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Abstract

Humans perceive the world through active vision, using rapid eye movements1

to focus on task relevant regions while ignoring irrelevant background clutter.2

Inspired by this, we introduce FocL (Foveated Object Centric Learning), a training3

strategy that biases image classification models toward label consistent object4

regions by replacing full images with foveated crops. Standard training encourages5

models to rely on spurious context, which degrades generalization and increases6

memorization, especially for hard examples in the tail of the sample difficulty7

distribution. FocL simulates saccades by (1) jittering fixation points around the8

annotated object and (2) extracting cropped regions centered on these points as9

foveated glimpses. This input restructuring reduces non foreground contamination,10

lowers mean training loss, accelerates convergence, and shifts hard samples closer11

to the center of the difficulty curve. In our analysis, FocL improves generalization12

by up to 15% on oracle crops and improves out-of-distribution generalization from13

ImageNetV1 to V2 by over 7pp when paired with modern segmentation models14

like SAM. This reduced reliance on spurious correlations increases the mean15

PGD L2 adversarial distance required to flip a training set prediction by 61% and16

directly resolves learning difficulty for the top 1% memorized samples in ImageNet,17

reducing their cumulative sample loss by 62.5%. By training on foveated crops,18

FocL requires 56% less data to exceed the performance of standard models. FocL19

thus offers a simple path to more robust, and reliable visual recognition.20

1 Introduction21

Deep neural networks often achieve high performance by relying on spurious correlations between22

labels and irrelevant background features [2, 15], rather than learning robust object-centric repre-23

sentations. This hinders generalization on hard examples in the tail of the sample-level difficulty24

distribution, even when class frequencies are balanced [1, 45]. An example of sample-level difficulty25

is the sample’s training loss (or its gradient norm), which quantifies how challenging it is to learn.26

The left sub-panel of Figure 1 illustrates this: harder examples concentrate in the tail under difficulty27

measures (e.g., loss or curvature) [14, 35, 36]. These instances often lead to memorization, where28

models overfit to background context, dataset artifacts, or unrelated co-occurring objects instead of29

focusing on the labeled foreground object [3, 12]. The right sub-panel of Figure 1 illustrates common30

failure sources. These failures include unlabeled distractors like humans, and label ambiguity from31

multiple objects in a single annotated image, for example, a “Labrador” image that also contains32

other dog breeds.33

Many methods attempt to address learning in such long tail settings [22, 38, 43, 50, 51, 52], however,34

they still train on full, cluttered images and hence, hard examples remain hard. In contrast, we35

target sample level difficulty: the individual examples that challenge a model even when classes36
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Figure 1: Figure illustrates key challenges that drive memorization and hinder generalization in visual
recognition. (Left) A conceptual long-tail curve of sample-level difficulty, with harder examples
concentrated in the tail and difficulty measured via proxies such as sample loss. (Right) Two major
sources of sample-level hardness: (a) Spurious correlations from unlabeled co-occurring entities
(e.g., humans) cause models to overfit to background context; (b) Label ambiguity from multi-object
images (e.g., a “Labrador” sample also containing other dog breeds) introduces confusion. These
effects weaken object-label consistency and promote reliance on shortcuts.

are balanced. This leads to a natural question: can we improve generalization by presenting object37

centric, foveated views analogous to how humans focus on the most informative regions, thereby38

filtering out irrelevant and spurious features?39

To explore this, we draw on insights from biological vision. As illustrated in Figure 2(a), human40

perception operates through an active vision system that combines goal-directed sampling with41

object-centric encoding. The initial visual input is captured via peripheral vision, which provides42

coarse information across the scene. Based on this, saccadic eye movements shift the fovea, the43

high-acuity center of the retina toward salient targets. According to the two-stream hypothesis44

[6, 16, 30, 31, 40, 44], the dorsal stream computes where to look by identifying spatially informative45

regions. In parallel, the ventral stream processes [10, 42] the high-resolution foveated input to46

determine what is being observed, extracting semantic features such as shape and identity. This47

foveated mechanism allows humans to extract consistent, object-centered representations across48

varied contexts, forming the basis for robust generalization.49

Inspired by these principles of biological vision, we introduce FocL, which trains networks on foveated50

object-centric crops that isolate the foreground and thereby simplify learning and boost generalization.51

We emulate saccades by jittering bounding-box centers to generate multiple, object-focused glimpses.52

By suppressing background clutter and isolating task-relevant regions, FocL reduces sample complex-53

ity, shifting hard instances from the tail toward the mode of the distribution. Rather than requiring54

models to learn from visually complex scenes, FocL restructures the input space to emphasize ob-55

ject–label consistency, effectively reframing image classification as a simpler, more targeted task.56

FocL’s object-centric strategy improves generalization on foveated inputs and reduces memorization.57

FocL models require larger adversarial perturbations and convergence faster, enabling learning from58

less data. Figure 2 visualizes this effect in a t-SNE projection, where FocL produces tighter semantic59

clusters. In contrast, a standard model entangles distinct classes, such as hippopotamus vs. water60

buffalo, by relying on their shared background context (e.g., water). By focusing on foveated object61

regions, FocL learns cleaner semantic boundaries and more robust representations.62

Our contributions are as follows:63

• FocL: Object-Centric Training Strategy. We introduce FocL, a training method that64

generates object-centric glimpses by jittering ground-truth boxes, focusing models on65

foreground features.66

• Improved Generalization on Object Features. FocL boosts Top-1 accuracy by 15%67

on oracle object crops where standard models fail. Following the dorsal-ventral stream68

hypothesis, we demonstrate that a FocL-trained classifier (the "what" stream) excels when69

paired with a powerful external proposal model (the "where" stream), improving out-of-70

distribution accuracy by over 7pp when using SAM for localization.71
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Figure 2: FocL emulates human foveated vision to improve generalization by suppressing
spurious context. (a) FocL uses object-centric glimpses inspired by human visual streams to focus
on relevant features. (b–d) This object-centric bias leads to more robust learning outcomes (intra-class
consistency, reduced interference, object-label alignment). (Bottom) t-SNE: FocL (right) achieves
better class separation (silhouette +0.19, avg. centroid dist. +1.07), unlike standard models (left) that
confuse distinct classes (e.g., hippopotamus/water buffalo) by relying on shared water backgrounds.

• Reduced Memorization and Spurious Correlation. FocL mitigates memorization of non-72

robust features: (i) it increases the ℓ2 adversarial distance to flip training sample predictions73

by 61% (evaluated on respective inputs) and (ii) it directly addresses the hardest examples,74

confirmed by a 62.5% reduction in learning difficulty for the top 1% of memorized samples.75

• Enhanced Learning Dynamics and Data Efficiency. Improved focus and reduced learning76

difficulty translate to smoother optimization (46% lower mean gradient norm) and enable77

FocL to match or exceed baseline performance with 56% less training data.78

2 Related Work79

We provide here a compact yet comprehensive survey of work most relevant to FocL; an expanded80

version is provided Supplementary.81

Object-centric and foreground-focused learning. Unsupervised methods such as MONet [4] and82

Slot Attention [26] aim to disentangle objects, whereas attention add-ons (e.g., CBAM [49]) and83

discovery pipelines like CutLER [47] modulate full-image features or mask foregrounds after the84

fact. A related thread learns where to look through iterative policies, exemplified by RANet [32],85

Saccader-style models [11], GFNet [48], FABLE [19], and FALcon [20]. FocL instead feeds the86

network only supervised foveated crops, hard-coding foreground–label consistency and suppressing87

background interference; object localization can be delegated to external detectors at inference, while88

our focus is on the learning benefits of object-first bias.89

Memorization in long-tailed learning. Networks typically fit frequent patterns before memorising90

rare, noisy, or atypical tail instances [1, 12]. Theory and evidence suggest such memorization91

can be necessary for accuracy under skewed data [3, 45], yet it raises fairness, robustness, and92
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Figure 3: (a) Standard training uses the full image. (b) FocL replaces the raw input with foveated
crop/crops centered on the annotated object. (c–d) Effect of Random-Resized-Crop augmentation
under both pipelines. Each row shows the original image (left) followed by five crops seen across
training epochs. In (c), full-image augmentation often captures irrelevant background (e.g., a
fisherman’s jacket or just water), encouraging spurious correlations. In contrast, (d) applies the same
augmentations to foveated crops, yielding object-centric views that preserve foreground features.
These cleaner views lead to more disentangled, object-aligned representations (see t-SNE, Figure 2).

privacy concerns [25]. Recent analyses propose proxies like Cumulative Sample Loss (CSL) [36]93

and link high input-loss curvature to memorised long-tail samples [14, 35]. Unintended “déjà-vu”94

memorization has also been observed in SSL models [29, 24] and VLMs [21]. Rather than relying on95

models to navigate these complex memorization dynamics for hard samples, FocL restructures inputs96

to remove background clutter, simplifying hard examples and reducing reliance on brittle shortcut97

cues [15]; unlike Mixup, CutMix, or logit adjustment [51, 50], it tackles instance-level difficulty98

directly.99

Foveation, robustness, and our contribution. Recent robustness-oriented work blurs or100

down-samples the periphery such as R-Blur for adversarial defence [41], textural encodings for IID101

gains [13], and active-vision systems that integrate multiple glimpses against transferable attacks [33].102

These methods still retain background pixels, and the robustness–memorization relationship remains103

delicate; e.g., adversarial training can induce robust overfitting [9]. FocL adopts a different stance: an104

extreme cut-off that entirely excises background via supervised crops. The observed increase in mean105

adversarial distance and the significant drop in CSL are beneficial by-products of FocL simplifying106

each learning instance, rather than outcomes of explicit robustness optimization. This improved107

learnability naturally leads to smoother convergence and more stable, generalizable representations.108

3 Methodology109

In this section, we introduce FocL, our multi-glimpse foveated learning framework for visual110

recognition. We begin by briefly reviewing standard supervised learning and highlight how data111

augmentation behaves differently when applied to global versus foveated inputs. We then describe112

the FocL in detail.113

Standard Supervised Training : In conventional supervised pipelines (red panel, Figure 3a), the114

classifier f is trained directly on full-resolution images using the standard cross-entropy loss:115

Lsup = E(x,y)∼D [ℓ(f(x), y)] ,

where (x, y) denotes an image-label pair and ℓ is the classification objective. Since the entire image116

x serves as input, data augmentations such as random resized cropping, horizontal flipping, and color117

jitter are applied globally across both foreground and background regions. This global augmentation118

strategy can introduce semantic drift: the network may passively learn background features that119
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Figure 4: FocL with structured glimpse variation (Steps 1–4) simulates small saccadic shifts by
jittering the fixation point and extracting up to three constrained crops around the object. Each
glimpse is resized to the input resolution and used individually or jointly during training. These
object-centric views reduce the influence of background clutter and encourage the network to focus
on label-relevant foreground features, promoting stronger alignment between object structure and
class semantics.

are unrelated to the object label. As shown in Figure 3c, random crops observed during training120

emphasize irrelevant context, such as the fisherman’s jacket instead of the tench (top row), or mostly121

water instead of the red-breasted merganser (bottom row). Such misaligned augmentations promote122

spurious correlations between background and label, causing the model to overfit to incidental context123

rather than learning object-centric, generalizable representations.124

3.1 FocL: Foveated Object-Centric Learning125

Given a labeled image (x, y), we define the annotated bounding box as b = (xmin, ymin, xmax, ymax),126

and let its geometric center define a surrogate saccadic fixation point p ∈ R2. Since the label127

y corresponds to the object within the box, the fixation is supervised and object-aligned. While128

biological foveation involves gradual spatial falloff and peripheral blur, we approximate it using129

a hard foveated glimpse by cropping around p to retain the labeled foreground and discard most130

surrounding context. Since bounding boxes typically include some peripheral pixels, the glimpse may131

contain limited background; however, it remains substantially more object-aligned than full-image132

crops. This setup is visualized in Figure 3b.133

Using this formulation, we instantiate FocL, a strategy that generates multiple object-focused glimpses134

(up to three per image) by applying small, controlled spatial and scale jitter around the initial fixation135

point p. These jittered glimpses serve to relax tight bounding boxes, emulate human-like saccadic136

sequences, introduce mild viewpoint variations, and mitigate geometric distortions from resizing.137

By primarily exposing the model to these varied object-centric views, FocL encourages a strong138

inductive bias towards foreground features over background clutter. Consequently, even when139

standard augmentations are applied, these glimpses maintain semantic consistency and preserve140

object identity (yellow panel, Fig. 3d).141

For each image, we extract up to k (tunable parameter) foveated glimpses and treat them as individual142

training examples sharing the same label. During training, these glimpses are included in the same143

mini-batch (i.e., not shuffled across images), enabling the model to jointly process multiple views144

of the same object and learn stable foreground–label mappings. The total loss is computed over all145

glimpses in the batch:146

LFocL = E(x,y,p)∼D

[
k∑

i=1

ℓ
(
f(Fovi(x, p)), y

)]
.

Here, Fovi(x, p) denotes the ith foveated crop generated around a distinct jittered fixation point pi,147

sampled from a neighborhood of the base annotated center p. While each crop uses its own offset pi,148
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Table 1: Top-1 and Top-5 accuracy (%) on 773 held-out samples from ImageNet train. FocL (multi-
crop) improves under oracle bounding box inference, while the standard model suffers a performance
drop. Numbers in parentheses indicate absolute differences (bbox – full image) in percentage points.

Model Full Image BBox Inference

Top-1 Top-5 Top-1 Top-5

Standard 65.33 87.27 60.28 (–5.05) 82.62 (–4.65)
FocL 58.64 80.59 75.79 (+17.15) 94.07 (+13.48)

Table 2: Comparison of full-image Top-1 accuracy with multi-glimpse inference using FALcon-style
glimpses on 2K ImageNet validation samples. Numbers in parentheses indicate absolute differences
in percentage points between full-image accuracy and each multi-glimpse metric.

Model Full Image Avg Voting Voting Weighted

Standard 63.23 61.25 (–1.98) 60.10 (–3.13) 60.52 (–2.71)
FocL 53.27 61.45 (+8.18) 60.68 (+7.41) 61.37 (+8.10)

we denote it Fovi(x, p) to indicate all glimpses are relative to the original p. The specific procedure149

for generating these valid, object-focused glimpses (illustrated in Figure 4) involves parafoveal150

sampling of candidate centers, selection based on image boundaries to maintain alignment, and151

distortion-aware cropping techniques. This design ensures robust learning primarily from foreground152

features under mild variations in position and scale. For a detailed algorithm, including specific jitter153

parameters and selection criteria, please refer to Supplementary.154

4 Experiments155

We evaluate FocL across three dimensions: generalization under foveated inputs, robustness to156

memorization, and training efficiency.157

4.1 Does FocL improve generalization under foveated inputs?158

Experimental Setup We use the subset of ImageNet [8, 39] with bounding box annotations (482K159

images). Models are standard ResNet-50 [18]; the FocL model uses three foveated glimpses (Sec. 3).160

Both use identical standard augmentations (random resized crop, flip, color jitter), excluding advanced161

augmentations like RandAugment to ensure a controlled comparison. We evaluate generalization un-162

der three conditions: (1) oracle bounding box testing on a held-out set, (2) multi-glimpse aggregation163

with FALcon [20], and (3) an upper-bound analysis with SAM [23, 34]. The FALcon and SAM (V1)164

evaluations use the same 2,000 ImageNet validation samples for direct comparison, while the SAM165

(V2) OOD evaluation uses 2,000 random samples from the ImageNet-V2 (MatchedFrequency) set.166

Further details are in the supplementary material.167

Oracle Bounding Box Evaluation We first evaluate performance under ideal foveation using oracle168

bounding box crops (Table 1). This test reveals the standard model’s reliance on spurious context,169

as its Top-1 accuracy drops by 5.05 pp on these inputs. In contrast, FocL thrives when background170

clutter is minimized, improving its accuracy by a significant 17.15 pp on the same object-centric171

crops.172

Inference within a Dorsal-Ventral Structure Evaluating a FocL-trained classifier (the ventral173

"what" stream) implicitly requires a dorsal-ventral structure. We measure classification performance174

given object-centric views from external dorsal ("where") models. We test this with two distinct175

dorsal stream types. First, we use FALcon [20], an active vision framework, to assess performance176

under multi-glimpse aggregation. The standard model’s accuracy declines under robust aggregation177

(e.g., Voting Weighted drops 2.71 points), revealing brittleness to varied object views. FocL, however,178

improves across all metrics (e.g., +8.10 points), demonstrating reliable generalization (Table 2).179

Second, we use the powerful foundation model SAM [23, 34] to evaluate the classifier’s upper-180

bound performance when provided with crops from a state-of-the-art segmenter. On ImageNet V1,181

6



Table 3: Comparison of “Any” correct Top-1 accuracy (%) using SAM-generated crops on 2,000
samples from ImageNet-V1 and ImageNet-V2. “Any” accuracy denotes whether any crop produced
by SAM yields the correct Top-1 prediction.

Model System ImageNet V1 (%) ImageNet V2 (%)
SAM + Standard 78.63 ± 1.06 66.43 ± 1.04
SAM + FocL 83.13 ± 0.19 73.48 ± 0.75

(a) Train set (b) Validation set

Figure 5: Robust accuracy of standard and FocL models against ℓ2 PGD-10 perturbations. At
ϵ = 0.25, FocL achieves 89.59% on the training set versus 57.05% for the standard model, a gap
of 32.54 percentage points. On the validation set, the gap is 25.82 percentage points (75.24% vs.
49.42%). The standard model’s accuracy drops sharply at small perturbation levels (ϵ < 0.25), with
many predictions flipped by minimal adversarial budgets. This behavior, especially evident on the
training set, suggests memorization and a reliance on brittle and non-generalizable features. The
degradation is less pronounced in FocL, likely due to its foveated training strategy which encourages
robust object-centric feature learning by reducing background clutter.

the SAM+FocL system achieves a 4.5 pp higher "Any" correct accuracy. This advantage grows on182

the ImageNetV2 dataset [37], where the FocL pipeline outperforms by over 7 pp (Table 3). While a183

monolithic standard classifier learns the spurious statistics of the ImageNetV1 distribution, our FocL184

model learns the intrinsic properties of the foreground objects (crucial for classification), making it185

more stable and confident when faced with the natural variations found in real-world scenarios.186

4.2 Does FocL reduce memorization?187

We answer this with two complementary analyses. First, we measure adversarial resistance to probe188

feature stability and robustness. Second, we analyze Cumulative Sample Loss [36], focusing on a189

cohort of verifiably memorized samples identified by connecting pre-computed FZ [12] scores to our190

training set’s ImageNet indices.191

Adversarial Resistance To probe the stability of learned representations, we evaluate model192

robustness against PGD-ℓ2 adversarial attacks [28] on a balanced ImageNet subset. For a fair193

comparison, models are attacked on their respective input types (full images vs. object crops). The194

results show that FocL learns significantly more robust representations. First, FocL requires a **61%195

greater** mean ℓ2 adversarial perturbation to flip a training set prediction (d̄ = 0.6169 vs. 0.3806196

for the standard model), indicating more stable, harder-to-disrupt features. Second, FocL consistently197

maintains higher accuracy under increasing attack strengths (ϵ), as shown in Figure 5. The standard198

model’s sharp performance decline suggests a reliance on brittle, non-generalizable features often199

associated with memorization [5].200

Learning Difficulty and Memorization To investigate how FocL mitigates memorization, we201

analyze Cumulative Sample Loss (CSL) [36], a proxy for learning difficulty where higher values202

indicate harder-to-learn, often memorized, samples. On an aggregate level, FocL training dramatically203

reshapes the entire CSL distribution (Figure 6, left), reducing the mean CSL from 206.66 to 72.30.204
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(a) Distribution over entire training set (b) Loss and confidence trajectories for a sample

Figure 6: Cumulative sample loss (CSL) memorization proxy analysis. Left: Shift from tail to mode.
FocL exhibits significantly lower mean and median CSL, and the distribution is tightly concentrated
toward lower values, indicating that samples become easier to learn due to object-centric inputs and
reduced contextual interference. Right: Example of a high-CSL sample from the Llama class. In
the standard model, background elements like the human introduce semantic contamination, leading
to noisy loss and confidence trajectories. With FocL, foveated input enables more stable learning,
reflected in the smoother trajectories and a large CSL drop from 388.18 to 104.66.

Figure 7: Visualization of the top 1% of memorized ImageNet samples, identified by Feldman
& Zhnag memorization scores. These challenging examples feature small foreground objects
surrounded by distracting context (e.g., FG of 0.013 for ’Soccer Ball’). By isolating the object, FocL
drastically reduces the learning difficulty, evidenced by the large drop in CSL for each sample.

To understand the source of this improvement, we performed a targeted analysis using pre-computed205

memorization scores from Feldman & Zhang [12]. By intersecting the indices of the top 1% most206

memorized ImageNet samples with our 85K training set, we identified a cohort of 820 verifiably207

memorized samples. For this specific group, FocL was exceptionally effective, making **99.88%**208

of these hard samples easier to learn (p < 0.001). A dominant characteristic of this cohort is high209

contextual complexity, often from background clutter. We quantify this with the foreground-to-image210

area ratio (FG), defined as the bounding box area divided by the total image area. The mean FG for211

this cohort is just 0.457. This analysis empirically demonstrates that FocL’s benefits stem from its212

ability to resolve learning difficulty for the most problematic samples, explaining the aggregate trend213

of shifting hard samples from the tail of the difficulty distribution toward the mode.214

4.3 Does FocL enhance learning efficiency and stability?215

To enable fair comparisons, experiments in this section use the FocL single-crop variant against216

standard full-image training. We assess FocL’s impact on training dynamics, optimization stability,217

and data efficiency.218

Training Dynamics and Convergence. Learning curves on the 482K ImageNet subset (Figure 8)219

demonstrate FocL’s superior training dynamics. FocL converges faster and consistently achieves220

lower training/validation losses and higher accuracies throughout epochs. This indicates that foveated221

inputs simplify the learning task for more stable and sample-efficient optimization.222
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Figure 8: Training and validation accuracy and loss curves for FocL and standard models over 90
epochs. FocL converges faster and achieves lower training and validation loss throughout.
Table 4: Top-1 accuracy evaluated under Oracle bounding boxes. Corresponding number of training
samples shown in brackets.

Standard (452,954) Standard (1,030,000) FocL (452,954)

Top-1 Accuracy (%) 60.28 63.13 74.51

Smoother Optimization via Gradient Norm Reduction. Analysis of ℓ2 gradient norms during223

training on the 85K subset further reveals FocL’s stabilizing effect. FocL exhibited consistently lower224

gradient magnitudes. Specifically, the mean gradient norm per parameter (normalized by model size)225

was reduced by approximately 45.8% (from 1.49× 10−3 for standard to 8.08× 10−4 for FocL). This226

substantial drop suggests FocL creates a simpler optimization landscape with less gradient noise.227

(Absolute mean gradient norms: Standard 3.81× 104, FocL 2.07× 104).228

Data-Efficient Learning. FocL’s simplified learning paradigm translates to significant data efficiency229

(Top-1 accuracy, single crop evaluation, Table 4). FocL trained on 453K annotated images achieved230

74.51% Top-1 accuracy when evaluated using oracle bounding boxes on the 773-sample held-out set.231

This substantially outperforms the standard model’s 63.13% Top-1 accuracy obtained using 1.03M232

images (over twice the data). This underscores FocL’s capability for more sample-efficient learning233

by fostering robust object-centric representations. Additional results in Supplementary.234

5 Limitations235

FocL’s reliance on training-time bounding boxes restricts unsupervised use, and it needs an object236

localizer at test time. Fortunately, progress in general-purpose segmentation models offers promising237

avenues for providing such localizations in future, broader applications.238

6 Conclusion239

FocL introduces a multi-glimpse training strategy that encourages models to learn object-centric240

features by reducing background clutter. This approach improves representation quality by mitigating241

spurious correlations, which disproportionately affects hard-to-learn samples. Our experiments242

demonstrate that FocL improves generalization, boosting accuracy by approximately 15% on oracle243

object crops and by over 7pp on out-of-distribution data (ImageNetV2) when paired with a modern244

segmentation model like SAM. We provide definitive evidence that FocL reduces memorization by245

targeting the most problematic examples; for the top 1% of memorized ImageNet samples, FocL246

makes 99.88% of them easier to learn. This enhanced feature learning results in more robust repre-247

sentations, evidenced by a 61% increase in the adversarial perturbation required to flip predictions.248

On the efficiency front, FocL leads to smoother convergence and achieves competitive accuracy with249

56% less training data. Together, these results demonstrate that foveated training offers a simple and250

effective path to more robust, reliable, and data-efficient visual recognition.251
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7 Supplementary377

Expanded Related Work378

This section expands on the related work most relevant to FocL, organized into three main areas: (1)379

object-centric and foreground-focused learning, (2) memorization and generalization in long-tailed380

settings, and (3) foveation-based methods for robustness and efficient learning.381

Object-Centric and Foreground-Focused Learning382

Unsupervised object-centric models such as MONet [4] and Slot Attention [26] aim to decompose383

scenes into discrete object representations, but often struggle on complex natural images. Attention384

modules like CBAM [49] reweight spatial and channel-wise features post hoc, while pipelines like385

CutLER [47] attempt to discover and mask foregrounds, still operating over full-image inputs. A386

related class of models learns dynamic visual attention through iterative glimpses. RANet [32] uses387

a recurrent attention network to focus on different image regions over time, while Saccader [11]388

and GFNet [48] emulate saccadic movements and process glimpses within computational budgets.389

FABLE [19] models a dorsal-ventral system using reinforcement learning to locate objects, and390

FALcon [20] further introduces saccades and foveation, enabling active multi-object detection even391

from single-object training. These models mimic human vision by sequentially sampling high-392

resolution glimpses, discarding background via task-adaptive attention. FocL adopts a different393

paradigm. Rather than learning fixation policies, it uses supervised bounding boxes to directly394

crop foreground objects, fully removing background prior to training. This object-label395

alignment reduces contextual bias and simplifies training, focusing on the impact of this396

transformation on generalization, memorization, and convergence.397

Memorization in Long-Tailed Learning398

Deep networks tend to memorize rare, noisy, or atypical examples after first fitting frequent and399

simpler patterns [1, 12]. Arpit et al. [1] show that during training, networks prioritize learning400

generalizable patterns but eventually begin memorizing outliers and noisy data. Feldman and401

Zhang [12] further argue that memorization is not just incidental but sometimes essential for accurate402

predictions on tail samples, especially when such examples are underrepresented or conflict with403

dominant patterns in the data. Building on this, Brown et al. [3] provide theoretical insights into why404

high-accuracy learners may be forced to memorize substantial information about training data in405

natural, long-tailed settings. Usynin et al. [45] offer a comprehensive survey of memorization across406

multiple regimes, categorizing its benefits and drawbacks with respect to generalization and privacy.407

Li et al. [25] take a systems-level view, framing memorization as central to the trustworthiness408

of machine learning systems. They explore its role across fairness, robustness, and data privacy,409

and propose a taxonomy to reason about these interactions based on data granularity such as class410

imbalance, noise, and atypicality. To characterize memorization quantitatively, Ravikumar et al. [36]411

introduce the Cumulative Sample Loss (CSL), which tracks the cumulative training loss per sample.412

They show that hard-to-learn and noisy samples consistently exhibit higher CSL, providing a strong413

signal of memorization. Complementary to this, Garg et al. [14] and Ravikumar et al. [35] explore414

the curvature of the loss surface. Their results show that memorized examples lie in sharper regions415

of the landscape—i.e., with higher curvature. This often indicate less robust generalization and416
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more brittle learning dynamics. Recent studies also demonstrate that memorization is not limited to417

supervised learning. Meehan et al. [29] uncover “déjà vu” memorization in self-supervised models,418

where training samples are memorized even without explicit labels. Kokhlikyan et al. [24] refine the419

measurement of this phenomenon, offering efficient evaluation tools for memorization in large SSL420

models. Similar memorization behavior is observed in vision-language models [21], where individual421

image or object information is retained by the model even beyond its intended abstraction level.422

FocL offers an input-level simplification by suppressing background clutter entirely, reducing423

reliance on spurious correlations and shortcut cues [15]. By restructuring the input itself, FocL424

shifts the learning task to focus on object-relevant features from the outset. Unlike techniques such425

as Mixup [51], CutMix [50], or logit-adjustment methods, which alter training dynamics via label426

smoothing, augmentation, or reweighting, FocL tackles instance-level difficulty directly by improving427

input-label consistency through foveated, object-aligned supervision.428

Foveation, Robustness, and Efficient Learning429

Foveation-inspired methods have been explored as mechanisms for improving robustness. R-Blur [41]430

applies adaptive Gaussian blurring to simulate peripheral vision, improving resistance to adversarial431

attacks. Deza and Konkle [13] use a Foveated Texture Transform to enhance both IID generalization432

and robustness. Active-vision systems [33] formulate a deep learning-based dorsal-ventral architec-433

ture by building on prior works such as FALcon [20] and GFNet [48], and demonstrate improved434

robustness in black-box transfer attack scenarios. By processing sequential glimpses at multiple fixa-435

tion points, the approach enhances adversarial resilience for both CNNs and transformer-based ventral436

networks, particularly under natural and transferable adversarial inputs. Luo et al. [27] apply CNNs437

to foveated regions, achieving strong robustness to perturbations. R-Warp [46] and VOneBlock [7]438

embed cortical and retinal processing into CNNs. Harrington et al. [17] show how robust models439

align with texture-based peripheral vision, and Shah et al. [41] simulate peripheral degradation for440

robustness gains. FocL introduces a simplified mechanism: a complete background cut-off via441

supervised crops. This restructuring results in cleaner, more learnable samples and exhibits a442

coupled effect; higher adversarial perturbation energy required to flip predictions and lower443

Cumulative Sample Loss (CSL). Both serving as indicators of reduced memorization.444

FocL thus bridges perceptual inspiration with practical gains in generalization, memorization reduc-445

tion, and efficient learning without requiring specialized architectures or costly training procedures.446

FocL glimpse generation algorithm details447

Overview. The FOCL framework generates up to three object-centric glimpses per image, centered448

around a supervised fixation point derived from the annotated bounding box. These glimpses simulate449

small saccadic shifts near the object and reduce background clutter while preserving semantic450

alignment with the label. While the main paper outlines the high-level steps Figure 4, this section451

details the underlying algorithm and implementation used in our experiments.452

Step-by-step Procedure. Given an annotated image (x, y) with bounding box b =453

(xmin, ymin, xmax, ymax), we define the center p ∈ R2 of the box as the base fixation point. Glimpses454

are then constructed as follows:455

• Step 1: Sampling fixation candidates. Around p, we sample up to kcand candidate centers456

pi using a uniform offset in both spatial directions. The maximum offset is set to a fraction457

α of the bounding box width/height, i.e.,458

∆x,∆y ∼ U(−αw,αw), where w = xmax − xmin.

These jittered candidates simulate parafoveal fixations while remaining near the object459

center. Concretely, this defines a square jitter window around the center of the bounding460

box, within which candidate fixation points pi = p+ (∆x,∆y) are sampled.461

• Step 2: Valid fixation selection. For each candidate pi, we compute a crop region whose462

aspect ratio and scale are randomly jittered using multiplicative factors βx, βy ∼ U(1 −463

β, 1+β). We retain up to k ≤ 3 valid crops whose regions lie entirely within image bounds.464

This ensures all glimpses are valid, foreground-aligned views.465
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• Step 3: Distortion-aware cropping. For each selected pi, the crop is resized to the model’s466

input resolution. If the required resizing scale exceeds a threshold computed via an inverse467

crop ratio η = 1/(1− max_crop_ratio). We first expand the crop window proportionally468

around its center (without crossing image bounds). This reduces geometric distortion when469

handling small or thin boxes.470

• Step 4: Aggregation. Each image yields k foveated crops {Fovi(x, pi)}ki=1. These are471

treated as label-consistent training samples and either randomly subsampled (k = 1) or472

stacked into a correlated mini-batch. Glimpses from the same image are never shuffled473

across batches, preserving the coherence of multi-view supervision.474

Implementation Notes. The algorithm is implemented which exposes key parameters:475

• Offset_fraction = 0.2: sets α, the maximum offset for sampling.476

• Scale_jitter = 0.1: sets β, the jitter range for scale and aspect ratio.477

• Max_crop_ratio = 0.2: defines threshold η to trigger crop expansion. The max crop ratio478

is a threshold parameter that controls how much a crop is allowed to be resized relative to479

the original bounding box before geometric distortion is considered too high.480

• Area_threshold = 0.2: used to activate distortion-aware expansion for small objects.481

• Multi_crop flag: if True, all k glimpses are returned together; if False, one random crop482

is sampled per epoch.483

• Augmentation mode entails {“conservative”, “medium”, “aggressive”}: scales the above484

hyperparameters accordingly.485

This design ensures that glimpses maintain semantic alignment while providing spatial diversity486

around the object. The same framework supports single-glimpse (k = 1) and multi-glimpse (k > 1)487

supervision via a unified pipeline.488

Table 5: FocL dataset and cropping hyperparameters.
Parameter Value
Offset fraction (α) 0.2
Scale/aspect jitter (β) 0.1
Max crop ratio 0.2
Area threshold (for distortion-aware fallback) 0.2
Number of glimpses k 1 or 3
Multi-crop batching Enabled for k > 1
Batch size 128 (k=1), 64 (k=3)
Input resolution 224× 224
Augmentation Medium

Training Details and Reproducibility489

Dataset Preparation. Following the setup in Meehan et al. [29], we sample and curate our an-490

notated dataset from ImageNet using the official codebase available at https://github.com/491

facebookresearch/DejaVu. All dataset checks, bounding box extraction, and curation pipelines492

were built on top of this repository. We adapt their utilities to generate the subset used for FocL,493

ensuring consistency in annotation quality and reproducibility of bounding box metadata.494

We evaluate FocL across multiple ImageNet subsets with bounding box annotations. Our experiments495

use the following curated partitions:496

• Full-scale split. Following Sections 4.1.1–4.1.3 of the main paper, we use the complete497

curated bounding box subset from ImageNet-1K (2012), comprising 482,187 images. This498

defines our full-scale setup. We apply a 94/6 train/validation split, yielding 453,254 training499

and 28,933 validation images. An additional held-out test set of 773 disjoint samples is500
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used exclusively for evaluation. This split is used to study generalization (Section 4.1.1) and501

data-efficient learning (Section 4.3).502

• Controlled low-data splits. We also define two disjoint 100K ImageNet subsets, referred503

to as Partition A and Partition B, each divided into an 85K/15K train-validation split.504

Partition A is used for most controlled analysis experiments:505

– The 85K train set from Partition A is used to analyze adversarial robustness (PGD506

distance), gradient norms, and memorization via cumulative sample loss (CSL).507

– The 15K validation set from Partition B is used for validation-time adversarial evalua-508

tion (Section 4.2).509

Each image is preprocessed to extract either one or up to three foveated crops using the method510

described in Section 3.1. All crops are resized to 224× 224 resolution. Inputs are normalized using511

the standard ImageNet mean and standard deviation.512

Model Architecture We use a standard ResNet-50 [18] architecture across all experiments, with513

no architectural differences between Standard and FocL models.514

Training Configuration. All models are trained for 90 epochs using SGD with momentum 0.9 and515

weight decay 1× 10−4. The initial learning rate is set to 0.1 and decayed by a factor of 0.1 every 30516

epochs. We use a batch size of 64 per worker, which is flattened across multiple glimpses during517

multi-crop training (e.g., k = 3 glimpses per image). We use a batch size of 128 for k = 1 glimpse518

per image. Each training sample is augmented using standard ImageNet transforms: random resized519

crop, horizontal flip, and color jitter. All experiments are tracked using Weights & Biases.520

Optimization and Learning Rate Schedule. We use the standard cross-entropy loss as the training521

objective. Optimization is performed using stochastic gradient descent (SGD) with momentum set to522

0.9 and weight decay of 1× 10−4. The initial learning rate is 0.1, decayed by a factor of 0.1 every523

30 epochs using a StepLR scheduler. All models are trained with mixed precision using PyTorch’s524

GradScaler for improved stability and efficiency.525

Reproducibility and Statistical Significance We ensure statistical rigor by repeating key experi-526

ments across multiple random seeds and reporting mean and standard deviation where applicable:527

• Generalization experiments (Section 4.1.1): All models evaluated using both oracle528

bounding box inference and FALcon inference are trained across 3 random seeds. We report529

the mean Top-1 accuracy in the main paper, and include standard deviation as error bars in530

the Supplementary.531

• Data-efficient learning (Section 4.3): To assess consistency in low-data settings, we train532

models on Partition A (100K subset) across 5 different random seeds. Aggregate results533

with error bars are presented in the Supplementary.534

• CSL and adversarial robustness (Section 4.2): Cumulative sample loss is computed by535

logging per-sample training loss across all 90 epochs on the 100K subset. We also evaluate536

PGD-based adversarial distance across 5 different ℓ2 budgets (ϵ) on the same partition.537

Compute and Environment. All models are trained on NVIDIA A40 GPUs with 48GB memory538

per device. We follow the same training hyperparameters and optimization settings for both Standard539

and FocL models. The full training pipeline, configuration scripts, and an environment file are540

included in the code submission.541

An environment file named requirements.txt is included in the supplementary materials to ensure full542

reproducibility.543

Generalization Results544

Generalization Performance. Figure 9 reports the Top-1 and Top-5 accuracy for models trained on545

482K samples and evaluated on the held-out 773-image test set under both full-image and bounding546

box inference. Mean accuracy and standard deviation are shown as error bars over 3 random seeds.547
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(a) Top-1 accuracy. (b) Top-5 accuracy.

Figure 9: Generalization performance under full-image and bounding box inference. FocL consis-
tently improves BBox performance while maintaining reasonable full-image performance. Error bars
denote standard deviation over 3 runs.

Figure 10: Comparison of Standard vs. FocL across clean evaluation metrics under FALcon inference.
FocL achieves comparable or higher performance on most metrics with significantly lower variance.

FocL models exhibit substantial improvements in the BBox setting, confirming their object-centric548

learning advantage. FocL also achieves lower standard deviation on the 773-image held-out test549

set, indicating more stable generalization and reduced sensitivity to initialization or data order.550

Evaluation with FALcon. In Figure 10, we compare the evaluation performance across five metrics551

using FALcon inference. Again, we report mean and standard deviation over 3 seeds. Top-1 is552

accuracy on full images without any glimpse localization. Notably, FocL models consistently show553

lower standard deviation across metrics compared to their standard counterparts. This suggests554

more stable training and improved reliability in capturing label-relevant structure, likely due555

to the reduced influence of background noise and more focused gradient updates.556

Ablation: Role of Glimpse Diversity and Distortion-Aware Cropping. We evaluate three variants557

of our approach to isolate the impact of foveation design. The vanilla crop baseline resizes a single558

bounding box crop without any distortion-aware expansion or parafoveal variation. The FocL559

Single-Crop (SC) variant applies scale-jittered cropping, reducing overfitting to tight box boundaries.560

Finally, the full FocL Multi-Crop (MC) model adds viewpoint diversity via multiple glimpses from561

jittered fixation points. As shown in Tables 6 and 7, both oracle and FALcon evaluations improve562

progressively from vanilla to SC to MC. These results highlight the complementary benefits of spatial563

variation and distortion-aware logic in object-centric learning.564
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Table 6: Oracle bounding box inference (773 samples). Top-1 and Top-5 accuracy across three
FocL variants: vanilla crop (no distortion or saccadic shift), distortion-aware single-crop (SC), and
multi-crop (MC).

Training Top-1 Top-5
FocL Vanilla Crop 74.39 92.01
FocL MultiGlimpseDA SC 74.51 92.88
FocL MultiGlimpseDA MC 75.79 94.07

Table 7: FALcon inference (class-agnostic). Evaluation of generalization performance across five
voting-based metrics.

Training Top-1 Avg Any Voting Voting-Wtd
FocL Vanilla Crop 43.05 55.60 62.90 54.50 55.35
FocL MultiGlimpseDA SC 50.25 60.30 68.10 59.50 60.05
FocL MultiGlimpseDA MC 53.27 61.45 68.72 60.68 61.37

Adversarial Robustness565

Setup We evaluate adversarial resistance by computing the minimum ℓ2 perturbation required to flip566

model predictions using PGD attacks [28]. All experiments are conducted on a balanced ImageNet567

subset with 100 samples per class and an 85/15 train-validation split. We use a PGD-ℓ2 attack with568

10 steps, random initialization, and random restarts enabled. The step size is set to α = ϵ/10, and we569

sweep the perturbation budget ϵ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.570

To construct a clean and balanced evaluation protocol, we select 15,000 correctly predicted samples571

from the training set (Partition A) and 15,000 correctly predicted samples Partition B. This forms572

the validation set results for Partition A (unseen). This ensures that the evaluation is based on573

semantically aligned, clean samples and keeps the number of inputs consistent across training and574

validation settings. We compute both the robustness curves and the mean adversarial distance on575

these subsets, allowing for a fair comparison between FocL and standard models.576

Mean Adversarial Distance To quantify robustness, we compute the average adversarial distance:577

d̄ =
1

N

N∑
i=1

∥δi∥2 where f(xi + δi) ̸= yi

Here, δi denotes the smallest perturbation (in ℓ2 norm) found via PGD that causes a misclassification.578

We find that the standard model has d̄ = 0.3806, while FocL achieves d̄ = 0.6169—a 62% increase.579

This gap reflects a substantial improvement in robustness. We have mentioned this in the main580

manuscript. Higher adversarial distance implies that more energy is required to change the model’s581

decision, suggesting a more stable and semantically aligned representation. These results support the582

argument that standard models overfit to incidental background cues, while FocL focuses learning on583

foreground-relevant features that are inherently harder to perturb.584

Cumulative Sample Loss (CSL) as a proxy for learning difficulty585

Setup We evaluate cumulative sample loss (CSL) as a proxy for sample difficulty and memorization.586

The setup follows the same 85K/15K train-validation split used in the robustness analysis. CSL587

quantifies how difficult a sample is to learn by accumulating its training loss over epochs. Formally,588

for a training sample z = (x, y), the cumulative sample loss over T epochs is defined as:589

CSL(z) =
T∑

t=1

L(fθt , z)

where L denotes the cross-entropy loss, fθt is the model at epoch t, and z is the training sample. For590

the FocL model, the sample is represented as Fov(x, y), denoting a foveated crop centered on the591
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Table 8: Evaluation in the low-data regime using the 50K test set from Partition B. With 41.18%
fewer training samples (50 vs. 85 per class), the FocL Single Crop model achieves comparable or
better performance than the standard model trained on the full set. All results report mean ± standard
deviation across 5 random data partitions.

Tested on Dataset Size (K) Top-1 Top-5
Full Image (Standard) 85 44.30 68.56
Full Image (Standard) 50 26.91± 1.20 49.36± 1.17
Bounding Box (FocL SC) 50 45.04± 0.93 70.30± 0.85

object. High CSL values correspond to samples that remain difficult across multiple epochs and are592

more likely to be memorized rather than learned robustly. For fair comparison, we evaluate CSL for593

the FocL single-crop variant to match the standard model’s single-view training.594

In Figure 11, we provide a per-sample analysis demonstrating how FocL facilitates easier learning.595

For each class (Llama, Peacock, Beaver), the green-boxed examples (FocL) consistently show lower596

cumulative sample loss (CSL) compared to their red-boxed full-image counterparts. This shift in597

CSL values explains the leftward shift in the aggregate CSL distribution observed in the main paper,598

supporting our claim that FocL improves learning stability and efficiency.599

Gradient Norm Analysis600

Setup To probe the optimization dynamics of FocL, we analyze the magnitude of gradients during601

training. Specifically, we compute the ℓ2 norm of gradients with respect to all model weights on the602

training set of Partition A (85K samples from the 100K ImageNet subset). Gradient norms are logged603

throughout training for both the standard model and the FocL single-crop variant. This analysis604

provides insight into training stability and the ease of optimization under different input regimes.605

FocL exhibits consistently smaller gradient magnitudes compared to standard training, suggesting a606

smoother optimization landscape. The standard model records a mean gradient norm of 3.81× 104607

with a standard deviation of 2.26 × 104, while FocL reports a lower mean of 2.07 × 104 and a608

standard deviation of 1.28× 104. When normalized by the total number of ResNet-50 parameters609

(∼ 2.56× 107), the per-parameter gradient norm drops from 1.49× 10−3 (standard) to 8.08× 10−4610

(FocL)—a relative reduction of approximately 45.8%. This substantial drop suggests that FocL’s611

object-centric inputs result in less gradient noise and more stable optimization, aligning with our612

findings on faster convergence and lower memorization.613

Data efficiency614

Setup for Low-Data Regime To evaluate data efficiency, we train all models on Partition A of the615

100K balanced ImageNet subset. The standard baseline uses 85 training samples per class, while616

low-data models are trained with 50 samples per class. These 50-per-class subsets are derived from617

five random data partitions of Partition A (i.e., five distinct data seeds). All models are trained for 90618

epochs using SGD with momentum and a step learning rate scheduler (decay at epochs 30 and 60),619

with otherwise identical hyperparameters.620

Evaluation is performed on a fixed 50K test set from Partition B. The standard model is evaluated621

on full-resolution images, while FocL models are evaluated using bounding box–aligned crops. As622

shown in Section 4.1.1 of the main paper, full-image models underperform when evaluated on oracle623

bounding boxes. Therefore, we report results using their respective optimal evaluation inputs. For624

FocL, we use the single-crop variant, consistent with the setup in Section 4.3.625

Analysis. FocL demonstrates superior data efficiency in the low-data regime as well. With only 50626

training samples per class (41.18% fewer than the standard baseline), it achieves a Top-1 accuracy627

of 45.02% and Top-5 of 70.30%, outperforming the standard model trained on 85 samples/class628

(Top-1: 44.30%, Top-5: 68.56%). This margin holds consistently across 5 random data partitions.629

These results are statistically consistent across data splits, highlighting FocL’s robust ability to630

leverage object-centric signals even in lower data regime.631

18
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Question: Do the main claims made in the abstract and introduction accurately reflect the634

paper’s contributions and scope?635

Answer: [Yes]636

Justification: Our contributions are listed on Page 3. These claims are supported by method-637

ology in Section 3 and empirical validation in Section 4.638

Guidelines:639

• The answer NA means that the abstract and introduction do not include the claims640

made in the paper.641

• The abstract and/or introduction should clearly state the claims made, including the642

contributions made in the paper and important assumptions and limitations. A No or643

NA answer to this question will not be perceived well by the reviewers.644

• The claims made should match theoretical and experimental results, and reflect how645

much the results can be expected to generalize to other settings.646

• It is fine to include aspirational goals as motivation as long as it is clear that these goals647

are not attained by the paper.648

2. Limitations649

Question: Does the paper discuss the limitations of the work performed by the authors?650

Answer: [Yes]651

Justification: The limitations are discussed in Section 5.652
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• The answer NA means that the paper has no limitation while the answer No means that654

the paper has limitations, but those are not discussed in the paper.655

• The authors are encouraged to create a separate "Limitations" section in their paper.656

• The paper should point out any strong assumptions and how robust the results are to657

violations of these assumptions (e.g., independence assumptions, noiseless settings,658

model well-specification, asymptotic approximations only holding locally). The authors659

should reflect on how these assumptions might be violated in practice and what the660

implications would be.661

• The authors should reflect on the scope of the claims made, e.g., if the approach was662

only tested on a few datasets or with a few runs. In general, empirical results often663

depend on implicit assumptions, which should be articulated.664

• The authors should reflect on the factors that influence the performance of the approach.665

For example, a facial recognition algorithm may perform poorly when image resolution666

is low or images are taken in low lighting. Or a speech-to-text system might not be667

used reliably to provide closed captions for online lectures because it fails to handle668

technical jargon.669

• The authors should discuss the computational efficiency of the proposed algorithms670

and how they scale with dataset size.671

• If applicable, the authors should discuss possible limitations of their approach to672

address problems of privacy and fairness.673

• While the authors might fear that complete honesty about limitations might be used by674

reviewers as grounds for rejection, a worse outcome might be that reviewers discover675

limitations that aren’t acknowledged in the paper. The authors should use their best676

judgment and recognize that individual actions in favor of transparency play an impor-677

tant role in developing norms that preserve the integrity of the community. Reviewers678

will be specifically instructed to not penalize honesty concerning limitations.679

3. Theory assumptions and proofs680

Question: For each theoretical result, does the paper provide the full set of assumptions and681

a complete (and correct) proof?682

Answer: [NA]683
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Justification: The paper does not include theoretical results.684

Guidelines:685

• The answer NA means that the paper does not include theoretical results.686

• All the theorems, formulas, and proofs in the paper should be numbered and cross-687

referenced.688

• All assumptions should be clearly stated or referenced in the statement of any theorems.689

• The proofs can either appear in the main paper or the supplemental material, but if690

they appear in the supplemental material, the authors are encouraged to provide a short691

proof sketch to provide intuition.692

• Inversely, any informal proof provided in the core of the paper should be complemented693

by formal proofs provided in appendix or supplemental material.694

• Theorems and Lemmas that the proof relies upon should be properly referenced.695

4. Experimental result reproducibility696

Question: Does the paper fully disclose all the information needed to reproduce the main ex-697

perimental results of the paper to the extent that it affects the main claims and/or conclusions698

of the paper (regardless of whether the code and data are provided or not)?699

Answer: [Yes]700

Justification: We have outlined hyperparameters both in Section 4 and in Supplementary.701

We also provide code along with the supplementary submission.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• If the paper includes experiments, a No answer to this question will not be perceived705

well by the reviewers: Making the paper reproducible is important, regardless of706

whether the code and data are provided or not.707

• If the contribution is a dataset and/or model, the authors should describe the steps taken708

to make their results reproducible or verifiable.709

• Depending on the contribution, reproducibility can be accomplished in various ways.710

For example, if the contribution is a novel architecture, describing the architecture fully711

might suffice, or if the contribution is a specific model and empirical evaluation, it may712

be necessary to either make it possible for others to replicate the model with the same713

dataset, or provide access to the model. In general. releasing code and data is often714

one good way to accomplish this, but reproducibility can also be provided via detailed715

instructions for how to replicate the results, access to a hosted model (e.g., in the case716

of a large language model), releasing of a model checkpoint, or other means that are717

appropriate to the research performed.718

• While NeurIPS does not require releasing code, the conference does require all submis-719

sions to provide some reasonable avenue for reproducibility, which may depend on the720

nature of the contribution. For example721

(a) If the contribution is primarily a new algorithm, the paper should make it clear how722

to reproduce that algorithm.723

(b) If the contribution is primarily a new model architecture, the paper should describe724

the architecture clearly and fully.725

(c) If the contribution is a new model (e.g., a large language model), then there should726

either be a way to access this model for reproducing the results or a way to reproduce727

the model (e.g., with an open-source dataset or instructions for how to construct728
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authors are welcome to describe the particular way they provide for reproducibility.731

In the case of closed-source models, it may be that access to the model is limited in732

some way (e.g., to registered users), but it should be possible for other researchers733

to have some path to reproducing or verifying the results.734

5. Open access to data and code735

Question: Does the paper provide open access to the data and code, with sufficient instruc-736

tions to faithfully reproduce the main experimental results, as described in supplemental737

material?738
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• At submission time, to preserve anonymity, the authors should release anonymized758
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Answer: [Yes]766
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• The method for calculating the error bars should be explained (closed form formula,788

call to a library function, bootstrap, etc.)789

• The assumptions made should be given (e.g., Normally distributed errors).790

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error791

of the mean.792
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Question: For each experiment, does the paper provide sufficient information on the com-802
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the experiments?804

Answer: [Yes]805
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• The answer NA means that the paper does not include experiments.809
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• The paper should disclose whether the full research project required more compute814
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didn’t make it into the paper).816
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of Ethics.822
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10. Broader impacts829
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societal impacts of the work performed?831

Answer: [NA]832
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• Examples of negative societal impacts include potential malicious or unintended uses841
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• We recognize that the procedures for this may vary significantly between institutions944

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the945

guidelines for their institution.946

• For initial submissions, do not include any information that would break anonymity (if947

applicable), such as the institution conducting the review.948
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Figure 11: Sample visualization of CSL dynamics across three classes—Llama, Peacock, and
Beaver. Each row compares full-image (left, red box) vs. FocL-based cropped inputs (right, green
box). Across classes, FocL leads to faster convergence (loss trajectory), more confident predictions
(confidence trajectory), and substantially lower cumulative sample loss (CSL). These patterns are
consistent with aggregate statistics shown in CSL distributions, train-validation loss curves, and
gradient norm plots.
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