

# ACCELERATING TRANSFORMER TRAINING: ARCHITECTURAL SYMMETRY, POSITIONAL ENCODING, AND TELEPORTATION

000  
001  
002  
003  
004  
005  
006  
007 **Anonymous authors**  
008 Paper under double-blind review  
009  
010  
011  
012

## ABSTRACT

013 As neural architectures continue to grow in complexity and scale, the development  
014 of advanced optimization techniques has become increasingly important. Telepor-  
015 tation has recently emerged as a principled approach for accelerating the conver-  
016 gence of gradient descent-based algorithms by traversing loss-invariant level sets  
017 to identify parameterizations with favorable geometric properties. Although prior  
018 teleportation methods have achieved notable success in feedforward and convolu-  
019 tional networks, extending these techniques to Transformer architectures presents  
020 unique challenges. In particular, existing approaches typically assume the sym-  
021 metry structure of vanilla attention, overlooking the critical role of positional en-  
022 codings, which fundamentally reshape architectural symmetries and render earlier  
023 analyses inapplicable. To address this gap, we present a systematic study of tele-  
024 portation in Transformer-based models. We first characterize how the architectural  
025 symmetry of multihead attention is modified under two widely used positional en-  
026 coding schemes—sinusoidal and rotary—and provide a comprehensive description  
027 of the resulting symmetry groups. Guided by these insights, we introduce a tele-  
028 portation framework tailored to Transformers and evaluate its effectiveness across  
029 diverse configurations, datasets, and modalities. Our results demonstrate the ver-  
030 satility of teleportation, elucidate the interplay between positional encoding and  
031 architectural symmetry in Transformer optimization, and establish a foundation  
032 for the principled development of teleportation algorithms that fully exploit the  
033 symmetry structure of Transformer architectures.

## 1 INTRODUCTION

034 Training modern deep learning models, particularly large-scale architectures such as Transformers,  
035 is highly resource-intensive, requiring extensive computation and energy. As models and datasets  
036 grow, accelerating optimization has become a central research challenge with direct implications for  
037 feasibility and scalability. To address this challenge, a number of research directions have sought  
038 to improve training speed and stability. Early work focused on optimization algorithms such as  
039 momentum-based methods (Sutskever et al., 2013), Adam (Adam et al., 2014), and its variants like  
040 AdamW (Loshchilov & Hutter, 2017). Beyond refining the optimization algorithm itself, subse-  
041 quent research has explored more fundamental changes to the training dynamics, such as directly  
042 manipulating the parameter space to escape challenging geometries.

043 **Teleportation.** Recently, teleportation has been proposed as a principled approach to accelerate  
044 optimization by exploiting architectural symmetries that reparameterize neural networks without  
045 changing their functional capacity (Armenta & Jodoin, 2021; Saul, 2023). Unlike conventional  
046 gradient-based methods that advance through incremental updates, teleportation directly moves  
047 parameters to functionally equivalent states, thereby improving convergence efficiency (Zhao et al.,  
048 2022a; Mishkin et al., 2023) while also facilitating broader exploration of the loss landscape in  
049 contexts such as generalization (Zhao et al., 2022a) and privacy (Maheri et al., 2025).

050 **Functional Equivalence.** The effectiveness of teleportation fundamentally relies on functional  
051 equivalence, which asserts that distinct parameter configurations can realize the same network func-  
052 tion (Armenta & Jodoin, 2021; Saul, 2023). This perspective explains why teleportation preserves

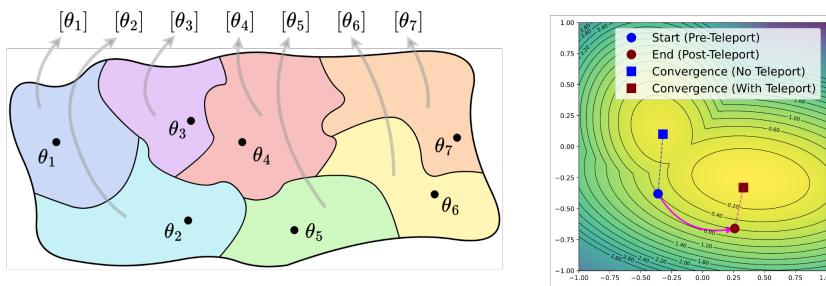


Figure 1: (Left) Partition of the parameter space into functional equivalence classes, as stated in Section 2. (Right) Illustration of teleportation in the optimization process: a point is mapped to another parameterization that realizes the same function but alters the optimization dynamics and trajectory, potentially leading the optimizer to a different local minimum.

expressivity and identifies the admissible directions along which parameters may vary without altering the underlying function. This principle has been applied across diverse architectures, including multilayer perceptrons (Zhao et al., 2022a; Mishkin et al., 2024; Zhao et al., 2023), convolutional networks (Armenta et al., 2023; Maher et al., 2025), recurrent models such as LSTMs in reinforcement learning (Zamir et al., 2025), and continual learning frameworks with low-rank adaptation (Zhou et al., 2025). In contrast, only a few studies have investigated teleportation for Transformers, and these remain confined to small-scale settings such as MNIST, time-series forecasting, and Penn Treebank (Wu et al., 2025), leaving large-scale training largely unexplored. A key reason is that functional equivalence in attention-based models has been scarcely studied, with existing analyses limited to vanilla multihead attention (Tran et al., 2025; Knyazev et al., 2024).

**Attention and Positional Encoding.** The effectiveness of token teleportation in Transformers crucially depends on positional encoding, since self-attention is permutation invariant and requires explicit order information (Vaswani et al., 2017). Early approaches adopted Absolute Positional Encodings (APEs), either sinusoidal or learnable, which became standard in BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019), and ViT (Dosovitskiy et al., 2020). However, APEs generalize poorly to longer sequences (Press et al., 2021; Dai et al., 2019). To overcome this, Relative Positional Encodings (RPEs) (Shaw et al., 2018) were introduced, encoding pairwise distances directly into attention and yielding improved robustness in Transformer-XL, T5, and DeBERTa (Dai et al., 2019; Raffel et al., 2020; He et al., 2020). More recently, Rotary Positional Encoding (RoPE) (Su et al., 2024) extended this principle by embedding relative information through rotational transformations of query–key vectors, enabling translation equivariance and superior extrapolation. Its strong empirical performance has made RoPE a central component in modern large-scale models (Touvron et al., 2023; Chowdhery et al., 2023; Bai et al., 2025; Yang et al., 2025).

**Contributions.** Motivated by this line of work, we study the functional equivalence of Multihead Attention with positional encoding (PE), examining how it alters the symmetry structure of attention and its implications for teleportation training. The paper is organized as follows:

1. In Section 2, we examine the parameter space of a parameterized function, characterize its associated symmetry group, and introduce the formal notion of maximality within symmetry groups, establishing a direct connection to Functional Equivalence. We then compare with the finding on symmetry of vanilla attention in literature.
2. In Section 3, we analyze how positional encodings alter the internal structure of attention. We focus primarily on the most widely used encodings, Absolute PE and Relative PE. In particular, we study sinusoidal PE as a representative of APE and rotary PE as a representative of RPE, and show why results from the vanilla case do not extend directly to these settings. We then present our finding that fully characterizes the symmetry of attention with widely used PE.
3. In Section 4, we introduce our teleportation method based on sampling minimal perturbations along current optimization directions. This approach improves stability of teleportation steps while significantly reducing computational overhead compared to Hessian-based methods.
4. In Section 5, we report experimental results showing that our algorithm accelerates convergence, improves performance, and enhances generalization. We also present ablation studies that identify effective teleportation configurations across datasets of different scales.

108 A table of notation, theoretical foundations, and experimental details are provided in the Appendix.  
 109

110 **2 FUNCTIONAL EQUIVALENCE AND MAXIMAL SYMMETRY GROUP**  
 111

112 In this section, we formalize the parameter space of a parameterized function and its associated  
 113 symmetry groups, culminating in the definition of maximal symmetry groups, which provide a prin-  
 114 cipled link to Functional Equivalence (FE). We then specialize to Multihead Attention, examining  
 115 how this notion of maximality aligns with prior analyses.  
 116

117 **2.1 PARAMETER SPACE, SYMMETRY GROUP, AND ITS MAXIMALITY**  
 118

119 **Parameter space.** Let  $f(\cdot; \theta)$  be a function parameterized by  $\theta \in \Theta = \mathbb{R}^{\dim}$ . The set  $\Theta$  is referred  
 120 to as the *parameter space* (or *weight space*) of  $f$ . Assume a group  $G$  acts on  $\Theta$ . For each  $\theta \in \Theta$ ,  
 121 define the set of parameter vectors yielding functionally equivalent models:

$$[\theta] := \{\bar{\theta} \in \Theta \mid f(\cdot; \bar{\theta}) = f(\cdot; \theta)\} \subseteq \Theta. \quad (1)$$

122 The parameter space serves as a surrogate for the underlying function class, and the mapping  
 123  $\theta \mapsto f(\cdot; \theta)$  is non-injective, since distinct parameter configurations may correspond to identical  
 124 behaviors. This is illustrated in Figure 1. FE is therefore concerned with characterizing the sets  $[\theta]$ .  
 125 As explicit enumeration is infeasible, a principled strategy is to interpret these equivalence classes  
 126 as orbits under a group action on  $\Theta$ , leading naturally to the notion of the *symmetry group* of  $f$ .  
 127

128 **Symmetry group.** Let a group  $G$  act on  $\Theta$ . For  $\theta \in \Theta$ , the  $G$ -orbit of  $\theta$  is defined as  $G\theta := \{g\theta \mid$   
 129  $g \in G\} \subseteq \Theta$ . We now state the following definition.

130 **Definition 2.1** (Symmetry Group). A group  $G$  is called a *symmetry group* of the function  $f$  if  
 131  $G\theta \subseteq [\theta]$  for all  $\theta \in \Theta$ . Equivalently, for every  $g \in G$  and  $\theta \in \Theta$ , one has  $f(\cdot; g\theta) = f(\cdot; \theta)$ .

132 The phrase “a symmetry group” reflects that multiple such groups may exist. In particular, any sub-  
 133 group of a symmetry group is itself a symmetry group. Our objective is to represent the equivalence  
 134 classes  $[\theta]$  in terms of  $G$ -orbits. To develop intuition, we begin with two preliminary observations.

135 *First observation.* Consider the function  $f(\cdot; a, b) : \mathbb{R} \rightarrow \mathbb{R}$  defined by  $x \mapsto abx$ , parameterized by  
 136  $\theta = (a, b) \in \Theta = \mathbb{R}^2$ . It is immediate that  $(a, b)$  and  $(\bar{a}, \bar{b})$  yield the same function if and only if  
 137  $ab = \bar{a}\bar{b}$ . This naturally suggests a group action: let  $\mathbb{R}^\times$  denote the multiplicative group of nonzero  
 138 real numbers, and define the action of  $c \in \mathbb{R}^\times$  on  $(a, b) \in \mathbb{R}^2$  by  $c \cdot (a, b) := (ac, c^{-1}b)$ . It is  
 139 straightforward to verify that  $\mathbb{R}^\times$  is a symmetry group of  $f$ . However, it does not fully capture the  
 140 equivalence classes. Indeed, for  $(a, b) \in \mathbb{R}^2$  with  $ab \neq 0$ , one has  
 141

$$[(a, b)] = \{(\bar{a}, \bar{b}) \in \mathbb{R}^2 \mid ab = \bar{a}\bar{b}\} = \{(ac, c^{-1}b) \mid c \in \mathbb{R}^\times\} = \mathbb{R}^\times(a, b). \quad (2)$$

142 In contrast, for  $(a, b) \in \mathbb{R}^2$  with  $ab = 0$ , one has  $[(a, b)] = \mathbb{R}^\times(1, 0) \sqcup \mathbb{R}^\times(0, 1) \sqcup \mathbb{R}^\times(0, 0)$ .  
 143 Hence,  $\mathbb{R}^\times$  provides an almost complete description of the functional partition, but does not account  
 144 for the degenerate subset  $\{(a, b) \in \mathbb{R}^2 : ab = 0\}$ . It is difficult to identify a larger natural group  
 145 whose action extends to cover these exceptional cases.

146 *Second observation.* From classical group theory, any partition of a set can be realized as the orbit  
 147 decomposition of a suitable group action. Hence, there always exists a group  $G$  with an action on  
 148  $\Theta$  such that its orbits coincide with the functional partition. Nevertheless, constructing such a group  
 149 generally requires explicit transformations, which are often intractable and impractical. In parame-  
 150 terized models, where  $\Theta$  is a finite-dimensional real vector space, it is natural to restrict attention to  
 151 group actions induced by standard operations such as addition, multiplication, or permutation.

152 These two observations highlight a trade-off: the *tractability* of the group action versus the *expres-  
 153 sive capacity* of the functional partition. This motivates the notion of maximal symmetry groups.

154 **Maximal symmetry group.** We now introduce the notion of a maximal symmetry group.

155 **Definition 2.2** (Maximal symmetry group). (informal) For generic parameters, the symmetry group  
 156  $G$  fully captures functional equivalence, up to a sufficiently small exceptional set.

157 In other words, let  $\varepsilon$  denote a sufficiently small subset of  $\Theta$ , and consider the restricted domain  
 158  $\Theta \setminus \varepsilon$ . The group action of  $G$  on  $\Theta$  naturally restricts to  $\Theta \setminus \varepsilon$ . Then, for all  $\theta, \bar{\theta} \in \Theta \setminus \varepsilon$  such that

162  $f(\cdot; \theta) = f(\cdot; \bar{\theta})$ , there exists  $g \in G$  with  $\bar{\theta} = g\theta$ . Hence, although there may exist parameters in  $\Theta$   
 163 for which  $G$  does not capture FE, this exceptional set is negligible, and  $G$  may still be regarded  
 164 as characterizing FE on  $\Theta$ . The subset  $\varepsilon$  is typically taken to be the zero set of finitely many  
 165 nonzero polynomials, i.e., a proper real algebraic variety, in line with prior work on FE in neural  
 166 architectures (Hecht-Nielsen, 1990; Fefferman & Markel, 1993; Bui Thi Mai & Lampert, 2020).

167 **Definition 2.3** (Maximal symmetry group). A symmetry group  $G$  is called *maximal* if there exists a  
 168 proper real algebraic variety  $\varepsilon \subsetneq \Theta$  such that, for all  $\theta, \bar{\theta} \in \Theta \setminus \varepsilon$ , whenever  $f(\cdot; \theta) = f(\cdot; \bar{\theta})$ , there  
 169 exists  $g \in G$  with  $\bar{\theta} = g\theta$ .

170 **Remark 2.4.** In the earlier example of  $f(\cdot; a, b)$ , let  $\varepsilon = \{(a, b) \in \mathbb{R}^2 : ab = 0\}$ . Here  $\varepsilon$  forms a  
 171 proper real algebraic variety, and the group  $\mathbb{R}^\times$  serves as a maximal symmetry group of  $f$ .

## 173 2.2 THE CASE OF MULTIHEAD ATTENTION

175 **Parameter space.** Let  $d$  denote the token dimension,  $L$  the sequence length, and  $h$  the number of  
 176 heads, where all are positive integers. Define the space of token sequences as  $\mathcal{S} := \sqcup_{L=1}^{\infty} \mathbb{R}^{L \times d}$ .  
 177 For a fixed head dimension  $d_h$ , let  $W_i^Q, W_i^K, W_i^V, W_i^O \in \mathbb{R}^{d \times d_h}$  for each  $i \in [h]$ , and set  
 178  $\theta = (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h$ . Given an input sequence  $\mathbf{x} = (x_1, \dots, x_L)^\top \in \mathbb{R}^{L \times d} \subset \mathcal{S}$ ,  
 179 the Multihead Attention (MHA) mechanism with  $h$  heads is defined by

$$180 \quad 181 \quad \text{MHA}(\mathbf{x}; \theta) = \sum_{i=1}^h \text{softmax} \left( (\mathbf{x} W_i^Q) (\mathbf{x} W_i^K)^\top \right) \cdot (\mathbf{x} W_i^V) (W_i^O)^\top. \quad (3)$$

183 Here, the softmax operator is applied row-wise to the similarity matrix  $(\mathbf{x} W_i^Q) (\mathbf{x} W_i^K)^\top \in \mathbb{R}^{L \times L}$ ,  
 184 producing the attention for  $\mathbf{x}$ . Each row forms a probability distribution that determines the relative  
 185 influence of all input tokens on a given output token. In practice, the head dimension is set to  
 186  $d_h = d/h$ . The parameter space of the MultiHead map is then  $\Theta := (\mathbb{R}^{d \times d_h})^h$ .

188 **Maximal symmetry group.** Define the following group  $G_{\text{Att}} := S_h \times (\text{GL}(d_h) \times \text{GL}(d_h))^h$ . This  
 189 group is exactly the direct product of the permutation group  $S_h$  with  $h$  copies of  $\text{GL}(d_h) \times \text{GL}(d_h)$ .  
 190 Each element  $g \in G_{\text{Att}}$  can be written as  $g := (\sigma, (U_i, V_i)_{i=1}^h)$ , where  $\sigma \in S_h$  and  $U_i, V_i \in \text{GL}(d_h)$ .  
 191 The group  $G_{\text{Att}}$  acts naturally on the parameter space  $\Theta$  as follows:

$$192 \quad 193 \quad g\theta := \left( W_{\sigma(i)}^Q \cdot U_i^\top; W_{\sigma(i)}^K \cdot U_i^{-1}; W_{\sigma(i)}^V \cdot V_i^\top; W_{\sigma(i)}^O \cdot V_i^{-1} \right)_{i=1}^h. \quad (4)$$

194 It is evident that  $G$  serves as a symmetry group of the MHA map. The reasoning is as follows: the  
 195 general linear action cancels within the matrix multiplications, while the permutation action induced  
 196 by  $\sigma$  commutes with addition. Furthermore,  $G$  is maximal, as formalized in the following result.

197 **Theorem 2.5** (See Tran et al. (2025)). *Consider two MHA maps with  $h$  heads, parameterized by  
 198  $\theta = (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h$  and  $\bar{\theta} = (\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O)_{i=1}^h$  in  $\Theta$ , respectively. Assume that*

- 200 1. All matrices  $W_i^Q, W_i^K, W_i^V, W_i^O$  and  $\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O$ , for all feasible  $i$ , are of rank  $d_h$ .
- 201 2. From  $\theta$ , the matrices  $\{W_i^Q (W_i^K)^\top\}_{i=1}^h$  are pairwise distinct. The same condition holds for  $\bar{\theta}$ .

203 If the two MHA maps are identical, there exists  $g \in G$  such that  $\bar{\theta} = g\theta$ .

204 **Remark 2.6.** Note that the conditions on  $\theta$  and  $\bar{\theta}$  in Theorem 2.5 can both be expressed as the  
 205 vanishing of finitely many nonzero polynomials. This corresponds precisely to the real algebraic  
 206 variety  $\varepsilon$  introduced in Definition 2.3 of maximal symmetry groups.

## 208 3 ON THE EFFECT OF POSITIONAL ENCODING ON SYMMETRY GROUPS

209 Our investigation examines how positional encodings (PEs) alter the structure of attention. In par-  
 210 ticular, we focus on *sinusoidal encoding* and *rotary encoding*, which serve as canonical examples of  
 211 absolute and relative positional encoding approaches.

### 212 3.1 THE SETTING OF ABSOLUTE POSITIONAL ENCODING

214 **Sinusoidal Encoding.** Within Absolute PEs, positional information is encoded through a sequence  
 215 of vectors  $\mathbf{p} = \{p_i\}_{i=1}^{\infty} \subset \mathbb{R}^d$ . For the *sinusoidal encoding* proposed in the Transformer architecture  
 (Vaswani et al., 2017), the entries of each  $p_m \in \mathbb{R}^d$  are specified as

216  
217  
218  
219

$$p_{m,2k} = \sin\left(\frac{m}{10000^{2k/d}}\right), \text{ and } p_{m,2k+1} = \cos\left(\frac{m}{10000^{2k/d}}\right), \quad (5)$$

220 for  $0 \leq k < d/2$ . For an input sequence  $\mathbf{x} \in \mathcal{S}$  of length  $L$ , i.e.,  $\mathbf{x} = (x_1, \dots, x_L)^\top \in \mathbb{R}^{L \times d}$ , the  
221 positional encoding is applied additively, that is  $\mathbf{x} + \mathbf{p} = (x_1 + p_1, \dots, x_L + p_L)^\top$  (this is an abuse  
222 of notation), which is then supplied as input to the multihead attention, yielding  $\text{MHA}_{\text{APE}}(\mathbf{x} : \theta) =$   
223  $\text{MHA}(\mathbf{x} + \mathbf{p} : \theta)$ . Under this formulation, PE *does not alter the internal mechanism* of the MHA  
224 map in Equation (3); rather, it simply translates the inputs. The mapping  $\mathbf{x} \mapsto \mathbf{x} + \mathbf{p}$  is bijective on  
225  $\mathcal{S}$ . As a result, incorporating sinusoidal PE has no effect on the functional equivalence analysis, and  
226 the equivalence classes remain exactly the same as in the absence of positional encoding.  
227

### 3.2 THE SETTING OF RELATIVE POSITIONAL ENCODING

229 **Rotary Positional Encoding.** We turn to the *Rotary Positional Encoding* (RoPE) (Su et al., 2024).  
230 For each token position  $n$ , we specify the block-diagonal rotation matrix  $R_n \in \mathbb{R}^{d_h \times d_h}$  by  
231

$$R_n = \text{diag}\left(\left[\begin{array}{cc} \cos(n\varphi_1) & -\sin(n\varphi_1) \\ \sin(n\varphi_1) & \cos(n\varphi_1) \end{array}\right], \dots, \left[\begin{array}{cc} \cos(n\varphi_{d_h/2}) & -\sin(n\varphi_{d_h/2}) \\ \sin(n\varphi_{d_h/2}) & \cos(n\varphi_{d_h/2}) \end{array}\right]\right), \quad (6)$$

232 where  $\varphi_i = 10000^{-2(i-1)/d}$  for  $i \in [d_h/2]$ . We omit, for clarity, the explicit subscript for the head  
233 size  $d_h$ . Noting that  $R_n = (R_1)^n$ , the multihead attention with RoPE takes the form  
234

$$\begin{aligned} \text{MHA}_{\text{RoPE}}(\mathbf{x} : \theta) &= \sum_{i=1}^h \text{softmax}\left(\left(\mathbf{x}W_i^Q R_m\right)\left(\mathbf{x}W_i^K R_n\right)^\top\right) \cdot \left(\mathbf{x}W_i^V\right)\left(W_i^O\right)^\top \\ &= \sum_{i=1}^h \text{softmax}\left[x_m W_i^Q R_{m-n} (W_i^K)^\top x_n^\top\right]_{m,n=1,\dots,L} \cdot \mathbf{x}W_i^V (W_i^O)^\top. \end{aligned} \quad (7)$$

235 **Analysis of RoPE in Relation to Internal Structure and Symmetry.** The parameterization and  
236 parameter domain of MHA<sub>RoPE</sub> match those of the vanilla MHA, but the action of  $G_{\text{Att}}$  on  $\Theta$  is  
237 no longer symmetric. Specifically, for  $\theta \in \Theta$  and  $g \in G_{\text{Att}}$ , one generally has  $\text{MHA}_{\text{RoPE}}(\cdot; \theta) \neq$   
238  $\text{MHA}_{\text{RoPE}}(\cdot; g\theta)$ . The underlying cause is that, while  $W_i^V$  and  $W_i^O$  still interact multiplicatively  
239 as in the vanilla case,  $W_i^Q$  and  $W_i^K$  are now separated by the relative rotary matrix  $R_{m-n}$ . This  
240 insertion blocks the cancellation of  $\text{GL}(d_h)$  group actions, and thus the invariance property fails  
241

242 **Symmetry Group.** To define the symmetry group, first, for  $i \in [d_h/2]$ , define matrices  $P_i, J_i \in$   
243  $\mathbb{R}^{d_h \times d_h}$ , each being block-diagonal with  $d_h/2$  consecutive  $2 \times 2$  diagonal blocks:  
244

$$P_i = \text{diag}\left(0, \dots, 0, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 0, \dots, 0\right), \quad J_i = \text{diag}\left(0, \dots, 0, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, 0, \dots, 0\right). \quad (8)$$

245 Now define the following group  
246

$$\text{H}(d_h) := \left\{ U = \sum_{i=1}^{d_h/2} (a_i P_i + b_i J_i) \in \mathbb{R}^{d_h \times d_h} : (a_i, b_i) \in \mathbb{R}^2 \setminus \{(0, 0)\}, i \in [d_h/2] \right\}. \quad (9)$$

247 Verifying directly,  $\text{H}(d_h)$  forms an abelian subgroup of  $\text{GL}(d_h)$ , and moreover it is isomorphic to  
248  $(\mathbb{C}^\times)^{d_h/2}$ , where  $\mathbb{C}^\times$  denotes the multiplicative group of nonzero complex numbers. In particular,  
249 for each  $n$ , the rotary matrix  $R_n$  belongs to  $\text{H}(d_h)$ . We proceed to define  
250

$$G_{\text{RoPE}} := S_h \times (\text{H}(d_h) \times \text{GL}(d_h))^h. \quad (10)$$

251 Thus,  $G_{\text{RoPE}}$  is clearly a subgroup of  $G_{\text{Att}}$ . Furthermore, the natural action of  $G_{\text{Att}}$  on  $\Theta$  restricts to  
252  $G_{\text{RoPE}}$ , yielding a valid group action on  $\Theta$ . Crucially, this action preserves the behavior of  $\text{MHA}_{\text{RoPE}}$ ,  
253 so that  $G_{\text{RoPE}}$  forms a symmetry group of  $\text{MHA}_{\text{RoPE}}$ .  
254

255 **Remark 3.1.** The argument proceeds as follows. In comparison with the vanilla MultiHead map,  
256 aside from the head permutation  $\sigma$  and the product structure of  $W_i^V$  and  $W_i^O$ , the only modification  
257

270 concerns the interaction of  $W_i^Q$  with  $W_i^K$ . Using the fact that  $\mathbf{H}(d_h)$  is abelian and that  $R_n \in \mathbf{H}(d_h)$ ,  
 271 we obtain

$$\begin{aligned} 273 \quad (W_i^Q U^\top) R_n (W_i^K U^{-1})^\top &= W_i^Q U^\top R_n (U^{-1})^\top (W_i^K)^\top \\ 274 \quad &= W_i^Q R_n U^\top (U^{-1})^\top (W_i^K)^\top = W_i^Q R_n (W_i^K)^\top. \end{aligned} \quad (11)$$

275 Thus, the product inside the softmax of the  $\text{MultiHead}_{\text{RoPE}}$  map is invariant under  $G_{\text{RoPE}}$ .

277 We now show that  $G_{\text{RoPE}}$  constitutes a maximal symmetry group of  $\text{MHA}_{\text{RoPE}}$ .

279 **Theorem 3.2** (Maximality of  $G_{\text{RoPE}}$ ). *Consider two  $\text{MHA}_{\text{RoPE}}$  maps with  $h$  heads, parameterized  
 280 by  $\theta = (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h$  and  $\bar{\theta} = (\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O)_{i=1}^h$ , respectively. Assume that*

281 1. *In the initial  $\text{MHA}_{\text{RoPE}}$  map, the  $h$  families listed below contain only nonzero matrices,*

$$283 \quad \left\{ W_i^Q (W_i^K)^\top + W_i^K (W_i^Q)^\top; \{W_i^Q R^n (W_i^K)^\top\}_{n \in \mathbb{Z}, n \neq 0} \right\}, \text{ for } i \in [h],$$

285 *and these form  $h$  mutually distinct families. An analogous condition applies to the second map.*

286 2. *All matrices  $W_i^Q, W_i^K, W_i^V, W_i^O$  and  $\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O$ , for all feasible  $i$ , are of rank  $d_h$ .*

288 *If the two  $\text{MHA}_{\text{RoPE}}$  maps are identical, then there exists  $g \in G$  such that  $\bar{\theta} = g\theta$ .*

290 The proof of Theorem 3.2 is provided in Appendix B. Since the proof is lengthy and relies on  
 291 several key lemmas, we outline the main steps here. First,  $\text{MHA}_{\text{RoPE}}$  is reformulated in the form  
 292 of an exponential polynomial, and techniques from this area are applied to derive relations among  
 293 the parameters. Next, a structural property of the rotary matrix, established in Lemma B.12 of  
 294 Appendix B.6, is used to refine the analysis of these relations. Finally, this refinement enables us to  
 295 recover the existence of the group elements that connect the two parameter sets.

296 **Remark 3.3.** As  $\mathbf{H}(d_h)$  is significantly smaller than  $\text{GL}(d_h)$ , the expressive class of  $\text{MHA}_{\text{RoPE}}$   
 297 strictly exceeds that of  $\text{MHA}$  or  $\text{MHA}_{\text{APE}}$ . *This observation gives theoretical support for the  
 298 widespread use of RoPE in attention models.*

## 300 4 TELEPORTATION VIA MINIMAL PERTURBATION

302 In this section, we explore the integration of teleportation techniques into optimization methods.

304 Given a parameterized function  $f(\cdot; \theta)$  with  $\theta \in \Theta$ , let  $G$  be a symmetry group of  $f$ . Our goal is to  
 305 minimize the loss function  $\mathcal{L}(\theta)$ . During optimization, at teleportation steps  $K \subseteq \{0, \dots, T-1\}$ ,  
 306 prior work uses expensive Hessian-based methods (Zhao et al., 2022a; Mishkin et al., 2024) to find  
 307 an optimal  $g \in G$ . Such methods suffer from high memory costs (Nilsen et al., 2019) and numerical  
 308 instability (Etmann, 2019). Instead, we propose a simpler, sampling-based alternative.

309 While weight perturbations that increase the gradient norm can improve performance (Hochreiter &  
 310 Schmidhuber, 1997; Armenta et al., 2023), the underlying mechanism involves large transformations  
 311 that alter gradient dynamics. Such drastic changes, even when loss-preserving, risk moving the  
 312 optimizer into unfavorable regions and impairing convergence and generalization.

313 In contrast, we argue that small perturbations alongside a standard optimizer (e.g., SGD or Adam)  
 314 promote faster convergence. Small perturbations keep the optimization trajectory aligned with the  
 315 optimizer’s guidance, avoiding disruptive shifts. This approach balances the exploration from tele-  
 316 portation with the stability required for efficient convergence. Formally, let the symmetry group  $G$   
 317 be equipped with a metric  $d_G$ . We define the ball of radius  $\alpha > 0$  around the identity  $\text{id}_G$  as:

$$318 \quad B_G(\alpha) := \{g \in G : d_G(g, \text{id}_G) < \alpha\}. \quad (12)$$

320 Each teleportation step is now performed within this ball  $B_G(\alpha)$ , ensuring that the applied transfor-  
 321 mation remains within a controlled perturbation range. Therefore, the optimal  $g$  is given by:

$$323 \quad g \leftarrow \underset{g \in B_G(\alpha)}{\text{argmax}} \|(\nabla \mathcal{L})|_{g\theta}\|_2. \quad (13)$$

To avoid the prohibitive cost of solving the intractable optimization in Eq. (13), we adopt a sampling-based approach to update  $g$ . With a fixed budget of  $M$  samples, the teleportation update is:

$$g \leftarrow \operatorname{argmax}_{i=1,\dots,M} \{ \|(\nabla \mathcal{L})|_{g_1 \theta} \|_2, \dots, \|(\nabla \mathcal{L})|_{g_M \theta} \|_2 \}. \quad (14)$$

For the general linear group  $GL(n)$ —a metric space whose metric is induced from the space of  $n \times n$  matrices—we sample near the identity by constructing a diagonal matrix as follows  $\operatorname{diag}(x_1, \dots, x_n)$ , where each diagonal entry  $x_i$  is sampled from  $\mathcal{U}([1-\alpha, 1+\alpha])$ . This creates controlled perturbations near the identity matrix. Furthermore, if the current parameters  $\theta_t$  already have a high gradient norm compared to their symmetric neighbors, they are likely in a favorable optimization region. Further teleportation could then create an excessively large gradient, pushing the optimizer into an unstable region of the loss (Zhao et al., 2022a; Mishkin et al., 2024). To mitigate this risk, we impose a stability condition: teleportation is applied only if a majority of samples increase the gradient norm. Let  $\mathcal{S}_t$  be the set of such samples:

$$\mathcal{S}_t = \{g \in \{g_1, \dots, g_M\} : \|\nabla \mathcal{L}|_{g \theta_t}\|_2 > \|\nabla \mathcal{L}|_{\theta_t}\|_2\}. \quad (15)$$

The update rule for  $g$  becomes

$$g = \begin{cases} \operatorname{argmax}_{g \in \{g_i\}} \|\nabla \mathcal{L}|_{g \theta}\|_2 & \text{if } |\mathcal{S}_t| > M/2, \\ \operatorname{id}_G & \text{otherwise.} \end{cases} \quad (16)$$

The parameters are updated via  $\theta \leftarrow g\theta$  before the standard optimizer step. Our full algorithm, Teleportation Training with Sampling Minimal Perturbations, is summarized in Algorithm 1.

**Remark 4.1.** Note that, since the action of the permutation group  $S_n$  commutes with the summation operator in  $\|(\nabla \mathcal{L})|_{g \theta}\|_2$ , its effect does not influence the optimization process. As a result, we can disregard the permutation symmetry, and focus on groups that are equipped with a metric.

## 5 EXPERIMENTS

This section provides an evaluation of our approach on a set of vision and NLP benchmarks. We conduct experiments with multiple architectures and PE schemes, including APE and RoPE, demonstrating the flexibility and general applicability of the proposed framework across diverse settings.

### 5.1 EXPERIMENTAL SETUP

**Optimizer Consideration.** We mainly use SGD, as teleportation yields stronger gains in stability and generalization compared to adaptive methods like Adam, where improvements are marginal. SGD also avoids pathologies of adaptive optimizers, such as overfitting small-scale patterns and slower convergence (Appendix D). For completeness, Adam results are also reported with detailed analyses in Appendix F.

**Datasets and Models.** For vision tasks, we adopt the Vision Transformer (ViT) (Dosovitskiy et al., 2020) on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), and ImageNet-1K (Deng et al., 2009). For language modeling, we employ Transformer-XL (Dai et al., 2019) on WikiText-103 (Merity et al., 2016). All models are trained with SGD, momentum, and a cosine scheduler. We also compare teleportation under two widely used forms of APE and RoPE. The complete set of hyperparameters is provided in Appendix E, while Table 1 and Figure 2 present the benchmark results obtained with teleportation.

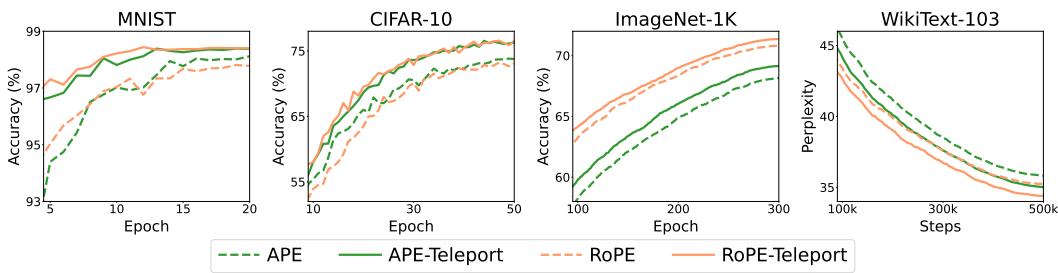
**Teleport Configuration.** We employ Algorithm 1 to implement teleportation, with key hyperparameters including the number of samples  $M$ , the radius  $\alpha$ , and the the set of teleportation steps  $K$ . In addition, we introduce a parameter consecutive steps which specifies how many teleportation steps are applied consecutively. Guidelines for these parameter selection are provided in Appendix G, where we also present an ablation study to highlight their impact on performance in Section 5.3.

### 5.2 EXPERIMENTAL RESULTS

**Overall, teleportation consistently accelerates convergence on both APE and RoPE.** On small datasets such as MNIST and CIFAR-10, training reaches baseline performance 25–60% faster (8–15

378  
 379 Table 1: Performance of models with and without teleportation on MNIST, CIFAR-10, ImageNet-  
 380 1K (validation accuracy) and WikiText-103 (test perplexity) under different positional encodings.  
 381 We also compare with the teleportation method of [Zhao et al. \(2023\)](#) on MNIST and CIFAR-10.  
 382 *Speedup* denotes the relative training reduction needed for teleportation to match the baseline; *N/A*  
 383 indicates no measurable improvement.

| 384 Dataset      | 385 Teleport | APE                                            |                            |                             | RoPE                                           |                            |                             |
|------------------|--------------|------------------------------------------------|----------------------------|-----------------------------|------------------------------------------------|----------------------------|-----------------------------|
|                  |              | 386 Accuracy (%) $\uparrow$ & PPL $\downarrow$ | 387 Speedup (%) $\uparrow$ | 388 Time/epoch $\downarrow$ | 389 Accuracy (%) $\uparrow$ & PPL $\downarrow$ | 390 Speedup (%) $\uparrow$ | 391 Time/epoch $\downarrow$ |
| 386 MNIST        | No           | 98.03 $\pm$ 0.12                               | -                          | 8.07 $\pm$ 0.32s            | 97.80 $\pm$ 0.10                               | -                          | 8.10 $\pm$ 0.19s            |
|                  | Yes          | <b>98.38 <math>\pm</math> 0.15</b>             | 43.41 $\pm$ 9.94           | 8.24 $\pm$ 0.35s            | <b>98.41 <math>\pm</math> 0.20</b>             | 58.98 $\pm$ 6.35           | 8.32 $\pm$ 0.25s            |
|                  | Yes (Zhao)   | 97.71 $\pm$ 0.17                               | N/A                        | 8.36 $\pm$ 0.11s            | 97.82 $\pm$ 0.17                               | 19.37 $\pm$ 9.56           | 8.30 $\pm$ 0.18s            |
| 388 CIFAR-10     | No           | 73.80 $\pm$ 0.44                               | -                          | 6.97 $\pm$ 0.57s            | 72.58 $\pm$ 0.86                               | -                          | 6.97 $\pm$ 0.58s            |
|                  | Yes          | <b>75.44 <math>\pm</math> 0.61</b>             | 26.41 $\pm$ 9.48           | 7.00 $\pm$ 0.28s            | <b>75.04 <math>\pm</math> 0.88</b>             | 29.07 $\pm$ 8.92           | 7.11 $\pm$ 0.52s            |
|                  | Yes (Zhao)   | 73.69 $\pm$ 0.72                               | N/A                        | 7.04 $\pm$ 0.09s            | 73.16 $\pm$ 0.18                               | 7.73 $\pm$ 4.63            | 7.04 $\pm$ 0.06s            |
| 391 ImageNet-1K  | No           | 67.85 $\pm$ 0.15                               | -                          | 14.28 $\pm$ 0.03m           | 70.73 $\pm$ 0.07                               | -                          | 16.47 $\pm$ 0.03m           |
|                  | Yes          | <b>69.01 <math>\pm</math> 0.23</b>             | 17.21 $\pm$ 1.12           | 14.30 $\pm$ 0.05m           | <b>71.33 <math>\pm</math> 0.19</b>             | 11.65 $\pm$ 1.14           | 16.50 $\pm$ 0.06m           |
| 393 WikiText-103 | No           | 35.76 $\pm$ 0.00                               | -                          | 15.68 $\pm$ 0.04m           | 36.12 $\pm$ 0.00                               | -                          | 16.43 $\pm$ 0.05m           |
|                  | Yes          | <b>35.15 <math>\pm</math> 0.17</b>             | 18.73 $\pm$ 1.57           | 15.72 $\pm$ 0.04m           | <b>35.70 <math>\pm</math> 0.26</b>             | 21.12 $\pm$ 1.85           | 16.46 $\pm$ 0.04m           |



405 Figure 2: Validation performance on MNIST, CIFAR-10, ImageNet-1K (accuracy) and WikiText-  
 406 103 (perplexity), comparing models trained with and without teleportation under different PE.

408 epochs), while larger-scale tasks show more moderate yet substantial gains, 10–18% on ImageNet-  
 409 1K and about 20% on WikiText-103. RoPE exhibits the most consistent advantage, with acceleration  
 410 on MNIST reaching 59% versus 43% under APE. Beyond speed, improvements in final accuracy  
 411 and perplexity are modest (e.g., 2.46% on CIFAR-10), and the runtime overhead per epoch remains  
 412 negligible. These results highlight teleportation as a practical approach to reducing convergence  
 413 time in both vision and language models without sacrificing generalization.

414 **Comparing algorithms.** We compare our method with [Zhao et al. \(2023\)](#) on MNIST and CIFAR-  
 415 10. Our approach incurs a 2% computational overhead, whereas Zhao’s requires about double the  
 416 GPU memory (Table 3) without significant gains in accuracy or efficiency (Table 1, Appendix E).

### 418 5.3 ABLATION STUDY

420 This section investigates the sensitivity of teleportation to different configuration choices through an  
 421 ablation study. The complete ablation study results are reported in Table 2.

422 **Datasets and Models.** We conduct ablations on CIFAR-10 and WikiText-103 using RoPE (details  
 423 of architectures and hyperparameters in Appendix E). On CIFAR-10, we vary teleportation settings  
 424 across attention layers, radius, number of teleportation steps, teleportation epochs, and FFN contribu-  
 425 tion. On WikiText-103, we analyze how teleportation step positions affect convergence speed.

426 **Attention layers and FFN.** Teleporting only the first attention layer hurts performance, while ap-  
 427 plying it to the last layer improves it; teleporting all layers achieves the best results. In contrast,  
 428 combining Attention and FFN often underperforms the baseline.

430 **Radius and Number of Steps.** Smaller radius or step counts yield weaker results, but overly large  
 431 values destabilize training. A balanced trade-off is required, where a smaller radius can be offset by  
 432 more steps and vice versa.

432 Table 2: Ablation results on CIFAR-10 with RoPE, varying the teleported attention layers, teleportation radius  $\alpha$ , number of teleportation steps  $|K|$ , teleportation epochs, and FFN contribution.  
 433 Results are reported as the mean and standard deviation over five runs. *N/A* indicates that the  
 434 improvement in training time cannot be measured because the validation accuracy does not surpass the  
 435 non-teleportation baseline.  
 436

| Change   | Layers | $\alpha$ | $ K $ | Epochs | FFN | Val Acc (%) $\uparrow$             | Speedup (%) $\uparrow$ |
|----------|--------|----------|-------|--------|-----|------------------------------------|------------------------|
| Layers   | first  | 0.65     | 4     | 1      | 0   | 69.65 $\pm$ 1.24                   | N/A                    |
|          | last   | 0.65     | 4     | 1      | 0   | 74.04 $\pm$ 0.16                   | 19.31 $\pm$ 0.25       |
|          | all    | 0.65     | 4     | 1      | 0   | <b>75.04 <math>\pm</math> 0.88</b> | 29.07 $\pm$ 8.92       |
| $\alpha$ | all    | 0.9      | 4     | 1      | 0   | <u>66.17 <math>\pm</math> 7.92</u> | N/A                    |
|          | all    | 0.65     | 4     | 1      | 0   | <b>75.04 <math>\pm</math> 0.88</b> | 29.07 $\pm$ 8.92       |
|          | all    | 0.5      | 4     | 1      | 0   | 73.74 $\pm$ 0.18                   | 17.94 $\pm$ 1.59       |
|          | all    | 0.5      | 8     | 1      | 0   | 74.70 $\pm$ 1.44                   | 30.85 $\pm$ 11.66      |
|          | all    | 0.3      | 8     | 1      | 0   | 71.77 $\pm$ 1.34                   | N/A                    |
|          | all    | 0.3      | 16    | 1      | 0   | 75.00 $\pm$ 1.40                   | 36.62 $\pm$ 3.01       |
| FFN      | all    | 0.65     | 4     | 1      | 1   | 70.89 $\pm$ 1.62                   | N/A                    |

| Change | Layers | $\alpha$ | $ K $ | Epochs  | FFN | Val Acc (%) $\uparrow$             | Speedup (%) $\uparrow$ |
|--------|--------|----------|-------|---------|-----|------------------------------------|------------------------|
| $ K $  | all    | 0.65     | 2     | 1       | 0   | 73.24 $\pm$ 1.30                   | 13.47 $\pm$ 11.42      |
|        | all    | 0.65     | 4     | 1       | 0   | 75.04 $\pm$ 0.88                   | 29.07 $\pm$ 8.92       |
|        | all    | 0.65     | 6     | 1       | 0   | <b>75.70 <math>\pm</math> 0.34</b> | 31.46 $\pm$ 0.37       |
|        | all    | 0.65     | 8     | 1       | 0   | 73.26 $\pm$ 1.71                   | 22.90 $\pm$ 3.04       |
|        | all    | 0.65     | 10    | 1       | 0   | <u>67.47 <math>\pm</math> 6.35</u> | N/A                    |
| Epochs | all    | 0.65     | 4     | 1       | 0   | 75.04 $\pm$ 0.88                   | 29.07 $\pm$ 8.92       |
|        | all    | 0.65     | 4     | 3       | 0   | <b>75.17 <math>\pm</math> 1.11</b> | 33.73 $\pm$ 4.15       |
|        | all    | 0.4      | 8     | 1, 2    | 0   | 75.08 $\pm$ 0.81                   | 24.08 $\pm$ 8.72       |
|        | all    | 0.3      | 8     | 1, 2, 3 | 0   | 73.94 $\pm$ 0.81                   | 24.50 $\pm$ 4.80       |
|        | all    | 0.3      | 8     | 1, 3, 5 | 0   | 74.49 $\pm$ 0.38                   | 24.13 $\pm$ 3.81       |

447 **Teleportation epochs (steps).** The effectiveness of teleportation depends strongly on when it is  
 448 applied. On CIFAR-10, spreading teleportation across multiple epochs forces reductions in step  
 449 count or radius to prevent gradient explosion, yielding weaker results than concentrating it at a  
 450 single well-chosen epoch with a larger radius. Similar sensitivity is observed on WikiText-103  
 451 (Table 6), optimal performance arises when teleportation occurs during an intermediate warmup  
 452 stage (25–50%), where gradients are sufficiently scaled, before stabilized convergence is reached.

453 **Training time.** Increasing the sample size  $M$  improves stability but adds runtime, with theoretical  
 454 overhead  $\sim 100 \cdot \frac{M \cdot |K|}{\text{total steps}} \%$ . As  $M$  and  $|K|$  are typically small (Appendix G), the cost remains below  
 455 3%, while practical system-level variability rarely causes significant slowdowns.  
 456

#### 457 5.4 GENERALIZATION

458 Beyond its impact on convergence speed, teleportation also enhances the generalization.

459 **Teleportation converges to flatter minima.** While our primary goal is to amplify gradient magnitudes,  
 460 we also observe improved validation accuracy, suggesting enhanced generalization. Sharpness  
 461 analysis following Foret et al. (2020) confirms that teleportation leads to flatter minima (Ta-  
 462 ble 4), consistent with prior findings (Zhao et al., 2023).

463 **Large noise of gradient.** Complementary evidence arises from gradient noise estimation using the  
 464 methodology of Wu et al. (2020), which reveals elevated noise levels after teleportation (Figure 3a).  
 465 This observation agrees with prior findings Smith & Le (2017); Feng & Tu (2021), which argue that  
 466 increased stochastic gradient noise can promote better generalization.  
 467

468 **Smaller  $\ell_2$  gradient norms.** We additionally analyze the dynamics of  $\ell_2$  gradient norms throughout  
 469 training. Teleportation produces larger norms in the early stages but smaller ones toward the end  
 470 (Figure 3b). This pattern resonates with the insights of Zhao et al. (2022b), which demonstrate that  
 471 reduced gradient magnitudes in later phases are conducive to stronger generalization.  
 472

473 Taken together, these results suggest that teleportation not only accelerates optimization but also  
 474 implicitly enhances generalization by promoting flatter minima, injecting beneficial gradient noise,  
 475 and shaping gradient dynamics in a favorable manner.  
 476

## 6 CONCLUSION

477 In this paper, we introduce a framework for functional equivalence, symmetry groups, and maxi-  
 478 mal symmetry groups. We analyze Multihead Attention with a focus on how positional encodings  
 479 reshape the symmetry structure of vanilla attention—a perspective not formally addressed before.  
 480 Building on this, we propose a teleportation-based method to accelerate Transformer optimization.  
 481 Experiments demonstrate that teleportation improves both convergence speed and model perfor-  
 482 mance, and we further identify suitable configurations across datasets of different scales. However,  
 483 threshold selection remains limited, and the behavior of teleportation on very large models such as  
 484 LLMs has yet to be explored, which we highlight as an important direction for future work.  
 485

486 **Ethics Statement.** Due to its emphasis on technical and methodological elements, this research  
 487 does not present any anticipated risks of harmful societal or ethical effects.  
 488

489 **Reproducibility Statement.** The full source code for all experiments is supplied in the supplemen-  
 490 tary materials. Information on hyperparameters, training procedures, and computing resources is  
 491 outlined in Appendix E. All datasets utilized in this study are openly accessible and readily avail-  
 492 able online.

493 **LLM Usage Declaration.** Large language models (LLMs) were used exclusively for proofreading  
 494 grammar and making slight linguistic adjustments.

495 **REFERENCES**

496 Kingma DP Ba J Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,  
 497 1412(6), 2014.

498 Marco Armenta and Pierre-Marc Jodoin. The representation theory of neural networks. *Mathemat-  
 499 ics*, 9(24):3216, 2021.

500 Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel  
 501 Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. *Mathematics*,  
 502 11(2):480, 2023.

503 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
 504 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,  
 505 2025.

506 Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu net-  
 507 works. In *8th International Conference on Learning Representations*, 2020.

508 Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the  
 509 generalization gap of adaptive gradient methods in training deep neural networks. *arXiv preprint  
 510 arXiv:1806.06763*, 2018.

511 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam  
 512 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:  
 513 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):  
 514 1–113, 2023.

515 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.  
 516 Transformer-xl: Attentive language models beyond a fixed-length context. *arXiv preprint  
 517 arXiv:1901.02860*, 2019.

518 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-  
 519 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
 520 pp. 248–255. Ieee, 2009.

521 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 522 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of  
 523 the North American chapter of the association for computational linguistics: human language  
 524 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

525 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 526 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
 527 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
 528 arXiv:2010.11929*, 2020.

529 Christian Etmann. A closer look at double backpropagation. *arXiv preprint arXiv:1906.06637*,  
 530 2019.

531 Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. *Advances in  
 532 neural information processing systems*, 6, 1993.

540 Yu Feng and Yuhai Tu. The inverse variance–flatness relation in stochastic gradient descent is critical  
 541 for finding flat minima. *Proceedings of the National Academy of Sciences*, 118(9):e2015617118,  
 542 2021.

543 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-  
 544 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

545 Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum  
 546 in stochastic gradient methods. *Advances in neural information processing systems*, 32, 2019.

547 Peter Hall. On representatives of subsets. *Journal of The London Mathematical Society-second*  
 548 *Series*, pp. 26–30, 1935. URL <https://api.semanticscholar.org/CorpusID:23252557>.

549 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert  
 550 with disentangled attention. *arXiv preprint arXiv:2006.03654*, 2020.

551 Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In *Ad-  
 552 vanced Neural Computers*, pp. 129–135. Elsevier, 1990.

553 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

554 Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, and Simon Lacoste-  
 555 Julien. Accelerating training with neuron interaction and nowcasting networks. *arXiv preprint*  
 556 *arXiv:2409.04434*, 2024.

557 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-  
 558 ages.(2009), 2009.

559 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to  
 560 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

561 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 562 *arXiv:1711.05101*, 2017.

563 Mohammad M Maher, Hamed Haddadi, and Alex Davidson. Telesparse: Practical privacy-  
 564 preserving verification of deep neural networks. *arXiv preprint arXiv:2504.19274*, 2025.

565 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture  
 566 models. *arXiv preprint arXiv:1609.07843*, 2016.

567 Aaron Mishkin, Alberto Bietti, and Robert M Gower. Level set teleportation: the good, the bad, and  
 568 the ugly. In *OPT 2023: Optimization for Machine Learning*, 2023.

569 Aaron Mishkin, Alberto Bietti, and Robert M Gower. Level set teleportation: An optimization  
 570 perspective. *arXiv preprint arXiv:2403.03362*, 2024.

571 Geir K Nilsen, Antonella Z Munthe-Kaas, Hans J Skaug, and Morten Brun. Efficient computation  
 572 of hessian matrices in tensorflow. *arXiv preprint arXiv:1905.05559*, 2019.

573 Robert Piziak and Patrick L Odell. Full rank factorization of matrices. *Mathematics magazine*, 72  
 574 (3):193–201, 1999.

575 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases  
 576 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.

577 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language  
 578 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

579 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 580 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text  
 581 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

582 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv*  
 583 *preprint arXiv:1904.09237*, 2019.

594 Gian-Carlo Rota. On the foundations of combinatorial theory: I. theory of möbius functions. In  
 595 *Classic Papers in Combinatorics*, pp. 332–360. Springer, 1964.  
 596

597 Lawrence K Saul. Weight-balancing fixes and flows for deep learning. *Transactions on Machine*  
 598 *Learning Research*, 2023.

599 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-  
 600 tions. *arXiv preprint arXiv:1803.02155*, 2018.  
 601

602 Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient  
 603 descent. *arXiv preprint arXiv:1710.06451*, 2017.

604 Richard P Stanley. Enumerative combinatorics volume 1 second edition. *Cambridge studies in*  
 605 *advanced mathematics*, 2011.

606 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-  
 607 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.  
 608

609 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-  
 610 ization and momentum in deep learning. In *International conference on machine learning*, pp.  
 611 1139–1147. pmlr, 2013.

612 Hugo Touvron, Thibaut Lavrille, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 613 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 614 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.  
 615

616 Hoang V. Tran, Thieu Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat, Thanh Tran,  
 617 Duy-Tung Pham, and Tan Minh Nguyen. Equivariant neural functional networks for transformers.  
 618 In *The Thirteenth International Conference on Learning Representations, ICLR*, 2025.

619 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 620 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-  
 621 tion processing systems*, 30, 2017.

622 Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal  
 623 value of adaptive gradient methods in machine learning. *Advances in neural information process-  
 624 ing systems*, 30, 2017.

625 Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the  
 626 noisy gradient descent that generalizes as sgd. In *International Conference on Machine Learning*,  
 627 pp. 10367–10376. PMLR, 2020.

628 Zihao Wu, Juncheng Dong, Ahmed Aloui, and Vahid Tarokh. Teleportation with null space gradient  
 629 projection for optimization acceleration. *arXiv preprint arXiv:2502.11362*, 2025.

630 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 631 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 632 *arXiv:2505.09388*, 2025.

633 Guy Zamir, Aryan Dokania, Bo Zhao, and Rose Yu. Improving learning to optimize using parameter  
 634 symmetries. *arXiv preprint arXiv:2504.15399*, 2025.

635 Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated  
 636 optimization. *Advances in neural information processing systems*, 35:16679–16690, 2022a.

637 Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization  
 638 using parameter symmetries. *arXiv preprint arXiv:2305.13404*, 2023.

639 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gen-  
 640 eralization in deep learning. In *International conference on machine learning*, pp. 26982–26992.  
 641 PMLR, 2022b.

642 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-  
 643 cally understanding why sgd generalizes better than adam in deep learning. *Advances in Neural*  
 644 *Information Processing Systems*, 33:21285–21296, 2020.

648 Zhipeng Zhou, Ziqiao Meng, Pengcheng Wu, Peilin Zhao, and Chunyan Miao. Continual opti-  
649 mization with symmetry teleportation for multi-task learning. *arXiv preprint arXiv:2503.04046*,  
650 2025.  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

702 TABLE OF NOTATION  
703  
704

---

|     |                                       |                                                                                                                     |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 705 | <i>General Mathematical Notation</i>  |                                                                                                                     |
| 706 | $\mathbb{R}^n$                        | $n$ -dimensional Euclidean space                                                                                    |
| 707 | $\mathbb{R}^{m \times n}$             | Space of $m \times n$ real matrices                                                                                 |
| 708 | $\text{softmax}(\cdot)$               | Row-wise softmax operator                                                                                           |
| 709 | $\ \cdot\ _2$                         | Euclidean norm (for vectors or gradients)                                                                           |
| 710 |                                       |                                                                                                                     |
| 711 | <i>Dimensions and Indices</i>         |                                                                                                                     |
| 712 | $d$                                   | Dimension of token embeddings                                                                                       |
| 713 | $d_h$                                 | Dimension of each attention head                                                                                    |
| 714 | $h$                                   | Number of attention heads in a model                                                                                |
| 715 | $L$                                   | Length of the input token sequence                                                                                  |
| 716 | $m, n, k$                             | Indices representing positions in a sequence or shifts                                                              |
| 717 | $i$                                   | Index representing attention heads                                                                                  |
| 718 |                                       |                                                                                                                     |
| 719 |                                       |                                                                                                                     |
| 720 | <i>Spaces and Parameters</i>          |                                                                                                                     |
| 721 | $\mathcal{S}$                         | The space of all token sequences, $\bigsqcup_{L=1}^{\infty} \mathbb{R}^{L \times d}$                                |
| 722 | $W_i^Q, W_i^K, W_i^V, W_i^O$          | Query, key, value, and output matrices of head $i$ , each in $\mathbb{R}^{d \times d_h}$                            |
| 723 | $\theta$                              | The complete set of parameters for a multi-head attention layer                                                     |
| 724 | $\Theta$                              | The parameter space for a multi-head attention layer, $(\mathbb{R}^{d \times d_h})^{4h}$                            |
| 725 | $A_i^{m,n}, B_i$                      | Parameter matrices for the general multi-head attention formulation                                                 |
| 726 |                                       |                                                                                                                     |
| 727 | <i>Symmetry Groups</i>                |                                                                                                                     |
| 728 | $S_h$                                 | The permutation group on a set of $h$ elements                                                                      |
| 729 | $\text{GL}(d_h)$                      | The general linear group of invertible $d_h \times d_h$ matrices                                                    |
| 730 | $G_{\text{Att}}$                      | The symmetry group for standard multi-head attention                                                                |
| 731 | $g$                                   | Element of $G_{\text{Att}}$ , $g = (\sigma, (U_i, V_i)_{i=1}^h)$ with $\sigma \in S_h, U_i, V_i \in \text{GL}(d_h)$ |
| 732 |                                       |                                                                                                                     |
| 733 |                                       |                                                                                                                     |
| 734 | <i>Positional Encodings (RoPE)</i>    |                                                                                                                     |
| 735 | $R^n$                                 | The block-diagonal rotation matrix for relative position $n$ in RoPE                                                |
| 736 | $\theta_i$                            | The rotation angle (frequency) for the $i$ -th 2D block in RoPE matrices                                            |
| 737 | $P_i, J_i$                            | Projection and skew-symmetric matrices for the $i$ -th 2D block                                                     |
| 738 |                                       |                                                                                                                     |
| 739 | <i>Optimization and Teleportation</i> |                                                                                                                     |
| 740 | $\mathcal{L}(\theta)$                 | Loss function to minimize                                                                                           |
| 741 | $\nabla \mathcal{L} _{\theta}$        | Gradient of the loss at parameters $\theta$                                                                         |
| 742 | $\varphi$                             | Optimizer update function                                                                                           |
| 743 | $T$                                   | Total number of optimization steps                                                                                  |
| 744 | $K$                                   | Set of teleportation steps                                                                                          |
| 745 | $\alpha > 0$                          | Perturbation range for sampling                                                                                     |
| 746 | $M$                                   | Number of samples for teleportation                                                                                 |
| 747 | $B_G(\alpha)$                         | Ball of radius $\alpha$ in $G$ centered at the identity, w.r.t. metric $d_G$                                        |
| 748 |                                       |                                                                                                                     |
| 749 |                                       |                                                                                                                     |
| 750 |                                       |                                                                                                                     |
| 751 |                                       |                                                                                                                     |
| 752 |                                       |                                                                                                                     |
| 753 |                                       |                                                                                                                     |
| 754 |                                       |                                                                                                                     |
| 755 |                                       |                                                                                                                     |

---

# 756 Supplement to “Accelerating Transformer Training: 757 Architectural Symmetry, 758 Positional Encoding, and Teleportation” 759

## 760 Table of Contents

|     |                                                                                                                     |           |
|-----|---------------------------------------------------------------------------------------------------------------------|-----------|
| 763 | <b>A Functional Equivalence of Vanilla Multihead Attention</b>                                                      | <b>15</b> |
| 764 |                                                                                                                     |           |
| 765 | <b>B A Proof for Theorem 3.2 and A Generalized Version</b>                                                          | <b>16</b> |
| 766 |                                                                                                                     |           |
| 767 | B.1 A General Formulation for Multihead Attention . . . . .                                                         | 16        |
| 768 | B.2 Functional Equivalence of General Multihead Attention . . . . .                                                 | 17        |
| 769 | B.3 Key Lemmas for the Functional Equivalence of General MultiHead Attention . . . . .                              | 26        |
| 770 | B.3.1 A Result on the Linear Independence of Exponential Polynomials over the Field of Rational Functions . . . . . | 26        |
| 771 | B.3.2 Hall’s Marriage Theorem and Systems of Distinct Representatives . . . . .                                     | 28        |
| 772 | B.3.3 The Möbius Function on the Partition Lattice . . . . .                                                        | 28        |
| 773 | B.4 A Technical Result on Weighted Sums over Distinct Tuples . . . . .                                              | 31        |
| 774 | B.5 Proof of Theorem 3.2 . . . . .                                                                                  | 34        |
| 775 | B.6 A Lemma Concerning the Rotary Matrix used in the Proof of Theorem 3.2 . . . . .                                 | 36        |
| 776 |                                                                                                                     |           |
| 777 | <b>C Algorithm Description</b>                                                                                      | <b>38</b> |
| 778 |                                                                                                                     |           |
| 779 | <b>D Optimizer Considerations for Teleportation</b>                                                                 | <b>39</b> |
| 780 |                                                                                                                     |           |
| 781 | <b>E Experimental Details and Hyperparameters</b>                                                                   | <b>39</b> |
| 782 |                                                                                                                     |           |
| 783 | <b>F Teleportation for Adam</b>                                                                                     | <b>41</b> |
| 784 |                                                                                                                     |           |
| 785 | <b>G Teleportation Configuration Recommendations</b>                                                                | <b>42</b> |
| 786 |                                                                                                                     |           |
| 787 | <b>H Teleportation index</b>                                                                                        | <b>43</b> |
| 788 |                                                                                                                     |           |

## 794 A FUNCTIONAL EQUIVALENCE OF VANILLA MULTIHEAD ATTENTION

795 Let  $d, d_h$  be positive integers with  $d \geq d_h$ . A multihead attention operator with  $h$  heads is defined  
796 by

$$797 \text{MHA}\left(\mathbf{x}; \{W_i^Q, W_i^K, W_i^V, W_i^O\}_{i=1}^h\right) \\ 798 = \sum_{i=1}^h \text{softmax}\left((\mathbf{x}W_i^Q)(\mathbf{x}W_i^K)^\top\right) (\mathbf{x}W_i^V)(W_i^O)^\top, \quad (17)$$

800 where  $W_i^Q, W_i^K, W_i^V, W_i^O \in \mathbb{R}^{d \times d_h}$ . The operator is parameterized by

$$801 \theta := (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h, \quad (18)$$

802 and its parameter space is

$$803 \Theta := (\mathbb{R}^{d \times d_h})^{4h}. \quad (19)$$

810 For brevity, the number of heads  $h$  is omitted from the notation  $\Theta$ . When it is necessary to emphasize  
 811  $h$ , we write  $\Theta_h$ .

812 **Group Action on the Parameter Space.** Define the following group

$$814 G_{\text{Att}} := S_h \times (\text{GL}(d_h) \times \text{GL}(d_h))^h. \quad (20)$$

816 This is precisely the direct product between the permutation group  $S_h$  and  $h$  copies of  $\text{GL}(d_h) \times$   
 817  $\text{GL}(d_h)$ . Each group element  $g \in G_{\text{Att}}$  has the form

$$818 g := (\sigma, (U_i, V_i)_{i=1}^h), \quad (21)$$

819 where  $\sigma \in S_h$  and  $U_i, V_i \in \text{GL}(d_h)$ . The natural action of  $G_{\text{Att}}$  on the parameter space  $\Theta$  is defined  
 820 by

$$822 g\theta := \left( W_{\sigma(i)}^Q \cdot U_i^\top, W_{\sigma(i)}^K \cdot U_i^{-1}, W_{\sigma(i)}^V \cdot V_i^\top, W_{\sigma(i)}^O \cdot V_i^{-1} \right)_{i=1}^h \quad (22)$$

824 This action preserves the functionality of the MHA map: for all  $\theta \in \Theta$  and all  $g \in G_{\text{Att}}$ ,

$$825 \text{MHA}(\cdot; \theta) = \text{MHA}(\cdot; g\theta). \quad (23)$$

827 The contribution of the general linear group action vanishes through cancellation in the matrix mul-  
 828 tiplications, while the action induced by the permutation  $\sigma$  commutes with the addition operator.  
 829 Taken together, these actions characterize the full symmetry of the multihead attention mechanism,  
 830 as established in the following result from [Tran et al. \(2025\)](#).

831 **Theorem A.1** (See [Tran et al. \(2025\)](#)). *Let*

$$832 \theta = \left( W_i^Q, W_i^K, W_i^V, W_i^O \right)_{i=1}^h \in \Omega_h, \text{ and } \bar{\theta} = \left( \bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O \right)_{i=1}^{\bar{h}} \in \Omega_{\bar{h}}, \quad (24)$$

834 be two parameterizations of MHA maps. Assume that:

- 836 1. Every  $d \times d_h$  matrix appearing in  $\theta$  and  $\bar{\theta}$  has full column rank  $d_h$ ;
- 837 2. The matrices  $\{W_i^Q (W_i^K)^\top\}_{i=1}^h$  are pairwise distinct;
- 839 3. The matrices  $\{\bar{W}_i^Q (\bar{W}_i^K)^\top\}_{i=1}^{\bar{h}}$  are pairwise distinct.

841 If the two MHA maps are identical, i.e.,

$$842 \text{MHA}(\cdot; \theta) = \text{MHA}(\cdot; \bar{\theta}), \quad (25)$$

844 then,  $h = \bar{h}$ , and there exists  $g \in G_{\text{Att}}$  such that  $\bar{\theta} = g\theta$ .

## 846 B A PROOF FOR THEOREM 3.2 AND A GENERALIZED VERSION

### 848 B.1 A GENERAL FORMULATION FOR MULTIHEAD ATTENTION

850 Consider an  $h$ -head MHA, specified by the following parameters:

$$851 \theta = \{\{A_i^{m,n}\}_{m,n}, B_i\}_{i=1}^h, \quad (26)$$

853 where every  $A_i^{m,n}$  and  $B_i$  are elements of  $\mathbb{R}^{d \times d}$ , specified as:

$$855 \text{MHA}(\mathbf{x}; \theta) = \sum_{i=1}^h \text{softmax} [x_m A_i^{m,n} x_n^\top]_{m,n=1,\dots,L} \cdot \mathbf{x} B_i. \quad (27)$$

858 The subsequent analysis of the general MHA is preceded by two preliminary observations.

- 860 1. For all integers  $m, n \geq 1$  and shifts  $k \geq 0$ , we take

$$861 A^{m,n} = A^{m+k, n+k}. \quad (28)$$

863 This aligns with the natural stationarity constraint enforced by relative positional encod-  
 ings.

864 2. For each  $m \geq 1$ , the similarity of the  $m$ -th token with itself at head  $i$  is computed by a  
 865 function  $f$  parameterized by  $A_i^{m,m}$ , namely  
 866

$$867 x_m A_i^{m,m} x_m^\top. \quad (29)$$

868 Given that any quadratic form uniquely corresponds to a symmetric matrix, we may assume  
 869  $A_i^{m,m}$  is symmetrized:

$$870 A_i^{m,m} \mapsto \frac{A_i^{m,m} + (A_i^{m,m})^\top}{2}. \quad (30)$$

871 This transformation keeps the function unchanged:  
 872

$$873 x_m A_i^{m,m} x_m^\top = x_m \left( \frac{A_i^{m,m} + (A_i^{m,m})^\top}{2} \right) x_m^\top. \quad (31)$$

874 Thus, going forward, we suppose that  $A_i^{m,m}$  is symmetric for all  $i, m$ .  
 875

876 We now turn to the case, under this framework, where two MHA maps with  $h$  and  $\bar{h}$  heads produce  
 877 equivalent outputs:  
 878

$$879 \text{MHA}(\mathbf{x}; \theta) = \text{MHA}(\mathbf{x}; \bar{\theta}). \quad (32)$$

880 From  $g(\cdot : B) = -g(\cdot : -B)$ , it follows that Equation (32) amounts to asserting that a MultiHead  
 881 map with  $h + \bar{h}$  heads vanishes everywhere:  
 882

$$883 0 = \text{MHA}(\mathbf{x}; \theta \sqcup \bar{\theta}). \quad (33)$$

884 The analysis of functional equivalence begins with identifying when a MultiHead map is identically  
 885 zero. Prior to presenting the proof, we put forth the following definition. Two parameter families  
 886  $\{A^{m,n}\}_{m,n \geq 1}$  and  $\{\bar{A}^{m,n}\}_{m,n \geq 1}$  are said to be *distinct* provided there exist indices  $m, n \geq 1$  for  
 887 which  
 888

$$889 A^{m,n} \neq \bar{A}^{m,n}. \quad (34)$$

890 The stage is now set to introduce the main theorem of this section.  
 891

## 892 B.2 FUNCTIONAL EQUIVALENCE OF GENERAL MULTIHEAD ATTENTION

893 **Theorem B.1** (Linear independence in general MHA). *We focus on the MultiHead operator with  $h$   
 894 heads, parameterized by  $\theta$ , under the assumption that the parameter families*

$$895 \{A_1^{m,n}\}_{m,n \geq 1}, \{A_2^{m,n}\}_{m,n \geq 1}, \dots, \{A_h^{m,n}\}_{m,n \geq 1}, \quad (35)$$

896 are mutually distinct, with the condition that  $A_i^{m,n}$  is nonzero for each  $i \in [h]$  and every  $m, n \geq 1$ .  
 897 If, for all  $\mathbf{x} \in \mathcal{S} = \sqcup_{L=1}^{\infty} \mathbb{R}^{L \times d}$ , the following holds:  
 898

$$900 \text{MHA}(\mathbf{x}; \theta) = 0. \quad (36)$$

901 then,  $B_1, \dots, B_h$  are equal to 0.  
 902

903 *Proof.* To aid understanding, we outline the principal steps of the proof at a high level:  
 904

905 1. **Preliminary setup.** To set the stage for the proof, we begin with a few preliminary remarks  
 906 and notational conventions. The argument reduces to showing that at least one coefficient  
 907  $B_i$  vanishes. Symmetry in the setup then guarantees that every  $B_i$  must be zero, proving  
 908 the theorem.  
 909

910 2. **Reformulation as an exponential polynomial.** From Equation (36), we obtain  
 911

$$912 0 = \sum_{(t_1, \dots, t_h) \in [L]^h} \exp \left( \sum_{i=1}^h x_k A_i^{k, t_i} x_{t_i}^\top \right) \left( \sum_{i=1}^h x_{t_i} B_i \right). \quad (37)$$

913 By a double-counting argument, this identity holds. The corresponding expression forms  
 914 an exponential polynomial that is everywhere zero. To proceed, we invoke linear indepen-  
 915 dence results for exponential functions over rational fields, which force specific relations  
 916 among the coefficients.  
 917

918 3. **Structural constraints on the  $B_i$ .** Using the linear independence principle, we deduce  
 919 a key structural restriction on the coefficients  $B_i$ . In particular, the symmetry conditions  
 920 imposed by the  $A_i^{k,t}$  on permissible permutations enforce a collection of linear relations  
 921 among the  $B_i$ , indexed by  $i \in [h]$ . These relations lie at the heart of the proof: they reduce  
 922 the analysis of a complex exponential sum to checking the consistency of a system of linear  
 923 equations in the  $B_i$ .

924 4. **Partition-based refinement.** Next, we investigate the equalities arising among the families  
 925  $\{A_i^{k,t}\}_{i=1}^h$ . This step clarifies that the structural relations from the previous stage are both  
 926 necessary and sufficient to ensure that at least one  $B_i$  must vanish. The refinement makes  
 927 use of the partitioning  $\{U_p\}$  together with carefully chosen subsets  $V^{t_j}$ , allowing us to  
 928 sharpen the constraints and identify the relevant indices.

929 5. **Conclusion.** In the final step, we integrate the arguments developed above. The structural  
 930 relations identified in **Step 3**, once refined through the partition analysis of **Step 4**, ensure  
 931 that at least one  $B_i$  must vanish. By the reduction carried out in Step 1, it follows that every  
 932  $B_i$  is zero, which completes the theorem.

934 The complete argument is presented as follows.

935 **Step 1.**

936 We express the formulation of

$$937 \text{MHA}(\mathbf{x}; \theta) \quad (38)$$

938 in a token-wise manner. From Equation (36), for every  $1 \leq k \leq L$ , one has

$$939 \sum_{i=1}^h \left( \sum_{j=1}^L \frac{\exp(x_k A_i^{k,j} x_j^\top)}{\sum_{q=1}^L \exp(x_k A_i^{k,q} x_q^\top)} \cdot x_j B_i \right) = 0. \quad (39)$$

940 Since the families  $\{A_1^{m,n}\}_{m,n \geq 1}, \{A_2^{m,n}\}_{m,n \geq 1}, \dots, \{A_h^{m,n}\}_{m,n \geq 1}$  are pairwise distinct, and for  
 941 each  $i$ ,  $A_i^{m,n}$  depends only on the difference  $(m - n)$ , one can choose a sufficiently large  $L$  and an  
 942 index  $k$  such that the  $h$  sets

$$943 \{A_1^{k,n}\}_{n \geq 1}, \{A_2^{k,n}\}_{n \geq 1}, \dots, \{A_h^{k,n}\}_{n \geq 1}$$

944 are pairwise distinct. For the remainder of the proof, we fix such a  $k$  and consider all  $L \geq k$ .

945 By induction, it suffices to establish that at least one of  $B_1, \dots, B_h$  vanishes. Indeed, if this holds,  
 946 then the problem reduces to a MultiHead Attention mechanism with fewer heads, and repeating the  
 947 argument shows that all  $B_1, \dots, B_h$  must be zero. Consequently, our goal is to prove that there  
 948 exists at least one index  $1 \leq i \leq h$  such that  $B_i = 0$ .

949 **Step 2.**

950 First, we rewrite Equation (39) in a more convenient form. By multiplying out all denominators in  
 951 Equation (39), we obtain

$$952 \sum_{i=1}^h \left( \sum_{j=1}^L \exp(x_k A_i^{k,j} x_j^\top) \cdot \prod_{p \in [h] \setminus \{i\}} \left( \sum_{q=1}^L \exp(x_k A_p^{k,q} x_q^\top) \right) \cdot x_j B_i \right) = 0. \quad (40)$$

953 We now observe that the left-hand side of Equation (40) can be re-expressed as

$$954 \sum_{i=1}^h \left( \sum_{j=1}^L \exp(x_k A_i^{k,j} x_j^\top) \cdot \prod_{p \in [h] \setminus \{i\}} \left( \sum_{q=1}^L \exp(x_k A_p^{k,q} x_q^\top) \right) \cdot x_j B_i \right) \\ 955 = \sum_{(t_1, \dots, t_h) \in [L]^h} \exp \left( \sum_{i=1}^h x_k A_i^{k,t_i} x_{t_i}^\top \right) \left( \sum_{i=1}^h x_{t_i} B_i \right). \quad (41)$$

972 To verify Equation (41), define for  $i \in [h]$  and  $j \in [L]$ ,

$$974 \quad a_{i,j} := \exp\left(x_k A_i^{k,j} x_j^\top\right), \quad b_{i,j} := x_j B_i. \quad (42)$$

975 In this notation, the claimed identity becomes

$$978 \quad \sum_{i=1}^h \left( \sum_{j=1}^L a_{i,j} \prod_{p \in [h] \setminus \{i\}} \sum_{q=1}^L a_{p,q} \cdot b_{i,j} \right) = \sum_{(t_1, \dots, t_h) \in [L]^h} \left( \prod_{i=1}^h a_{i,t_i} \right) \left( \sum_{i=1}^h b_{i,t_i} \right). \quad (43)$$

981 For  $(i, \mathbf{t}) \in [h] \times [L]^h$ , define the weight

$$983 \quad w(i, \mathbf{t}) := \left( \prod_{p=1}^h a_{p,t_p} \right) b_{i,t_i}. \quad (44)$$

986 We will compute the following quantity in two ways,

$$988 \quad \sum_{(i, \mathbf{t}) \in [h] \times [L]^h} w(i, \mathbf{t}). \quad (45)$$

990 *Group by the distinguished index  $i$ .*

992 Fix  $i \in [h]$ . Then

$$994 \quad \sum_{\mathbf{t} \in [L]^h} w(i, \mathbf{t}) = \sum_{t_i=1}^L \sum_{(t_p)_{p \neq i} \in [L]^{h-1}} \left( \prod_{p=1}^h a_{p,t_p} \right) b_{i,t_i}$$

$$997 \quad = \sum_{t_i=1}^L a_{i,t_i} b_{i,t_i} \underbrace{\sum_{(t_p)_{p \neq i} \in [L]^{h-1}} \prod_{p \neq i} a_{p,t_p}}_{(\star)}. \quad (46)$$

1001 The inner sum  $(\star)$  equals

$$1003 \quad \prod_{p \neq i} \sum_{q=1}^L a_{p,q}, \quad (47)$$

1006 since expanding the product enumerates every choice of  $(t_p)_{p \neq i}$  exactly once. Hence

$$1008 \quad \sum_{\mathbf{t} \in [L]^h} w(i, \mathbf{t}) = \sum_{j=1}^L a_{i,j} \left( \prod_{p \neq i} \sum_{q=1}^L a_{p,q} \right) b_{i,j}. \quad (48)$$

1011 Summing over  $i = 1, \dots, h$  yields the left-hand side of Equation (43).

1012 *Group by the tuple  $\mathbf{t}$ .*

1014 Fix  $\mathbf{t} = (t_1, \dots, t_h) \in [L]^h$ . Then

$$1016 \quad \sum_{i=1}^h w(i, \mathbf{t}) = \sum_{i=1}^h \left( \prod_{p=1}^h a_{p,t_p} \right) b_{i,t_i} = \left( \prod_{p=1}^h a_{p,t_p} \right) \left( \sum_{i=1}^h b_{i,t_i} \right). \quad (49)$$

1018 Summing over all  $\mathbf{t}$  yields the right-hand side of Equation (43).

1019 In conclusion, both groupings compute the same total  $\sum_{(i, \mathbf{t}) \in \Omega} w(i, \mathbf{t})$ , so Equation (43) holds.

1020 Substituting back  $a_{i,j} = \exp(x_k A_i^{k,j} x_j^\top)$ ,  $b_{i,j} = x_j B_i$  recovers the original identity. From Equation (40) and Equation (41), we conclude that

$$1024 \quad 0 = \sum_{(t_1, \dots, t_h) \in [L]^h} \left[ \exp\left( \sum_{i=1}^h x_k A_i^{k,t_i} x_{t_i}^\top \right) \left( \sum_{i=1}^h x_{t_i} B_i \right) \right]. \quad (50)$$

1026 Note that in Equation (50), both sides represent vectors in  $\mathbb{R}^d$ . If we examine a single coordinate of  
 1027 this vector, the identity remains valid by restricting each  $B_i$  to the corresponding column indexed  
 1028 by that coordinate. Hence, without loss of generality, we may interpret Equation (50) under the  
 1029 convention that each  $B_i$  is regarded as a column vector in  $\mathbb{R}^d$  corresponding to the chosen coordinate.  
 1030

1031 **Step 3.**

1032 For  $(t_1, \dots, t_h) \in \mathbb{N}^h$ , define  
 1033

$$1034 \quad g_{(t_1, \dots, t_h)}(\mathbf{x}) := \sum_{i=1}^h x_k A_i^{k, t_i} x_{t_i}^\top \quad \in \mathbb{R}[\mathbf{x}], \quad (51)$$

$$1037 \quad h_{(t_1, \dots, t_h)}(\mathbf{x}) := \sum_{i=1}^h x_{t_i} B_i \quad \in \mathbb{R}[\mathbf{x}], \quad (52)$$

$$1040 \quad f_{(t_1, \dots, t_h)}(\mathbf{x}) := \exp(g_{(t_1, \dots, t_h)}(\mathbf{x})) h_{(t_1, \dots, t_h)}(\mathbf{x}). \quad (53)$$

1041 Then Equation (50) can be rewritten as

$$1043 \quad 0 = \sum_{(t_1, \dots, t_h) \in [L]^h} f_{(t_1, \dots, t_h)}(\mathbf{x}) \\ 1044 \quad = \sum_{(t_1, \dots, t_h) \in [L]^h} \exp(g_{(t_1, \dots, t_h)}(\mathbf{x})) h_{(t_1, \dots, t_h)}(\mathbf{x}). \quad (54)$$

1049 Observe that each polynomial  $g_{(t_1, \dots, t_h)} \in \mathbb{R}[\mathbf{x}]$  has constant term equal to zero. By Lemma B.3,  
 1050 Equation (54) implies that, for each  $g \in \mathbb{R}[\mathbf{x}]$ , grouping together all indices  $(t_1, \dots, t_h)$  such that  
 1051  $g_{(t_1, \dots, t_h)} = g$  yields

$$1053 \quad 0 = \sum_{(t_1, \dots, t_h) \in [L]^h : g_{(t_1, \dots, t_h)} = g} \exp(g_{(t_1, \dots, t_h)}(\mathbf{x})) h_{(t_1, \dots, t_h)}(\mathbf{x}), \quad (55)$$

1055 and since  $\exp(g(\mathbf{x}))$  is common to all such terms, we conclude

$$1057 \quad 0 = \sum_{(t_1, \dots, t_h) \in [L]^h : g_{(t_1, \dots, t_h)} = g} h_{(t_1, \dots, t_h)}(\mathbf{x}). \quad (56)$$

1061 One has the following observation. Consider an arbitrary tuple  $(t_1, \dots, t_h) \in [L]^h$  such that  
 1062  $t_1, \dots, t_h$  are pairwise distinct. Assume that there exists another tuple  $(t'_1, \dots, t'_h) \in [L]^h$  satis-  
 1063 fying

$$1064 \quad g_{(t_1, \dots, t_h)} = g_{(t'_1, \dots, t'_h)}. \quad (57)$$

1066 Since all  $A_i^{m, n}$  are nonzero and  $A_i^{m, m}$  is symmetric, it follows that every polynomial of the form  
 1067  $x_m A_i^{m, n} x_n$  is nonvanishing. Consequently, in  $g_{k, (t_1, \dots, t_h)}$ , for each  $i \in [h]$ , there must exist poly-  
 1068 nomial terms that involve at least one entry of  $x_{t_i}$ . (This requirement that the  $t_i$ 's be pairwise distinct  
 1069 is crucial, as it prevents possible cancellation of terms.) Hence, for each  $i \in [h]$ , there exists  $j \in [h]$   
 1070 such that  $t_i = t'_j$ . Moreover, since the  $t_i$ 's are pairwise distinct, it follows that  $(t'_1, \dots, t'_h)$  must be  
 1071 a *permutation* of  $(t_1, \dots, t_h)$ . From Equation (54) and Lemma B.3, one therefore obtains

$$1073 \quad 0 = \sum_{\sigma \in S_h} h_{(t_{\sigma(1)}, \dots, t_{\sigma(h)})}(\mathbf{x}). \quad (58)$$

1076 It should be emphasized, however, that the condition  $(t'_1, \dots, t'_h)$  being a permutation of  $(t_1, \dots, t_h)$   
 1077 is not sufficient, in itself, to guarantee that  $g_{(t_1, \dots, t_h)} = g_{(t'_1, \dots, t'_h)}$ . To examine this more closely, let  
 1078  $(t'_1, \dots, t'_h) = (t_{\sigma(1)}, \dots, t_{\sigma(h)})$  for some  $\sigma \in S_h$ . From the assumption  $g_{(t_1, \dots, t_h)} = g_{(t'_1, \dots, t'_h)}$ , we  
 1079 have

$$\sum_{i=1}^h x_k A_i^{k,t_i} x_{t_i}^\top = \sum_{i=1}^h x_k A_i^{k,t_{\sigma(i)}} x_{t_{\sigma(i)}}^\top. \quad (59)$$

By reindexing the summation, this is equivalent to

$$\sum_{i=1}^h x_k A_i^{k,t_i} x_{t_i}^\top = \sum_{i=1}^h x_k A_{\sigma^{-1}(i)}^{k,t_i} x_{t_i}^\top, \quad (60)$$

which in turn is equivalent to requiring that  $A_i^{k,t_i} = A_{\sigma^{-1}(i)}^{k,t_i}$  for all  $i \in [h]$ . This shows explicitly the additional algebraic condition that must hold in order for two permutations to yield the same polynomial  $g$ . Note that this constitutes a sufficient condition on  $\sigma \in S_h$  to ensure that  $g_{(t_1, \dots, t_h)} = g_{(t'_1, \dots, t'_h)}$  whenever  $(t'_1, \dots, t'_h) = (t_{\sigma(1)}, \dots, t_{\sigma(h)})$ .

Accordingly, one deduces

$$\begin{aligned} 0 &= \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma^{-1}(j)}^{k,t_j} \forall j \in [h]}} h_{(t_{\sigma(1)}, \dots, t_{\sigma(h)})}(\mathbf{x}) \\ &= \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma^{-1}(j)}^{k,t_j} \forall j \in [h]}} \left( \sum_{i=1}^h x_{t_{\sigma(i)}} B_i \right) \\ &= \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma^{-1}(j)}^{k,t_j} \forall j \in [h]}} \left( \sum_{i=1}^h x_{t_i} B_{\sigma^{-1}(i)} \right) \\ &= \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma(j)}^{k,t_j} \forall j \in [h]}} \left( \sum_{i=1}^h x_{t_i} B_{\sigma(i)} \right) \\ &= \sum_{i=1}^h \left( x_{t_i} \cdot \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma(j)}^{k,t_j} \forall j \in [h]}} B_{\sigma(i)} \right). \end{aligned} \quad (61)$$

Thus, since the entries  $t_1, \dots, t_h$  are pairwise distinct, the monomials  $x_{t_i}$  are linearly independent. It therefore follows that, for each  $i \in [h]$ , one must have

$$0 = \sum_{\substack{\sigma \in S_h : \\ A_j^{k,t_j} = A_{\sigma(j)}^{k,t_j} \forall j \in [h]}} B_{\sigma(i)}. \quad (62)$$

Equation (62) encapsulates the key structural constraint on the coefficients  $B_i$ . It shows that, once the  $A_i^{k,t}$ 's impose symmetry conditions on admissible permutations, the  $B_i$ 's must satisfy a family of linear relations indexed by  $i \in [h]$ . This relation will serve as the main tool in subsequent steps, where we will exploit the partition structure of the  $U_p$ 's to force specific  $B_i$ 's to vanish.

#### Step 4.

For each  $t \in \mathbb{N}$ , define  $\{U_p^t\}_{p=1}^{\alpha_t}$  to be the unique partition of  $[h]$  such that, for  $i, j \in [h]$ , one has  $A_i^{k,t} = A_j^{k,t}$  if and only if  $i$  and  $j$  belong to the same set  $U_p^t$ . Since the number of possible partitions of  $\{1, \dots, h\}$  is finite, there exists a partition  $\{U_p\}_{p=1}^\alpha$  such that the equality

$$\{U_p^t\}_{p=1}^{\alpha_t} = \{U_p\}_{p=1}^\alpha \quad (63)$$

holds for infinitely many values of  $t \in \mathbb{N}$ . Let  $S$  denote the set of all such positive integers  $t$ .

By reindexing the head indices if necessary, we may assume that

$$U_1 = \{1, \dots, m\}. \quad (64)$$

1134 Next, observe that since the  $h$  sequences  
 1135

$$\{A_1^{k,n}\}_{n \geq 1}, \{A_2^{k,n}\}_{n \geq 1}, \dots, \{A_h^{k,n}\}_{n \geq 1} \quad (65)$$

1136 are pairwise distinct, there exists a positive integer  $K$  such that the truncated sequences  
 1137

$$\{A_1^{k,n}\}_{n=1}^K, \{A_2^{k,n}\}_{n=1}^K, \dots, \{A_h^{k,n}\}_{n=1}^K \quad (66)$$

1138 are already pairwise distinct. We then discard all integers  $t \leq K$  from the set  $S$ , and by a slight  
 1139 abuse of notation, continue to denote the resulting subset by the same symbol  $S$ .  
 1140

1141 Finally, for each partition  $\{U_p^t\}_{p=1}^{\alpha_t}$ , we denote by  $U^t(1)$  the unique set that contains the index 1.  
 1142

1143 (i) The intersection of  $K$  sets  $U^1(1), U^2(1), \dots, U^K(1)$  is precisely  $\{1\}$ , i.e.,  
 1144

$$U^1(1) \cap U^2(1) \cap \dots \cap U^K(1) = \{1\}. \quad (67)$$

1145 Indeed, since  $1 \in U^t(1)$  for all  $t = 1, \dots, K$ , it follows immediately that  
 1146

$$1 \in U^1(1) \cap U^2(1) \cap \dots \cap U^K(1). \quad (68)$$

1147 Suppose, for the sake of contradiction, that there exists some  $i \in [h]$  with  $i > 1$  such that  
 1148

$$i \in U^1(1) \cap U^2(1) \cap \dots \cap U^K(1). \quad (69)$$

1149 By the construction of  $U^t(1)$ , this assumption implies that  $A_1^{k,t} = A_i^{k,t}$  for all  $t = 1, \dots, K$ .  
 1150 Equivalently, the infinite sequences  $\{A_1^{k,n}\}_{n \geq 1}$  and  $\{A_i^{k,n}\}_{n \geq 1}$  coincide. This, however, contradicts  
 1151 the fact that their finite truncations  
 1152

$$\{A_1^{k,n}\}_{n=1}^K, \{A_2^{k,n}\}_{n=1}^K, \dots, \{A_h^{k,n}\}_{n=1}^K$$

1153 are pairwise distinct by the choice of  $K$ .  
 1154

1155 Therefore, no such  $i > 1$  can exist. The only common element across all  $U^1(1), \dots, U^K(1)$  is the  
 1156 index 1, which establishes the claim.  
 1157

1158 (ii) For each  $t = 1, \dots, K$ , define the set  
 1159

$$V^t := U^t(1) \cap \{1, 2, \dots, m\} \subset \{1, 2, \dots, m\}. \quad (70)$$

1160 Then, one has  
 1161

$$V^1 \cap V^2 \cap \dots \cap V^K = \{1\}. \quad (71)$$

1162 Indeed, one computes  
 1163

$$\begin{aligned} V^1 \cap V^2 \cap \dots \cap V^K &= \bigcap_{t=1}^K (U^t(1) \cap \{1, \dots, m\}) \\ &= \bigcap_{t=1}^K U^t(1) \cap \{1, \dots, m\} \\ &= \{1\} \cap \{1, \dots, m\} \\ &= \{1\}. \end{aligned} \quad (72)$$

1164 (iii) Among the  $K$  sets  $V^1, \dots, V^K$ , there exists a positive integer  $\gamma < m$  such that one can select  
 1165  $\gamma$  sets, say  $V^{t_1}, \dots, V^{t_\gamma}$  with  $1 \leq t_1 < t_2 < \dots < t_\gamma \leq K$ , satisfying the following property: the  
 1166 intersection of these  $\gamma$  sets is  $\{1\}$ , whereas the intersection of any  $\gamma - 1$  among them is no longer  
 1167  $\{1\}$ .  
 1168

1169 To prove this, let  $\gamma$  be the smallest positive integer such that there exist  $\gamma$  sets among  $V^1, \dots, V^K$   
 1170 whose intersection equals  $\{1\}$ . The existence of such a  $\gamma$  is guaranteed since the intersection of all  
 1171

1188  $K$  sets is  $\{1\}$ . Denote these  $\gamma$  sets by  $V^{t_1}, \dots, V^{t_\gamma}$ . By the minimality of  $\gamma$ , if one removes any  
 1189 single set from  $\{V^{t_1}, \dots, V^{t_\gamma}\}$ , the intersection of the remaining  $\gamma - 1$  sets cannot be  $\{1\}$ .  
 1190

1191 It remains to show that  $\gamma < m$ . By minimality, it suffices to establish the existence of fewer than  $m$   
 1192 sets among  $\{V^1, \dots, V^K\}$  whose intersection is  $\{1\}$ . Since

$$1193 \quad V^1 \cap V^2 \cap \dots \cap V^K = \{1\}, \quad (73)$$

1195 for each  $i \in \{2, \dots, m\}$  there must exist at least one set among  $V^1, \dots, V^K$  that does not contain  
 1196  $i$ . As there are  $m - 1$  such indices  $i$ , we can collect at most  $m - 1$  sets that collectively exclude all  
 1197 of these elements. Consequently, the intersection of these at most  $m - 1$  sets is  $\{1\}$ , which proves  
 1198  $\gamma \leq m - 1 < m$ .

1199 This completes the proof. The argument is essentially a pigeonhole-type principle: since every  
 1200 element  $i \in \{2, \dots, m\}$  must be excluded by at least one set, and there are  $m - 1$  such elements  
 1201 in total, at most  $m - 1$  sets suffice to ensure that all of them are removed, leaving only 1 in the  
 1202 intersection.

1203 (iv) *In those  $\gamma$  sets  $V^{t_1}, \dots, V^{t_\gamma}$  in (iii), for each  $i \in [\gamma]$ , one can choose  $v_i \in V^{t_i}$  such that  
 1204  $v_1, \dots, v_\gamma$  are pairwise distinct.*

1206 This is a standard application of the Hall Marriage Theorem (see Appendix B.3.2). For convenience,  
 1207 rename  $V^{t_i}$  as  $W^i$  for  $i \in [\gamma]$ . For each  $k \in \{1, \dots, \gamma\}$ , by assumption, we may choose

$$1209 \quad b_k \in \left( \bigcap_{i \neq k} W^i \right) \setminus \{1\}. \quad (74)$$

1211 By construction,  $b_k \neq 1$ , and  $b_k \in W^i$  for all  $i \neq k$ . Moreover,  $b_k \notin W^k$ , since otherwise  $b_k$   
 1212 would belong to  $\bigcap_{i=1}^\gamma W^i = \{1\}$ , a contradiction. Let  $B = \{b_1, \dots, b_\gamma\}$ . Consider the bipartite  
 1213 graph with left vertices  $\{W^1, \dots, W^\gamma\}$  and right vertices  $\{1\} \cup B \subseteq \{1, \dots, m\}$ , with an edge  
 1214  $W^i \leftrightarrow x$  whenever  $x \in W^i$ . A system of distinct representatives (SDR) of size  $\gamma$  in this graph  
 1215 yields the desired elements  $v_i \in W^i$ . By Hall's theorem, it suffices to show that for every nonempty  
 1216  $J \subseteq \{1, \dots, \gamma\}$ , the neighborhood  $N(J)$  satisfies  $|N(J)| \geq |J|$ .

- 1218 • If  $|J| = 1$ , say  $J = \{i\}$ , then  $1 \in W^i$ . Furthermore, for every  $k \neq i$  we have  $b_k \in W^i$ .  
 1219 Thus

$$1220 \quad |N(J)| \geq 1 + (\gamma - 1) = \gamma \geq |J|. \quad (75)$$

- 1222 • If  $|J| \geq 2$ , fix  $k \in \{1, \dots, \gamma\}$ .
  - 1224 – If  $k \notin J$ , then  $b_k \in W^i$  for every  $i \in J$ , hence  $b_k \in N(J)$ .
  - 1225 – If  $k \in J$ , pick any  $j \in J \setminus \{k\}$ . Since  $b_k \in W^j$ , it follows that  $b_k \in N(J)$ .

1227 Thus every  $b_k$  belongs to  $N(J)$ , and clearly  $1 \in N(J)$ . Hence

$$1228 \quad |N(J)| \geq |B| + 1 = \gamma + 1 \geq |J|. \quad (76)$$

1230 Since Hall's condition is satisfied, there exists a matching that assigns to each  $W^i$  a distinct element  
 1231 of  $\{1\} \cup B$  contained in  $W^i$ . These assigned elements provide the required representatives  $v_i \in W^i$ ,  
 1232 which are pairwise distinct.

### 1233 Step 5.

1235 To deliver the result of this part, we now employ the token indices  $t_1, \dots, t_\gamma$  identified in (iii) and  
 1236 (iv) of **Step 4**, together with the token indices in the set  $S$  also obtained in **Step 4**. We recall the  
 1237 properties of these token indices that will be used:

- 1239 1. For all  $t \in S$ , the partition  $\{U_p^t\}_{p=1}^{\alpha_t}$ , defined in **Step 4**, coincides with  $\{U_p\}_{p=1}^\alpha$ . In partic-  
 1240 ular, by reindexing the head indices, we may assume  $U_1 = \{1, \dots, m\}$ . This guarantees  
 1241 that the structure of the partition is stable across infinitely many  $t \in S$ , providing us with a  
 1242 consistent reference framework.

1242 2. For all  $t_i$  with  $i \in [\gamma]$ , where  $\gamma < m$ , recall that  $V^{t_i} = U^{t_i}(1) \cap \{1, \dots, m\}$ . One can select  
 1243  $\gamma$  head indices  $v_i \in V^{t_i}$  such that they are pairwise distinct. This property will be crucial  
 1244 later when we need to ensure that certain representatives can be chosen without overlap.  
 1245

1246 We also recall the main result from **Step 3**, namely Equation (62): for any  $(s_1, \dots, s_h) \in [L]^h$  with  
 1247 pairwise distinct entries, and for each  $i \in [h]$ , one has

$$0 = \sum_{\sigma \in S_h : A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j} \forall j \in [h]} B_{\sigma(i)}. \quad (77)$$

1252 This identity is the foundation of the argument: it asserts that, under the given matching condition  
 1253 on the coefficients  $A_j^{k, s_j}$ , a nontrivial linear combination of the  $B_i$ 's must vanish.  
 1254

1255 Now, in Equation (77), let us consider  $(s_1, \dots, s_h) \in [L]^h$  constructed as follows. First, observe  
 1256 that the index set  $\{1, \dots, h\}$  can be decomposed into three disjoint parts:  
 1257

$$\{1, \dots, h\} = \{v_1, \dots, v_\gamma\} \sqcup (\{1, \dots, m\} \setminus \{v_1, \dots, v_\gamma\}) \sqcup (U_2 \sqcup U_3 \sqcup \dots \sqcup U_\alpha). \quad (78)$$

1259 The first component corresponds to the specially chosen distinct representatives  $v_i$ , the second to  
 1260 the remaining elements of  $U_1$ , and the third to all indices belonging to the other partition classes  
 1261  $U_2, \dots, U_\alpha$ .  
 1262

Now fix a subset  $T \subset [\gamma]$ . Define  $(s_1, \dots, s_h) \in [L]^h$  by setting, for each  $j \in [h]$ ,

1. If  $j = v_i$  for some  $i \in T$ , then set  $s_j = s_{v_i} = t_i$ . In other words, the positions corresponding  
 1264 to  $T$  are aligned with the distinguished token indices  $t_i$ .  
 1265
2. If  $j \in \{1, \dots, m\} \setminus \{v_i : i \in T\}$ , take  $s_j$  to be an arbitrary element of  $S$ . This ensures  
 1266 consistency with the partition structure while leaving us flexibility in the assignment.  
 1267
3. If  $j \in U_p$  for some  $2 \leq p \leq \alpha$ , then take  $s_j$  to be an arbitrary element of  $S$ . Again, this  
 1269 choice respects the partitioning of indices into classes  $U_p$ .  
 1270

1272 For the chosen  $(s_1, \dots, s_h) \in [L]^h$ , we analyze which  $\sigma \in S_h$  satisfy the condition  $A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j}$   
 1273 for all  $j \in [h]$ . We make the following observations, case by case:  
 1274

1. For  $j \in U_2 \sqcup U_3 \sqcup \dots \sqcup U_\alpha$ , say  $j \in U_p$  with  $2 \leq p \leq \alpha$ , the condition  $A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j}$   
 1276 implies  $\sigma(j) \in U_p$ . Hence  
 1277

$$\sigma(U_2 \sqcup U_3 \sqcup \dots \sqcup U_\alpha) = U_2 \sqcup U_3 \sqcup \dots \sqcup U_\alpha, \quad (79)$$

1279 and consequently  $\sigma(U_1) = U_1$ . In particular, if  $j \in U_1$ , then  $\sigma(j) \in U_1$ .  
 1280

2. For  $j \in \{1, \dots, m\} \setminus \{v_i : i \in T\}$ , if  $A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j}$ , then necessarily  $\sigma(j) \in U_1 = \{1, \dots, m\}$ . Thus the entire set  $U_1$  is stable under  $\sigma$ , but the specific images of these  
 1283 indices may vary within  $U_1$ .  
 1284

3. For  $j = v_i$  with  $i \in T$ , if  $A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j}$ , then  $\sigma(j) \in U^{s_{v_i}}(1) = U^{t_i}(1)$ . From the  
 1286 previous point, we also know  $\sigma(j) \in U_1$ . Taken together, these conditions imply that  
 1287  $\sigma(j) \in V^{t_i} = U^{t_i}(1) \cap U_1$ . In other words, the image of  $v_i$  under  $\sigma$  is constrained to lie  
 1288 inside the restricted set  $V^{t_i}$ .  
 1289

1290 Therefore, specifying a  $\sigma \in S_h$  that satisfies  $A_j^{k, s_j} = A_{\sigma(j)}^{k, s_j}$  for all  $j \in [h]$  is equivalent to:  
 1291

1. For each  $j = v_i$  with  $i \in T$ , choosing  $\sigma(j) = \sigma(v_i) \in V^{t_i}$ ,  
 1293
2. For each  $j \in \{1, \dots, m\} \setminus \{v_i : i \in T\}$ , choosing  $\sigma(j) \in U_1 \setminus \{\sigma(v_i) : i \in T\}$  arbitrarily,  
 1294
3. For each  $j \in U_p$  with  $2 \leq p \leq \alpha$ , choosing  $\sigma(j) \in U_p$ .  
 1295

1296 In conclusion, the structure of admissible permutations  $\sigma$  in Equation (77) is fully determined by  
 1297 the subset  $T \subset [\gamma]$  and the representatives  $v_i \in V^{t_i}$  chosen in **Step 4**. This description clarifies how  
 1298 the constraints arising from the partition classes  $U_p$  and the distinguished representatives  $v_i$  together  
 1299 restrict the allowed form of  $\sigma$ . Consequently, the sum in Equation (77) can be partitioned into  
 1300 contributions indexed by subsets  $T \subset [\gamma]$ , which will be the key mechanism for deriving vanishing  
 1301 conditions on the  $B_i$ 's in the subsequent step.

1302 With these observations in hand, we now perform explicit computations. Fix one choice of  
 1303  $(s_1, \dots, s_h) \in [L]^h$  satisfying the above construction, and in Equation (77) take  $i = v_i$  for some  
 1304  $i \in T$ . The equation then specializes to

$$\begin{aligned}
 1306 \quad 0 &= \sum_{\sigma \in S_h : A_j^{k,t_j} = A_{\sigma(j)}^{k,t_j} \forall j \in [h]} B_{\sigma(v_i)} \\
 1307 \\
 1308 &= \sum_{v \in V^{t_i}} B_v \cdot \left( \text{the number of } h\text{-tuples in the Cartesian product} \right. \\
 1309 &\quad \left. \prod_{j \in T} V^{t_j} \times U_1^{m-|T|} \times \prod_{p=2}^{\alpha} U_p^{|U_p|}, \right. \\
 1310 &\quad \left. \text{such that all } h \text{ entries are pairwise distinct, and} \right. \\
 1311 &\quad \left. \text{the coordinate corresponding to } V^{t_i} \text{ is fixed to be } v \right). \quad (80)
 \end{aligned}$$

1318 The interpretation is as follows: each valid permutation  $\sigma$  contributes one admissible tuple, and the  
 1319 contribution is grouped according to which element  $v \in V^{t_i}$  is assigned to the coordinate corre-  
 1320 sponding to  $V^{t_i}$ . The factor multiplying  $B_v$  therefore counts exactly the number of such admissible  
 1321 tuples.

1322 Now, observe that once the coordinates corresponding to the  $V^{t_j}$ 's are chosen, all the remaining  
 1323 coordinates can be filled freely within their respective partition blocks. In particular:

- 1326 • The indices in  $\{1, \dots, m\} \setminus \{v_i : i \in T\}$  may be permuted arbitrarily within  $U_1$ , yielding  
 1327 a factor of  $(m - |T|)!$ .
- 1328 • For each  $p \in \{2, \dots, \alpha\}$ , the indices in  $U_p$  may also be permuted arbitrarily, contributing a  
 1329 factor of  $|U_p|!$ .

1331 Hence the above expression simplifies to

$$\begin{aligned}
 1333 \quad 0 &= \sum_{v \in V^{t_i}} B_v \cdot (m - |T|)! \cdot \prod_{p=2}^{\alpha} |U_p|! \\
 1334 &\quad \cdot \left( \text{the number of } h\text{-tuples in the Cartesian product} \prod_{j \in T} V^{t_j}, \right. \\
 1335 &\quad \left. \text{such that all entries are pairwise distinct, and} \right. \\
 1336 &\quad \left. \text{the coordinate corresponding to } V^{t_i} \text{ equals } v \right). \quad (81)
 \end{aligned}$$

1342 Since the factorial factors are nonzero constants independent of the choice of  $v$ , we may divide them  
 1343 out to obtain the equivalent condition

$$\begin{aligned}
 1345 \quad 0 &= \sum_{v \in V^{t_i}} B_v \cdot \left( \text{the number of } h\text{-tuples in the Cartesian product} \prod_{j \in T} V^{t_j}, \right. \\
 1346 &\quad \left. \text{such that all entries are pairwise distinct, and} \right. \\
 1347 &\quad \left. \text{the coordinate corresponding to } V^{t_i} \text{ equals } v \right). \quad (82)
 \end{aligned}$$

This identity holds for every choice of subset  $T \subset [\gamma]$  and for every  $v \in V^{t_i}$  with  $i \in [\gamma]$ . The key point is that the coefficients  $B_v$  appear only through such linear relations, weighted by combinatorial counts of admissible tuples. By applying Corollary B.10, we deduce that

$$0 = \sum_{i \in V^{t_1} \cap V^{t_2} \cap \dots \cap V^{t_\gamma}} B_i. \quad (83)$$

Finally, recall from the construction in (iii) of **Step 4** that the intersection  $V^{t_1} \cap V^{t_2} \cap \dots \cap V^{t_\gamma}$  is exactly  $\{1\}$ . Therefore, the above equation reduces to

$$B_1 = 0, \quad (84)$$

We have established that  $B_1 = 0$ . By the preceding argument at the beginning of the proof, this immediately implies that all  $B_i$  vanish identically. Hence, we conclude that  $B_i = 0$  for every  $i$ , which completes the proof.  $\square$

We have the following corollary of Theorem B.1.

**Corollary B.2.** *Consider two MHA maps with  $h$  and  $\bar{h}$  heads, parameterized by  $\theta$  and  $\bar{\theta}$ , respectively. Assume that  $A_i^{m,n}$  and  $\bar{A}_i^{m,n}$  are nonzero for all feasible triples  $(i, m, n)$ . If the two MHA maps are identical, i.e.,*

$$\text{MHA}(\mathbf{x}; \theta) = \text{MHA}(\mathbf{x}; \bar{\theta}), \quad (85)$$

then for every parameter family

$$\{A^{m,n}\}_{m,n \geq 1} \subset \mathbb{R}^{d \times d}, \quad (86)$$

we have the identity

$$\sum_{i \in [h] : \{A_i^{m,n}\}_{m,n} = \{A^{m,n}\}_{m,n}} B_i = \sum_{i \in [\bar{h}] : \{\bar{A}_i^{m,n}\}_{m,n} = \{A^{m,n}\}_{m,n}} \bar{B}_i. \quad (87)$$

*Proof.* This follows directly from Theorem B.1.  $\square$

### B.3 KEY LEMMAS FOR THE FUNCTIONAL EQUIVALENCE OF GENERAL MULTIHEAD ATTENTION

In this section, we introduce the preliminary concepts and fundamental results that will serve as the foundation for the proofs of our main theorems.

#### B.3.1 A RESULT ON THE LINEAR INDEPENDENCE OF EXPONENTIAL POLYNOMIALS OVER THE FIELD OF RATIONAL FUNCTIONS

Let  $n$  be a positive integer. Recall that  $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \dots, x_n]$  denotes the polynomial ring in  $n$  variables over  $\mathbb{R}$ . Its field of fractions is denoted by  $\mathbb{R}(\mathbf{x})$ , that is,

$$\mathbb{R}(\mathbf{x}) = \left\{ \frac{p}{q} : p, q \in \mathbb{R}[\mathbf{x}], q \neq 0 \right\}, \quad (88)$$

the field of all rational functions in the variables  $x_1, \dots, x_n$  with real coefficients.

We now state and prove a standard result concerning the linear independence of exponential polynomials over  $\mathbb{R}(\mathbf{x})$ .

**Lemma B.3.** *Let  $p_1, \dots, p_m$  be polynomials in  $\mathbb{R}[\mathbf{x}]$  such that  $p_i - p_j$  is nonconstant whenever  $i \neq j$ . Suppose  $q_1, \dots, q_m$  are rational functions in  $\mathbb{R}(\mathbf{x})$  satisfying*

$$q_1 \cdot e^{p_1} + \dots + q_m \cdot e^{p_m} = 0. \quad (89)$$

*Then necessarily  $q_1 = \dots = q_m = 0$ .*

1404 *Proof.* We proceed by induction on  $m$ .

1405 *Base case.*

1407 For  $m = 1$ , the statement is immediate. Indeed, if  $q_1 \cdot e^{p_1} = 0$ , then since  $e^{p_1}$  never vanishes, it  
1408 follows that  $q_1 = 0$ .

1409 *Inductive step.*

1411 Assume the result holds for every collection of fewer than  $m$  exponentials. Let  $q_1, \dots, q_m \in \mathbb{R}(\mathbf{x})$   
1412 satisfy

$$1413 \quad q_1 \cdot e^{p_1} + \dots + q_m \cdot e^{p_m} = 0. \quad (90)$$

1415 We wish to show that all  $q_i$  vanish. Suppose, for contradiction, that not all  $q_i$  are zero. Without loss  
1416 of generality, assume  $q_m \neq 0$ .

1417 Dividing through Equation (90) by  $q_m e^{p_m}$  yields

$$1419 \quad \frac{q_1}{q_m} \cdot e^{p_1 - p_m} + \dots + \frac{q_{m-1}}{q_m} \cdot e^{p_{m-1} - p_m} + 1 = 0. \quad (91)$$

1421 This expresses 1 as a linear combination of the exponentials  $e^{p_j - p_m}$  with coefficients in  $\mathbb{R}(\mathbf{x})$ .

1423 Now differentiate both sides of Equation (91) with respect to each variable  $x_i$  for  $i = 1, \dots, n$ .  
1424 Since the derivative of 1 is zero, we obtain

$$1425 \quad \sum_{j=1}^{m-1} \left( \frac{\partial}{\partial x_i} \left( \frac{q_j}{q_m} \right) + \frac{q_j}{q_m} \cdot \frac{\partial}{\partial x_i} (p_j - p_m) \right) e^{p_j - p_m} = 0. \quad (92)$$

1428 Each coefficient in parentheses lies in  $\mathbb{R}(\mathbf{x})$ .

1430 Since  $p_1 - p_m, \dots, p_{m-1} - p_m$  are pairwise distinct and nonconstant, the corresponding exponentials  
1431  $e^{p_j - p_m}$  are linearly independent over  $\mathbb{R}(\mathbf{x})$  by the induction hypothesis. Therefore, each coefficient  
1432 in Equation (92) must vanish, i.e.,

$$1434 \quad \frac{\partial}{\partial x_i} \left( \frac{q_j}{q_m} \right) + \frac{q_j}{q_m} \cdot \frac{\partial}{\partial x_i} (p_j - p_m) = 0, \quad (93)$$

1436 for every  $i = 1, \dots, n$  and  $j = 1, \dots, m - 1$ . Equivalently,

$$1438 \quad \frac{\partial}{\partial x_i} \left( \frac{q_j}{q_m} \cdot e^{p_j - p_m} \right) = 0. \quad (94)$$

1441 This shows that for each  $j = 1, \dots, m - 1$ , the function

$$1443 \quad \frac{q_j}{q_m} \cdot e^{p_j - p_m} \quad (95)$$

1445 is independent of all variables  $x_1, \dots, x_n$ , and hence must be a constant  $c_j \in \mathbb{R}$ .

1446 If some  $c_j \neq 0$ , then  $q_j \neq 0$  and we would have

$$1448 \quad e^{p_j - p_m} = \frac{c_j q_m}{q_j}, \quad (96)$$

1450 which would imply that  $e^{p_j - p_m}$  is a rational function, and therefore constant. This contradicts the  
1451 assumption that  $p_j - p_m$  is nonconstant.

1453 Thus, each  $c_j = 0$ , forcing  $q_j = 0$  for all  $j = 1, \dots, m - 1$ . Substituting into Equation (91) then  
1454 yields  $1 = 0$ , an impossibility.

1455 Hence our assumption was false, and all  $q_i = 0$ . By induction, the lemma follows.  $\square$

1457 Lemma B.3 is crucial for arguments in Theorem B.1, involving exponential polynomials over  $\mathbb{R}(\mathbf{x})$ .

1458 B.3.2 HALL’S MARRIAGE THEOREM AND SYSTEMS OF DISTINCT REPRESENTATIVES  
1459

1460 In this section, we recall a classical result from combinatorics, known as *Hall’s Marriage Theorem*  
 1461 ([Hall, 1935](#)), which provides necessary and sufficient conditions for the existence of a system of  
 1462 distinct representatives (SDR). This theorem will play a crucial role in our arguments, as our con-  
 1463 struction ultimately reduces to the problem of selecting distinct representatives from a family of  
 1464 subsets. Let  $\mathcal{A} = \{A_1, A_2, \dots, A_s\}$  be a finite family of subsets of a ground set  $X$ . A *system of*  
 1465 *distinct representatives* (SDR) for  $\mathcal{A}$  is a set  $\{a_1, a_2, \dots, a_s\}$  such that  $a_i \in A_i$  for each  $i$  and all  
 1466  $a_1, \dots, a_s$  are pairwise distinct. Equivalently, an SDR is an injective choice function assigning to  
 1467 each  $A_i$  an element  $a_i \in A_i$ .

1468 The existence of an SDR is a classical question in combinatorics, and Hall’s theorem provides a  
 1469 complete characterization.

1470 **Theorem B.4** (Hall’s Marriage Theorem). *Let  $\mathcal{A} = \{A_1, A_2, \dots, A_s\}$  be a finite family of subsets*  
 1471 *of a set  $X$ . Then  $\mathcal{A}$  admits a system of distinct representatives if and only if the following condition*  
 1472 *(Hall’s condition) holds:*

$$1473 \quad \left| \bigcup_{i \in J} A_i \right| \geq |J| \quad \text{for every subset } J \subseteq \{1, 2, \dots, s\}. \quad (97)$$

1475 **Remark B.5.** In words, Hall’s condition states that for every subcollection of the sets  $A_i$ , the total  
 1476 number of available elements in their union must be at least as large as the number of sets in the  
 1477 subcollection. This condition is clearly necessary: if  $|J|$  sets are assigned representatives, then at  
 1478 least  $|J|$  distinct elements are required. The theorem asserts that this necessary condition is also  
 1479 sufficient.

1480 Hall’s Marriage Theorem plays a central role in the argument of Theorem B.1. Moreover, its appli-  
 1481 cation is closely connected to the statements of Theorem B.8 and Corollary B.10.

## 1483 B.3.3 THE MÖBIUS FUNCTION ON THE PARTITION LATTICE

1485 This section introduces the necessary background on incidence algebras and Möbius inversion over  
 1486 finite posets. We then establish an identity for the Möbius function that will serve as a fundamental  
 1487 tool throughout the remainder of the paper. We also present several connections between this iden-  
 1488 tity and other well-studied combinatorial concepts, with the aim of providing readers with greater  
 1489 intuition about its significance. For comprehensive treatments of these topics, we refer the reader to  
 1490 ([Rota, 1964](#); [Stanley, 2011](#)).

1491 **Incidence Algebras and Möbius Inversion on Finite Posets**

1493 Let  $(P, \leq)$  be a finite poset. The *incidence algebra*  $I(P)$  over  $\mathbb{C}$  consists of all functions

$$1494 \quad f := \{(x, y) \in P \times P : x \leq y\} \longrightarrow \mathbb{C}. \quad (98)$$

1495 with convolution

$$1497 \quad (f * g)(x; y) := \sum_{x \leq z \leq y} f(x; z) g(z; y), \quad \text{for all } x \leq y. \quad (99)$$

1499 The identity for convolution is the Kronecker delta  $\delta(x, y)$  (i.e.  $\delta(x, y) = 1$  if  $x = y$ , and 0 other-  
 1500 wise). The *zeta function*  $\zeta \in I(P)$  is  $\zeta(x, y) \equiv 1$  for  $x \leq y$ . An element  $f \in I(P)$  is invertible if  
 1501 and only if  $f(x, x) \neq 0$  for all  $x \in P$ ; in that case  $f^{-1}$  is its inverse under convolution.

1502 **Möbius function.** The *Möbius function*  $\mu = \mu_P \in I(P)$  is defined as the convolution inverse of  $\zeta$ :

$$1504 \quad \mu * \zeta = \zeta * \mu = \delta. \quad (100)$$

1505 Equivalently, for all  $x \leq y$  in  $P$ , one has

$$1507 \quad \sum_{x \leq z \leq y} \mu(x; z) = \delta(x; y). \quad (101)$$

1509 As a consequence, if  $f, g : P \rightarrow \mathbb{C}$  satisfy

$$1511 \quad f(x) = \sum_{y \geq x} g(y), \quad \text{for all } x \in P, \quad (102)$$

1512 then Möbius inversion yields  
 1513

$$1514 \quad g(x) = \sum_{y \geq x} \mu(x; y) f(y), \quad \text{for all } x \in P. \quad (103)$$

1516 **Products of posets.** If  $P, Q$  are finite posets, their product  $P \times Q$  is ordered componentwise. Define  
 1517

$$1518 \quad (\zeta_P \otimes \zeta_Q)((p_1, q_1); (p_2, q_2)) := \zeta_P(p_1; p_2) \zeta_Q(q_1; q_2). \quad (104)$$

1519 A direct computation in  $I(P \times Q)$  shows  
 1520

$$\zeta_{P \times Q} = \zeta_P \otimes \zeta_Q, \quad (105)$$

$$(\mu_P \otimes \mu_Q) * (\zeta_P \otimes \zeta_Q) = \delta_P \otimes \delta_Q = \delta_{P \times Q}. \quad (106)$$

1523 Hence

$$\mu_{P \times Q}((p_1, q_1); (p_2, q_2)) = \mu_P(p_1; p_2) \mu_Q(q_1; q_2). \quad (107)$$

1525 **The Partition Lattice and Interval Factorization** Let  $U$  be a finite set with  $|U| = n$ . The  
 1526 set  $\Pi(U)$  of all set partitions of  $U$ , ordered by refinement, forms a finite lattice with minimum  $\hat{0}$  (all  
 1527 singletons) and maximum  $\hat{1}$  (one block). The goal of this section is to derive the following explicit  
 1528 formula, stated in the following theorem:  
 1529

1530 **Theorem B.6.** For  $\pi \in \Pi(U)$ , one has:

$$1531 \quad \mu_{\Pi(U)}(\hat{0}, \pi) = \prod_{B \in \pi} (-1)^{|B|-1} (|B| - 1)!. \quad (108)$$

1534 For clarity, we begin with an outline of the proof. The reasoning unfolds in two stages.  
 1535

1536 1. **Interval factorization.** Restriction to blocks induces a canonical isomorphism:

$$1537 \quad [\hat{0}, \pi] \cong \prod_{B \in \pi} \Pi(B). \quad (109)$$

1540 By multiplicativity of the Möbius function on products, one has:

$$1541 \quad \mu_{\Pi(U)}(\hat{0}, \pi) = \prod_{B \in \pi} \mu_{\Pi(B)}(\hat{0}_B, \hat{1}_B). \quad (110)$$

1544 2. **One-block evaluation.** Using the exponential formula for labelled set partitions, for all  
 1545  $n \geq 1$ , one has:

$$1546 \quad \mu_{\Pi([n])}(\hat{0}, \hat{1}) = (-1)^{n-1} (n-1)!. \quad (111)$$

1548 Substituting into the product from Step 1 yields

$$1549 \quad \mu_{\Pi(U)}(\hat{0}, \pi) = \prod_{B \in \pi} (-1)^{|B|-1} (|B| - 1)!. \quad (112)$$

1552 Having outlined the strategy, we now provide the full proof with all intermediate steps made explicit.

1553 *Proof.* We structure the proof into several steps for the sake of clarity and readability.

1555 **Step 1 (Interval factorization in the partition lattice).**

1557 A partition  $\pi \in \Pi(U)$  is a set of disjoint nonempty blocks  $B \subseteq U$  covering  $U$ . For  $\sigma, \pi \in \Pi(U)$   
 1558 write  $\sigma \leq \pi$  if every block of  $\sigma$  is contained in a block of  $\pi$ . For  $\sigma \leq \pi$  and a block  $B \in \pi$ , let  $\sigma|_B$   
 1559 be the restriction of  $\sigma$  to  $B$  (intersect each block of  $\sigma$  with  $B$  and remove empties). Denote by  $\hat{1}_B$   
 1560 the one-block partition of  $B$ . We have the following result.

1561 **Lemma B.7** (Interval factorization). For  $\sigma \leq \pi$  in  $\Pi(U)$ , restriction induces a poset isomorphism

$$1562 \quad \Phi : [\sigma, \pi] \longrightarrow \prod_{B \in \pi} \Pi(\sigma|_B; \hat{1}_B), \quad \Phi(\tau) : (\tau|_B)_{B \in \pi}. \quad (113)$$

1564 Its inverse maps  $(\rho_B)_{B \in \pi}$  to the join  $\bigvee_{B \in \pi} \rho_B$ , which coincides with the partition whose restriction  
 1565 to each  $B$  equals  $\rho_B$ .

1566 *Proof.* If  $\tau \in [\sigma, \pi]$ , then  $\sigma \leq \tau \leq \pi$  implies that each block of  $\tau$  lies inside some block of  $\pi$ , so  
 1567  $\tau|_B$  is a partition of  $B$  refining  $\sigma|_B$ , hence  $\sigma|_B \leq \tau|_B \leq \hat{1}_B$ . Thus  $\Phi$  is well-defined and order-  
 1568 preserving. Conversely, if  $(\rho_B)_{B \in \pi}$  satisfies  $\sigma|_B \leq \rho_B \leq \hat{1}_B$ , define  $\rho$  by declaring that  $x, y \in U$   
 1569 lie in the same block of  $\rho$  iff either  $x, y \in B$  and  $x \sim_{\rho_B} y$  for some  $B \in \pi$ , or  $x, y$  lie in different  
 1570 blocks of  $\pi$  (which never happens since we work blockwise). Then  $\rho$  is a partition with  $\sigma \leq \rho \leq \pi$   
 1571 and  $\rho|_B = \rho_B$ . One checks  $\Phi(\rho) = (\rho_B)$  and  $\bigvee_{B \in \pi} (\tau|_B) = \tau$ , hence  $\Phi$  is an isomorphism.  $\square$   
 1572

1573 Setting  $\sigma = \hat{0}$  in Lemma B.7 yields  
 1574

$$1575 [\hat{0}, \pi] \cong \prod_{B \in \pi} \Pi(B). \quad (114)$$

1577 Applying the multiplicativity Equation (107) to Equation (114), one has  
 1578

$$1579 \mu_{\Pi(U)}(\hat{0}, \pi) = \prod_{B \in \pi} \mu_{\Pi(B)}(\hat{0}_B, \hat{1}_B). \quad (115)$$

1581 Therefore, to compute  $\mu_{\Pi(U)}(\hat{0}, \pi)$  for arbitrary  $\pi$ , it suffices to evaluate the single-block quantity  
 1582

$$1583 m(n) := \mu_{\Pi_n}(\hat{0}; \hat{1}), \quad (116)$$

1584 for  $n \in \mathbb{N}$ , where  $\Pi_n$  denotes the partition lattice on an  $n$ -element set.  
 1585

**Step 2 (The one-block value via the exponential formula for labeled set partitions).**

1586 We now determine  $m(n)$  exactly. One has a Möbius sum constraint as follows: by Equation (101),  
 1587 for every finite poset and any  $x < y$ , one has  
 1588

$$1589 \sum_{x \leq z \leq y} \mu(x; z) = 0. \quad (117)$$

1591 In  $\Pi_n$ , taking  $x = \hat{0}$  and  $y = \hat{1}$  gives  
 1592

$$1593 \sum_{\tau \in \Pi_n} \mu_{\Pi_n}(\hat{0}, \tau) = 0, \quad (118)$$

1595 for all  $n \geq 2$ . For  $n = 0, 1$ , the sum equals 1 (the unique element of the interval). By Equation (115)  
 1596 applied inside  $\Pi_n$ , one has  
 1597

$$1598 \mu_{\Pi_n}(\hat{0}; \tau) = \prod_{B \in \tau} m(|B|). \quad (119)$$

1600 Define

$$1601 F_n := \sum_{\tau \in \Pi_n} \prod_{B \in \tau} m(|B|). \quad (120)$$

1603 Then, for  $n \geq 2$ , one has  
 1604

$$1605 F_0 = 1, \quad F_1 = 1, \quad F_n = 0. \quad (121)$$

1606 A standard labeled-partition identity (the exponential formula) asserts that for any sequence  
 1607  $(a_k)_{k \geq 1}$ ,

$$1608 \sum_{n \geq 0} \left( \sum_{\tau \in \Pi_n} \prod_{B \in \tau} a_{|B|} \right) \frac{z^n}{n!} = \exp \left( \sum_{k \geq 1} a_k \frac{z^k}{k!} \right). \quad (122)$$

1611 Applying this with  $a_k = m(k)$  yields  
 1612

$$1613 \sum_{n \geq 0} F_n \frac{z^n}{n!} = \exp \left( \sum_{k \geq 1} m(k) \frac{z^k}{k!} \right). \quad (123)$$

1616 Using Equation (121), the left-hand side of Equation (123) equals  $1 + z$ . Taking the formal logarithm  
 1617 gives

$$1618 \sum_{k \geq 1} m(k) \frac{z^k}{k!} = \log(1 + z) = \sum_{k \geq 1} (-1)^{k-1} \frac{z^k}{k}. \quad (124)$$

1620 Equating coefficients, for  $k \geq 1$ , one has  
 1621

$$1622 m(k) = k! \cdot \frac{(-1)^{k-1}}{k} = (-1)^{k-1} (k-1)! \quad (125)$$

1624 Substituting Equation (125) into the block factorization Equation (115) gives the desired expression  
 1625 in Equation (108):

$$1626 \mu_{\Pi(U)}(\hat{0}, \pi) = \prod_{B \in \pi} (-1)^{|B|-1} (|B|-1)! \quad (126)$$

1629 This concludes the proof.  $\square$   
 1630

1631 The identity established in Theorem B.6 plays a pivotal role in the proof of Theorem B.8, which, in  
 1632 turn, functions as a supporting lemma for the proof of Theorem B.1—the main result of this work.  
 1633

#### 1634 B.4 A TECHNICAL RESULT ON WEIGHTED SUMS OVER DISTINCT TUPLES

1635 We now present a result concerning the problem of weighted sums over distinct tuples. The results  
 1636 developed in this section form the backbone of our argument in the proof of Theorem B.1, the main  
 1637 result of this work.

1638 **Theorem B.8.** *Given positive integers  $m, n \geq 1$ . For each  $i \in [m]$ , let  $A_i$  be a subset of  $[n]$ . Let  
 1639  $x_1, \dots, x_n$  be  $n$  real numbers. For any nonempty  $S \subseteq [m]$ , define*

$$1641 F_S := \left\{ (a_i)_{i \in S} : a_i \in A_i \text{ for all } i \in S, \text{ and all } a_i \text{'s are pairwise distinct} \right\}. \quad (127)$$

1643 For  $i \in S$  and  $a \in A_i$ , define the fiber

$$1644 F_{S,i,a} := \{(a_j)_{j \in S} \in F_S : a_i = a\}. \quad (128)$$

1646 For any nonempty  $T \subseteq [m]$ , define  $A_T := \bigcap_{i \in T} A_i$ , and

$$1647 G(T) := \sum_{a \in A_T} x_a. \quad (129)$$

1650 Assume that, for every nonempty  $S \subseteq [m]$  and every  $i \in S$ , one has

$$1651 \sum_{a \in A_i} |F_{S,i,a}| x_a = 0. \quad (130)$$

1654 Then, for every nonempty  $T \subseteq [m]$ , one has

$$1655 G(T) = \sum_{a \in A_T} x_a = 0. \quad (131)$$

1658 *Proof.* Let  $S$  be a nonempty finite set. Denote by  $\Pi(S)$  the lattice of set partitions of  $S$  ordered by  
 1659 refinement: For  $\sigma, \pi \in \Pi(S)$ , we write  $\sigma \leq \pi$  if every block of  $\sigma$  is contained in a block of  $\pi$ . Any  
 1660  $\pi \in \Pi(S)$  is a family of disjoint nonempty blocks whose union is  $S$ . For a block  $B \subseteq S$  define  
 1661

$$1662 A_B := \bigcap_{j \in B} A_j, \quad \text{and} \quad |A_B| := \left| \bigcap_{j \in B} A_j \right|. \quad (132)$$

1664 Let  $\mu$  denote the Möbius function of  $\Pi(S)$  (with respect to refinement).  $\mu$  is determined by  
 1665  $\sum_{\sigma: \sigma \leq \pi} \mu(\sigma) = \mathbf{1}_{\{\pi=\hat{0}\}}$ , where  $\hat{0}$  is the discrete partition. Formula (1) follows by multiplica-  
 1666 tivity of  $\mu$  over blocks and the known one-block value  $(-1)^{r-1}(r-1)!$  for a block of size  $r$ . It is  
 1667 well-known that:

$$1668 \mu(\pi) = \prod_{B \in \pi} (-1)^{|B|-1} (|B|-1)! \quad (133)$$

1670 Fix a nonempty  $S \subseteq [m]$ , an index  $i \in S$ , and an element  $a \in [n]$ . Let  $\mathcal{G}_S$  be the set of all functions  
 1671  $g : S \rightarrow [n]$  satisfying  $g(j) \in A_j$  for all  $j \in S$  (note that, there is no distinctness condition). For  
 1672  $g \in \mathcal{G}_S$ , define its equality partition  $\pi(g) \in \Pi(S)$  by:

$$1673 j \sim_{\pi(g)} k \quad \text{if and only if} \quad g(j) = g(k). \quad (134)$$

1674 Thus  $\pi(g)$  records which indices are assigned the same value by  $g$ . One has  $g$  is injective on  $S$  if  
 1675 and only if  $\pi(g) = \hat{0}$ . The set  $F_S$  of injective choices can be described as:  
 1676

$$1677 \quad F_S = \left\{ g \in \mathcal{G}_S : \pi(g) = \hat{0} \right\}, \quad (135)$$

1679 and the *fiber* fixing the value at the distinguished index  $i$  is:  
 1680

$$1681 \quad F_{S,i,a} = \left\{ g \in \mathcal{G}_S : g(i) = a, \pi(g) = \hat{0} \right\}. \quad (136)$$

1683 For  $\pi \in \Pi(S)$  and  $i \in S$ , let  $B_i(\pi)$  denote the unique block of  $\pi$  containing  $i$ . Define:  
 1684

$$1685 \quad N_{S,i,a}(\pi) := \left| \left\{ g \in \mathcal{G}_S : g \text{ is constant on each block of } \pi, g(i) = a \right\} \right|. \quad (137)$$

1687 That is,  $N_{S,i,a}(\pi)$  counts maps that are constant along blocks of  $\pi$  (so the only equalities allowed  
 1688 among coordinates are those forced by  $\pi$ ) and take the prescribed value  $a$  at the index  $i$ . For every  
 1689  $\pi \in \Pi(S)$ , one has:

$$1690 \quad N_{S,i,a}(\pi) = \mathbf{1}_{\{a \in A_{B_i(\pi)}\}} \prod_{\substack{B \in \pi \\ B \neq B_i(\pi)}} |A_B|. \quad (138)$$

1693 Indeed, if  $g$  is constant on each block of  $\pi$ , the value on the block  $B_i(\pi)$  must equal  $g(i) = a$ . This  
 1694 is possible exactly when  $a \in \bigcap_{j \in B_i(\pi)} A_j = A_{B_i(\pi)}$ , which contributes the indicator  $\mathbf{1}_{\{a \in A_{B_i(\pi)}\}}$ .  
 1695 Then, for any other block  $B \in \pi$  with  $B \neq B_i(\pi)$ , the common value of  $g$  on  $B$  can be chosen  
 1696 arbitrarily from the intersection  $A_B = \bigcap_{j \in B} A_j$ , independently across distinct blocks. Therefore  
 1697 there are  $|A_B|$  choices for each such block, and multiplying over all  $B \neq B_i(\pi)$  yields the product  
 1698 in Equation (138). Now, for  $g \in \mathcal{G}_S$ , define the two indicator functions on  $\Pi(S)$ :

$$1699 \quad E(g) := \mathbf{1}_{\{\pi(g) = \hat{0}\}}, \text{ and } C_\pi(g) := \mathbf{1}_{\{\pi(g) \geq \pi\}} \quad (\pi \in \Pi(S)). \quad (139)$$

1701 Here  $\pi(g) \geq \pi$  means that  $g$  is constant on every block of  $\pi$ . By general Möbius inversion on posets,  
 1702 one has:  
 1703

$$1704 \quad E(g) = \sum_{\pi \in \Pi(S)} \mu(\pi) C_\pi(g), \quad (140)$$

1707 since

$$1708 \quad \sum_{\sigma \leq \pi(g)} \mu(\sigma) = \mathbf{1}_{\{\pi(g) = \hat{0}\}}. \quad (141)$$

1711 Now fix  $i \in S$  and  $a \in [n]$ , multiply the last identity by  $\mathbf{1}_{\{g(i) = a\}}$ , and sum over all  $g \in \mathcal{G}_S$ , one  
 1712 has:  
 1713

$$1714 \quad |F_{S,i,a}| = \sum_{g \in \mathcal{G}_S} \mathbf{1}_{\{g(i) = a\}} E(g) = \sum_{\pi \in \Pi(S)} \mu(\pi) \sum_{g \in \mathcal{G}_S} \mathbf{1}_{\{g(i) = a\}} C_\pi(g). \quad (142)$$

1716 The inner sum is precisely  $N_{S,i,a}(\pi)$  by definition. Using Equation (138), one therefore obtains the  
 1717 explicit expansion:

$$1718 \quad |F_{S,i,a}| = \sum_{\pi \in \Pi(S)} \mu(\pi) \mathbf{1}_{\{a \in A_{B_i(\pi)}\}} \prod_{\substack{B \in \pi \\ B \neq B_i(\pi)}} |A_B|. \quad (143)$$

1722 Multiply Equation (143) by  $x_a$  and sum over all  $a \in A_i$  (equivalently, over all  $a \in [n]$ , since the  
 1723 indicator in Equation (143) already forces  $a \in A_i$  when  $i \in B_i(\pi)$ ):  
 1724

$$1725 \quad \sum_{a \in A_i} |F_{S,i,a}| x_a = \sum_{\pi \in \Pi(S)} \mu(\pi) \left( \prod_{\substack{B \in \pi \\ B \neq B_i(\pi)}} |A_B| \right) \left( \sum_{a \in A_{B_i(\pi)}} x_a \right). \quad (144)$$

1728 With the shorthand  $G(T) := \sum_{a \in A_T} x_a$  this becomes  
 1729

$$1730 \quad \sum_{a \in A_i} |F_{S,i,a}| x_a = \sum_{\pi \in \Pi(S)} \mu(\pi) \left( \prod_{\substack{B \in \pi \\ B \neq B_i(\pi)}} |A_B| \right) G(B_i(\pi)). \quad (145)$$

1734 By the hypothesis, the left-hand side of Equation (145) is 0. Hence  
 1735

$$1736 \quad 0 = \sum_{\pi \in \Pi(S)} \mu(\pi) \left( \prod_{\substack{B \in \pi \\ B \neq B_i(\pi)}} |A_B| \right) G(B_i(\pi)), \quad (146)$$

1739 for every nonempty  $S \subseteq [m]$  and every  $i \in S$ . Observe that, in Equation (146), the term  $G(B_i(\pi))$   
 1740 only involves nonempty subsets  $B_i(\pi)$  with  $i \in B_i(\pi) \subseteq S$ .  
 1741

1742 Back to the problem. We now show that  $G(T) = 0$  for every nonempty  $T \subseteq [m]$  by induction on  
 1743  $k := |T|$ . We use the Equation (133) and Equation (146) a lots.

1744 *Base case.*

1745 Let  $T = \{i\}$  for some  $i \in [m]$ . Take  $S = \{i\}$  in the given hypothesis, one has

$$1747 \quad \sum_{a \in A_i} |F_{S,i,a}| x_a = 0. \quad (147)$$

1749 Since  $S$  has one element, an injective choice on  $S$  is just a choice of a value in  $A_i$ , hence  $|F_{\{i\},i,a}| = 1_{\{a \in A_i\}}$ . Therefore  
 1750

$$1752 \quad 0 = \sum_{a \in A_i} |F_{\{i\},i,a}| x_a = \sum_{a \in A_i} x_a = G(\{i\}), \quad (148)$$

1754 which establishes the base case.

1755 *Inductive step.*

1757 Fix  $k \geq 2$  and assume the claim holds for all nonempty  $U \subseteq [m]$  with  $|U| < k$ , i.e.,  $G(U) = 0$   
 1758 whenever  $1 \leq |U| \leq k-1$ . Let  $T \subseteq [m]$  with  $|T| = k$ , and fix any distinguished index  $i \in T$ .  
 1759 Apply Equation (146) with  $S = T$ , we analyze the sum over  $\pi \in \Pi(T)$  by separating the one-block  
 1760 partition from the rest.

1761 (a) *The contribution of the one-block partition.*

1763 There is a unique partition  $\pi^* = \{T\}$  with a single block. For this partition we have  $B_i(\pi^*) = T$ , and the product over  $B \neq B_i(\pi^*)$  is an empty product, hence equals 1 by convention. By  
 1764 Equation (133) with  $|T| = k$ , one has:

$$1766 \quad \mu(\pi^*) = (-1)^{k-1}(k-1)! \quad (149)$$

1767 Thus, the term of Equation (146) corresponding to  $\pi^*$  equals

$$1768 \quad \mu(\pi^*) \cdot 1 \cdot G(B_i(\pi^*)) = (-1)^{k-1}(k-1)!G(T). \quad (150)$$

1770 (b) *The contribution of all other partitions.*

1771 Let  $\pi \in \Pi(T)$  with  $\pi \neq \pi^*$ . Then  $B_i(\pi)$  is a proper, nonempty subset of  $T$  (it still contains  $i$  but  
 1772 does not equal  $T$ ). Consequently  $|B_i(\pi)| \leq k-1$ . By the inductive hypothesis,

$$1774 \quad G(B_i(\pi)) = 0.$$

1775 Hence every summand in Equation (146) with  $\pi \neq \pi^*$  vanishes, regardless of the multiplicative  
 1776 factor  $\prod_{B \neq B_i(\pi)} |A_B|$  and the value of  $\mu(\pi)$ .

1778 Collecting (a) and (b), identity Equation (146) with  $S = T$  reduces to

$$1779 \quad 0 = (-1)^{k-1}(k-1)!G(T). \quad (151)$$

1780 Since  $(-1)^{k-1}(k-1)! \neq 0$ , we conclude  $G(T) = 0$ .

1781 By induction on  $k$ , the relation  $G(T) = 0$  holds for every nonempty  $T \subseteq [m]$ .  $\square$

**Remark B.9** (Combinatorial intuition). Viewed combinatorially,  $F_S$  is precisely the set of systems of distinct representatives (SDRs) for the family  $\{A_i : i \in S\}$ . For a fixed index  $i \in S$  and value  $a \in A_i$ , the fiber  $F_{S,i,a}$  enumerates those SDRs that assign the representative  $a$  to position  $i$ . Assumption in Equation (154) therefore states that the weighted sum  $\sum_{a \in A_i} |F_{S,i,a}| x_a$  vanishes for every nonempty  $S \subseteq [m]$  and every  $i \in S$ ; equivalently, the vector  $x = (x_a)_{a \in [n]}$  is orthogonal to the vector of SDR-completion counts at coordinate  $i$ . Applying Möbius inversion on the Boolean lattice  $(2^{[m]}, \subseteq)$  transfers these linear relations, with coefficients given by SDR multiplicities, into relations with unit coefficients, thereby collapsing the fiber-weighted sums to the unweighted intersection sums  $\sum_{a \in \cap_{j \in T} A_j} x_a$ . This mirrors the classical rook-polynomial/inclusion-exclusion paradigm: counts of placements with multiplicities invert to simple intersection counts once the incidence algebra is diagonalized by the Möbius function.

We have a direct corollary of Theorem B.8.

**Corollary B.10.** *Given positive integers  $m, n \geq 1$ . For each  $i \in [m]$ , let  $A_i$  be a subset of  $[n]$ . Let  $x_1, \dots, x_n$  be  $n$  real numbers. For any nonempty  $S \subseteq [m]$ , define*

$$F_S := \left\{ (a_i)_{i \in S} : a_i \in A_i \text{ for all } i \in S, \text{ and all } a_i \text{'s are pairwise distinct} \right\}. \quad (152)$$

For  $i \in S$  and  $a \in A_i$ , define the fiber

$$F_{S,i,a} := \{(a_j)_{j \in S} \in F_S : a_i = a\}. \quad (153)$$

Assume that, for every nonempty  $S \subseteq [m]$  and every  $i \in S$ , one has

$$\sum_{a \in A_i} |F_{S,i,a}| x_a = 0. \quad (154)$$

Then, one has

$$G(T) = \sum_{a \in A_1 \cap \dots \cap A_m} x_a = 0. \quad (155)$$

*Proof.* By taking  $T = [m]$  in Theorem B.8, one obtains the asserted main conclusion.  $\square$

## B.5 PROOF OF THEOREM 3.2

**Theorem B.11** (Theorem 3.2 in the main paper). *Let*

$$\theta = \left( W_i^Q, W_i^K, W_i^V, W_i^O \right)_{i=1}^h \in \Omega_h, \text{ and } \bar{\theta} = \left( \bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O \right)_{i=1}^{\bar{h}} \in \Omega_{\bar{h}}, \quad (156)$$

be two parameterizations of MHA<sub>RoPE</sub> maps. Assume that:

1. In the first MHA<sub>RoPE</sub> map, for each head  $i \in [h]$ , the similarity score between two arbitrary tokens does not vanish, i.e.,

$$W_i^Q (W_i^K)^\top + W_i^K (W_i^Q)^\top \text{ and } W_i^Q R^n (W_i^K)^\top, \quad (157)$$

for all non-zero integer  $n$ , are non-zero.

2. In the second MHA<sub>RoPE</sub> map, for each head  $i \in [\bar{h}]$ , the similarity score between two arbitrary tokens does not vanish, i.e.,

$$\bar{W}_i^Q (\bar{W}_i^K)^\top + \bar{W}_i^K (\bar{W}_i^Q)^\top \text{ and } \bar{W}_i^Q R^n (\bar{W}_i^K)^\top, \quad (158)$$

for all non-zero integer  $n$ , are non-zero.

3. In the first MHA<sub>RoPE</sub> map, the similarity score maps are pairwise distinct, i.e.,

$$\left\{ W_i^Q (W_i^K)^\top + W_i^K (W_i^Q)^\top, \{W_i^Q R^n (W_i^K)^\top\}_{n \in \mathbb{Z}, n \neq 0} \right\}, \quad (159)$$

for  $i = 1, \dots, h$ , are  $h$  pairwise distinct families.

1836 4. In the second MHA<sub>RoPE</sub> map, the similarity score maps are pairwise distinct, i.e.,  
 1837

$$1838 \quad \left\{ \bar{W}_i^Q (\bar{W}_i^K)^\top + \bar{W}_i^K (\bar{W}_i^Q)^\top, \{\bar{W}_i^Q R^n (\bar{W}_i^K)^\top\}_{n \in \mathbb{Z}, n \neq 0} \right\}, \quad (160)$$

1840 for  $i = 1, \dots, \bar{h}$ , are  $h$  pairwise distinct families.  
 1841

1842 5. In the first MHA<sub>RoPE</sub> map, all matrices  $W_i^Q, W_i^K, W_i^V, W_i^O$  for  $i \in [h]$  are of rank  $d_h$ .  
 1843

1844 6. In the second MHA<sub>RoPE</sub> map, all matrices  $\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O$  for  $i \in [h]$  are of rank  $d_h$ .  
 1845

1846 If the two MHA<sub>RoPE</sub> maps are identical, i.e.,  
 1847

$$1847 \quad \text{MHA}_{\text{RoPE}}(\cdot; \theta) = \text{MHA}_{\text{RoPE}}(\cdot; \bar{\theta}), \quad (161)$$

1848 then  $h = \bar{h}$ , and there exists a permutation  $\sigma \in S_h$  and invertible matrices  $\{U_i\}_{i=1}^h \subset \mathbb{H}(d_h)$  and  
 1849  $\{V_i\}_{i=1}^h \subset \text{GL}(d_h)$  such that  
 1850

$$1851 \quad \bar{W}_i^Q = W_{\sigma(i)}^Q \cdot U_i^\top, \quad \bar{W}_i^K = W_{\sigma(i)}^K \cdot (U_i)^{-1}, \quad (162)$$

$$1853 \quad \bar{W}_i^V = W_{\sigma(i)}^V \cdot V_i^\top, \quad \bar{W}_i^O = W_{\sigma(i)}^O \cdot (V_i)^{-1}.$$

1855 *Proof.* For  $i \in [h]$  and  $m, n \geq 1$ , denote  
 1856

$$1857 \quad A_i^{m,n} := W_i^Q R^{m-n} (W_i^K)^\top, \text{ if } m \neq n \quad (163)$$

$$1858 \quad A_i^{m,m} := \frac{W_i^Q (W_i^K)^\top + W_i^K (W_i^Q)^\top}{2}, \text{ and} \quad (164)$$

$$1860 \quad B_i := W_i^V (W_i^O)^\top. \quad (165)$$

1862 For  $i \in [\bar{h}]$  and  $m, n \geq 1$ , denote  
 1863

$$1864 \quad \bar{A}_i^{m,n} := \bar{W}_i^Q R^{m-n} (\bar{W}_i^K)^\top, \text{ if } m \neq n \quad (166)$$

$$1865 \quad \bar{A}_i^{m,m} := \frac{\bar{W}_i^Q (\bar{W}_i^K)^\top + \bar{W}_i^K (\bar{W}_i^Q)^\top}{2}, \text{ and} \quad (167)$$

$$1867 \quad \bar{B}_i := \bar{W}_i^V (\bar{W}_i^O)^\top. \quad (168)$$

1868 Then, one has  
 1869

$$1870 \quad \text{MHA} \left( \mathbf{x} : \{\{A_i^{m,n}\}_{m,n}; B_i\}_{i=1}^h \right) = \text{MHA}_{\text{RoPE}}(\cdot; \theta), \quad (169)$$

1872 and

$$1873 \quad \text{MHA} \left( \mathbf{x} : \{\{\bar{A}_i^{m,n}\}_{m,n}; \bar{B}_i\}_{i=1}^{\bar{h}} \right) = \text{MHA}_{\text{RoPE}}(\cdot; \bar{\theta}). \quad (170)$$

1875 Thus,

$$1877 \quad \text{MHA} \left( \mathbf{x} : \{\{A_i^{m,n}\}_{m,n}; B_i\}_{i=1}^h \right) = \text{MHA} \left( \mathbf{x} : \{\{\bar{A}_i^{m,n}\}_{m,n}; \bar{B}_i\}_{i=1}^{\bar{h}} \right). \quad (171)$$

1879 From the condition 3, 4, the property of parameters from these maps fit to the setting of Corol-  
 1880 lary B.2, which is that  $A_i^{m,n}$  and  $\bar{A}_i^{m,n}$  are nonzero for all feasible triples  $(i, m, n)$ . Thus, for every  
 1881 parameter family

$$1882 \quad \{A^{m,n}\}_{m,n \geq 1} \subset \mathbb{R}^{d \times d}, \quad (172)$$

1883 we have the identity  
 1884

$$1885 \quad \sum_{i \in [h] : \{A_i^{m,n}\}_{m,n} = \{A^{m,n}\}_{m,n}} B_i = \sum_{i \in [\bar{h}] : \{\bar{A}_i^{m,n}\}_{m,n} = \{A^{m,n}\}_{m,n}} \bar{B}_i. \quad (173)$$

1888 From condition 3, one has  $h$  families of parameters  
 1889

$$1890 \quad \{A_1^{m,n}\}_{m,n \geq 1}, \{A_2^{m,n}\}_{m,n \geq 1}, \dots, \{A_h^{m,n}\}_{m,n \geq 1}, \quad (174)$$

1890 are pairwise distinct. Together with Equation (173), consider  
 1891  
 1892

$$\{A^{m,n}\}_{m,n \geq 1} = \{A_i^{m,n}\}_{m,n \geq 1}, \quad (175)$$

1893 one has the left-hand side of Equation (173) is equal to  $B_i$ . Thus,  
 1894  
 1895

$$B_i = \sum_{j \in [\bar{h}] : \{\bar{A}_j^{m,n}\}_{m,n \geq 1} = \{A_i^{m,n}\}_{m,n \geq 1}} \bar{B}_j. \quad (176)$$

1896 Note that, since all the matrices  $W_i^V$  and  $W_i^O$  have rank  $d_h$ , it implies that all  $B_i$  are non-zero. From  
 1897 Equation (176), for each  $i \in [\bar{h}]$ , since the left-hand side is non-zero, the right-hand side has at least  
 1898 one index  $j \in [\bar{h}]$  such that  $\bar{B}_j$  is non-zero and  $\{\bar{A}_j^{m,n}\}_{m,n \geq 1} = \{A_i^{m,n}\}_{m,n \geq 1}$ . Since  $h$  families of  
 1899 parameters  
 1900

$$\{A_1^{m,n}\}_{m,n \geq 1}, \{A_2^{m,n}\}_{m,n \geq 1}, \dots, \{A_h^{m,n}\}_{m,n \geq 1}, \quad (177)$$

1901 are pairwise distinct, one implies that each  $i$  has its corresponding  $j$ 's distinctly from others. Thus,  
 1902  $h \leq \bar{h}$ . By a symmetric argument, one also has  $h \geq \bar{h}$ . In conclusion, one has  $h = \bar{h}$ . Moreover,  
 1903 by the above argument, for each  $i$ , there exists exactly one  $j \in [\bar{h}]$  such that  $\{\bar{A}_j^{m,n}\}_{m,n \geq 1} =$   
 1904  $\{A_i^{m,n}\}_{m,n \geq 1}$ . Moreover, this also implies that  $B_j = B_i$ .  
 1905

1906 In conclusion, there exists a permutation  $\sigma \in S_h$  such that  
 1907

$$\bar{A}_i^{m,n} = A_{\sigma(i)}^{m,n}, \text{ for all } m, n \geq 1, \text{ and } \bar{B}_{\sigma(i)} = B_i. \quad (178)$$

1909 From Lemma B.12, there exists matrices  $\{U_i\}_{i=1}^h \subset H(d_h)$  such that  
 1910

$$\bar{W}_i^Q = W_{\sigma(i)}^Q \cdot U_i^\top, \quad \bar{W}_i^K = W_{\sigma(i)}^K \cdot (U_i)^{-1}. \quad (179)$$

1912 From the rank factorization (Piziak & Odell, 1999), there exists matrices  $\{V_i\}_{i=1}^h \subset GL(d_h)$  such  
 1913 that

$$\bar{W}_i^V = W_{\sigma(i)}^V \cdot V_i^\top, \quad \bar{W}_i^O = W_{\sigma(i)}^O \cdot (V_i)^{-1}. \quad (180)$$

1914 This concludes the proof.  $\square$   
 1915

## 1917 B.6 A LEMMA CONCERNING THE ROTARY MATRIX USED IN THE PROOF OF THEOREM 3.2

1919 Given  $d = 2m$  be an even integer. Consider the RoPE matrix at position 1 as  
 1920

$$1921 R = \text{diag}(R(\theta_1), \dots, R(\theta_{d/2})) \in \mathbb{R}^{d \times d}, \text{ where } R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \quad (181)$$

1923 Denote the  $n \times n$  identity matrix as  $I_n$ . For  $i = 1, \dots, m$ , define the 2-dimensional coordinate plane  
 1924

$$E_i := \text{span}\{e_{2i-1}, e_{2i}\} \subset \mathbb{R}^d, \quad (182)$$

1926 where  $e_{2i-1}, e_{2i}$  are the  $(2i-1)$ -th and  $2i$ -th coordinate basis vectors. Define the orthogonal projection  
 1927 matrix

$$1928 P_i := e_{2i-1}e_{2i-1}^\top + e_{2i}e_{2i}^\top \in \mathbb{R}^{d \times d}. \quad (183)$$

1929 In words,  $P_i$  is the  $d \times d$  matrix has the  $i$ -th  $2 \times 2$  diagonal block is the  $2 \times 2$  identity matrix. We  
 1930 also define the matrix

$$1931 J_i := e_{2i}e_{2i-1}^\top - e_{2i-1}e_{2i}^\top \in \mathbb{R}^{d \times d}. \quad (184)$$

1932 In words,  $J_i$  is the  $d \times d$  matrix has the  $i$ -th  $2 \times 2$  diagonal block is the following  $2 \times 2$  matrix  
 1933

$$1934 J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. \quad (185)$$

1936 The matrix  $R$  now can be written as

$$1937 R = \sum_{i=1}^m (\cos \theta_i P_i + \sin \theta_i J_i). \quad (186)$$

1940 Moreover, for  $n \in \mathbb{Z}$ , one has

$$1941 R^n = \sum_{i=1}^m (\cos(n\theta_i) P_i + \sin(n\theta_i) J_i). \quad (187)$$

1943 We have the following result.

**Lemma B.12.** *Given an integer  $D \geq d$ . Consider matrices  $X, Z \in \mathbb{R}^{D \times d}$  and  $Y, T \in \mathbb{R}^{d \times D}$ . Assume that, for all non zero integer  $n$ ,*

$$XR^nY = ZR^nT. \quad (188)$$

If

1. All the angles  $\theta_i \in (0, \pi)$  are pairwise distinct, and
2. For all  $i = 1, \dots, m$ ,  $XP_i$  and  $P_iY$  have rank 2.

Then, there exists an invertible matrix  $U \in \mathbb{R}^{d \times d}$  of the form

$$U = \sum_{i=1}^m (a_i P_i + b_i J_i) \text{ with } (a_i, b_i) \in \mathbb{R}^2 \setminus \{(0, 0)\} \text{ for } i = 1, \dots, m, \quad (189)$$

*such that*

$$Z \equiv XU \quad \text{and} \quad T \equiv U^{-1}Y \quad (190)$$

*Proof.* We structure the proof into several steps for the sake of clarity and readability.

## Step 1.

## Define

$$A_{1,i} \coloneqq X P_i Y \in \mathbb{R}^{D \times D}, \quad (191)$$

$$B_{1,i} \coloneqq X J_i Y \in \mathbb{R}^{D \times D}, \quad (192)$$

$$A_{2,i} \coloneqq ZP_iT \in \mathbb{R}^{D \times D}, \quad (193)$$

$$B_{2,i} := Z J_i T \in \mathbb{R}^{D \times D}. \quad (194)$$

## Using

$$R^n = \sum_{i=1}^m (\cos(n\theta_i)P_i + \sin(n\theta_i)J_i), \quad (195)$$

one has

$$\begin{aligned}
XR^nY &= \sum_{i=1}^m X (\cos(n\theta_i)P_i + \sin(n\theta_i)J_i) Y \\
&= \sum_{i=1}^m (\cos(n\theta_i)XP_iY + \sin(n\theta_i)XJ_iY) \\
&= \sum_{i=1}^m (\cos(n\theta_i)A_{1,i} + \sin(n\theta_i)B_{1,i}),
\end{aligned} \tag{196}$$

and

$$\begin{aligned}
ZR^nT &= \sum_{i=1}^m Z (\cos(n\theta_i)P_i + \sin(n\theta_i)J_i) T \\
&= \sum_{i=1}^m (\cos(n\theta_i)ZP_i T + \sin(n\theta_i)ZJ_i T) \\
&= \sum_{i=1}^m (\cos(n\theta_i)A_{2,i} + \sin(n\theta_i)B_{2,i}). \tag{197}
\end{aligned}$$

Since  $XR^nY = ZR^nT$  for all  $n \neq 0$ , and  $\theta_1, \theta_2, \dots, \theta_m$  are pairwise distinct, one has  $A_{1,i} = A_{2,i}$  and  $B_{1,i} = B_{2,i}$  for all  $i = 1, \dots, m$ , or

$$XP.Y = ZP.T \quad \text{and} \quad XJ.Y = ZJ.T \quad (198)$$

**Step 2.**

Now fix an number  $i \in \{1, \dots, m\}$ . Let  $X_i$  is the  $D \times 2$  matrix constructed by concating the  $(2i-1)$ -th and  $2i$ -th columns of  $X$ ,  $Y_i$  be the  $2 \times D$  matrix constructed by concating the  $(2i-1)$ -th and  $2i$ -th rows of  $Y$ . Similarly, we construct  $Z_i, T_i$  for  $Z, T$ , respectively. By the second assumption, we have both  $X_i$  and  $Y_i$  have rank 2. Moreover, from

$$XP_iY = ZP_iT, \quad \text{and} \quad XJ_iY = ZJ_iT, \quad (199)$$

one has

$$X_iY_i = Z_iT_i, \quad \text{and} \quad X_iJY_i = Z_iJT_i. \quad (200)$$

Let  $V_X \in \mathbb{R}^{2 \times D}$  be the left inverse matrix of  $X_i$  and  $V_Y \in \mathbb{R}^{D \times 2}$  be the right inverse matrix of  $Y_i$ ,

$$V_X X_i = Y_i V_Y = I_2. \quad (201)$$

One has

$$\begin{aligned} I_2 &= (V_X X_i)(Y_i V_Y) = V_X (X_i Y_i) V_Y \\ &= V_X (Z_i T_i) V_Y = (V_X Z_i)(T_i V_Y). \end{aligned} \quad (202)$$

Let  $U_i = V_X Z_i$ . Then  $U_i^{-1} = T_i V_Y$ . Moreover, one has

$$\begin{aligned} X_i &= X_i(Y_i V_Y) = (X_i Y_i) V_Y \\ &= (Z_i T_i) V_Y = Z_i(T_i V_Y) = Z_i U_i^{-1}, \end{aligned} \quad (203)$$

so  $Z_i = X_i U_i$ . Similarly, one has

$$\begin{aligned} Y_i &= (V_X X_i) Y_i = V_X (X_i Y_i) \\ &= V_X (Z_i T_i) = (V_X Z_i) T_i = U_i T_i, \end{aligned} \quad (204)$$

so  $T_i = U_i^{-1} Y_i$ . Now, from  $X_i J Y_i = Z_i J T_i$ , one has

$$\begin{aligned} J &= (V_X X_i) J (Y_i V_Y) = V_X (X_i J Y_i) V_Y \\ &= V_X (Z_i J T_i) V_Y = (V_X Z_i) J (T_i V_Y) = U_i J U_i^{-1}. \end{aligned} \quad (205)$$

In other words, one has  $U_i J = J U_i$ . Then, there exists  $(a_i, b_i) \in \mathbb{R}^2 \setminus \{(0, 0)\}$  such that  $U_i = a_i I_2 + b_i J$ . In conclusion, one has

$$Z_i = X_i U_i, \quad \text{and} \quad T_i = U_i^{-1} Y_i, \quad (206)$$

where  $U_i = a_i I_2 + b_i J$  with  $(a_i, b_i) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ .

**Step 3.**

Define  $U = \text{diag}(U_1, \dots, U_m)$ . From the property of  $U_i$ 's, we have

$$U = \sum_{i=1}^m (a_i P_i + b_i J_i) \quad \text{with} \quad (a_i, b_i) \in \mathbb{R}^2 \setminus \{(0, 0)\} \quad \text{for } i = 1, \dots, m, \quad (207)$$

and  $Z = XU$  and  $T = U^{-1}Y$ . This concludes the proof.  $\square$

This result will be invoked in the proof of Theorem B.11.

**Remark B.13** (On the assumptions of Lemma B.12). If angles are not distinct or some equal 0 or  $\pi$ , first merge blocks with equal  $\theta$  and repeat the argument within each frequency class; the conclusion remains that  $U$  must commute with  $R$  (hence with each  $J_i$ ) on the active subspaces. If  $\text{rank}(XP_i) < 2$  or  $\text{rank}(P_iY) < 2$  for some  $i$ , the same derivation shows  $C_i$  must commute with  $J_i$  on the image subspace;  $C_i$  may be non-unique, but the global relation  $Z = XU$ ,  $T = U^{-1}Y$  with  $U$  commuting with  $R$  still describes the solution set restricted to the active coordinates.

## C ALGORITHM DESCRIPTION

---

2052 **Algorithm 1** Teleportation Training with Sampling Minimal Perturbations.  
 2053  
 2054 **input** Loss function  $\mathcal{L}(w)$ , optimizer  $\varphi$ , number of optimization steps  $T$ , initialization  $\theta_0 \in \Theta$ ,  
 2055   teleportation steps  $K$ , perturbation range  $\alpha > 0$ , number of samples  $M$ .  
 2056 1: **for**  $t \leftarrow 0$  to  $T - 1$  **do**  
 2057   2:   **if**  $t \in K$  **then**  
 2058     3:     Sample a set of perturbations  $B = \{g_i \in B_G(\alpha)\}_{i=1}^M$   
 2059     4:      $S \leftarrow \{g \in B \mid \|\nabla \mathcal{L}(g\theta_t)\|_2 > \|\nabla \mathcal{L}(\theta_t)\|_2\}$   
 2060     5:     **if**  $|S| > M/2$  **then**  
 2061       6:       Find the best perturbation:  $g^* \leftarrow \arg \max_{g \in B} \|\nabla \mathcal{L}(g\theta_t)\|_2$   
 2062       7:        $\theta_t \leftarrow g^* \theta_t$   
 2063       8:       **end if**  
 2064     9:     **end if**  
 2065   10:    $\theta_{t+1} \leftarrow \varphi(\theta_t)$   
 2066 11: **end for**  
 2067 **output**  $\theta_T$

---

## D OPTIMIZER CONSIDERATIONS FOR TELEPORTATION

The Adam optimizer (Adam et al., 2014) maintains exponential moving averages of the gradient and its elementwise square. Given the stochastic gradient  $g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$  at iteration  $t$ , the moment estimates are defined as:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \quad (208)$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2, \quad (209)$$

where  $\beta_1, \beta_2 \in [0, 1]$  denote exponential decay rates for the first and second moments, respectively. To correct for initialization bias, the estimates are normalized as:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}. \quad (210)$$

The parameter update rule is then:

$$\theta_{t+1} = \theta_t - \eta \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}, \quad (211)$$

with learning rate  $\eta > 0$  and numerical stabilizer  $\epsilon > 0$ . Since both  $m_t$  and  $v_t$  scale proportionally with  $g_t$ , the effective update  $\hat{m}_t/\sqrt{v_t}$  normalizes gradient magnitude. Consequently, increases in  $|g_t|$ —such as those induced by teleportation—do not translate into proportionally larger parameter updates. This adaptivity dampens the sensitivity of Adam to gradient-norm amplification. By contrast, stochastic gradient descent (SGD) applies the update  $\theta_{t+1} = \theta_t - \eta g_t$ , where the step size scales linearly with  $\|g_t\|$ , thereby preserving the full effect of teleportation-induced gradients.

Beyond this difference, the broader literature has reported several shortcomings of Adam relative to SGD. In particular, Adam may fail to guarantee convergence in certain regimes (Reddi et al., 2019), and often yields inferior generalization despite faster initial progress (Wilson et al., 2017). These limitations have been linked to over-reliance on momentum dynamics and misalignment between adaptive updates and descent directions (Gitman et al., 2019). In contrast, SGD has been shown to encourage flatter minima and superior generalization properties in deep learning models (Zhou et al., 2020; Chen et al., 2018).

Taken together, these considerations suggest that SGD is generally more favorable than Adam in the context of teleportation. Since teleportation deliberately amplifies gradient signals, Adam's adaptive normalization tends to attenuate its effect, whereas SGD preserves the proportional update and better leverages the intended perturbations. Therefore, the majority of experiments in this work employ SGD as the base optimizer.

## E EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Our experiments are designed to evaluate the effect of teleportation across both vision and language modeling benchmarks. For vision tasks, the evaluation covers MNIST, CIFAR-10, and ImageNet-1K, while for language modeling the benchmark is WikiText-103. SGD with a cosine learning-rate

2106 schedule is employed in all experiments. The study focuses exclusively on teleportation within attention  
 2107 layers, which are modified in all Transformer layers, ReLU is used as the activation functionm  
 2108 and teleportation is not applied to FFN components (i.e MLP blocks). In our experimental setup,  
 2109 learnable APE is adopted for vision task, while sinusoidal APE is applied to the WikiText-103.

2110 For robustness, each configuration on MNIST and CIFAR-10 is repeated for five independent runs,  
 2111 while WikiText-103 and ImageNet-1K experiments are repeated three times per configuration.

2114 Table 3: GPU Memory Allocated (Gb) on MNIST and CIFAR-10 (smaller is better).

| Datasets | PE   | No Teleport | Teleport | Zhao’s Teleport |
|----------|------|-------------|----------|-----------------|
| MNIST    | APE  | 1.14        | 1.16     | <b>2.36</b>     |
|          | RoPE | 1.17        | 1.18     | <b>2.23</b>     |
| CIFAR-10 | APE  | 2.03        | 2.07     | <b>5.30</b>     |
|          | RoPE | 2.06        | 2.09     | <b>5.02</b>     |

2125 **MNIST.** The experiments are conducted using a variant of ViT-Tiny with 6 transformer layers,  
 2126 hidden size of 128, MLP hidden dimension of 512, 4 self-attention heads, and attention dropout  
 2127 rates set to 0.0. Models are trained for 20 epochs with a batch size of 128, an initial learning rate of  
 2128 0.015, momentum of 0.9, and weight decay of 1e-4. Teleportation is applied once at epoch 1 with  
 2129 a radius of 0.65 ( $\alpha = 0.65$ ), covering the first 4 consecutive steps ( $|K| = 4$ ). At each teleportation  
 2130 step, 16 matrices are sampled ( $M = 16$ ).

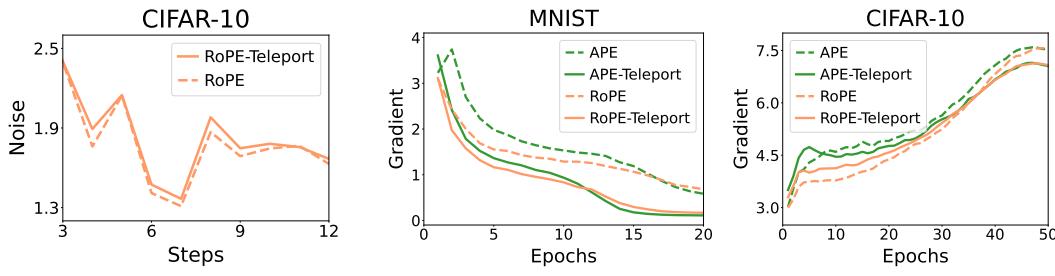
2131 **CIFAR-10.** The experiments are conducted using a variant of ViT-Tiny with 6 transformer layers,  
 2132 hidden size of 192, MLP hidden dimension of 768, 3 self-attention heads, and hidden and attention  
 2133 dropout rates set to 0.0. Training is performed for 50 epochs with a batch size of 256, an initial  
 2134 learning rate of 0.005, momentum of 0.9, and weight decay of 1e-5. Teleportation is applied once at  
 2135 epoch 1 with a radius of 0.65 ( $\alpha = 0.65$ ), covering the first 4 consecutive steps ( $|K| = 4$ ), with 16  
 2136 matrices sampled per step ( $M = 16$ ).

2137 **ImageNet-1K.** The experiments are conducted using the ViT-Tiny-Patch16-224 architecture, con-  
 2138 figured with 12 Transformer layers, a hidden size of 192, MLP hidden dimension of 768, and 3  
 2139 self-attention heads. The encoder employs a patch size of 16, ReLU is used as the activation func-  
 2140 tion, with both attention and hidden dropout rates set to 0.0, a initial learning rate of 0.05, batch  
 2141 size of 256, warmup learning rate of 1e-7, and a minimum learning rate of 1e-5. Teleportation is  
 2142 applied starting from epoch 2 with a radius of 0.2. At each teleportation step, 8 matrices are sampled  
 2143 ( $M = 8$ ), and a total of 32 teleportation steps are executed ( $|K| = 32$ ), divided into two sessions of  
 2144 16 consecutive steps.

2145 **WikiText-103.** The experiments are conducted using a Transformer-XL architecture with 16 lay-  
 2146 ers, model dimension 128, inner dimension 2048, 8 attention heads with head dimension 16. The  
 2147 target length and evaluation length are set to 256, and no memory is carried across segments  
 2148 ( $\text{mem\_len}=0$ ). The dropout rate is 0.1, and attention dropout is set to 0.0. Training is performed  
 2149 with using an initial learning rate of 0.75, warmup over 2000 steps, and with a batch size of 96.  
 2150 Teleportation is applied only to the attention layers, beginning at step 500 and continuing through  
 2151 step 515 ( $|K| = 16$ ). At each teleportation step, 8 matrices are sampled ( $M = 8$ ) with a scaling  
 2152 radius 0.2 ( $\alpha = 0.2$ ).

2153 **Zhao et al. (2023) algorithm.** We adopt the same model architectures and optimization hyperpa-  
 2154 rameters as described above for MNIST and CIFAR-10. The teleportation configuration is kept at  
 2155 the default settings across both datasets, specifically: the teleportation learning rate of 1e-4, the tele-  
 2156 portation step of 10 (referring to the number of gradient ascent iterations for optimizing  $g$ , which  
 2157 differs from our definition of teleportation steps), the teleportation epoch of 3, and the total of 8  
 2158 steps being teleported.

2159 All experiments were carried out on a single NVIDIA H100 GPU with 80GB of memory, while  
 the maximum VRAM actually used did not exceed 26GB. Training on MNIST and CIFAR finishes



(a) Gradient noise increased after applying teleportation in step 3. (b)  $\ell_2$  gradient norms on MNIST and CIFAR-10, where teleportation results in smaller values relative to the non-teleportation baseline.

Figure 3: Demonstrates the generalization of teleportation via gradient noise and  $\ell_2$  gradient norm.

within 7 minutes, whereas large-scale runs take considerably longer—up to 90 hours for ImageNet-1K and 33 hours for WikiText-103.

**Comparison of GPU allocation between our and zhao algorithms.** Zhao’s algorithm consumes twice as much GPU memory but does not bring any significant effect on validation accuracy or convergence time (Table 1, Table 3).

#### Sharpness on MNIST and CIFAR-10 after teleportation.

Table 4: Sharpness on MNIST and CIFAR-10 (smaller is better).

| Datasets | PE   | No Teleport          | Teleport             |
|----------|------|----------------------|----------------------|
| MNIST    | APE  | $2844.37 \pm 512.19$ | $1168.78 \pm 298.98$ |
|          | RoPE | $98.47 \pm 25.31$    | $95.23 \pm 20.34$    |
| CIFAR-10 | APE  | $1054.52 \pm 78.27$  | $958.78 \pm 63.30$   |
|          | RoPE | $484.67 \pm 56.55$   | $434.06 \pm 40.04$   |

#### Gradient noise and $\ell_2$ gradient norm after teleportation on CIFAR-10.

## F TELEPORTATION FOR ADAM

We further evaluate the effect of teleportation when training with the AdamW (Loshchilov & Hutter, 2017) optimizer. The network architectures and training hyperparameters follow details provided in Appendix E. For MNIST, training is conducted with a batch size of 128 for 20 epochs, an initial learning rate of 2.5e-4, and weight decay 1e-5. For CIFAR-10, we use a batch size of 256, 50 training epochs, the same initial learning rate 2.5e-4, and weight decay 1e-5.

Teleportation is applied exclusively to attention layers, with no modification to MLP components, and the number of samples is fixed at  $M = 16$  per teleportation step. For MNIST (both APE and RoPE positional embeddings), teleportation is performed at epochs 1–3, with 8 consecutive steps at the beginning of each epoch ( $|K| = 24$ ) and radius 0.1 ( $\alpha = 0.1$ ). For CIFAR-10 with learnable embeddings, the same schedule is applied but with radius 0.2. For CIFAR-10 with RoPE, teleportation is performed only at epoch 1, consisting of 16 consecutive steps ( $|K| = 16$ ) with radius 0.2 ( $\alpha = 0.2$ ).

Overall, Table 5 shows that teleportation with AdamW yields only marginal gains in validation accuracy over the non-teleportation baseline. Improvements in training time are inconsistent and considerably smaller than those observed with SGD, suggesting that teleportation is less effective when combined with adaptive optimizers such as Adam and AdamW.

2214 Table 5: Results of teleportation with AdamW on MNIST and CIFAR-10. Reported are mean and  
 2215 standard deviation over five independent runs.

| Dataset  | PE   | Teleport | Val Acc (%) $\uparrow$ | Speedup (%) $\uparrow$ | Time/epoch $\downarrow$ |
|----------|------|----------|------------------------|------------------------|-------------------------|
| MNIST    | APE  | No       | 98.81 $\pm$ 0.07       | -                      | 7.83 $\pm$ 0.82 (s)     |
|          |      | Yes      | 98.83 $\pm$ 0.08       | 20.83 $\pm$ 4.17       | 8.37 $\pm$ 0.68 (s)     |
|          | RoPE | No       | 99.06 $\pm$ 0.00       | -                      | 9.17 $\pm$ 1.04 (s)     |
|          |      | Yes      | 99.08 $\pm$ 0.05       | 6.54 $\pm$ 4.58        | 10.25 $\pm$ 0.75 (s)    |
| CIFAR-10 | APE  | No       | 78.18 $\pm$ 0.28       | -                      | 7.11 $\pm$ 0.60 (s)     |
|          |      | Yes      | 78.36 $\pm$ 0.27       | 13.13 $\pm$ 11.46      | 7.23 $\pm$ 0.63 (s)     |
|          | RoPE | No       | 80.98 $\pm$ 0.25       | -                      | 6.57 $\pm$ 0.35 (s)     |
|          |      | Yes      | 81.69 $\pm$ 0.53       | 11.40 $\pm$ 10.66      | 6.72 $\pm$ 0.42 (s)     |

## G TELEPORTATION CONFIGURATION RECOMMENDATIONS

2235 **Hyperparameter trade-off.** The effectiveness of teleportation is governed by multiple interacting  
 2236 factors, including the radius  $\alpha$  and the choice of teleportation steps  $K$ . Both need to be tuned with  
 2237 care depending on dataset size and model architecture. When teleportation is applied to later training  
 2238 stages, a smaller radius is preferable since gradients are already relatively stable at this point, and  
 2239 large perturbations may cause undesirable fluctuations. Conversely, a larger radius  $\alpha$  is typically  
 2240 applied in earlier stages and can be stabilized with fewer consecutive teleportation steps.

### Recommended configuration.

- **Radius  $\alpha$ :** Choose  $\alpha \in [0.2, 0.6]$ . Larger radius ( $\geq 0.5$ ) work best with 4–6 consecutive steps; medium radius (0.3–0.5) with 6–10 steps; and smaller radius ( $\leq 0.3$ ) with 10–16 steps. These recommendations are derived from our empirical observation that the cumulative ratio of gradient norms (after teleportation/before teleportation) across consecutive steps should remain below 1.05 for small datasets (e.g., CIFAR-10, MNIST) and close to 1.00 for large datasets (e.g., ImageNet-1K, WikiText-103) to avoid gradient explosion.
- **Total teleportation steps  $|K|$ :** For smaller datasets,  $|K|$  should be around 2–4% of the number of training iterations per epoch. For larger datasets,  $|K| \approx 0.5\%$  is sufficient.
- **Consecutive steps:** Should not exceed 16, and generally should not be fewer than 4 to have noticeable effect. Total teleportation steps should not exceed twice the number of consecutive steps (i.e., only 1–2 consecutive teleportation phases per run).
- **Teleportation position:** Empirical evidence suggests that teleportation is most effective when scheduled within the first 5 epochs. In the absence of learning rate warm-up, it should be applied during the earliest epochs, at the stage where the loss is decreasing most rapidly and before convergence stabilizes. With warm-up, teleportation is better placed in the middle of the warm-up phase.
- **Sampling  $M$ :** Use 8–16 samples. Fewer than 8 leads to instability, while more than 16 brings little additional benefit.

2264 The above recommendations are intended as a practical guideline for deploying teleportation in  
 2265 training pipelines. They have been validated across both vision and NLP benchmarks, and strike a  
 2266 balance between stability and efficiency. While adjustments may be explored for further empirical  
 2267 gains, substantial deviations from these ranges tend to introduce instability and are therefore not  
 2268 advised unless carefully evaluated.

2268 **H TELEPORTATION INDEX**  
22692270 Table 6: Effect of teleportation index on WikiText-103 performance.  
2271

| 2272 Teleport index | 2273 Val PPL ↓ | 2274 Test PPL ↓ | 2275 Teleport index | 2276 Val PPL ↓ | 2277 Test PPL ↓ | 2278 Teleport index | 2279 Val PPL ↓ | 2280 Test PPL ↓ |
|---------------------|----------------|-----------------|---------------------|----------------|-----------------|---------------------|----------------|-----------------|
| 0–500               | 35.13          | 36.10           | 1500–2000           | 34.87          | 35.98           | 0–2000              | 34.69          | 35.87           |
| 500–1000            | <b>34.39</b>   | <b>35.45</b>    | 2000–2500           | 35.94          | 36.83           | 0–4000              | 34.71          | 35.86           |
| 1000–1500           | 35.23          | 36.21           | 2500–3000           | 35.08          | 36.09           | 2000–4000           | 35.12          | 36.17           |

2276  
2277  
2278  
2279  
2280  
2281  
2282  
2283  
2284  
2285  
2286  
2287  
2288  
2289  
2290  
2291  
2292  
2293  
2294  
2295  
2296  
2297  
2298  
2299  
2300  
2301  
2302  
2303  
2304  
2305  
2306  
2307  
2308  
2309  
2310  
2311  
2312  
2313  
2314  
2315  
2316  
2317  
2318  
2319  
2320  
2321