gm} : IVLgo N2 > VLI, 2} - (15)
The update rule for g becomes

argmax||VL|goll2 if [S¢| > M/2,
qg= g€{g:} (16)
idg otherwise.

The parameters are updated via § < g6 before the standard optimizer step. Our full algorithm,
Teleportation Training with Sampling Minimal Perturbations, is summarized in Algorithm 1.

Remark 4.1. Note that, since the action of the permutation group .S,, commutes with the summation
operator in || (V.L)|4g]|2. its effect does not influence the optimization process. As a result, we can
disregard the permutation symmetry, and focus on groups that are equipped with a metric.

5 EXPERIMENTS

This section provides an evaluation of our approach on a set of vision and NLP benchmarks. We
conduct experiments with multiple architectures and PE schemes, including APE and RoPE, demon-
strating the flexibility and general applicability of the proposed framework across diverse settings.

5.1 EXPERIMENTAL SETUP

Optimizer Consideration. We mainly use SGD, as teleportation yields stronger gains in stability
and generalization compared to adaptive methods like Adam, where improvements are marginal.
SGD also avoids pathologies of adaptive optimizers, such as overfitting small-scale patterns and
slower convergence (Appendix D). For completeness, Adam results are also reported with detailed
analyses in Appendix F.

Datasets and Models. For vision tasks, we adopt the Vision Transformer (ViT) (Dosovitskiy et al.,
2020) on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), and ImageNet-1K
(Deng et al., 2009). For language modeling,, we employ Transformer-XL (Dai et al., 2019) on
WikiText-103 (Merity et al., 2016). All models are trained with SGD, momentum, and a cosine
scheduler. We also compare teleportation under two widely used forms of APE and RoPE. The
complete set of hyperparameters is provided in Appendix E, while Table 1 and Figure 2 present the
benchmark results obtained with teleportation.

Teleport Configuration. We employ Algorithm 1 to implement teleportation, with key hyperparam-
eters including the number of samples M, the radius «, and the the set of teleportation steps K. In
addition, we introduce a parameter consecutive steps which specifies how many teleportation steps
are applied consecutively. Guidelines for these parameter selection are provided in Appendix G,
where we also present an ablation study to highlight their impact on performance in Section 5.3.

5.2 EXPERIMENTAL RESULTS

Overall, teleportation consistently accelerates convergence on both APE and RoPE. On small
datasets such as MNIST and CIFAR-10, training reaches baseline performance 25-60% faster (815



Under review as a conference paper at ICLR 2026

Table 1: Performance of models with and without teleportation on MNIST, CIFAR-10, ImageNet-
1K (validation accuracy) and WikiText-103 (test perplexity) under different positional encodings.
We also compare with the teleportation method of Zhao et al. (2023) on MNIST and CIFAR-10.
Speedup denotes the relative training reduction needed for teleportation to match the baseline; N/A
indicates no measurable improvement.

APE RoPE
Dataset Teleport 0

Accuracy (%) T & PPL | Speedup (%) 1  Time/epoch |  Accuracy (%) T & PPL | Speedup (%) 1  Time/epoch |

MNIST No 98.03 +0.12 - 8.07 £0.32s 97.80 + 0.10 - 8.10+£0.19s
Yes 98.38 £0.15 43.41+£9.94 8.24 £+ 0.35s 98.41+0.20 58.98 + 6.35 8.32+£0.258
Yes (Zhao) 97.71 £ 0.17 N/A 8.36 £0.11s 97.82+0.17 19.37 £ 9.56 8.30+£0.18s
CIFAR-10 No 73.80 £ 0.44 - 6.97 £ 0.57s 72.58 + 0.86 - 6.97 + 0.58s
Yes 75.44 +0.61 26.41 +9.48 7.00 £ 0.28s 75.04 + 0.88 29.07 £ 8.92 7.11 £ 0.52s
Yes (Zhao) 73.69 +£0.72 N/A 7.04 £+ 0.09s 73.16 £0.18 7.73+£4.63 7.04 £ 0.06s
ImageNet-1K  No 67.85+0.15 - 14.28 £ 0.03m 70.73 +£0.07 - 16.47 £ 0.03m
Yes 69.01 £0.23 17.21 £1.12  14.30 £ 0.05m 71.33+£0.19 11.65+1.14  16.50 & 0.06m
WikiText-103  No 35.76 = 0.00 - 15.68 £ 0.04m 36.12 4+ 0.00 - 16.43 £ 0.05m
Yes 35.15+0.17 18.73 £1.57 15.72 £ 0.04m 35.70+0.26 21.124+1.85 16.46 £0.04m
MNIST CIFAR-10 ImageNet-1K WikiText-103
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' sy’ 60 35
93% 10 15 20 10 30 50 100 200 300 100k 300k 500k
Epoch Epoch Epoch Steps
---- APE —— APE-Teleport RoPE RoPE-Teleport

Figure 2: Validation performance on MNIST, CIFAR-10, ImageNet-1K (accuracy) and WikiText-
103 (perplexity), comparing models trained with and without teleportation under different PE.

epochs), while larger-scale tasks show more moderate yet substantial gains, 10-18% on ImageNet-
1K and about 20% on WikiText-103. RoPE exhibits the most consistent advantage, with acceleration
on MNIST reaching 59% versus 43% under APE. Beyond speed, improvements in final accuracy
and perplexity are modest (e.g., 2.46% on CIFAR-10), and the runtime overhead per epoch remains
negligible. These results highlight teleportation as a practical approach to reducing convergence
time in both vision and language models without sacrificing generalization.

Comparing algorithms. We compare our method with Zhao et al. (2023) on MNIST and CIFAR-
10. Our approach incurs a 2% computational overhead, whereas Zhao’s requires about double the
GPU memory (Table 3) without significant gains in accuracy or efficiency (Table 1, Appendix E).

5.3 ABLATION STUDY

This section investigates the sensitivity of teleportation to different configuration choices through an
ablation study. The complete ablation study results are reported in Table 2.

Datasets and Models. We conduct ablations on CIFAR-10 and WikiText-103 using RoPE (details
of architectures and hyperparameters in Appendix E). On CIFAR-10, we vary teleportation settings
across attention layers, radius, number of teleportation steps, teleportation epochs, and FFN contri-
bution. On WikiText-103, we analyze how teleportation step positions affect convergence speed.

Attention layers and FFN. Teleporting only the first attention layer hurts performance, while ap-
plying it to the last layer improves it; teleporting all layers achieves the best results. In contrast,
combining Attention and FFN often underperforms the baseline.

Radius and Number of Steps. Smaller radius or step counts yield weaker results, but overly large
values destabilize training. A balanced trade-off is required, where a smaller radius can be offset by
more steps and vice versa.
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Table 2: Ablation results on CIFAR-10 with RoPE, varying the teleported attention layers, tele-
portation radius «, number of teleportation steps | K |, teleportation epochs, and FEN contribution.
Results are reported as the mean and standard deviation over five runs. N/A indicates that the im-
provement in training time cannot be measured because the validation accuracy does not surpass the
non-teleportation baseline.

Change Layers a

=

(| Epochs FFN ValAcc(%)] Speedup (%) 1 Change Layers o« |K| Epochs FFN Val Acc(%)1 Speedup (%) T

Layers fist  0.65 4 1 0 69.65+1.24 N/A |K]| all 065 2 1 0 73.24+1.30  13.47+11.42
last 065 4 1 0 7404+016 19.31+0.25 all 065 4 1 0 75.04+0.88  20.07+£8.92
all 065 4 1 0 75.04+0.88 29.07+8.92 all 065 6 1 0  75.70+0.34 31.46+0.37

N all 09 4 1 0 6617+7.02 N/A all 065 8 1 0 7326171 22.90£3.04
all 0.65 4 1 0 75.04+0.88 29.07 +8.92 all 0.65 10 1 0 6747+6.35 N/A
all 05 4 1 0 73.74£018 17.94+1.59 Epochs  all 0.65 4 1 0 75.04+088  29.07+8.92
all 05 8 1 0 7T470+144  30.85+ 11.66 all 065 4 3 0 75AT+1.11 33734415
all 03 8 ! 0 TLT7TE134 N/A all 04 8 1,2 0 T75.08£081 24.08+8.72
al 03 16 1 0 7.00£140 36.62+3.01 all 03 8 1,23 0 73.94+081 2450 +4.80

FFN  all 065 4 1 1 70.89+1.62 N/A all 03 8 1,35 0 7449+038 24.13+381

Teleportation epochs (steps). The effectiveness of teleportation depends strongly on when it is
applied. On CIFAR-10, spreading teleportation across multiple epochs forces reductions in step
count or radius to prevent gradient explosion, yielding weaker results than concentrating it at a
single well-chosen epoch with a larger radius. Similar sensitivity is observed on WikiText-103
(Table 6), optimal performance arises when teleportation occurs during an intermediate warmup
stage (25-50%), where gradients are sufficiently scaled, before stabilized convergence is reached.

Training time. Increasing the sample size M improves stability but adds runtime, with theoretical
overhead ~ 100 2L oz - Ag M and | K| are typically small(Appendix G), the cost remains below

total steps
3%, while practical system-level variability rarely causes significant slowdowns.

5.4 GENERALIZATION

Beyond its impact on convergence speed, teleportation also enhances the generalization.

Teleportation converges to flatter minima. While our primary goal is to amplify gradient magni-
tudes, we also observe improved validation accuracy, suggesting enhanced generalization. Sharp-
ness analysis following Foret et al. (2020) confirms that teleportation leads to flatter minima (Ta-
ble 4), consistent with prior findings (Zhao et al., 2023).

Large noise of gradient. Complementary evidence arises from gradient noise estimation using the
methodology of Wu et al. (2020), which reveals elevated noise levels after teleportation (Figure 3a).
This observation agrees with prior findings Smith & Le (2017); Feng & Tu (2021), which argue that
increased stochastic gradient noise can promote better generalization.

Smaller ¢, gradient norms. We additionally analyze the dynamics of /5 gradient norms throughout
training. Teleportation produces larger norms in the early stages but smaller ones toward the end
(Figure 3b). This pattern resonates with the insights of Zhao et al. (2022b), which demonstrate that
reduced gradient magnitudes in later phases are conducive to stronger generalization.

Taken together, these results suggest that teleportation not only accelerates optimization but also
implicitly enhances generalization by promoting flatter minima, injecting beneficial gradient noise,
and shaping gradient dynamics in a favorable manner.

6 CONCLUSION

In this paper, we introduce a framework for functional equivalence, symmetry groups, and maxi-
mal symmetry groups. We analyze Multihead Attention with a focus on how positional encodings
reshape the symmetry structure of vanilla attention—a perspective not formally addressed before.
Building on this, we propose a teleportation-based method to accelerate Transformer optimization.
Experiments demonstrate that teleportation improves both convergence speed and model perfor-
mance, and we further identify suitable configurations across datasets of different scales. However,
threshold selection remains limited, and the behavior of teleportation on very large models such as
LLMs has yet to be explored, which we highlight as an important direction for future work.
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TABLE OF NOTATION

General Mathematical Notation

R’ﬂ
RTTL Xn
softmax(-)

- ll2

Dimensions and Indices
d

dp,

h

L

m,n, k

1

Spaces and Parameters
S

We WK wY we

0

(C]

AP B,

Symmetry Groups
Sh

GL(dh )

Gan

g

n-dimensional Euclidean space

Space of m x n real matrices

Row-wise softmax operator

Euclidean norm (for vectors or gradients)

Dimension of token embeddings

Dimension of each attention head

Number of attention heads in a model

Length of the input token sequence

Indices representing positions in a sequence or shifts
Index representing attention heads

The space of all token sequences, | |7, RExd

Query, key, value, and output matrices of head ¢, each in Raxdn
The complete set of parameters for a multi-head attention layer
The parameter space for a multi-head attention layer, (R?*d)4h
Parameter matrices for the general multi-head attention formulation

The permutation group on a set of h elements

The general linear group of invertible d;, x d;, matrices

The symmetry group for standard multi-head attention

Element of Gay, g = (o, (Us, Vi)P_,) with o € Sp,, U;, Vi € GL(d},)

Positional Encodings (RoPE)

R'IL
0;
P, J;

The block-diagonal rotation matrix for relative position 7 in RoPE
The rotation angle (frequency) for the i-th 2D block in RoPE matrices
Projection and skew-symmetric matrices for the i-th 2D block

Optimization and Teleportation

£(6)
VLo

Loss function to minimize

Gradient of the loss at parameters 6

Optimizer update function

Total number of optimization steps

Set of teleportation steps

Perturbation range for sampling

Number of samples for teleportation

Ball of radius « in G centered at the identity, w.r.t. metric d¢
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A FUNCTIONAL EQUIVALENCE OF VANILLA MULTIHEAD ATTENTION

Let d, dj, be positive integers with d > dj,. A multihead attention operator with h heads is defined
by

MHA (XZ {Win Wi wy, Wio}zhzl)
h
= softmax((xWiQ)(xWiK)T) WYY (WO)T, 17)
i=1
where WiQ, WE WY W € R™*dr The operator is parameterized by
h
0 = (WiQ7WiK’WiV7WiO)Z‘:1a (18)
and its parameter space is

)4h

0 = (R (19)
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For brevity, the number of heads h is omitted from the notation ©. When it is necessary to emphasize
h, we write ©y,.

Group Action on the Parameter Space. Define the following group
Gau = Sh x (GL(dp) x GL(dp))" . (20)
This is precisely the direct product between the permutation group S, and h copies of GL(dy) X
GL(dy,). Each group element g € Gy has the form
g = (07 (Uia‘/i)?:1)? (2])

where o € S, and U;, V; € GL(dy,). The natural action of G ay on the parameter space © is defined
by

h
g0 = (W .U’ wE vt wY v wo. vt (22)
o (i) % o (i) 7 o (i) i o (1) 7 im1
This action preserves the functionality of the MHA map: for all € © and all g € Gay,
MHA(+;0) = MHA(:; g6). (23)

The contribution of the general linear group action vanishes through cancellation in the matrix mul-
tiplications, while the action induced by the permutation 0 commutes with the addition operator.
Taken together, these actions characterize the full symmetry of the multihead attention mechanism,
as established in the following result from Tran et al. (2025).

Theorem A.1 (See Tran et al. (2025)). Let
h
0= (we Wk wrwe)

1=

_ _ _ _ _ h
€, and 0= (WF,W&WZ_V,WZ.O) €, (4

i=1
be two parameterizations of MHA maps. Assume that:

1. Every d x dj, matrix appearing in 0 and 0 has full column rank dy,;

2. The matrices {WiQ(WiK )" }2_| are pairwise distinct;

3. The matrices {WiQ(WiK )T, are pairwise distinct.

If the two MHA maps are identical, i.e.,
MHA (-;§) = MHA(-;0), (25)

then, h = h, and there exists g € Gy such that 0 = gb.

B A PROOF FOR THEOREM 3.2 AND A GENERALIZED VERSION

B.1 A GENERAL FORMULATION FOR MULTIHEAD ATTENTION
Consider an h-head MHA, specified by the following parameters:
0 = {{A7"" Y n, Bitiss, (26)

where every A" and B; are elements of R¥*4 specified as:

h
MHA(x;0) = Z softmax [z, A7""z,]

"]m,nzl,“.,L
=1

-xB;. Q7

The subsequent analysis of the general MHA is preceded by two preliminary observations.

1. For all integers m,n > 1 and shifts k£ > 0, we take
Amen — Am+k,n+k. (28)

This aligns with the natural stationarity constraint enforced by relative positional encod-
ings.
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2. For each m > 1, the similarity of the m-th token with itself at head 7 is computed by a
function f parameterized by A7, namely
T AT ] (29)

m

Given that any quadratic form uniquely corresponds to a symmetric matrix, we may assume

AT"™ is symmetrized:

A 4 (AT

AT — 5 (30)
This transformation keeps the function unchanged:
A'r_n,m A’r_n,m T
T AT = xm< L +2( i) ) i (31)

Thus, going forward, we suppose that A]""" is symmetric for all i, m.

We now turn to the case, under this framework, where two MHA maps with h and h heads produce
equivalent outputs:

MHA (x; §) = MHA(x; 6). (32)

From g(-: B) = —g(-: — B), it follows that Equation (32) amounts to asserting that a MultiHead
map with i + h heads vanishes everywhere:

0 = MHA(x; 60U 6). (33)

The analysis of functional equivalence begins with identifying when a MultiHead map is identically
zero. Prior to presenting the proof, we put forth the following definition. Two parameter families
{A™"},, n>1 and {A"™"},, ,>1 are said to be distinct provided there exist indices m,n > 1 for
which

AT £ A (34)

The stage is now set to introduce the main theorem of this section.

B.2 FUNCTIONAL EQUIVALENCE OF GENERAL MULTIHEAD ATTENTION

Theorem B.1 (Linear independence in general MHA). We focus on the MultiHead operator with h
heads, parameterized by 6, under the assumption that the parameter families

{Agn’n}m,nZM {A;n’n}m,nZM ceey {A;Ln’n}mmZD (35)

are mutually distinct, with the condition that A" is nonzero for each i € [h|and every m,n > 1.
If forallx € S = U3 REX | the following holds:

MHA(x;6) = 0. (36)
then, By, ..., By are equal to 0.

Proof. To aid understanding, we outline the principal steps of the proof at a high level:

1. Preliminary setup. To set the stage for the proof, we begin with a few preliminary remarks
and notational conventions. The argument reduces to showing that at least one coefficient
B; vanishes. Symmetry in the setup then guarantees that every B; must be zero, proving
the theorem.

2. Reformulation as an exponential polynomial. From Equation (36), we obtain

h h
0= Z exp (Z xkAftx;r> <Z xtiBi> . (37)
i=1

(t1,..,tn)E[L]™ i=1

By a double-counting argument, this identity holds. The corresponding expression forms
an exponential polynomial that is everywhere zero. To proceed, we invoke linear indepen-
dence results for exponential functions over rational fields, which force specific relations
among the coefficients.
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3. Structural constraints on the B;. Using the linear independence principle, we deduce
a key structural restriction on the coefficients B;. In particular, the symmetry conditions
imposed by the Af’t on permissible permutations enforce a collection of linear relations
among the B;, indexed by ¢ € [h]. These relations lie at the heart of the proof: they reduce
the analysis of a complex exponential sum to checking the consistency of a system of linear
equations in the B;.

4. Partition-based refinement. Next, we investigate the equalities arising among the families
{Af’t h_,. This step clarifies that the structural relations from the previous stage are both
necessary and sufficient to ensure that at least one B; must vanish. The refinement makes
use of the partitioning {U),} together with carefully chosen subsets V%, allowing us to
sharpen the constraints and identify the relevant indices.

5. Conclusion. In the final step, we integrate the arguments developed above. The structural
relations identified in Step 3, once refined through the partition analysis of Step 4, ensure
that at least one B; must vanish. By the reduction carried out in Step 1, it follows that every
B, is zero, which completes the theorem.

The complete argument is presented as follows.

Step 1.
We express the formulation of
MHA(x; 6) (38)
in a token-wise manner. From Equation (36), for every 1 < k < L, one has
h L kg, T
exp(zrA; !
P I R L] 2
i=1 \j=1 Zq:l exp(wxA; xq)
Since the families {A7""},, n>1, {45 " bn>1, -« - {4} i n>1 are pairwise distinct, and for

each i, A" depends only on the difference (m — n), one can choose a sufficiently large L and an
index £ such that the h sets

{Allgﬁn}nzh {Ag)n}nZh ceey {AfL’n}nZl
are pairwise distinct. For the remainder of the proof, we fix such a k£ and consider all L > k.

By induction, it suffices to establish that at least one of By, ..., By vanishes. Indeed, if this holds,
then the problem reduces to a MultiHead Attention mechanism with fewer heads, and repeating the
argument shows that all By, ..., By must be zero. Consequently, our goal is to prove that there
exists at least one index 1 < ¢ < h such that B; = 0.

Step 2.

First, we rewrite Equation (39) in a more convenient form. By multiplying out all denominators in
Equation (39), we obtain

h L L

Z Zexp(mkAf’jm;r) . H (Z exp(xkA’;’qx;—)> -x;B; | =0. 40)
i=1 \j=1 pe[p]\{i} \g¢=1

We now observe that the left-hand side of Equation (40) can be re-expressed as

h L L
Z Zexp(xkAf’jx;r)- H <Zexp(xkAI;’qx;r)>-iji

i=1 \ j=1 pe[h\{i} \g=1

h h
= Z exp (Z xkAft’x,I> <Z mtiBz) . 41
e[L)n i=1

(t1,00estn) i=1
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To verify Equation (41), define for i € [h] and j € [L],
a; ;= exp(xkAf’jij) , bij = x;B;.
In this notation, the claimed identity becomes
h L L h h
DI DORTIS | STSRTH ED DI 01 O 1 Dot
i=1 \J=1  peln\{i} ¢=1 (t1,eenstn)E[L]P \i '

For (i,t) € [h] x [L]", define the weight

h
t) = < H aP7tp) bi»ti'
p=1
We will compute the following quantity in two ways,

Z w(i, t).
(i,6)€h] x [L]"

Group by the distinguished index 1.
Fix i € [h]. Then

L h
Z w(i,t) = Z Z (H ap,tp) bi t;

te[L)" t=1 (t,)ppi€[L]n1 =1
L
=2 anbiee Y. [l
ti=1 (tp)pri€[LIn-1 pi

()

The inner sum (%) equals

L
H E Qp,q»

p#i q=1

since expanding the product enumerates every choice of (¢,),-; exactly once. Hence

2, v Zaw (IT Zap,)

te[L]n p#i q=1
Summing over ¢ = 1, ..., h yields the left-hand side of Equation (43).
Group by the tuple t.
Fix t = (t1,...,tn) € [L]". Then

h

Zw i,t) = Z ( H Clp,t,,) bit, = (ﬁ ap,tp) (ibzt,)
i=1 i=1  p=1 p=1 i=1

1=

Summing over all t yields the right-hand side of Equation (43).

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

In conclusion, both groupings compute the same total Z(i,t)eﬂ w(i,t), so Equation (43) holds.

Substituting back a; ; = exp(x A ), bij = x;B; recovers the original identity. From Equa-

tion (40) and Equation (41), we conclude that

h F
0= Z lexp <Z xkAf’“%t) <i: xtiBi>
el i=1

(t1,eestn) =1

19
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Note that in Equation (50), both sides represent vectors in R%. If we examine a single coordinate of
this vector, the identity remains valid by restricting each B; to the corresponding column indexed
by that coordinate. Hence, without loss of generality, we may interpret Equation (50) under the
convention that each B; is regarded as a column vector in R corresponding to the chosen coordinate.

Step 3.
For (t1,...,ts) € N", define
h
itr, ) (%) = Y wp AT ], € R[x], (51)
i=1
h
Myt (%) = Y74, Bi € R[x], (52)
i=1
f(tl,...,t,,,)(x) = eXP(gk,(tl,...,th)(X)) h(tl,...,th)(x)~ (53)

Then Equation (50) can be rewritten as
0= Z f(tl,...,th)(x)
(t1,...,tn)€[L]P

= Z eXp(.g(tl,...,th)(X)) h(tl,‘..,th,)(x)- 54

(t1,.-5tn)E[L]M

Observe that each polynomial g, ... +,) € R[x] has constant term equal to zero. By Lemma B.3,
Equation (54) implies that, for each g € R[x], grouping together all indices (¢1,...,ts) such that
9(tr,.ntn) = 9 yields

0= > exD(G(t1.t) (X)) Ptrnntn) (%), (55)
(ti,etn)E[L]R - 9(ty,..., tp) =9

and since exp(g(x)) is common to all such terms, we conclude

0= > Pty tn) (X). (56)

(t1sestn)ELLIY 0 g(eq,...0)=9

One has the following observation. Consider an arbitrary tuple (t1,...,t,) € [L]" such that
t1,...,t, are pairwise distinct. Assume that there exists another tuple (¢;,...,t,) € [L]" satis-
fying

Ytrsotn) = 9(ty..th,)- &7

Since all A" are nonzero and A} is symmetric, it follows that every polynomial of the form
m,n . . . . . .

A" T, is nonvanishing. Consequently, in gy, (4, ... +,). for each i € [h], there must exist polyno-

mial terms that involve at least one entry of x;,. (This requirement that the ¢;’s be pairwise distinct

is crucial, as it prevents possible cancellation of terms.) Hence, for each ¢ € [h], there exists j € [h]

such that ¢; = ;. Moreover, since the ¢;’s are pairwise distinct, it follows that (#7, ...} ) must be
a permutation of (t1,...,t5). From Equation (54) and Lemma B.3, one therefore obtains

0=">" ity syt (X)- (58)

oc€Sh
It should be emphasized, however, that the condition (¢/, . .., t},) being a permutation of (¢1, ... ,t)
is not sufficient, in itself, to guarantee that g, . +,) = g, soty)- TO examine this more closely, let
l(1’1, cooty) = (te1)s - - s ton)) for some o € Sy From the assumption g, .. +,) = 9(t)....t})» We
ave
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Z:ckAktxt 72 RAPIO g . (59)

By reindexing the summation, this is equivalent to
h h
kit; T kti T
DAY g =) A el (60)
i=1 i=1

which in turn is equivalent to requiring that A?’t’ AP fﬁ ) for all ¢ € [h]. This shows explicitly

the additional algebraic condition that must hold in order for two permutations to yield the same
polynomial g. Note that this constitutes a sufficient condition on o € S}, to ensure that g, ... ¢,) =

9(t...t,) Whenever (¢4, ..., 1}) = (to1)s - to(n))-

Accordingly, one deduces

0= h(tcr(l)a“'vto'(h))(x)
Sp o AV =AY viem
o€Sh 1 Ay T=A 1, Vel
h
= E T, Bi
k,t; kot . =1
€Sy ¢ A J=AU,J1<J.> vj€lh]
h
= E E xtiBafl(i)
oeSy : A=At yiem VL

J o135

M

k,t
J

h
(zxtiBam)
o€, : A (h) N=1

h
Z L; Z Ba(i) . (61)

i=1 kot

J_
A(>V]€

oES), : A Aa( ) Vi€lh]
Thus, since the entries t1, . . ., ¢} are pairwise distinct, the monomials x;, are linearly independent.
It therefore follows that, for each i € [h], one must have
0= Z By i)- (62)
oSy« A; =40 vielh]

Equation (62) encapsulates the key structural constraint on the coefficients B;. It shows that, once
the Af’t’s impose symmetry conditions on admissible permutations, the B;’s must satisfy a family

of linear relations indexed by ¢ € [h]. This relation will serve as the main tool in subsequent steps,
where we will exploit the partition structure of the U,’s to force specific B;’s to vanish.

Step 4.

For each t € N, define {U}},~, to be the unique partition of [h] such that, for i, j € [h], one has

Af = Af’t if and only if ¢ and j belong to the same set U;. Since the number of possible partitions
of {1,...,h} is finite, there exists a partition {U),}7_; such that the equality

(U oty = {Up o (63)
holds for infinitely many values of ¢ € N. Let .S denote the set of all such positive integers ¢.

By reindexing the head indices if necessary, we may assume that

U ={1,...,m}. (64)
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Next, observe that since the h sequences

k, K, K,
{A1 n}nzl» {A2 n}n217 R {Ah n}nZl (65)
are pairwise distinct, there exists a positive integer K such that the truncated sequences
k.ny K kK k,ny K
{Al n}n:17 {AZ n}n:17 cety {Ah n}nzl (66)

are already pairwise distinct. We then discard all integers ¢ < K from the set S, and by a slight
abuse of notation, continue to denote the resulting subset by the same symbol S.

at

p—1, We denote by U t(1) the unique set that contains the index 1.

Finally, for each partition {U},

(i) The intersection of K sets U'(1),U%(1),..., UK (1) is precisely {1}, i.e.,
Ut nur)yn---nUf) = {1} (67)

Indeed, since 1 € Ut(1) forallt = 1,..., K, it follows immediately that

1LeU' ) nU*(1)N---nUK(1). (68)
Suppose, for the sake of contradiction, that there exists some ¢ € [h] with ¢ > 1 such that

e UN)NUA(1)N---nUX(). (69)
By the construction of U*(1), this assumption implies that Alf’t = Af’t forallt = 1,..., K.

Equivalently, the infinite sequences { A¥"},,>1 and {A%"},,>; coincide. This, however, contradicts
the fact that their finite truncations

k, k, k,
{Al n}rif:lv {A2 n}i{:lv e {Ah n}fz{:l
are pairwise distinct by the choice of K.

Therefore, no such i > 1 can exist. The only common element across all U (1),..., U (1) is the
index 1, which establishes the claim.

(ii) Foreacht = 1, ..., K, define the set
Vi=U'"1)n{1,2,...,m} C {1,2,...,m}. (70)
Then, one has

Vinvin...nvE={1}. (71)

Indeed, one computes

vinvin...nvk

I
DL

')

D)
—~—
—

,...,m})

o~
Il
—

Ut(l) n {1,...,m}

Il
iD=

Il
~—
—

.., m}

—
B s el
D
—~
—

(72)

(iii) Among the K sets V1,... , V&, there exists a positive integer v < m such that one can select
7y sets, say VI, ... Vi with1 <ty <ty < -+ < t, < K, satisfying the following property: the
intersection of these vy sets is {1}, whereas the intersection of any v — 1 among them is no longer
{1}.

To prove this, let v be the smallest positive integer such that there exist  sets among V!, ... VK
whose intersection equals {1}. The existence of such a -y is guaranteed since the intersection of all
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K sets is {1}. Denote these «y sets by V' ... V. By the minimality of v, if one removes any
single set from {V?1 ... V% }, the intersection of the remaining v — 1 sets cannot be {1}.
It remains to show that v < m. By minimality, it suffices to establish the existence of fewer than m
sets among {V'!,... VE} whose intersection is {1}. Since

Vinvin...nvE={1}, (73)
for each i € {2,...,m} there must exist at least one set among V1,..., VX that does not contain

i. As there are m — 1 such indices 7, we can collect at most m — 1 sets that collectively exclude all
of these elements. Consequently, the intersection of these at most m — 1 sets is {1}, which proves
y<m-—1<m.

This completes the proof. The argument is essentially a pigeonhole-type principle: since every
element ¢ € {2,...,m} must be excluded by at least one set, and there are m — 1 such elements
in total, at most m — 1 sets suffice to ensure that all of them are removed, leaving only 1 in the
intersection.

(iv) In those «y sets V11 ... V' in (iii), for each i € [y], one can choose v; € V' such that
V1,...,Vy are pairwise distinct.

This is a standard application of the Hall Marriage Theorem (see Appendix B.3.2). For convenience,
rename V% as W for i € [y]. Foreach k € {1,...,~}, by assumption, we may choose

bee (W) \ {1} (74)

i#k
By construction, by, # 1, and by € W for all 4 # k. Moreover, b ¢ Wk, since otherwise by,
would belong to (]_, W* = {1}, a contradiction. Let B = {b1,...,b,}. Consider the bipartite
graph with left vertices {W!, ..., W7} and right vertices {1} U B C {1,...,m}, with an edge
W? « x whenever z € W A system of distinct representatives (SDR) of size + in this graph

yields the desired elements v; € W*. By Hall’s theorem, it suffices to show that for every nonempty
J C{1,...,~}, the neighborhood N (J) satisfies | N (J)| > |J|.

e If |J| = 1, say J = {i}, then 1 € W'. Furthermore, for every k # i we have b, € W*.
Thus
IN(DZ1+ (=1 =~ =]J]. (75)

o« If[J] > 2, fix k€ {1,...,7}.

- Ifk ¢ J, then b, € W' for every i € J, hence by, € N(J).
- If k € J,pick any j € J \ {k}. Since by, € W7, it follows that b, € N(J).

Thus every by, belongs to N(J), and clearly 1 € N(J). Hence
IN()| > |Bl+1=~v+12>|J]| (76)

Since Hall’s condition is satisfied, there exists a matching that assigns to each W a distinct element
of {1} U B contained in W". These assigned elements provide the required representatives v; € W,
which are pairwise distinct.

Step 5.

To deliver the result of this part, we now employ the token indices ¢1,. .., ¢, identified in (iii) and
(iv) of Step 4, together with the token indices in the set S also obtained in Step 4. We recall the
properties of these token indices that will be used:

1. Forallt € S, the partition {U,}*, defined in Step 4, coincides with {U, }7_;. In partic-
ular, by reindexing the head indices, we may assume U; = {1,...,m}. This guarantees
that the structure of the partition is stable across infinitely many ¢ € S, providing us with a

consistent reference framework.
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2. Forall t; withi € [y], where v < m, recall that V% = U (1)N{1,...,m}. One can select
~ head indices v; € V'* such that they are pairwise distinct. This property will be crucial
later when we need to ensure that certain representatives can be chosen without overlap.

We also recall the main result from Step 3, namely Equation (62): for any (s1, ..., s,) € [L]" with
pairwise distinct entries, and for each ¢ € [h], one has
0= > By i)- (77)
oES), : AL :Af'(‘;ﬂ)' vielh]

This identity is the foundation of the argument: it asserts that, under the given matching condition
on the coefficients A j’sj, a nontrivial linear combination of the B;’s must vanish.

Now, in Equation (77), let us consider (si,...,s,) € [L]" constructed as follows. First, observe
that the index set {1, ..., h} can be decomposed into three disjoint parts:

{1,...,hy={v1,...,0} U ({1,...,m}\{v1,...,00}) U (UL UsU---UU,).  (78)

The first component corresponds to the specially chosen distinct representatives v;, the second to
the remaining elements of Uy, and the third to all indices belonging to the other partition classes
Us,...,U,.

Now fix a subset T C [y]. Define (s1,...,s,) € [L]" by setting, for each j € [h],

1. If j = v; for some i € T', then set s; = s, = t;. In other words, the positions correspond-
ing to T" are aligned with the distinguished token indices ;.

2. Ifj € {1,...,m} \ {v; : i € T}, take s; to be an arbitrary element of .S. This ensures
consistency with the partition structure while leaving us flexibility in the assignment.

3. If j € Uy, for some 2 < p < a, then take s; to be an arbitrary element of S. Again, this
choice respects the partitioning of indices into classes U,,.

For the chosen (s1,...,s) € [L]", we analyze which o € S}, satisfy the condition A?’Sﬂ' = A’;(ZJ)

for all j € [h]. We make the following observations, case by case:

I. Forj c Up UUs U---UU,,say j € U, with2 < p < «, the condition A;‘f’sj = AS(S]J)

implies o(j) € U,. Hence
0(U2L|U3|_|"'|_|Ua):UQHUguu'uUa, (79)
and consequently o(Uy) = U;. In particular, if j € Uy, then o(j) € Us.

2. Forj e {1,...,m}\{v; : i € T}, if Af’sj = Ai(?) then necessarily o(j) € Uy =
{1,...,m}. Thus the entire set U; is stable under o, but the specific images of these
indices may vary within Uj.

3. For j = v; with ¢ € T, if Af’sj = fj(‘;’) then o(j) € U®i (1) = U'(1). From the
previous point, we also know o(j) € U;. Taken together, these conditions imply that
o(j) € Vt = Ut (1) N U;. In other words, the image of v; under o is constrained to lie
inside the restricted set V.

]C,Sj _ A}{),S]'

Therefore, specifying a o € S, that satisfies A" = o forall j € [h] is equivalent to:

1. Foreach j = v; with i € T, choosing o(j) = o(v;) € V¥,
2. Foreachj € {1,...,m} \ {v; : i € T}, choosing o(j) € Uz \ {o(v;) : i € T} arbitrarily,

3. Foreach j € U, with 2 < p < q, choosing o(j) € U,,.

24



Under review as a conference paper at ICLR 2026

In conclusion, the structure of admissible permutations ¢ in Equation (77) is fully determined by
the subset T’ C [7] and the representatives v; € V' chosen in Step 4. This description clarifies how
the constraints arising from the partition classes U, and the distinguished representatives v; together
restrict the allowed form of 0. Consequently, the sum in Equation (77) can be partitioned into
contributions indexed by subsets T' C [], which will be the key mechanism for deriving vanishing
conditions on the B;’s in the subsequent step.

With these observations in hand, we now perform explicit computations. Fix one choice of
(81,-..,8,) € [L]" satisfying the above construction, and in Equation (77) take i = v; for some
1 € T. The equation then specializes to

0= Z Bywy)

kot kiti
oESh A ]:AG(].J) vje[h]

= Z B, - (the number of h-tuples in the Cartesian product
veVti

«
. —|T
IV o= T oo,
JjeT p=2

such that all h entries are pairwise distinct, and

the coordinate corresponding to V' is fixed to be v) . (80)

The interpretation is as follows: each valid permutation o contributes one admissible tuple, and the
contribution is grouped according to which element v € V% is assigned to the coordinate corre-
sponding to V'*i. The factor multiplying B, therefore counts exactly the number of such admissible
tuples.

Now, observe that once the coordinates corresponding to the V*i’s are chosen, all the remaining
coordinates can be filled freely within their respective partition blocks. In particular:

* The indices in {1,...,m} \ {v; : i € T} may be permuted arbitrarily within Uy, yielding
a factor of (m — |T'|).
» Foreachp € {2,..., a}, the indices in U, may also be permuted arbitrarily, contributing a

factor of |Up|!.

Hence the above expression simplifies to

0= Bo-(n— 1) [[ 16!
p=2

veVti

. (the number of h-tuples in the Cartesian product H Vi,
JET
such that all entries are pairwise distinct, and

the coordinate corresponding to V' equals v). 81)

Since the factorial factors are nonzero constants independent of the choice of v, we may divide them
out to obtain the equivalent condition

0= Z B, - (the number of h-tuples in the Cartesian product H Vi,
veVti JET
such that all entries are pairwise distinct, and

the coordinate corresponding to V' equals v) . (82)
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This identity holds for every choice of subset 7' C [7] and for every v € V' with i € [y]. The key
point is that the coefficients B, appear only through such linear relations, weighted by combinatorial
counts of admissible tuples. By applying Corollary B.10, we deduce that

0= Z B;. (83)

ievtinVizn...nviy
Finally, recall from the construction in (iii) of Step 4 that the intersection V&* NV N ...N Vi is
exactly {1}. Therefore, the above equation reduces to
By =0, (84)

We have established that B; = 0. By the preceding argument at the beginning of the proof, this
immediately implies that all B; vanish identically. Hence, we conclude that B; = 0 for every ¢,
which completes the proof. O

We have the following corollary of Theorem B.1.

Corollary B.2. Consider two MHA maps with h and h heads, parameterized by 0 and 0, respec-
tively. Assume that A]"" and A" are nonzero for all feasible triples (i,m,n). If the two MHA
maps are identical, i.e.,

MHA (x; §) = MHA(x; 6), (85)
then for every parameter family
{A™} 1 C R, (86)
we have the identity

Z B; = Z B;. (87)

i€lh] : {AT " b ={A™ "} i€lh]: {AT " Y n={A™ "}
Proof. This follows directly from Theorem B.1. O

B.3 KEY LEMMAS FOR THE FUNCTIONAL EQUIVALENCE OF GENERAL MULTIHEAD
ATTENTION

In this section, we introduce the preliminary concepts and fundamental results that will serve as the
foundation for the proofs of our main theorems.

B.3.1 A RESULT ON THE LINEAR INDEPENDENCE OF EXPONENTIAL POLYNOMIALS OVER
THE FIELD OF RATIONAL FUNCTIONS

Let n be a positive integer. Recall that R[x] = R[xy,..., ;] denotes the polynomial ring in n
variables over R. Its field of fractions is denoted by R(x), that is,

R(x) = {z : p,q € R[x], Q#0}7 (88)

the field of all rational functions in the variables x1, . . ., z,, with real coefficients.

We now state and prove a standard result concerning the linear independence of exponential poly-
nomials over R(x).

Lemma B.3. Let p1,...,py, be polynomials in R[x] such that p; — p; is nonconstant whenever
i # j. Suppose qi, . . ., qm are rational functions in R(x) satisfying

G- e g P =0, (89)
Then necessarily ¢ = -+ = @, = 0.
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Proof. We proceed by induction on m.
Base case.

For m = 1, the statement is immediate. Indeed, if ¢; - eP* = 0, then since eP' never vanishes, it
follows that ¢; = 0.

Inductive step.

Assume the result holds for every collection of fewer than m exponentials. Let g1, . . ., ¢m € R(x)
satisfy

ql.epl+...+qm-epm20. (90)

We wish to show that all g; vanish. Suppose, for contradiction, that not all ¢; are zero. Without loss
of generality, assume ¢,,, # 0.

Dividing through Equation (90) by g,,,e?™ yields

2 . epl_pm + R q’rn;l . epm—l_pm + ]_ = 0 (91)

qm Q’rn
This expresses 1 as a linear combination of the exponentials e?s P with coefficients in R(x)
L

Lo, n.

Now differentiate both sides of Equation (91) with respect to each variable x; for ¢ =
Since the derivative of 1 is zero, we obtain
m—1
0 i i 0 ._
Z( (q]) o, —pm)) enr P =, ©2)
= 0z; \ gm m Oz
Each coefficient in parentheses lies in R(x).
Since p1 —Pm, - - -y Pm—1—DPm are pairwise distinct and nonconstant, the corresponding exponentials

ePi~Pm are linearly independent over R(x) by the induction hypothesis. Therefore, each coefficient
in Equation (92) must vanish, i.e.,

O (@4, % 2 ,\_

foreveryt=1,...,nand j = 1,...,m — 1. Equivalently,

0 (qj : epa'—Pm> =0. (94)
0z; \ qm

This shows that for each j = 1,..., m — 1, the function
ﬂ . ePi—Pm (95)
dm
is independent of all variables x4, ..., ., and hence must be a constant ¢; € R.
If some c; # 0, then g; # 0 and we would have
Cidm
q;

ePi—Pm —

) (96)

which would imply that e =P~ is a rational function, and therefore constant. This contradicts the
assumption that p; — p,, is nonconstant.

Thus, each ¢; = 0, forcing g; = 0 forall j = 1,...,m — 1. Substituting into Equation (91) then
yields 1 = 0, an impossibility.
Hence our assumption was false, and all ¢; = 0. By induction, the lemma follows. O

Lemma B.3 is crucial for arguments in Theorem B.1, involving exponential polynomials over R(x).
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B.3.2 HALL’S MARRIAGE THEOREM AND SYSTEMS OF DISTINCT REPRESENTATIVES

In this section, we recall a classical result from combinatorics, known as Hall’s Marriage Theorem
(Hall, 1935), which provides necessary and sufficient conditions for the existence of a system of
distinct representatives (SDR). This theorem will play a crucial role in our arguments, as our con-
struction ultimately reduces to the problem of selecting distinct representatives from a family of
subsets. Let A = {A1, Aa,..., A} be a finite family of subsets of a ground set X. A system of
distinct representatives (SDR) for A is a set {a1,as,...,as} such that a; € A; for each i and all
ai,...,as are pairwise distinct. Equivalently, an SDR is an injective choice function assigning to
each A; an element a; € A;.

The existence of an SDR is a classical question in combinatorics, and Hall’s theorem provides a
complete characterization.

Theorem B.4 (Hall’s Marriage Theorem). Let A = {A1, Aa, ..., As} be a finite family of subsets
of a set X. Then A admits a system of distinct representatives if and only if the following condition
(Hall’s condition) holds:

’UAZ" > |J| forevery subset J C {1,2,...,s}. 97
ieJ
Remark B.5. In words, Hall’s condition states that for every subcollection of the sets A;, the total
number of available elements in their union must be at least as large as the number of sets in the
subcollection. This condition is clearly necessary: if |J| sets are assigned representatives, then at
least |.J| distinct elements are required. The theorem asserts that this necessary condition is also
sufficient.

Hall’s Marriage Theorem plays a central role in the argument of Theorem B.1. Moreover, its appli-
cation is closely connected to the statements of Theorem B.8 and Corollary B.10.

B.3.3 THE MOBIUS FUNCTION ON THE PARTITION LATTICE

This section introduces the necessary background on incidence algebras and Mobius inversion over
finite posets. We then establish an identity for the Mobius function that will serve as a fundamental
tool throughout the remainder of the paper. We also present several connections between this iden-
tity and other well-studied combinatorial concepts, with the aim of providing readers with greater
intuition about its significance. For comprehensive treatments of these topics, we refer the reader to
(Rota, 1964; Stanley, 2011).

Incidence Algebras and Mobius Inversion on Finite Posets

Let (P, <) be a finite poset. The incidence algebra I(P) over C consists of all functions

f=A{(z,y) e PxP:z <y} —C. (98)
with convolution
(fxg)wy) = Y f(x:2)g(zy), foralla <y. (99)
z<z<ly

The identity for convolution is the Kronecker delta §(z,y) (i.e. 6(z,y) = 1if z = y, and 0 other-
wise). The zeta function ( € I(P)is {(x,y) = 1 for x < y. Anelement f € I(P) is invertible if
and only if f(x,z) # 0 for all z € P; in that case f~! is its inverse under convolution.

Mbobius function. The Mébius function i = pp € I(P) is defined as the convolution inverse of (:

wxC=Cxp=24. (100)
Equivalently, for all # < y in P, one has
> plxsz) = 6(z;y). (101)
z<z<y

As a consequence, if f,g : P — C satisfy
flx)= Zg(y), forall z € P, (102)

y>z
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then Mobius inversion yields

g(x) = plw;y) f(y), forall x € P. (103)

y2x
Products of posets. If P, () are finite posets, their product P x () is ordered componentwise. Define
(Cp @ CQ)((P1,01); (P2, @2)) = Cp(p1512) Q15 a2)- (104)

A direct computation in I(P x ) shows

CPxq = Cp ® (g, (105)
(kP @ pq) * (Cp @ (Q) = 0p ® g = pxq- (106)

Hence
1rxq((p1,@1); (p2,42)) = pp(p1;p2) po(ar; ¢2). (107)

The Partition Lattice and Interval Factorization Let U be a finite set with |[U| = n. The
set II(U) of all set partitions of U, ordered by refinement, forms a finite lattice with minimum 0 (all

singletons) and maximum 1 (one block). The goal of this section is to derive the following explicit
formula, stated in the following theorem:

Theorem B.6. For m € II(U), one has:

pirney (0, ) = H (=B (B = 1) (108)
Bern

For clarity, we begin with an outline of the proof. The reasoning unfolds in two stages.

1. Interval factorization. Restriction to blocks induces a canonical isomorphism:
0,x] = ] T(B). (109)
Bem
By multiplicativity of the Mobius function on products, one has:
prw)(0,7) = [ 1z (05, 15). (110)
Ben

2. One-block evaluation. Using the exponential formula for labelled set partitions, for all
n > 1, one has:

gy (0, 1) = (=1)" " (n — D)L (111)
Substituting into the product from Step 1 yields
pnon (0,7) = [T (~0'PI=1(1B] - 1)!. (112)
Ben

Having outlined the strategy, we now provide the full proof with all intermediate steps made explicit.

Proof. We structure the proof into several steps for the sake of clarity and readability.
Step 1 (Interval factorization in the partition lattice).

A partition = € TI(U) is a set of disjoint nonempty blocks B C U covering U. For o, 7 € II(U)
write o < 7 if every block of ¢ is contained in a block of 7. For o < 7 and a block B € 7, let o|p

be the restriction of o to B (intersect each block of o with B and remove empties). Denote by 15
the one-block partition of B. We have the following result.

Lemma B.7 (Interval factorization). For o < 7 in II(U), restriction induces a poset isomorphism
b [o,7] — H (o] 5; iB), d(7): (T|B)Beﬂ. (113)
Bem

Its inverse maps (pp) Bex to the join \/ .. pp, which coincides with the partition whose restriction
to each B equals pp.
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Proof. If T € [o,7], then ¢ < 7 < 7 implies that each block of 7 lies inside some block of 7, so
7|p is a partition of B refining o|g, hence o|p < 7| < 15. Thus ® is well-defined and order-
preserving. Conversely, if (pp)per satisfies o|p < pp < 1p, define p by declaring that =,y € U
lie in the same block of p iff either x,y € B and x ~,, y for some B € m, or x, y lie in different
blocks of 7 (which never happens since we work blockwise). Then p is a partition witho < p < 7
and p|p = pp. One checks ®(p) = (pp) and \/ .. (7|B) = 7, hence ® is an isomorphism. O

Setting o = 0 in Lemma B.7 yields
0,7 = ] ). (114)

Bern
Applying the multiplicativity Equation (107) to Equation (114), one has

piriy (0, 7) = H gy (0, 15). (115)
Ben

Therefore, to compute firy(rr) (0, ) for arbitrary T, it suffices to evaluate the single-block quantity
m(n) == pm, (0;1), (116)

for n € N, where I1,, denotes the partition lattice on an n-element set.

Step 2 (The one-block value via the exponential formula for labeled set partitions).

We now determine m(n) exactly. One has a Mgbius sum constraint as follows: by Equation (101),
for every finite poset and any x < y, one has

> plz;z) =0. (117)
w<z<y
In I, taking z = 0 and y = 1 gives
> oy, (0,7) =0, (118)
T€ll,

forall n > 2. Forn = 0, 1, the sum equals 1 (the unique element of the interval). By Equation (115)
applied inside II,,, one has

p, (0;7) = H m(|B]). (119)
Ber
Define
Fo=Y_ ] m(BI. (120)
T€ll,, BeT
Then, for n > 2, one has
=1, Fi =1, F, =0. (121)

A standard labeled-partition identity (the exponential formula) asserts that for any sequence
(ak)kzh

n

k
§:<§:Ilgw0j”=en>§:%iﬂ : (122)

n>0 \rell, Ber k>1

Applying this with a;, = m(k) yields

Py Zk’
ZF"J = exp Zm(kz)ﬁ . (123)

n>0 k>1
Using Equation (121), the left-hand side of Equation (123) equals 1+ z. Taking the formal logarithm
gives
k
I

z" Zk
j£:7n(k)k: =log(1+2) = j{:@_1)k—17;. (124)

E>1 k>1
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Equating coefficients, for £ > 1, one has
(~1k
k

Substituting Equation (125) into the block factorization Equation (115) gives the desired expression
in Equation (108):

m(k) = k!- = (=D (k-1 (125)

MH(U)(GJT) = H (=D)IBI=t (1B — 1) (126)
Bem

This concludes the proof. O

The identity established in Theorem B.6 plays a pivotal role in the proof of Theorem B.8, which, in
turn, functions as a supporting lemma for the proof of Theorem B.1-the main result of this work.

B.4 A TECHNICAL RESULT ON WEIGHTED SUMS OVER DISTINCT TUPLES

We now present a result concerning the problem of weighted sums over distinct tuples. The results
developed in this section form the backbone of our argument in the proof of Theorem B.1, the main
result of this work.

Theorem B.8. Given positive integers m,n > 1. For each i € [m)], let A; be a subset of [n]. Let

X1,. .., Ty be n real numbers. For any nonempty S C [m), define
Fg = {(ai)ies :a; €A; foralli € S, and all a;’s are pairwise distinct}. (127)
Fori € S and a € A;, define the fiber
Fsio={(a;)jes € Fs: a;, =a}. (128)
For any nonempty T' C [m), define At = (), Ai, and
G(T) = Z Ta. (129)
a€EAT

Assume that, for every nonempty S C [m] and every i € S, one has
> |Fsialza =0. (130)
ac€A;
Then, for every nonempty T C [m], one has
G(T)= > x,=0. (131)

a€AT

Proof. Let S be a nonempty finite set. Denote by II(.S) the lattice of set partitions of S ordered by
refinement: For o, 7 € II(S), we write 0 < 7 if every block of ¢ is contained in a block of 7. Any
7 € I1(S) is a family of disjoint nonempty blocks whose union is .S. For a block B C S define

Ap=()4; and |Ap|= ’ N Aj’. (132)
JEB JEB
Let p denote the Mobius function of TI(S) (with respect to refinement). g is determined by

Yvigen o) =1 {r=0}>» Where 0 is the discrete partition. Formula (1) follows by multiplica-
tivity of z over blocks and the known one-block value (—1)"~%(r — 1)! for a block of size 7. It is

well-known that:
u(r) = TL(=0P=" (1B - 1) (133)
Ben

Fix a nonempty S C [m], an index i € .S, and an element a € [n]. Let Gg be the set of all functions
g S — [n] satisfying g(j) € A, for all j € S (note that, there is no distinctness condition). For
g € Gg, define its equality partition 7(g) € II(S) by:

J ~n(g) k ifandonlyif g(j) = g(k). (134)
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Thus 7(g) records which indices are assigned the same value by g. One has g is injective on S if
and only if 7(g) = 0. The set Fs of injective choices can be described as:

Fs = {g €Gs: ml(g) = 0}, (135)
and the fiber fixing the value at the distinguished index i is:
Fsia={g€0s: gli) = a, n(g) = 0}. (136)

For m € II(S) and ¢ € S, let B;(m) denote the unique block of 7 containing 7. Define:
Ng,ia(m) = ‘{g € Gg : g is constant on each block of 7, g(i) = a}‘. (137)

That is, Ng; () counts maps that are constant along blocks of 7 (so the only equalities allowed
among coordinates are those forced by ) and take the prescribed value a at the index ¢. For every
m € I1(S), one has:

Nsia(m) =laeas .y 11 |45l (138)
Bern
B#B;(m)
Indeed, if g is constant on each block of 7, the value on the block B;(7) must equal g(¢) = a. This
is possible exactly when a € ﬂjeBi(ﬂ) Aj = Ap, (), Which contributes the indicator Liaean, m}-
Then, for any other block B € 7 with B # B;(w), the common value of g on B can be chosen
arbitrarily from the intersection Ag = () jeB A;, independently across distinct blocks. Therefore

there are | A g| choices for each such block, and multiplying over all B # B;(r) yields the product
in Equation (138). Now, for g € Gg, define the two indicator functions on II(.S):

E(g) = 1{7‘((9):6}’ and Cﬂ-(g) = l{ﬂ(g)Zﬂ} (Tl' S H(S)) (139)

Here 7(g) > 7 means that g is constant on every block of 7. By general Mgbius inversion on posets,
one has:

E(g) = Y n(m)Calg), (140)
Tell(S)
since
> o) =10y (141)
o<m(g)

Now fix i € S and a € [n], multiply the last identity by 1;,(;)—q}, and sum over all g € Gs, one
has:

Fsial = D Lgi=ayB9) = D w(m) D> 1igi)=a}Crl9). (142)

9g€Gs meIl(S) 9€Gs

The inner sum is precisely Ng; ,(m) by definition. Using Equation (138), one therefore obtains the
explicit expansion:

Fsial= > #(M)lweay oy 1 145l (143)
ETI(S) Bér
B#B;(r)

Multiply Equation (143) by z, and sum over all @ € A; (equivalently, over all a € [n], since the
indicator in Equation (143) already forces a € A; when i € B;(7)):

> NFsialza= > pm| [ 14zl > oaa. (144)

ac€A; Tell(S) Bemn aEABi(,,)
B#B;()
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With the shorthand G(T') := }_,c 4. %o this becomes

S Fsialza= Y wpm@| [I 148l |G(Bi(m). (145)

a€A; rETI(S) Ben
B#B;(m)

By the hypothesis, the left-hand side of Equation (145) is 0. Hence

0= > um| I sl|G(Bix), (146)
w€ell(S) Bf]g?z‘/r)

for every nonempty S C [m] and every i € S. Observe that, in Equation (146), the term G(B;())
only involves nonempty subsets B;(7) with i € B;(w) C S.

Back to the problem. We now show that G(T") = 0 for every nonempty 7' C [m] by induction on
k = |T|. We use the Equation (133) and Equation (146) a lots.

Base case.
Let T' = {i} for some i € [m]. Take S = {i} in the given hypothesis, one has
> |Fsialza = 0. (147)

acA;

Since S has one element, an injective choice on S is just a choice of a value in A;, hence |F{i},i,a
114e4,)- Therefore

0= |Fiialza= Y za=G({i}), (148)

acA; acA;
which establishes the base case.

Inductive step.

Fix & > 2 and assume the claim holds for all nonempty U C [m] with |U| < k, i.e., G{U) =0
whenever 1 < |U| < k — 1. Let T C [m] with |T'| = k, and fix any distinguished index i € 7.
Apply Equation (146) with S = T, we analyze the sum over 7 € II(7T") by separating the one-block
partition from the rest.

(a) The contribution of the one—block partition.

There is a unique partition 7* = {T'} with a single block. For this partition we have B;(7*) =
T, and the product over B # B;(7*) is an empty product, hence equals 1 by convention. By
Equation (133) with |T'| = k, one has:

p(r) = (=DM (k=1L (149)
Thus, the term of Equation (146) corresponding to 7* equals
p(m*) - 1-G(By(r*)) = (-1 1k — DIG(T). (150)

(b) The contribution of all other partitions.

Let 7 € II(T') with m # 7*. Then B;(w) is a proper, nonempty subset of 7 (it still contains i but
does not equal T'). Consequently |B;(7)| < k — 1. By the inductive hypothesis,

G(Bi (7‘(’)) =0.
Hence every summand in Equation (146) with w # 7* vanishes, regardless of the multiplicative
factor [ 5., () |AB| and the value of ().

Collecting (a) and (b), identity Equation (146) with S = T reduces to

0= (=D k-1)'G(T). (151)
Since (—1)*~1(k — 1)! # 0, we conclude G(T) = 0.
By induction on , the relation G(T) = 0 holds for every nonempty 7' C [m]. O
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Remark B.9 (Combinatorial intuition). Viewed combinatorially, Fs is precisely the set of systems
of distinct representatives (SDRs) for the family {A; : ¢ € S} For a fixed index ¢ € S and value
a € A;, the fiber Fs; , enumerates those SDRs that assign the representative a to position ¢. As-
sumption in Equation (154) therefore states that the weighted sum Zae A |Fs.iql| 2o vanishes for
every nonempty S C [m] and every i € S; equivalently, the vector z = (24)4¢[n] is orthogonal to
the vector of SDR—completion counts at coordinate :. Applying Mobius inversion on the Boolean
lattice (21", C) transfers these linear relations, with coefficients given by SDR multiplicities, into
relations with unit coefficients, thereby collapsing the fiber-weighted sums to the unweighted in-
tersection sums ZGG%T A, Ta- This mirrors the classical rook-polynomial/inclusion-exclusion
paradigm: counts of placements with multiplicities invert to simple intersection counts once the
incidence algebra is diagonalized by the Mobius function.

We have a direct corollary of Theorem B.8.

Corollary B.10. Given positive integers m,n > 1. For each i € [m], let A; be a subset of [n]. Let

Z1,..., Ty be n real numbers. For any nonempty S C [m], define
Fg = {(ai)ies s a; €A; foralli € S, and all a;’s are pairwise distinct}. (152)
Fori € S and a € A;, define the fiber
FS,i,a e {(aj)jesEFS : ai:a}. (153)
Assume that, for every nonempty S C [m] and every i € S, one has
> |Fsialza =0. (154)
a€A;
Then, one has
GT)= >  a.=0 (155)
a€AIN...NA,,
Proof. By taking T' = [m] in Theorem B.8, one obtains the asserted main conclusion. O

B.5 PROOF OF THEOREM 3.2

Theorem B.11 (Theorem 3.2 in the main paper). Let
h h
0= (W Wk wY we) |

€, and 0= (VT/Z.Q,WiK,VT/iV,WiO) e (156)

i= i=1

be two parameterizations of MHARepg maps. Assume that:

1. In the first MHARqpg map, for each head i € [h), the similarity score between two arbitrary
tokens does not vanish, i.e.,

WEWET + WEW2)T and WER(WI)T, (157)
for all non-zero integer n, are non-zero.

2. In the second MHAR.pg map, for each head i € [ﬁ], the similarity score between two
arbitrary tokens does not vanish, i.e.,

WEWET + WEWE)T and WERM(WI)T, (158)
for all non-zero integer n, are non-zero.
3. In the first MHARpg map, the similarity score maps are pairwise distinct, i.e.,
{WiQ(WiK)T +WEWA)T, {WiQRn(WiK)T}neZ,n¢0}7 (159)

fori=1,... h, are h pairwise distinct families.
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4. In the second MHARopg map, the similarity score maps are pairwise distinct, i.e.,
{WEWE)T + WEWET AWER W) bucznzo b, (160)
fori=1,...,h, are h pairwise distinct families.
5. In the first MHARqpg map, all matrices WiQ, WE WY WO fori € [h] are of rank dj,.
6. In the second MHARopg map, all matrices WZQ7 WE WY WP fori € [h] are of rank dj,

If the two MHARepg maps are identical, i.e.,

MHARep (+; ¢) = MHARopE(+; 0), (161)
then h = h, and there exists a permutation o € S, and invertible matrices {U;}!_, C H(d},) and
{Vi}h_, € GL(d},) such that

WE=w2 Ul WE=wE .(U),

) i o) (162)
WY = W;/(i) 'V;Tv Wz‘o = Wao(i) (Vi)

Proof. Fori € [h] and m,n > 1, denote

A= WERTT WY ifm #n (163)
gmom = WEWVE)T ;WiK(WF)T, and 164)
B, =wWY(W)T. (165)
For i € [h] and m,n > 1, denote
A= WERMT WY ifm #n (166)
AT WEWwT ;WiK(WiQ)T7 and (167)
B =W (W) (168)
Then, one has
MHA (% = {{A]"" b0 Bit) ) = MHARepe(56), (169)
and
MHA(X : {{A;”’"}W;Bi}?:l) = MHARopg(-; 0). (170)
Thus,
MHA (x 0 {{A7" Yns Bi}oy ) = MHA(x + {{A] " bs BV ). (7D

From the condition 3, 4, the property of parameters from these maps fit to the setting of Corol-
lary B.2, which is that A" and A]"" are nonzero for all feasible triples (¢, m, n). Thus, for every
parameter family

{A™"), s1 € REXD (172)

we have the identity

> B; = > B. (173)

ie[h] : {A" " Y n={A"™ "} n i€[h] : {A " b n={A™ "}
From condition 3, one has h families of parameters

{ATJL}m,nle {Agmn}mley ey {A;Ln,n}m,nZI; (174)
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are pairwise distinct. Together with Equation (173), consider

{A™" b1 = {47 b1, (175)
one has the left-hand side of Equation (173) is equal to B;. Thus,
B; = Z B;. (176)

JE[R] : (AT Y21 ={A7 " b n>1

Note that, since all the matrices W,” and W have rank d, it implies that all B; are non-zero. From
Equation (176), for each ¢ 6_[h}, since the left-hand side is non-zero, the right-hand side has at least
one index j € [h] such that B; is non-zero and { A"}, n>1 = {A]"" }1n, n>1. Since h families of
parameters

{A?lnyn}m,nZh {Agn’n}m,nZM ey {AT’n}m,n21; (177)
are pairwise distinct, one implies that each ¢ has its corresponding j’s distinctly from others. Thus,
h < h. By a symmetric argument, one also has h > h. In conclusion, one has h = h. Moreover,
by the above argument, for each i, there exists exactly one j € [h] such that {A}""},, n>1 =

{A]""} . n>1. Moreover, this also implies that B; = B;.
In conclusion, there exists a permutation o € S}, such that
AT = A?(’Z)L, forallm,n >1, and B, = B;. (178)
From Lemma B.12, there exists matrices {U;}"_, C H(dy) such that
We=w2, Ul wE=wk ) (179)

o(7) 00 o

From the rank factorization (Piziak & Odell, 1999), there exists matrices {V;}*_; C GL(d},) such
that

WiV — WV;Z) X ‘/'i—r’ Wio _ WO

o o(i

) (Vi) (180)
This concludes the proof. O

B.6 A LEMMA CONCERNING THE ROTARY MATRIX USED IN THE PROOF OF THEOREM 3.2

Given d = 2m be an even integer. Consider the RoPE matrix at position 1 as

. cosf —sind
R = diag(R(61),...,R(0a/2)) € R™, where R(0) = Lina 050 } : (181)
Denote the n x n identity matrix as [,,. For¢ = 1, ..., m, define the 2-dimensional coordinate plane
E; = span{egi_l, 621'} C Rd, (182)

where eg;_1, eg; are the (2¢ — 1)-th and 2i-th coordinate basis vectors. Definethe orthogonal projec-
tion matrix

P = egi_1e9; 1 + egieq; € R4, (183)

In words, P; is the d x d matrix has the i-th 2 x 2 diagonal block is the 2 x 2 identity matrix. We
also define the matrix

J; = 627;63—2-_1 — 621'_16;;- c RdXd. (184)
In words, J; is the d X d matrix has the i-th 2 x 2 diagonal block is the following 2 x 2 matrix
_ 10 -1
J = [1 ] ] (185)
The matrix R now can be written as
R= Z(cos@iPZ- +sin6;J;) . (186)
i=1
Moreover, for n € Z, one has
R" = Z (cos(nb;)P; + sin(nb;)J;) . (187)
i=1

We have the following result.
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Lemma B.12. Given an integer D > d. Consider matrices X,7 € RP*? qnd Y, T € R¥*P,
Assume that, for all non zero interger n,

XR"Y =ZR"T. (188)
If
1. All the angles 0; € (0, 7) are pairwise distinct, and

2. Forallt=1,...,m, XP; and P;Y have rank 2.

Then, there exists an invertible matrix U € R¥? of the form

U= (aiP;+biJi) with (ai,b;) € R*\ {(0,0)} for i =1,...,m, (189)
i=1

such that
Z=XU and T=U"'Y. (190)

Proof. We structure the proof into several steps for the sake of clarity and readability.

Step 1.
Define
Ay ;= XPY € RP*P, (191)
By = XJ;Y € RP*D, (192)
Ay = ZPT € RPXP, (193)
Bo ;= ZJ;T € RP*D, (194)
Using
R" = Z (cos(nb;)P; + sin(nb;)J;) , (195)
i=1
one has
XR"Y = Z X (cos(nb;)P; + sin(nb;)J;) Y
i=1
= Z (cos(nb;) X P;Y + sin(nb;) X J;Y)
i=1
= (cos(nf;) Ay + sin(n;) By ), (196)
i=1
and

<
3
S

ZR"T = Z Z (cos(nb;) P; + sin(nb;)J;) T

s
Il
-

(cos(nb;)ZP;,T + sin(nb;) ZJ;T)

|

<,
Il
—

I
NE

(cos(nb;)Asz ; + sin(nb;)Bs,;) . (197)
1

Since XR"Y = ZR"T foralln # 0, and 61,605, . .., 0,, are pairwise distinct, one has A; ; = A ;
and By ; = By ; foralli =1,...,m,or

XPY =ZPT, and XY =ZJT. (198)

.
Il
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Step 2.

Now fix an number s € {1,...,m}. Let X, is the D x 2 matrix constructed by concating the (2i—1)-
th and 2i-th columns of X, Y; be the 2 x D matrix constructed by concating the (2; — 1)-th and
2i-th rows of Y. Similarly, we construct Z;,T; for Z, T, respectively. By the second assumption,
we have both X; and Y; have rank 2. Moreover, from

XPY =ZPT, and XY =ZJT, (199)
one has
XY, =21, and X, JY;, = Z,;JT;. (200)
Let Vx € R2*P be the left inverse matrix of X; and V3- € RP*2 be the right inverse matrix of Yj,
Vx X, =Y Vy = Is. (201)
One has
L = (VxX;)(Y;Vy) = Vx (X;Y5)Vy
=Vx(ZT)Vy = (VxZi)(T;Vy). (202)
Let U; = Vx Z;. Then U[l = T;Vy. Moreover, one has
Xi = Xi(;Vy) = (X,Y3)Vy
= (Z;T)Vy = Zi(T;\Vy) = Z;U;*, (203)
so Z; = X;U;. Similarly, one has
Y = (VxXp)Y; = Vx (X;Y5)
=Vx(ZT)) = (VxZ;)T; = U;T;, (204)
sol; = Ui_lYi. Now, from X;JY; = Z;JT;, one has
J=(VxX;)J(Y;Vy) = Vx(X;JY;)) Vy
= Vx(ZJT)Vy = (Vx Z)J(T;Vy) = U; JU; . (205)

In other words, one has U;J = JU;. Then, there exists (a;,b;) € R?\ {(0,0)} such that U; =
a;Is + b;J. In conclusion, one has

Z; = X,;U;, and T, =U 'Y, (206)
where U; = a;I5 + b;J with (a;,b;) € R?\ {(0,0)}.
Step 3.
Define U = diag(Uy, ..., U,,). From the property of U;’s, we have
U=> (a;P; +b;J;) with (a;,b;) € R*\ {(0,0)} for i =1,...,m, (207)
i=1
and Z = XU and T = U~'Y. This concludes the proof. O

This result will be invoked in the proof of Theorem B.11.

Remark B.13 (On the assumptions of Lemma B.12). If angles are not distinct or some equal 0
or m, first merge blocks with equal 6 and repeat the argument within each frequency class; the
conclusion remains that U must commute with R (hence with each J;) on the active subspaces. If
rank(X P;) < 2 or rank(P;Y) < 2 for some %, the same derivation shows C; must commute with
J; on the image subspace; C; may be non-unique, but the global relation Z = XU, T = U~'Y
with U commuting with R still describes the solution set restricted to the active coordinates.

C ALGORITHM DESCRIPTION
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Algorithm 1 Teleportation Training with Sampling Minimal Perturbations.

input Loss function £(w), optimizer ¢, number of optimization steps T, initialization 6y € O,
teleportation steps K, perturbation range o > 0, number of samples M.
:fort—0toT —1do

1
2:  ift € K then
3: Sample a set of perturbations B = {g; € Bg (o)},
& Se{geB|[VLO)2 > [VLE)]2)
5: if |S| > M/2 then
6: Find the best perturbation: g* « argmaxgep [|[VL(g6:)]2
7: Ht — g*@t
8: end if
9:  endif
10: 9t+1 — Lp(et)
11: end for
output 0

D OPTIMIZER CONSIDERATIONS FOR TELEPORTATION

The Adam optimizer (Adam et al., 2014) maintains exponential moving averages of the gradient
and its elementwise square. Given the stochastic gradient g; = VL (6;) at iteration ¢, the moment
estimates are defined as:

my = Bime—1 + (1 — B1)gs, (208)

v = Pave—1 + (1= B2)g7, (209)
where 1, 52 € [0,1) denote exponential decay rates for the first and second moments, respectively.
To correct for initialization bias, the estimates are normalized as:

~ my ~ V¢
my = vy = ——.
t 1_ { 9 t 1_ 65

(210)

The parameter update rule is then:

~

my
Ory1 =06¢ —

t+1 t— 7 N
with learning rate 17 > 0 and numerical stabilizer € > 0. Since both m; and v, scale proportionally
with gy, the effective update 77;/+/0; normalizes gradient magnitude. Consequently, increases in
|g+|—such as those induced by teleportation—do not translate into proportionally larger parameter
updates. This adaptivity dampens the sensitivity of Adam to gradient-norm amplification. By con-
trast, stochastic gradient descent (SGD) applies the update 6,11 = 6, — ng;, where the step size
scales linearly with ||g:||, thereby preserving the full effect of teleportation-induced gradients.

@211)

Beyond this difference, the broader literature has reported several shortcomings of Adam relative to
SGD. In particular, Adam may fail to guarantee convergence in certain regimes (Reddi et al., 2019),
and often yields inferior generalization despite faster initial progress (Wilson et al., 2017). These
limitations have been linked to over-reliance on momentum dynamics and misalignment between
adaptive updates and descent directions (Gitman et al., 2019). In contrast, SGD has been shown
to encourage flatter minima and superior generalization properties in deep learning models (Zhou
et al., 2020; Chen et al., 2018).

Taken together, these considerations suggest that SGD is generally more favorable than Adam in the
context of teleportation. Since teleportation deliberately amplifies gradient signals, Adam’s adaptive
normalization tends to attenuate its effect, whereas SGD preserves the proportional update and better
leverages the intended perturbations. Therefore, the majority of experiments in this work employ
SGD as the base optimizer.

E EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Our experiments are designed to evaluate the effect of teleportation across both vision and language
modeling benchmarks. For vision tasks, the evaluation covers MNIST, CIFAR-10, and ImageNet-
1K, while for language modeling the benchmark is WikiText-103. SGD with a cosine learning-rate
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schedule is employed in all experiments. The study focuses exclusively on teleportation within atten-
tion layers, which are modified in all Transformer layers, ReLLU is used as the activation functionm
and teleportation is not applied to FFN components (i.e MLP blocks). In our experimental setup,
learnable APE is adopted for vision task, while sinusoidal APE is applied to the WikiText-103.

For robustness, each configuration on MNIST and CIFAR-10 is repeated for five independent runs,
while WikiText-103 and ImageNet-1K experiments are repeated three times per configuration.

Table 3: GPU Memory Allocated (Gb) on MNIST and CIFAR-10 (smaller is better).

Datasets PE No Teleport  Teleport Zhao’s Teleport

MNIST APE 1.14 1.16 2.36
RoPE 1.17 1.18 2.23
CIFAR-10 APE 2.03 2.07 5.30
RoPE 2.06 2.09 5.02

MNIST. The experiments are conducted using a variant of ViT-Tiny with 6 transformer layers,
hidden size of 128, MLP hidden dimension of 512, 4 self-attention heads, and attention dropout
rates set to 0.0. Models are trained for 20 epochs with a batch size of 128, an initial learning rate of
0.015, momentum of 0.9, and weight decay of le-4. Teleportation is applied once at epoch 1 with
a radius of 0.65 (o = 0.65), covering the first 4 consecutive steps (|| = 4). At each teleportation
step, 16 matrices are sampled (M = 16).

CIFAR-10. The experiments are conducted using a variant of ViT-Tiny with 6 transformer layers,
hidden size of 192, MLP hidden dimension of 768, 3 self-attention heads, and hidden and attention
dropout rates set to 0.0. Training is performed for 50 epochs with a batch size of 256, an initial
learning rate of 0.005, momentum of 0.9, and weight decay of 1e-5. Teleportation is applied once at
epoch 1 with a radius of 0.65 (v = 0.65), covering the first 4 consecutive steps (| K| = 4), with 16
matrices sampled per step (M = 16).

ImageNet-1K. The experiments are conducted using the ViT-Tiny-Patch16-224 architecture, con-
figured with 12 Transformer layers, a hidden size of 192, MLP hidden dimension of 768, and 3
self-attention heads. The encoder employs a patch size of 16, ReLU is used as the activation func-
tion, with both attention and hidden dropout rates set to 0.0, a initial learning rate of 0.05, batch
size of 256, warmup learning rate of le-7, and a minimum learning rate of le-5. Teleportation is
applied starting from epoch 2 with a radius of 0.2. At each teleportation step, 8 matrices are sampled
(M = 8), and a total of 32 teleportation steps are executed (| K| = 32), divided into two sessions of
16 consecutive steps.

WikiText-103. The experiments are conducted using a Transformer-XL architecture with 16 lay-
ers, model dimension 128, inner dimension 2048, 8 attention heads with head dimension 16. The
target length and evaluation length are set to 256, and no memory is carried across segments
(mem_len=0). The dropout rate is 0.1, and attention dropout is set to 0.0. Training is performed
with using an initial learning rate of 0.75, warmup over 2000 steps, and with a batch size of 96.
Teleportation is applied only to the attention layers, beginning at step 500 and continuing through
step 515 (JK| = 16). At each teleportation step, 8 matrices are sampled (M = 8) with a scaling
radius 0.2 (a = 0.2).

Zhao et al. (2023) algorithm. We adopt the same model architectures and optimization hyperpa-
rameters as described above for MNIST and CIFAR-10. The teleportation configuration is kept at
the default settings across both datasets, specifically: the teleportation learning rate of le-4, the tele-
portation step of 10 (referring to the number of gradient ascent iterations for optimizing g, which
differs from our definition of teleportation steps), the teleportation epoch of 3, and the total of 8
steps being teleported.

All experiments were carried out on a single NVIDIA H100 GPU with 80GB of memory, while
the maximum VRAM actually used did not exceed 26GB. Training on MNIST and CIFAR finishes
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(a) Gradient noise increased after (b) ¢ gradient norms on MNIST and CIFAR-10, where teleportation
applying teleportation in step 3. results in smaller values relative to the non-teleportation baseline.

Figure 3: Demonstrates the generalization of teleportation via gradient noise and /s gradient norm.

within 7 minutes, whereas large-scale runs take considerably longer—up to 90 hours for ImageNet-
1K and 33 hours for WikiText-103.

Comparison of GPU allocation between our and zhao algorithms. Zhao’s algorithm consumes
twice as much GPU memory but does not bring any significant effect on validation accuracy or
convergence time (Table 1, Table 3).

Sharpness on MNIST and CIFAR-10 after teleportation.

Table 4: Sharpness on MNIST and CIFAR-10 (smaller is better).

Datasets PE No Teleport Teleport

MNIST APE  2844.37 +512.19 1168.78 £ 298.98
RoPE 98.47 £25.31 95.23 £20.34

CIFAR-10 APE 1054.52 £ 78.27 958.78 £ 63.30
RoPE  484.67 + 56.55 434.06 £ 40.04

Gradient noise and /> gradient norm after teleportation on CIFAR-10.

F TELEPORTATION FOR ADAM

We further evaluate the effect of teleportation when training with the AdamW (Loshchilov & Hutter,
2017) optimizer. The network architectures and training hyperparameters follow details provided in
Appendix E. For MNIST, training is conducted with a batch size of 128 for 20 epochs, an initial
learning rate of 2.5e-4, and weight decay le-5. For CIFAR-10, we use a batch size of 256, 50
training epochs, the same initial learning rate 2.5e-4, and weight decay le-5.

Teleportation is applied exclusively to attention layers, with no modification to MLP components,
and the number of samples is fixed at M = 16 per teleportation step. For MNIST (both APE
and RoPE positional embeddings), teleportation is performed at epochs 1-3, with 8 consecutive
steps at the beginning of each epoch (|K| = 24) and radius 0.1 (& = 0.1). For CIFAR-10 with
learnable embeddings, the same schedule is applied but with radius 0.2. For CIFAR-10 with RoPE,
teleportation is performed only at epoch 1, consisting of 16 consecutive steps (| K| = 16) with radius
0.2 (a=0.2).

Overall, Table 5 shows that teleportation with AdamW yields only marginal gains in validation
accuracy over the non-teleportation baseline. Improvements in training time are inconsistent and
considerably smaller than those observed with SGD, suggesting that teleportation is less effective
when combined with adaptive optimizers such as Adam and AdamW.
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Table 5: Results of teleportation with AdamW on MNIST and CIFAR-10. Reported are mean and
standard deviation over five independent runs.

Dataset PE Teleport Val Acc (%) T Speedup (%) T Time/epoch |

MNIST  APE No 98.81 + 0.07 - 7.83 £ 0.82 (s)
Yes 98.83+0.08 20.83+4.17  8.37+0.68(s)

RoPE  No 99.06 < 0.00 - 9.17 & 1.04 (s)

Yes 99.08 £ 0.05  6.54+£4.58  10.25 £ 0.75 (s)

CIFAR-10 APE No 78.18 + 0.28 - 7.11 % 0.60 (s)
Yes 78.36 £ 0.27 13.13+£11.46 7.23+0.63(s)

RoPE  No 80.98 + 0.25 - 6.57 £ 0.35 (s)

Yes 81.69 £0.53 11.40+10.66 6.72 £ 0.42 (s)

G TELEPORTATION CONFIGURATION RECOMMENDATIONS

Hyperparameter trade-off. The effectiveness of teleportation is governed by multiple interacting
factors, including the radius « and the choice of teleportation steps K. Both need to be tuned with
care depending on dataset size and model architecture. When teleportation is applied to later training
stages, a smaller radius is preferable since gradients are already relatively stable at this point, and
large perturbations may cause undesirable fluctuations. Conversely, a larger radius « is typically
applied in earlier stages and can be stabilized with fewer consecutive teleportation steps.

Recommended configuration.

* Radius a: Choose o € [0.2,0.6]. Larger radius (> 0.5) work best with 4-6 consecutive
steps; medium radius (0.3-0.5) with 6-10 steps; and smaller radius (< 0.3) with 10-16
steps. These recommendations are derived from our empirical observation that the cumu-
lative ratio of gradient norms (after teleportation/before teleportation) across consecutive
steps should remain below 1.05 for small datasets (e.g., CIFAR-10, MNIST) and close to
1.00 for large datasets (e.g., ImageNet-1K, WikiText-103) to avoid gradient explosion.

+ Total teleportation steps |K|: For smaller datasets, | K| should be around 2-4% of the
number of training iterations per epoch. For larger datasets, | K| =~ 0.5% is sufficient.

* Consecutive steps: Should not exceed 16, and generally should not be fewer than 4 to
have noticeable effect. Total teleportation steps should not exceed twice the number of
consecutive steps (i.e., only 1-2 consecutive teleportation phases per run).

» Teleportation position: Empirical evidence suggests that teleportation is most effective
when scheduled within the first 5 epochs. In the absence of learning rate warm-up, it
should be applied during the earliest epochs, at the stage where the loss is decreasing most
rapidly and before convergence stabilizes. With warm-up, teleportation is better placed in
the middle of the warm-up phase.

e Sampling M: Use 8-16 samples. Fewer than 8 leads to instability, while more than 16
brings little additional benefit.

The above recommendations are intended as a practical guideline for deploying teleportation in
training pipelines. They have been validated across both vision and NLP benchmarks, and strike a
balance between stability and efficiency. While adjustments may be explored for further empirical
gains, substantial deviations from these ranges tend to introduce instability and are therefore not
advised unless carefully evaluated.

42



Under review as a conference paper at ICLR 2026

H TELEPORTATION INDEX

Table 6: Effect of teleportation index on WikiText-103 performance.

Teleport index ValPPL | TestPPL | Teleportindex ValPPL | TestPPL | Teleportindex ValPPL | TestPPL |

0-500 35.13 36.10 1500-2000 34.87 35.98 0-2000 34.69 35.87
500-1000 34.39 35.45 2000-2500 35.94 36.83 0-4000 34.71 35.86
1000-1500 35.23 36.21 2500-3000 35.08 36.09 2000-4000 35.12 36.17
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