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ABSTRACT

Proteins can be represented in various ways, including their sequences, 3D struc-
tures, and surfaces. While recent studies have successfully employed sequence- or
structure-based representations to address multiple tasks in protein science, there
has been significant oversight in incorporating protein surface information, a crit-
ical factor for protein function. In this paper, we present a pre-training strategy
that incorporates information from protein sequences, 3D structures, and surfaces
to improve protein representation learning. Specifically, we utilize Implicit Neu-
ral Representations (INRs) for learning surface characteristics, and name it Pro-
teinINR. We confirm that ProteinINR successfully reconstructs protein surfaces,
and integrate this surface learning into the existing pre-training strategy of se-
quences and structures. Our results demonstrate that our approach can enhance
performance in various downstream tasks, thereby underscoring the importance
of including surface attributes in protein representation learning. These findings
underline the importance of understanding protein surfaces for generating effec-
tive protein representations.

1 INTRODUCTION

Proteins are vital components of biological systems, executing a myriad of functions that underpin
an extensive array of cellular processes and biological pathways. These intricate macromolecules
have multi-faceted characteristics that can be represented through different paradigms, including
but not limited to their amino acid sequences, three-dimensional (3D) structures, and the specific
attributes of their surface regions. In recent years, advancements in high-throughput sequencing
(HTS) technologies, cryogenic electron microscopy (cryo-EM), and sophisticated algorithms for
protein structure prediction (Jumper et al., 2021; Baek et al., 2021; Lin et al., 2022) have led to
an explosion of available protein sequence (Suzek et al., 2007) and structure (Berman et al., 2000;
Varadi et al., 2022; Lin et al., 2023) data, most of which have been made publicly accessible. Lever-
aging these abundant datasets, recent studies (Meier et al., 2021; Zhang et al., 2022; 2023) have
successfully employed machine learning models pre-trained on this data, resulting in significant
progress in tackling an array of downstream tasks in the field of protein science.

Despite these strides, there exists a notable oversight in the current landscape of protein representa-
tion learning: the often-underestimated significance of protein surface characteristics. The attributes
of a protein’s surface are crucial in determining its functional properties, particularly in the context
of molecular interactions like ligand binding, enzymatic catalysis, and signal transduction between
molecules (Gainza et al., 2020; Somnath et al., 2021). While existing works for protein representa-
tion learning have focused heavily on encoding amino acid sequences and 3D structural elements,
they have largely neglected the indispensable role that protein surfaces serve, thus leaving an unad-
dressed gap in the prevailing research. More specifically, the protein structure can be divided into the
atoms comprising the backbone and the components constituting the side chains. In this context, the
protein surfaces are determined by both backbone and side chain atoms. However, traditional pro-
tein structure encoders typically process protein 2D graphs or 3D geometric graphs that only contain
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Table 1: Comparison of different protein encoders with and without sequence, structure, or surface
pre-training. Our model, ESM-GearNet-INR-MC, covers three modalities, sequence, structure, and
surface in both encoding and pre-training, achieving comprehensive protein representation learning.

Method Sequence Structure Sequence Structure Surface Surface
Encoder Encoder Pre-training Pre-training Encoder Pre-training

CNN ✓
Transformer ✓
GVP ✓
GearNet ✓
ESM-1b ✓ ✓
ProtBert ✓ ✓
DeepFRI ✓ ✓ ✓
LM-GVP ✓ ✓ ✓
ESM-GearNet ✓ ✓ ✓
GearNet-MC ✓ ✓
GearNet-DP ✓ ✓
ESM-GearNet-MC ✓ ✓ ✓ ✓
ESM-GearNet-INR-MC (Ours) ✓ ✓ ✓ ✓ ✓ ✓

alpha carbon or backbone atoms, respectively. Consequently, state-of-the-art representations often
lack consideration for side-chain information.

In response to this significant gap, our research aims to offer a comprehensive solution. We pro-
pose an all-encompassing pre-training strategy that incorporates information from all three essential
aspects of proteins: sequences, 3D structures, and notably, surfaces. Our approach is pioneering
in that it is the first to specifically target the learning of protein surface attributes, and it employs
cutting-edge Implicit Neural Representations (INRs) (Chen & Wang, 2022) to achieve this goal ef-
fectively. This inclusive approach enables our model to enhance performance across various down-
stream tasks, thereby emphasizing the importance of incorporating surface information in protein
representation learning.

In summary, our contributions include:

• We are the first to propose a pre-training strategy that incorporates information from protein
sequences, structures, and surfaces.

• We utilize Implicit Neural Representations (INRs) as an effective mechanism for learning
surface characteristics of proteins.

• We conduct a comprehensive comparison of the effects of pre-training on protein se-
quences, structures, and surfaces, thereby demonstrating the efficacy of learning about
surfaces.

2 RELATED WORK

2.1 PROTEIN REPRESENTATION LEARNING

Most studies in the field of protein representation learning have adopted one of three main ap-
proaches: (i) focusing on protein sequences, (ii) concentrating on protein structures, or (iii) employ-
ing a hybrid strategy that incorporates both sequence and structural information.

In the first approach, which focuses on learning protein sequences, researchers commonly adopt the
architecture of pre-trained language models from the field of Natural Language Processing (NLP),
such as Transformer(Vaswani et al., 2017), BERT (Devlin et al., 2018), and GPT (Radford et al.,
2018), to effectively represent proteins by learning their amino acid sequences as if they were lan-
guage (Elnaggar et al., 2007; Meier et al., 2021; Notin et al., 2022). The second approach generally
employs Graph Neural Networks (GNNs)-based architectures (Ingraham et al., 2019; Jing et al.,
2020; Hermosilla et al., 2020; Zhang et al., 2022) to capture the intricate structural features of pro-
teins. In the third approach, hybrid models aim to learn from both protein sequences and structures.
Notable studies, such as DeepFRI (Gligorijević et al., 2021) and LM-GVP (Wang et al., 2022) have
utilized encoders for both sequence and structural information and have pre-trained on sequence
data. STEPS (Chen et al., 2023) and ESM-GearNet (Zhang et al., 2023) have gone a step further by
also pre-training on structural information to achieve enhanced performance.
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However, these methods have not taken into account the significant role of protein molecular sur-
face information plays in various biological processes. Traditionally, molecular surfaces are defined
using Connelly surfaces (Connolly, 1983; Sanner et al., 1996) based on van der Waals (vdW) radii,
often represented as mesh-based structures derived from signed distance functions. Seminal work for
modeling protein molecular surfaces is MaSIF (molecular surface interaction fingerprinting) (Gainza
et al., 2020), which fingerprints molecular surfaces expressed as molecular meshes using pre-defined
and pre-calculated physical and geometrical features. To remove the high pre-computation costs of
featurization, Sverrisson et al. (2021) proposed dMaSIF, which showed that modeling molecular sur-
faces as a point cloud with atom categories per point is competitive. Somnath et al. (2021) proposed
HOLOProt, which attempted to segment the protein surface into ”superpixels” for more efficient
consideration of surface information and used the features in conjunction with structure features in a
multi-modal modeling manner. However, theoretically, molecular surfaces are continuous surfaces
with infinite resolution, which existing mesh-based approaches cannot fully express. To tackle this
challenge, we utilize the Implicit Neural Representations (INRs) approach, a technique capable of
perfectly capturing infinite resolution characteristics. Our model, called ProteinINR, understands
protein molecular surface resolution independently. Furthermore, our ProteinINR model is a gener-
alizable INR approach, allowing us to develop a single model capable of representing many protein
structures. On the other hand, Wang et al. (2023) proposed a harmonic message passing, called
HMR, which considered surfaces during molecular representation learning. Compared to HOLO-
Prot and HMR, which focused on the design of encoder, we use INRs as a pre-training framework
in which a structure encoder is trained to extract structure features to recover molecular surface.

2.2 IMPLICIT NEURAL REPRESENTATIONS

Point cloud-based (Qi et al., 2017a;b; Thomas et al., 2019; Zhang et al., 2021), mesh-based (Sinha
et al., 2016; Bagautdinov et al., 2018; Verma et al., 2018), and voxel-based (Curless & Levoy,
1996; Wu et al., 2015; Tatarchenko et al., 2017; Zeng et al., 2017) methods have historically relied
on fixed-sized coordinates or grids to represent 3D assets. Unfortunately, these approaches suffer
from resolution dependency, making them insufficient for modeling or rendering high-resolution
3D assets effectively. In contrast, Implicit Neural Representations (INRs) concentrate on learning
parameterized functions that predict location-specific information for given arbitrary query coor-
dinates by utilizing seminal methods such as auto-decoding (Park et al., 2019b; Mescheder et al.,
2019), Fourier features (Tancik et al., 2020; Mildenhall et al., 2021), sinusoidal activations (Sitz-
mann et al., 2020b), meta-learning (Tancik et al., 2021; Dupont et al., 2022a;b; Bauer et al., 2023),
or transformer-based architecture (Chen & Wang, 2022). The inherent differentiation gives INR the
benefit of being independent of resolution, enabling it to depict scenes and objects with outstanding
precision and fidelity (Chen et al., 2021; Sajjadi et al., 2022; Jun & Nichol, 2023).

Grattarola & Vandergheynst (2022) proposed a generalized INR, which is the only work dedicated
to the study of INR for proteins. The contributions were crucial because generalized INR expanded
the use of INR to topological systems that do not possess a well-defined coordinate system. They
utilized 2D graph spectral embedding to learn INR for various real-world systems in non-Euclidean
domains, including proteins. Nevertheless, although the work demonstrated the capacity to general-
ize across diverse systems, it necessitated the training of individual Multi-Layer Perceptron (MLP)
models for each sample, hence constraining its ability to generalize across datasets. Our study pro-
vides evidence that it is feasible to represent protein surfaces using the INR with the Euclidean
coordinate system. Furthermore, our study contributes to the area by showcasing the feasibility of a
generalizable INR model capable of representing an entire dataset with a single model.

3 PRELIMINARIES

3.1 PROTEIN GRAPH

Proteins are constructed by 20 different amino acids. Their 3D structures are formed through the
chemical bonds and interactions among the atoms of the amino acids and making them naturally
suited for graph representation. Based on the GearNet’s representation (Zhang et al., 2022), which
exhibits high performance for downstream tasks we aim to solve, a protein P is expressed as a
relational graph GP , made up of (V, E ,R). V is the set of nodes and each node presents a residue
in protein and includes the amino acid residue type and 3D coordinate. E is the set of edges among
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Figure 1: An illustration of our proposed strategy for pre-training sequences, structures, and surfaces
to solve downstream tasks.

Figure 2: An overview of our ProteinINR architecture. The points tokens, structure tokens, and
latent tokens are calculated using high-frequency-aware point encoder, structure encoder (GearNet-
Edge-IEConv), and three-dimensional convolution layers, respectively. Points are 16k resolution.
Transformer encoders output parameters of an MLP using the tokens, then SDF values are obtained
using the parameters for the query coordinates.

nodes with their types R such as the edges between two residues located within a certain distance
on the protein sequence or 3D coordinates.

3.2 INRS

To model the surface of the protein, and we utilize Signed Distance Function (SDF) to represent the
surface. SDF is a well-established strategy for representing 3D shapes as scalar fields. The SDF is a
mathematical expression that assigns a scalar value to a given coordinate x, expressing the distance
d between the spatial point and the closest point on the shape’s surface as follow:

F(x) = s : x ∈ R3, s ∈ R. (1)

We employ the methodology of DeepSDF (Park et al., 2019a) and train a model that possess con-
tinuous implicit representations, which describe the F for geometric molecular surfaces. We define
the inside surface as d < 0 and the outside surface as d > 0. Following this definition, the equation
F(x) = 0 implies the molecular surface boundary, specifically defining the molecular surface. In
summary, we train a model that encode a protein molecular surface and produce INR parameters,
which imply the F .
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4 METHOD

As mentioned earlier, we aim to pre-train sequences, structures, and surfaces of proteins for better
protein representation. The sequence, structure, and surface are quite different modalities and thus
establishing strategies for pre-training the sequence, structure, and surface is very important. To
learn a large volume of structural and sequence data, we employ the “series-fusion” approach which
has demonstrated superior performance in previous work (Zhang et al., 2023). First, we pre-train
the sequences on sequence encoder and use this encoding as input for the structure encoder. Then,
we pre-train the structure encoder on the surfaces using ProteinINR and utilize the weights of pre-
trained structure encoder as initial weights for pre-training on the structures. Then, we pre-train the
structure encoder on the structure through multi-view contrastive learning based on the approach
from Zhang et al. (2022) to obtain the final protein representation. Our pre-training strategy can be
seen as continual pre-training (Ke et al., 2022). Finally, we leverage protein representation from the
pre-trained model on three modalities to solve downstream tasks. Figure 1 contains an illustration
of our pre-training strategy.

4.1 GENERALIZABLE IMPLICIT NEURAL REPRESENTATIONS FOR PROTEIN

To effectively pre-train protein surfaces, we employ INRs. In the early stages of INRs, a coordinate-
based MLP is trained for each individual instance. However, with the increasing amount of datasets,
the computational expense associated with training multiple MLPs for each individual data point
has become too costly. Consequently, various solutions have been proposed to develop a gen-
eralizable INR to accommodate an entire dataset within a single model. One notable approach,
TransINR (Chen & Wang, 2022), entails leveraging Transformer architecture, particularly for INR
parameter calculation based on multiple partial views of 3D objects as conditioning inputs. This
technique has garnered considerable attention in the field. Building upon these advancements, Pro-
teinINR adopts and first extends these methodologies in the protein field. It represents an expressive
and generalizable INR that can effectively capture the shapes of tens of thousands of protein in-
stances within a single model.

4.1.1 ENCODING PROTEIN USING POINT AND STRUCTURE ENCODER

The ProteinINR framework first encodes a certain protein instance P into a protein point set embed-
ding h. ProteinINR inputs the 3D protein asset as a protein point cloud P ∈ RN×3. The variable
N denotes the number of points in the point cloud of the protein molecular surface, and we ran-
domly sampled 16,384 points to input the point encoder in our experiments. ProteinINR utilizes the
Dual-scale Point Cloud Recognition (DSPoint) (Zhang et al., 2021) Encoder ψ to address the com-
plex and irregular nature of protein surfaces, which exhibit intricate high-frequency features. This
encoder effectively captures a given point cloud’s high-frequency and low-frequency characteris-
tics, demonstrating notable efficacy in the tasks that involve high-frequency features, such as point
cloud segmentation. Following the process of updating point features through the DSPoint method,
we downsample the points into a reduced set of M points P̃ ∈ RM×3 by utilizing the deformable
Kernel Point Convolution (KPConv) networks (Thomas et al., 2019). Ultimately, a learnable linear
transformation is implemented on the downsampled points to align the embeddings’ hidden dimen-
sion prior to cross attention.

RGB values are frequently utilized as characteristics for individual points in point cloud modeling.
ProteinINR considers the chemical properties of protein surfaces stemming from their electrical en-
vironment as chemical colors. Although MaSIF utilized a pre-computation technique to determine
the chemical colors, the computational cost associated with this approach is prohibitively expen-
sive. Fortunately, dMaSIF has shown that it is possible to create a comprehensive representation
of chemical properties by utilizing atom category features and distances inside an end-to-end learn-
ing framework. Building upon these findings, we adopt a similar approach for protein point cloud
chemical color representation. We integrate two essential elements into our approach, namely atom
categorical embeddings and the property of Top K closest distances. Incorporating these character-
istics into the point cloud encoder leads to the formation of embeddings that encompass the surface’s
chemical attributes. The utilization of the encoder and chemical features mentioned ensures that Pro-
teinINR represents the protein molecular surface by considering the intricate interaction between the
protein’s structural and chemical characteristics.
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The primary contribution of our study is employing INR training as a pre-training technique to inject
the knowledge of protein surface characteristics into the protein structure encoder. In order to ac-
complish this, we represent an input protein as a structure and incorporate a protein structure encoder
into the INR training process, which allows us to encode the protein structure graph GP and generate
protein structure embeddings g ∈ RR×h where R and h are length of residues and length of hidden
dimension, respectively. Finally, the embeddings h can be used for various downstream tasks. The
utilization of this architectural design enables the protein structure encoder to actively participate
in the process of acquiring surface-aware representation learning. As a result, the structure encoder
enhances its ability to comprehend and depict protein molecule surfaces comprehensively. We note
the extracted point embedding as p ∈ RM×h.

4.1.2 SPATIALLY ARRANGED LATENT REPRESENTATIONS

Recently, Spatial Functa (Bauer et al., 2023) has demonstrated improvements in the quality of la-
tent representations when two-dimensional spatial inductive biases are incorporated. Building upon
this, we extend the concept to three-dimensional protein surfaces. In ProteinINR, the latent em-
beddings z ∈ RL×c with length of L are initially rearranged into a three-dimensional voxel grid
z ∈ Ri×j×k×c, where c, i, j, and k are feature size, width, height, and depth of latent grid respec-
tively. Following that, we implemented 3D convolutions on the reorganized embeddings, which
allowed for the incorporation of spatial inductive biases inside the latent embeddings. Finally, latent
embeddings are rearranged to have the original shape z ∈ RL×c and projected through a learnable
projection layer to have the feature dimension z ∈ RL×h . While this approach may seem simple,
the results are remarkably effective, leading to enhanced INR performance, as further elucidated in
our ablation study.

4.1.3 TRANSFORMER ENCODER FOR INRS

In ProteinINR, the latent representation (referred to as z) of a protein instance’s surface is obtained
using a transformer encoder. The initial step is the concatenation of the protein surface point cloud
embedding p, structural embedding g, and latent embedding z as follows:

h = Concat(p, s, z),h ∈ R(M+R+L)×h (2)

Next, the final latent codes z are obtained through self-attention processes where protein information
is propagated over all protein-related tokens and latent embeddings.

4.1.4 INR DECODER AND SDF REGRESSION

In order to strengthen the ability of ProteinINR to capture localized and fine-grained details of local
surfaces, we utilize the decoder introduced by (Lee et al., 2023). This decoder has demonstrated
a significant improvement of over 50% compared to the prior TransINR model. The improvement
is achieved by introducing a locality inductive bias into the INR framework. In ProteinINR, the
locality-aware INR decoder Dϕ utilizes the latent code z to predict the SDF s̃ for K query coordi-
nates x ∈ RK×3 near molecular surface of N protein samples Pn. The optimization of ProteinINR
is fulfilled by minimizing the L2 loss between the predicted SDF values and the corresponding SDF
values for each SDF sample. Furthermore, clamping techniques are employed to focus the model’s
attention on the specific details within the vicinity of the surface region. We used the clamp value of
0.2, as employed in the DeepSDF. More detailed steps are followed:

s̃ = Dϕ(x, z) (3)

min
ψ,z

1

NKn

N∑
n=1

Kn∑
i=1

∥clamp(s, δ)− clamp(̃s, δ)∥22 (4)

4.2 PRE-TRAINING ON SEQUENCES AND STRUCTURES

To effectively learn protein representations from a large volume of structural and sequence data,
we employ the “series fusion” approach, which has demonstrated superior performance in previous
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work (Zhang et al., 2023). In the “series fusion” architecture, the output from the trained language
model is fed into the structure encoder. We utilize ESM-1b (Meier et al., 2021) as the trained lan-
guage model. To encode a protein graph by learning their structural information, we adopt the
GearNet-Edge-IEConv architecture, which performs best across most tasks, as the structure encoder
and then we pre-train the structure encoder on structures by employing the multi-view contrastive
learning approach (Zhang et al., 2022). The detailed information about the architecture and hyper-
parameters of structure pre-training we used is described in Appendix A.1.

5 EXPERIMENTS AND RESULTS

5.1 DATASET PREPARATION FOR PRE-TRAINING

INR training Before calculating samples of the signed distance function, we generated the zero-
level surface, namely, the molecular surface, represented by the equation F(x) = 0 in implicit
representations. To accomplish this objective, we utilized the MSMS program (Connolly, 1983;
Sanner et al., 1996), which is well-established triangulation software for molecular surfaces. Sub-
sequently, we computed the SDF values for the points acquired by the sampling approach utilized
in DeepSDF. The sample points are sampled near to the molecular mesh obtained via MSMS. In
that case, the SDF values are their distances from the nearest vertices point of a given molecular
surface mesh. In this work, 500,000 points were generated for SDF training, serving as the SDF
points independent of the protein point cloud input. These points and corresponding SDF values are
utilized as the target data for INR training. We train ProteinINR in 50 epochs with learning rate of
1e-4.

Structure pre-training To pre-train structural information, we utilize AlphaFold Protein Structure
Database version 2 (Varadi et al., 2022) to pre-train the models. We use protein structure prediction
data for 20 species and Swiss-Prot (Boeckmann et al., 2003). In-depth details and statistics about
the data we used are provided in the Appendix A.2.

5.2 EXPERIMENTAL SETTINGS

Downstream tasks To quantify representation power of our proposed method, we adopt three
downstream tasks. As in GearNet paper, we choose Enzyme Commission (EC) number prediction
task and Gene Ontology (GO) term prediction proposed from Gligorijević et al. (2021). Fold Clas-
sification (FC) suggested from Hou et al. (2018) is adopted as downstream evaluation as well. EC
task is prediction of EC numbers of proteins which represent biomedical reactions they catalyze. GO
task is divided into three sub-tasks by their ontologies, biological process (BP), molecular function
(MF), cellular component (CC). Each task predicts whether a protein is associated with a specific
GO term. For EC and GO tasks, Fmax and pair-centric area under precision-recall curve (AUPR)
values are calculated to measure performance. In the FC task, fold labels of proteins are classified,
and mean accuracy is used to evaluate performance.

We evaluate a total of seven models: i) GearNet, which is trained directly on the downstream
tasks with a structure module; ii) GearNet-INR, where the structure module is pre-trained on the
surfaces, and then trained on the downstream task; iii) GearNet-MC, whose structure module is
pre-trained on the structures by multi-view contrastive learning, and then trained on downstream
tasks; iv) GearNet-INR-MC, whose structure module is pre-trained on the surfaces, subsequently
on the structures, and then trained on downstream tasks; v) ESM-GearNet-MC, where a sequence
encoder is pre-trained, followed by pre-training on the structures; vi) ESM-GearNet-INR, where
a sequence encoder is pre-trained, followed by pre-training on the surfaces; vii) ESM-GearNet-
INR-MC, which entails pre-trained a sequence encoder, then pre-training the structure module on
the surface, followed by further training on the structure, and finally training on the downstream
tasks. We use ESM-1b as the seuqnece encoder and GearNet-Edge-IEConv as the structure encoder.
We finetune each task with the datasets as described in Appendix A.3. The model is trained for
50 epochs on EC, 200 epochs on GO, and 300 epochs on fold classification task. We finetune and
evaluate the model upon the framework proposed by GearNet (Zhang et al., 2022) and all other
settings for finetuning models is same except batch size. We use batch size as 16 per step (8 A100
GPUs and 2 for each GPU) for all experiments.
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Table 2: Performance on downstream tasks. We compare the models with and without using the pre-
trained weights from ProteinINR. We highlight the cases where performance is the best in terms of
Fmax and AUPR for EC and GO task and mean accuracy for FC in bold. † indicates scores extracted
from Xu et al. (2023), which conducted different settings compared to our study.

Method EC GO-BP GO-MF GO-CC FC Sum
Fmax AUPR Fmax AUPR Fmax AUPR Fmax AUPR Acc

ESM-1b† 86.9 88.4 45.2 33.2 65.9 63.0 47.7 32.4 - -
ESM-2† 87.4 88.8 47.2 34.0 66.2 64.3 47.2 35.0 - -

GearNet 81.6 83.7 44.8 25.2 60.4 52.9 43.3 26.8 46.8 465.5
GearNet-INR 81.4 83.7 44.7 26.5 59.9 52.1 43.0 27.2 47.6 466.1

GearNet-MC 87.2 88.9 49.9 26.4 64.6 55.8 46.9 27.1 51.5 498.3
GearNet-INR-MC 86.9 88.9 49.8 26.0 65.4 56.1 47.7 26.6 51.1 498.5

ESM-GearNet-MC 89.0 89.7 53.5 27.5 68.7 57.9 49.4 32.4 53.8 521.9
ESM-GearNet-INR 89.0 90.3 50.8 33.4 67.8 62.6 50.6 36.9 48.9 530.3

ESM-GearNet-INR-MC 89.6 90.3 51.8 33.2 68.3 58.0 50.4 35.7 50.8 528.1

Original
Mesh

Reconstructed
Mesh

Ground truth

Original
Surface

G
round truth

Prediction

Reconstructed
Surface

Prediction

Figure 3: Above images are the examples of reconstructed meshes and surfaces from ProteinINR for
given proteins. ProteinINR preserves the intricate details of irregular protein surfaces, particularly
capturing features such as ring-like and hole shapes with remarkable fidelity.

5.3 EXPERIMENTAL RESULTS

Representing protein surface shapes using ProteinINR The procedure for acquiring a triangular
mesh that corresponds to a specific protein using INR parameters from ProteinINR is outlined as
follows. Initially, the SDFs are calculated for the vertices of a voxel grid with a regular size of
128. Following this, the marching cubes algorithm (Chernyaev, 1995) is employed to compute
the mesh. Protein surface samples reconstructed using ProteinINR are depicted in Figure 3. It
is worth mentioning that the protein molecular surfaces exhibit significant irregularity and possess
high-frequency properties. Intriguingly, ProteinINR effectively preserves intricate information, even
hole or ring-like shapes. In addition, we calculated the Chamfer distance between the ground truth
and the reconstructed meshes for the test set. A subset of 30,000 data points was selected, and
the computed average Chamfer distance A.4 was 0.003. The number might be quite decent in the
context of Chamfer distances for natural 3D objects as reported in studies (Mescheder et al., 2019;
Park et al., 2019b; Sitzmann et al., 2020a; Liu et al., 2023) related to SDF reconstruction. These
findings indicate that ProteinINR effectively acquires generalizable INRs that can accurately depict
the uneven surfaces of proteins.

Downstream evaluation We compare the performance of the structure encoder initialized with
weights from a pre-trained ProteinINR model and without such initialization across various down-
stream tasks related to protein function. Intriguingly, we can see that ESM-GearNet-INR-MC
and ESM-GearNet-INR outperform the previous state-of-the-art model, ESM-GearNet-MC, when
taking the summation of all scores. This demonstrates our main contribution clearly, emphasizing
that incorporating surface-related features, which have not been explored by previous models, into
protein pre-training representation learning enables comprehensive representation learning for pro-
teins. Additionally, we observe a rapid decrease in pre-training loss as depicted in Figure 4, which
provides an additional evidence.
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Table 3: Results on EC task depending on pre-training order.

Method Pre-training order EC GO-BP GO-MF GO-CC FC Sum
Fmax AUPR Fmax AUPR Fmax AUPR Fmax AUPR Acc

ESM-GearNet-INR-MC sequences → surfaces → 3D-structures 89.6 90.3 51.8 33.2 68.3 58.0 50.4 35.7 50.8 528.1
GearNet-INR-MC surfaces → 3D-structures 86.9 88.9 49.8 26.0 65.4 56.1 47.7 26.6 51.1 498.5
GearNet-MC-INR 3D-structures → surfaces 84.1 86.0 46.9 25.9 62.1 54.3 44.8 27.2 47.6 478.9

Protein function primarily occurs on the surface and is closely associated with surface features. The
observed enhancement in protein function tasks indicates that acquiring surface understanding using
INR is advantageous. In contrast, a noticeable enhancement in performance is not observed in the
FC task. Since surface features imply higher representations of the outer part of protein structure,
these features may not contribute substantially to classifying the overall fold structure. Otherwise,
as the process of pre-training progresses, the loss gap between models diminishes. We attribute this
trend to the nature of our encoder, which focuses solely on alpha carbons. While surface information
is derived from full-atom information, the encoder only learns from alpha carbon structures. So, we
hypothesize that the 2nd stage mutual information maximization during pre-training on structure
data biases the model toward alpha carbon structure information after 1st stage surface pre-training.

Nonetheless, even under these limited conditions, the models including the protein surface modality
show performance gains.

Experiment on order Considering the original results (Table 2), it is evident that ESM has the
most dominant impact on the downstream tasks, revealing the supportive role of structure and surface
in enhancing performance on downstream tasks. Table 3 enables us to compare the significance of
structure and surface pre-training while excluding the dominant influence of sequence. We can see
that the structure encoder (GearNet-INR-MC), which learned structure information last, had superior
performance compared to GearNet-MC-INR, which was pre-trained in the opposite manner. Based
on the results of GearNet-INR (466.1) and GearNet-MC (498.3) shown in Table 2, it seems that in the
absence of pre-training on sequences, structure pre-training has a greater influence on downstream
tasks compared to surfaces. We conjecture that this observation supports the findings shown in
Table 3.

Ablation study on 3D latent embedding In ProteinINR, we incorporate a 3D convolution layer
to introduce a spatial inductive bias to the latent space. To evaluate the effect of the approach, we
conduct an analysis of the learning curve of INR when incorporating or excluding spatial inductive
bias. As depicted in Figure 5 in Appendix, the existence of spatial inductive bias clearly enhances
the learning of INR.

6 CONCLUSION

We propose a pre-training strategy for learning from sequences, structures, and surfaces of proteins
to achieve better protein representation. For the first time, we use INR to pre-train the protein sur-
face, introducing a method we call ProteinINR. We confirm that ProteinINR effectively reconstructs
the protein surfaces. Moreover, the results on the downstream tasks demonstrate that learning the
protein surface can lead to better protein representation.

Our work represents an important step towards incorporating protein surfaces, which play a crucial
role in protein functions. There are several interesting avenues for further research: generating new
proteins from the latent representation of surfaces we pre-train; applying our approach to other types
of molecules, such as small-molecule drugs; and identifying a better strategy for integrating all three
modalities, particularly the effective integration of surface and structure pre-training.

Meanwhile, our approach has a limitation of dependency on protein structure, so the use of predicted
structures may worsen the performance of our method for proteins without known structures.

9
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7 REPRODUCIBILITY

The architectural design of ProteinINR is influenced by TransINR, and we utilize the decoder model
introduced by Lee et al (Lee et al., 2023). The DSPoint and KPConv, and GearNet are imple-
mented from their official codes. The training dataset used in pre-training structures is prepared
from the AF2 prediction dataset, similar to in GearNet. The procedure for generating SDF data
is implemented in accordance with the approach described in the DeepSDF framework. To assess
the performance of downstream tasks, we use the well-published TorchDrug framework (Zhu et al.,
2022). We describe detailed information regarding the training and evaluation in Section 4, Section
5, and Appendix.

8 ETHICAL STATEMENT

In this work, we focus on advancing the topic of protein representation learning by incorporating sur-
face information alongside sequence and 3D structure-based representations. We acknowledge the
importance of ethical considerations in scientific research and we aim to provide further clarification
on the following ethical aspects.

We provide transparent and comprehensive details about our methodology, experiments, and results.
We list any limitations or potential biases in our research.

Our research aims to elucidate the significance of surfaces in protein representation learning, hence
potentially influencing drug discovery and enzyme development. This would have the potential
impact on a wide range of applications, including the identification of innovative therapeutic targets,
the development of more promising drugs, improvements in agricultural productivity, and ultimately,
improvements in human health.

Our purpose of this research is to make a constructive and positive contribution to the domain of
protein science while upholding the ethical conduct of our research.
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Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation trans-
former: Geometry-free novel view synthesis through set-latent scene representations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6229–6238,
2022.

12



Published as a conference paper at ICLR 2024

Michel F Sanner, Arthur J Olson, and Jean-Claude Spehner. Reduced surface: an efficient way to
compute molecular surfaces. Biopolymers, 38(3):305–320, 1996.

Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using geometry images.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oc-
tober 11-14, 2016, Proceedings, Part VI 14, pp. 223–240. Springer, 2016.

Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. Advances in Neural Information Processing Systems,
33:10136–10147, 2020a.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020b.

Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause. Multi-scale representation learning
on proteins. Advances in Neural Information Processing Systems, 34:25244–25255, 2021.

Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref:
comprehensive and non-redundant uniprot reference clusters. Bioinformatics, 23(10):1282–1288,
2007.

Freyr Sverrisson, Jean Feydy, Bruno E Correia, and Michael M Bronstein. Fast end-to-end learning
on protein surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15272–15281, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan, Jonathan T
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2846–2855, 2021.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE interna-
tional conference on computer vision, pp. 2088–2096, 2017.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet: Feature-steered graph convolutions
for 3d shape analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2598–2606, 2018.

Yiqun Wang, Yuning Shen, Shi Chen, Lihao Wang, Fei Ye, and Hao Zhou. Learning harmonic
molecular representations on riemannian manifold. arXiv preprint arXiv:2303.15520, 2023.

Zichen Wang, Steven A Combs, Ryan Brand, Miguel Romero Calvo, Panpan Xu, George Price,
Nataliya Golovach, Emmanuel O Salawu, Colby J Wise, Sri Priya Ponnapalli, et al. Lm-gvp: an
extensible sequence and structure informed deep learning framework for protein property predic-
tion. Scientific reports, 12(1):6832, 2022.

13



Published as a conference paper at ICLR 2024

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of protein
sequences and biomedical texts. In International Conference on Machine Learning, 2023.

Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas
Funkhouser. 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 1802–1811,
2017.

Renrui Zhang, Ziyao Zeng, Ziyu Guo, Xinben Gao, Kexue Fu, and Jianbo Shi. Dspoint: Dual-scale
point cloud recognition with high-frequency fusion. arXiv preprint arXiv:2111.10332, 2021.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv preprint
arXiv:2203.06125, 2022.

Zuobai Zhang, Minghao Xu, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, and Jian Tang.
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A APPENDIX

A.1 DETAILED INFORMATION ON PRE-TRAINING

A.1.1 GEARNET-EDGE-IECONV FOR STRUCTURE ENCODER

To encode the structural information of proteins, we use the GearNet-Edge-IEConv architec-
ture (Zhang et al., 2022). In GearNet architecture, a protein is represented by a graph G = (V, E ,R)
where V represents residues of proteins, E denotes edges between residues, and R represents edge
types. Edges in GearNet are of three types: sequential edges, which are edges between two residues
located within a certain distance on the protein sequence; radius edges, which are edges between two
residues that have a Euclidean distance of less than a specific value in 3D coordinates; and k-nearest
neighbors edges, which are edges between a specific node and its k-nearest neighbors in terms of Eu-
clidean distance in 3D coordinates. GearNet-Edge-IEConv has two additional elements compared to
GearNet: i) the Edge element, which transforms edges into nodes resulting in G′ = (V ′, E ′,R′) and
facilitates message passing between edges, and ii) the IEConv element, which applies a learnable
kernel function to the edge, inspired by the previous work (Hermosilla et al., 2020).

A.1.2 PRE-TRAINING OF PROTEIN STRUCTURES

To pre-train GearNet-Edge-IEConv, we employ the multi-view contrastive learning approach, which
shows the highest performance in the previous work (Zhang et al., 2022). Multi-view contrastive
learning aims to make the embeddings of related substructures similar, while rendering the em-
beddings of unrelated substructures distinct, akin to SimCLR (Chen et al., 2020). Substructures
are extracted either by taking a subsequence from the sequence or by extracting a subspace in
3D space. Table 4 presents the hyperparameters used in pre-training of structural data for ESM-
GearNet-IEConv and GearNet-IEConv. We save the model checkpoints every 5 epochs, and among
the saved checkpoints, we use the checkpoint with the lowest loss for downstream tasks. We use 64
NVIDIA A100 80GB gpus for pre-training.

Table 4: GearNet-Edge-IEConv and ESM-GearNet-Edge-IEConv hyperparameters
GearNet-Edge-IEConv ESM-GearNet-Edge-IEConv

Subsequence maximum length 50 50
Subspace minimum neighbors 15 Not used
Sequence model Not used ESM-1b
Batch size 48 48
Optimizer Adam Adam
Learning rate 1.0e-3 2.0e-4
# epochs 50 50

A.2 DATASETS USED IN STRUCTURE PRE-TRAINING

We utilize protein structure prediction data for 20 species and Swiss-Prot (Boeckmann et al., 2003)
from AlphaFold Protein Structure Database version 2 (Varadi et al., 2022). After processing to
convert pdb files to protein graphs and remove the proteins with errors, the statistics of the graphs
we finally used are presented in Table 5.

A.3 DETAILED INFORMATION ON DOWNSTREAM TASK

For downstream task, we basically use the framework provided by GearNet(Zhang et al., 2022) and
all experiments shown in Table 2 are performed under same conditions. The number of datasets
used in each downstream task is described in Table 6. We finetune the models with batch size as 16
per step. All other settings are used as provided by the framework. The models demonstrating the
highest performance on validation set are chosen to report the results in Table 2.
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Table 5: The number of protein structures used per species
Proteome ID Taxonomy # structures
UP000006548 Arabidopsis thaliana 27393
UP000001940 Caenorhabditis elegans 19658
UP000000559 Candida albicans 5956
UP000000437 Danio rerio 24595
UP000002195 Dictyostelium discoideum 12592
UP000000803 Drosophila melanogaster 13424
UP000000625 Escherichia coli 4363
UP000008827 Glycine max 55747
UP000005640 Homo sapiens 23280
UP000008153 Leishmania infantum 7903
UP000000805 Methanocaldococcus jannaschii 1772
UP000000589 Mus musculus 21571
UP000001584 Mycobacterium tuberculosis 3988
UP000059680 Oryza sativa subsp. japonica 43623
UP000001450 Plasmodium falciparum 5162
UP000002494 Rattus norvegicus 21209
UP000002311 Saccharomyces cerevisiae 6026
UP000002485 Schizosaccharomyces pombe 5123
UP000008816 Staphylococcus aureus 2885
UP000002296 Trypanosoma cruzi 18992
UP000007305 Zea mays 39258

Swiss-Prot - 541938

Total - 906458

Table 6: The number of datasets for downstream tasks.
Dataset # Train # Validation # Test
Enzyme Commission 15,170 1,686 1,860
Gene Ontology 28,305 3,139 3,148
Fold Classification 12,312 736 718

A.4 CHAMFER DISTANCE

The Chamfer distance is a commonly used metric for shape evaluation, favored for its simplicity Fan
et al. (2017). When comparing two point sets, S1 and S2, this metric is the summation of nearest-
neighbor distances between each point and its closest corresponding point in the other set as follows:

dChamfer distance(S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22 (5)
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Figure 4: The loss of multi-view contrastive learning of GearNet-MC, GearNet-INR-MC, ESM-
GearNet-MC, and ESM-GearNet-INR-MC. Compared to GearNet-MC and ESM-GearNet-MC, we
observe that the GearNet-INR-MC and ESM-GearNet-INR-MC, which learn surface information,
exhibit a faster decrease in loss initially.
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Figure 5: Training curves of ProteinINR with regard to the utilization of 3D latent bias.
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