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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) has demonstrated remarkable
zero-shot capabilities across a variety of domains. To enhance its performance
in data-scarce settings, few-shot adaptation methods have been developed. Other
than fine-tuning the parameters (e.g., the adapter-based approach), prompt learn-
ing methods learn proper prompts to minimize the distance between the visual fea-
ture and the textual feature. Optimal Transport (OT) has proven highly effective
as a measurement metric for evaluating the feature space of CLIP. However, clas-
sical OT, which forces equality constraints on both the source and target weights
of the transport plan, is susceptible to noises (e.g., the misleading local regions in
images and unrelated words in prompts). Furthermore, both the adapter-based and
prompt learning methods usually overlook the modality gap existing in the feature
space and thus risk to obtain suboptimal performance. In this paper, we extend the
formulation of classical OT to unbalanced optimal transport (UOT) for better mea-
surement. The UOT based distance measure can filter out noises adaptively. To
boost the few-shot adaptation performance, a framework that measures both the
inter- and intra- Modality distance based on UOT for CLIP is proposed, which
is termed MUOT-CLIP. In addition, a scalable UOT solver with entropy regular-
ization term is used for the efficient optimization of the model. Compared with
the state-of-the-art methods, MUOT-CLIP consistently exhibits favorable perfor-
mance on the few-shot classification benchmark of 11 datasets.

1 INTRODUCTION

Pretrained on large-scale web data, contrastive language-image pretraining (CLIP) (Radford et al.,
2021) has witnessed widespread application in various downstream tasks (Ma et al., 2025; Wang
etal., 2024; Yu et al., 2024a; Singha et al., 2023). Despite the impressive performance demonstrated
by the zero-shot classification capability of CLIP (Song et al., 2022), its few-shot adaptation to
novel unknown datasets remains a challenge. Many efforts have been made to further improve the
performance of CLIP in data-limited scenarios (Huang et al., 2024; Zhu et al., 2024).

A typical approach is the adapter-based fine-tuning, which optimizes the parameters of the adapters
added to either the image encoder or the text encoder or other selected layers with task-specific learn-
ing objective (Gondal et al., 2024; Gao et al., 2024; Zhang et al., 2022). Other than fine-tuning the
parameters, typical prompt learning methods (e.g., CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a)) learn more suitable prompts by replacing the fixed template with learnable vectors,
which are optimized to minimize the distance between the visual feature and the textual feature.
However, a single sentence is intuitively not sufficient to represent a class. To this end, PLOT (Chen
et al., 2023) leverages optimal transport (OT) to tackle the problem that multiple prompts tend to
converge to a single point when matching each prompt with the visual features respectively. How-
ever, the inherent defects make it susceptible to the irrelevant or even misleading elements of images
or prompts, as shown in Figure 1(a).

Further, both the adapter-based and prompt learning methods above often overlook the modality
gap existing inherent in the multimodal embeddings they have learned. Recent literature (Eslami &
de Melo, 2024; Zhang et al., 2024b; Liang et al., 2022) reveals that there is a modality gap existing
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Figure 1: Visualization of the solutions of classical OT (a) and UOT (b). For each subgraph, on the
left is the 2D visualization of the source samples and target samples, and on the right is the heatmap
of the obtained optimal transport plan 7r. For more intuitive observation, we link the corresponding
samples by gray lines with gray values proportional to the elements of 7r.

in the feature space of VLMs such as CLIP, caused by a combination of model initialization and con-
trastive learning optimization. The modality gap of CLIP may lead to the suboptimal classification
performance under few-shot setting.

To boost the few-shot performance of CLIP, researches make improvements from two perspectives,
i.e., (1) better alignment via added adapter or projector (2) taking advantage of the visual features of
few-shot images. For example, SPP (Zhu et al., 2024) projects the visual and textual features into
their respective subspaces to achieve alignment via local visual features. Tip-Adapter (Zhang et al.,
2022) constructs the adapter using a key-value cache model from the few-shot training set.

In this paper, we analyze the fundamental flaws of classical OT that it cannot filter irrelevant or even
misleading elements and propose to measure the inter- and intra- Modality distance via Unbalanced
Otimal Transport for few-shot CLIP. A novel prompt learning based framework MUOT-CLIP is
constructed that takes advantage of both the textual features of the learned prompts and the visual
features of the retrieved prototype images, to improve the few-shot adaptation performance of CLIP
on the image classification task.

Specially, in the training phase, the multiple prompts are optimized under the guidance of UOT based
inter-modality distance. The barycenter of the retrieved images in the feature space is estimated to
construct the visual prototype for each class. For few-shot inference, the classification of query
image is predicted with both inter- and intra- modality UOT as the distance measures. In addition, a
Sinkhorn-like solver is used to optimize the UOT problem in a scalable way. The main contributions
of this paper can be summarized as follows,

* To achieve better measurement in the feature space, we analyze the inherent defects of clas-
sical OT and propose to measure both the inter- and intra- modality distance via extended
UOT, which can adaptively filter noise.

* To mitigate the negative effect caused by modality gap and boost the few-shot adaptation
performance of CLIP, the MUOT-CLIP framework that leverages both the textual features
of prompts and the visual features of local retrieved images is constructed. For the compu-
tational efficiency of the overall framework, a scalable UOT solver is proposed.

* We evaluate MUOT-CLIP on 11 widely-adopted datasets for CLIP based few-shot classifi-
cation. Extensive ablation studies and analysis are also conducted to validate the effective-
ness of each components and explore their properties.

2 RELATED WORK

2.1 FEW-SHOT ADAPTATION OF CLIP

Few-shot adaptation focuses on improving CLIP with limited labeled data, which mainly has two
types of approaches, i.e., adapter tuning and prompt learning.

Adapter Tuning. Adapter tuning (Liu et al., 2025; Zhang et al., 2024a; He et al., 2021) is a common
method used to adapt pretrained models to downstream tasks. Adapter-based methods for CLIP
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usually add adapters after the frozen image encoder or text encoder. For instance, CLIP-Adapter
(Gao et al., 2024) learns new features with an additional bottleneck layer and performs residual-
style feature blending with the pretrained features. Tip-Adapter (Zhang et al., 2022) makes use of
the few-shot training images and prompts to construct a key-value cache model and updates the
encoding prior knowledge. SPP (Zhu et al., 2024) incorporates local image features and treats them
as bridges for better image-text alignment.

Prompt Learning. As a parameter-efficient approach, prompt learning attracts a lot of attention in
the research of few-shot CLIP. CoOp (Zhou et al., 2022b) proposes to optimize unified and class-
specific prompts through back-propagation, following which there are many variants. CoCoOp
(Zhou et al., 2022a) addresses the generalization issue through conditional prompt learning. To learn
more diverse and comprehensive prompts, PLOT (Chen et al., 2023) introduces the theory of OT to
measure the distance between the textual features and the visual features. However, the formulation
of OT used in (Chen et al., 2023) is limited as classical OT, which has the inherent drawback for
distance measure as analyzed in Methodology. To move foreword, we extend its formulation to UOT
to adaptively filter out noises without the cost of computational efficiency.

Other Paradigms. In addition, there are few-shot adaptation approaches adopting other paradigms,
e.g., linear probing. LP++ (Huang et al., 2024) proposes a stronger baseline with specific modeling
of the classifier weights, blending visual prototypes and text embeddings. CLAP (Silva-Rodriguez
et al., 2024) introduces a class-adaptive linear probe objective and optimizes the balancing term via
an adaptation of the general augmented Lagrangian method.

In this paper, we focus on the improvement of prompt learning based framework and boost the
few-shot classification accuracy via inference-phase strategy.

2.2 OPTIMAL TRANSPORT

OT quantifies the discrepancy or distance between two distributions by calculating the minimum
transport cost. As a mathematical tool, recent advances have shown promising potential of OT
for machine learning tasks, e.g., generative models (Zheng et al., 2024), representation learning
(Yu et al., 2024b) and reinforcement learning (Asadulaev et al., 2024). The most common form
is the entropy regularized classical OT solved by Sinkhorn (Cuturi, 2013), which is known for its
computational efficiency. However, directly applying classical OT to few-shot CLIP may bring
suboptimal performance. Tailored for the distance measure in the feature space of CLIP, we adopt
the UOT formulation with scalable solver to measure both inter- and intra- modality distance.

3 METHODOLOGY

This section begins by illustrating the problem definition and the describe the overview of MUOT-
CLIP. The property of UOT is analyzed and then the components of the model are presented in detail
as well as the optimization process.

3.1 PROBLEM DEFINITION

Few-Shot Adaptation of CLIP. Pretrained on a vast dataset of web-based image-text pairs. CLIP
(Radford et al., 2021) can adapt to the classification of unseen data without supervision , which
is termed Zero-Shot CLIP for clarity. Few-shot adaptation of CLIP aims at fully leveraging the
limited labeled data to enhance the performance on a novel dataset. In the few-shot setting of CLIP,
there are labeled data {(x?,y?)} that make up the training set S, where z; is the image with label
yf € {1,2,..., K}. The query set Q is composed of query images z with labels y!. The predicted
label is denoted as ¢

Overview. As shown in Figure 2, MUOT-CLIP is a framework that formulates the measure of
image-text distance dp and image-image d; distance as UOT problem for better few-shot adaptation
capability. dr guides the learning of the prompts V, = {V]gn) W= v L, where Lis
the length of V,g") and N is the number of prompts for each class. % is the index of class. For the

inference phase, the combination of both dp and d; models the probability that xf belongs to each
class, i.e., P(y! = k|zt, S, V).
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Figure 2: Overview of the architecture of the three-step MUOT-CLIP framework. In the prompt
learning step, the text encoder 7 and the image encoder Z are frozen and the learnable vectors of the
prompts are optimized with Ly of Eq. (6). In the M&R step, the few-shot images are retrieved in a
specific manner as the visual prototypes of each class. Finally, both the inter-modality distance (i.e.,
the distance between the feature embedding of learned prompts and query images) and the intra-
modality distance (i.e., the distance between the feature embedding of retrieved prototype images
and query images) are used for inference.

3.2 DISTANCE MEASURE IN FEATURE SPACE.

In this subsection, we analyze the motivation and the underlying principle for the UOT based dis-
tance measure. First, we revisit the definition of classical OT (Khamis et al., 2024).

Definition 1 (Classical OT) Given the cost matrix C (e.g., cosine similarity) from source features
to target features, the classical OT is to find the optimal transport plan 7 that minimizes the total
transport cost,

We:= min (C,m)p, H(a,B) := {m € ]R]fXN iwly =a,m 1y = b}, (1)
well(e,B)
where W is total transport cost. o and 3 are the source and target distribution respectively. a
and b are the probability weights that sum up to 1.

The key insight is that W can be viewed as the distance measure in the feature space (e.g., the
distance between the visual feature and the textual feature (Chen et al., 2023)).

However, when it comes to discriminative tasks (e.g., image classification), a common case is that
there are irrelevant or even misleading elements in an image, which may interfere with prediction.
Moreover, due to the few-shot setting, the learnable vectors in the prompts are usually not fully
tuned during the training phase. However, the definition of classical OT forces all the weights of
a to be assigned to b and the constraint on the target weights must be maintained. This approach
risks mistakenly correlating the important local feature with irrelevant prompts or paying too much
attention to the feature of misleading regions in an image. Thus, classical OT based distance measure
is not compatible with classification task to some extent and often leads to suboptimal results. In
this context, we propose to extend the formulation of classical OT to UOT as follows,

Definition 2 (UOT) Based on the definition of classical OT, UOT relaxes the equality constraints
on both source weights and target weights via the regularization terms,

Wy = mei%(C,ﬂ')F + 7aDo(mly]|@) + 1Dy (7 15 |b), 11 := {Tr € RfXN} , )

™

where D, and Dy, are typically set as Kullback—Leibler (KL) divergence (Van Erven & Harremos,
2014,).

The minimization objective of Eq. (2) can be rewritten as below for computational efficiency (Pham
et al., 2020),

Ju = (C,7)p + 1aDa(wln|@) + 7Dy (7T 1ps|b) — eH(m). 3)
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3.3 UOT FOR PROMPT LEARNING

We adopt the UOT based distance measure to construct the loss function and thus the learned
prompts are guided to focus on more important regions of given image that are related with its class.
With the text encoder 7, we can obtain the textual feature Gy, = {T (V™1 = (G}, €
RN >4 The visual encoder Z has multi-head attention pooling layer whose output is R (7 *xW+1)xd
corresponding to M = (H x W) local visual features and one global visual feature, where H and W
are the height and width of its input feature map and d is the dimension of feature embedding. With
the textual feature G, and visual feature F; € RMX*d e can measure the inter-modality distance
between given image and the prompts belonging to class k as,

, F:GT
dT(F;,Gk)sz(aﬁh—' ik ) eR. 4)

EF G
Then the predicted prediction probability is computed as,
- exp((1 — d(F7, Gi))/T)

P ) = S exp((1— d(F Gy ) /) ©
and the learning objective for the optimization of learnable vectors v}* is,
1o, 5
Ly = e ;yfkp(yf = klx}, V) (6)

where g5 = {; 1}/, denotes the one-hot encoding y;.

3.4 INTER- AND INTRA- MODALITY UOT BASED INFERENCE

To obtain the prototype images for each class, a memory and retrieval (M&R) mechanism is estab-
lished. Specially, the prototype images set S is retrieved as subset of the set S, i.e., R = MR(S) =
{(zf,y)}. «f and y! are the retrieved few-shot images and the corresponding labels respectively.
There are different implementations for image retrieval, e.g., full retrieval or d(F, G) guided par-
tial retrieval, where G7 is the learned prompt. We estimate the barycenter of class k retrieved images
in the feature space as,
1 A
FZ:E;I@U;) € RMxd (7)

To mitigate the modality gap between the visual feature and the textual feature, we propose to
measure the probability P(g! = k|z¢, S, V) from the perspective of both inter- and intra- modality
distance. The inter-modality distance can be calculated based on the formulation of Eq. (4), Taking
into account both text-image and image-image similarity, the probability P (g} = k|z%, S, V) can be
measured indirectly via,

dy, = pdr (Y, G}) + (1 — p)d; (FY, F})

FIG;T
[FZ G

FUF;T )

=Wy (e, B]1 - — e )
| [EZHE

) + Wy (e, B]1
where € [0,1] is the weighted factor. The class k& with the minimum dy, is the predicted class ;.

3.5 MODEL OPTIMIZATION

MUOT-CLIP is basically a three-step framework that performs prompt learning guided by dr, esti-
mates the barycenter of the retrieved images belonging to each class & in the feature space, and then
predicts the classification of the query image with dr and d;. The component that counts for the
efficiency and performance of MUOT-CLIP is the UOT module. For computational efficiency and
GPU compeatibility, we use the following solver to optimize the UOT problem in a scalable way. For
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the UOT problem with the minimization objective formulation of Eq. (3), D, and D, are set as KL
divergence. We tackle it in an iterative manner,

Ta
Tate
a;
N T(t—1) Cij
j=19; exp\ — éJ
b

X T, te
3

7 C. .
ML £ exp (-2 )

fi ®) _

; )

g =

where f; = exp(fi/e), g;- = exp(g;/€) and f, g are the dual variables of UOT. ¢t is the current
number of iterations. The computed transport plan of the ¢th iteration is,

’ ’ C’L
) = 199 exp (— EJ) (10)

Then the UOT based distance is calculated as, Wy, = (C, 7v*) g, where 7* is the optimal transport
plan. Please refer to the appendix in the supplementary material for detailed proof.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. We conduct few-shot classification experiments on 11 datasets, including OxfordPets
(Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), FGVCAircraft (Maji et al., 2013)
, DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), StanfordCars (Krause et al., 2013),
Food101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010), Caltech101 (Fei-Fei et al., 2004),
UCF101 (Soomro et al., 2012), and ImageNet (Deng et al., 2009).

Baselines. We compare MUOT-CLIP with three categories of approaches, (1) Adapter-based meth-
ods: Tip-Adapter (Zhang et al., 2022), CLIP-Adapter (Gao et al., 2024), and SSP (Zhu et al., 2024)
(2) prompt learning methods: CoOp (Zhou et al., 2022b) and PLOT (Chen et al., 2023) (3) LP++
(Huang et al., 2024), a linear probing method that achieves performance comparable to other base-
lines. For effective comparison, we choose the fine-tuned version of Tip-Adapter (Zhang et al.,
2022), which is termed Tip-Adapter-F.

Implementation Details. MUOT-CLIP is constructed on CoOp (Zhou et al., 2022b), with the po-
sition of the class token at the end and the random parameter initialization strategy. The length of
learnable context tokens is set as 16. Unless otherwise stated, the number of prompts is N = 4. Fol-
lowing previous work (Zhou et al., 2022b; Chen et al., 2023), we adopt ResNet-50 (He et al., 2016)
as the backbone of the image encoder. The number of local visual feature is M = 7 x 7. We train
MUOT-CLIP via the SGD optimizer with 0.002 initial learning rate, CosineAnnealingL.R schedule,
and a warmup trick with 10~° learning rate. For small datasets such as FGVCAircraft (Maji et al.,
2013), Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al., 2013), the batch
size is set as 32, while for the larger datasets such as ImageNet (Deng et al., 2009) and SUN397
(Xiao et al., 2010), the batch size is set as 128. All experiments are executed on 4 NVIDIA RTX
4090D GPUs. Please refer to the appendix in the supplementary material for more details.

4.2 MAIN RESULTS

Overall Performance. In Table 1, we report the quantitative results obtained by MUOT-CLIP and
the recent literature in the few-shot image classification task. we present the accuracy (i.e., the
percentage of correct predictions) on each dataset and the average accuracy over all the 11 datasets,
with 1,2,4,8,16 shots images for training respectively. For the accuracy of each method, we report the
average of 3 runs. The first observation is that MUOT-CLIP achieves the best average accuracy on all
the shots settings. For the accuracy on each dataset with different shots settings, MUOT-CLIP tops
more than half of the rankings. Secondly, we can observe the increase of the accuracy with more
shot images, which shows that MUOT-CLIP benefits from more training data while still achieves
comparable performance under the extreme 1-shot setting. In addition, the performance advantage
of MUOT-CLIP over the baselines does not come at the cost of significantly more training latency
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Table 1: The classification accuracy (%) comparison on few-shot image classification tasks across
11 datasets.The datasets include Pets.(OxfordPets), F102.(Flowers102), FGVC.(FGCVAircraft),
DTD, Euro(EuroSAT), Cars.(StanfordCars), F101.(Food101), SUN.(SUN397), C101.(Caltech101),
UCFEF.(UFC101), and ImgN.(ImageNet). To compare the overall performance of each method, the
average accuracy (%) across all the 11 datasets with the number of shots fixed is reported. The
bold value indicates the optimal under its experimental setup, whereas the underlined indicates the
suboptimal. We report the average of accuracy of 3 runs. Please refer to the supplementary material
for the variance and more detailed data.

Dataset Pets. F102. FGVC. DTD Euro. Cars. F101. SUN. C101. UCFE ImgN. | Avg
Zero-shot CLIP | 8577 66.14 1728 4232 3756 5561 7731 5852 86.29 61.46 58.18 | 58.77
1 shot
CoOp 85.80 68.12 9.64 4439 50.63 5559 7432 6029 8753 6192 57.15 | 59.59
Tip-Adapter-F | 8570 67.73 1823 4692 47.63 5724 7753 61.02 87.35 6428 60.59 | 61.29
PLOT 87.27 7200 17.77 4723 5620 56.17 78.03 62.63 89.03 6437 57.90 | 62.60
CLIP-Adapter | 85.99 7349 1749 4580 6140 55.13 76.82 6130 88.60 6220 61.20 | 62.67
LP++ 8424 7821 19.69 4697 5723 5720 76.61 6247 8856 6541 61.18 | 63.43
Tip+SSP 86.32 76.05 19.74 46.81 59.17 57.60 77.58 6149 88.76 63.02 61.71 | 63.48
Ours 87.20 7530 20.10 48.87 6220 57.63 7797 63.43 89.67 66.17 59.63 | 64.38
2 shot
CoOp 82.64 7751 18.68 4515 6150 5828 7249 5948 8793 64.09 57.81 | 62.32
Tip-Adapter-F | 86.05 68.18 19.12 4850 57.62 5812 77.53 62.15 88.17 6548 614 | 62.94
PLOT 87.13 82.00 1937 51.17 64.00 5840 77.90 6237 89.87 67.83 5990 | 65.45
CLIP-Adapter | 86.73 81.61 20.10 5148 63.90 5874 77.22 6329 8937 67.12 61.52 | 65.55
LP++ 85.74 84.69 21.58 5244 61.65 5995 7722 64.65 89.53 69.20 61.56 | 66.20
Tip+SSP 87.03 79.5 2271 50.77 6236 59.11 77.62 62.84 89.01 66.09 61.82 | 65.35
Ours 87.73 8283 21.10 5457 66.17 5880 7813 63.77 90.67 69.87 60.20 | 66.71
4 shot
CoOp 86.70 86.20 21.87 5349 70.18 62.62 7333 6347 89.55 67.03 59.99 | 66.77
Tip-Adapter-F | 86.40 71.17 2055 57.16 69.30 5934 77.82 63.86 89.49 67.61 62.12 | 65.89
PLOT 88.57 88.27 2280 5570 70.77 62770 7730 6527 90.67 70.67 60.37 | 68.46
CLIP-Adapter | 87.46 87.17 2259 56.86 73.38 6245 7792 6596 8998 69.05 61.84 | 68.61
LP++ 86.94 89.56 2422 5775 68.67 63.44 7779 67.28 90.87 71.68 62.55 | 69.16
Tip+SSP 86.81 84.13 23.67 5479 6721 6147 77.64 6427 90.14 67.80 6198 | 67.26
Ours 88.63 88.00 2493 5827 7530 6333 7793 66.20 91.73 7323 60.77 | 69.90
8 shot
CoOp 8532 91.18 26.13 5997 7673 6843 71.82 6552 9021 7194 61.56 | 69.89
Tip-Adapter-F | 87.66 84.11 23.60 6238 7522 6425 7826 6725 90.54 72.05 63.41 | 69.88
PLOT 87.17 92.63 26.63 61.60 78.00 67.03 7550 6643 9093 75.80 60.57 | 71.12
CLIP-Adapter | 87.65 91.72 2625 61.00 77.93 67.89 78.04 67.50 9140 7330 62.68 | 71.40
LP++ 87.71 9261 2773 6242 7586 67.81 7853 69.34 91.84 7486 63.76 | 72.04
Tip+SSP 87.19 88.63 27.78 5898 7228 63.89 7775 65.68 9091 69.28 62.22 | 69.51
Ours 87.50 93.03 2833 6343 80.53 6747 76.13 67.80 9193 77.30 61.70 | 72.29
16 shot
CoOp 87.01 9451 3126 63.58 83.53 7336 74.67 69.26 91.83 7571 6295 | 73.42
Tip-Adapter-F | 89.08 93.02 3037 6523 7859 7138 7899 7094 92.10 77.30 65.06 | 73.82
PLOT 87.10 9537 3130 6520 8270 7290 77.17 69.63 9293 77.77 60.67 | 73.89
CLIP-Adapter | 87.84 93.90 32.10 6596 8443 74.01 7825 69.55 9249 76.76 63.59 | 74.44
LP++ 88.38 9426 31.73 6640 80.53 7233 78.88 71.23 9273 7746 64.73 | 74.42
Tip+SSP 88.83 90.62 30.18 6223 73.62 67.19 7794 67.01 9156 7095 62.75 | 71.17
Ours 8770 95.13 33.53 66.57 8293 7257 7747 7030 9337 78.83 62.23 | 74.60

or parameter size. Please refer to the supplementary material for details of the execution time of
MUOT-CLIP compared with the baseline.

Comparison with and CoOp and PLOT. Since the MUOT-CLIP model is constructed on the base
of typical prompt learning methods i.e., CoOp (Zhou et al., 2022b) and PLOT (Chen et al., 2023),
we focus on the comparison of MUOT-CLIP with both CoOp and PLOT. As shown in Table 1,
MUOT-CLIP performs better than both of them on most of the 11 datasets and exhibits relatively
significant advantage in terms of average accuracy. This empirically proves the effectiveness of the
UOT based inter- and intra- modality distance measure.

4.3 ABLATION STUDY AND FURTHER ANALYSIS

Effectiveness of Different Components. We conduct ablations in Table 2 and report the accuracy
of different versions on the DTD (Cimpoi et al., 2014) and FGVCAircraft (Maji et al., 2013) datasets
with 1,2,4,8,16 shots images for training respectively. The “T-I” denotes inter-modality text-image
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Figure 3: Visualization of the heatmaps of the optimal transport plan 7 produced by classical OT
and UOT. Images of (a) are the original images. The red boxes in (b) indicate the unreasonable part
of the heatmap and the corresponding regions are bounded by the green boxes in (c).

Table 2: The ablation study of UOT-based inter- and intra- modality distance on DTD and FGV-
CAircraft datasets. For simplicity, the “T-I"” denotes inter-modality text-image distance and the “I-I”
denotes intra-modality image-image distance.

TI LI DTD FGVC
1 2 4 8 16 1 2 4 8 16
X  x 4723 5117 5570 61.60 6520 17.77 1937 22.80 26.63 31.30
v o x 4737 5330 5593 6263 6620 19.13 19.73 2290 27.13 32.03
x v 4767 5190 5797 6257 66.10 19.07 2050 24.17 27.67 32.60
v v 4887 5457 5827 6343 6657 2010 21.10 2493 2833 33.53

distance and the “I-I” denotes intra-modality image-image distance. The version with both “T-I”
and “I-I” is the complete MUOT-CLIP model. The version without the former refers to replacing
the UOT module used for measuring the inter-modality distance with the classical OT. The version
without latter performs inference only based on the inter-modality distance. As the baseline in this
experiment, the version without both of them degenerates to PLOT (Chen et al., 2023). The versions
that adopt UOT to measure only inter- or intra- modality distance outperform the baseline under all
the settings of Table 2, which proves the individual contributions of these components. In addition,
the complete version of the MUOT-CLIP model achieves better accuracy than its variants. This
shows the effectiveness and advantages of the framework design of MUOT-CLIP.

Visualization of the Optimal Transport Plan. The definition of the formulation of classical OT
and UOT determines that the distance measure based on classical OT is inevitably affected by noises,
whereas that based on UOT can adaptively filter out noises. For more intuitive analysis, we visualize
the heatmap of the optimal transport plan 7r for images of two different classes. UOT can capture
the outline of the target more completely, while fragmentation and confusion are observed in the
heatmap of 7 produced by classical OT, as shown in the red boxes of Figure 3(b), which is the
reason for the advantage of the UOT based MUOT-CLIP over PLOT.

Performance with More Shots. Table 1-2 conduct few-shot image classification experiments with
no more than 16 shots images. We evaluate the performance change of MUOT-CLIP with more
shots images. Specially, other than the common setting of 1, 2, 4, 8, 16 shots, we conduct addi-
tional experiments with 32 and 64 shots images on the DTD, UFC101, EuroSAT, and ImageNet
datasets. As shown in Table 3, a significant trend is that more shots images bring higher classifi-
cation accuracy. This can be factorized into two aspects:(1) more shots images improve the quality
of learned prompts through prompt learning (2) more shots images lead to more effective intra-
modality measure during inference because the verage visual feature of prototype images can be
more representative for the corresponding class with more retrieved images. This also demonstrates
the robustness of MUOT-CLIP that not only works in typical few-shot settings, but also in scenarios
with more labeled data.

Prompts Number Ablation. In this paper, we follow the setting of PLOT (Chen et al., 2023) to set
the number of prompts as 4 for fairness. To evaluate the effect of the number of prompts N on the
performance of the proposed method, we evaluate with different settings of N in Table 4 and find
that NV = 4 is enough and more prompts cannot bring a significant improvement.
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Figure 4: Parameter sensitivity analysis of 74, 7, and €. (a) Accuracy effect of 7, and 7. (b)
Accuracy effect of €. (c) Running time of PLOT and MUOT-CLIP with the change of shots.

Table 3: The analysis study to observe the change of the image classification accuracy of MUOT-
CLIP with more shots on four datasets. The bold value indicates the number of shots with the best
accuracy on the same dataset.

Shots 1 2 4 8 16 32 64

DTD  48.87 5457 5827 6343 6657 6933 71.83
UCE.  66.17 69.87 73.23 77.30 78.83 80.23 81.30
Euro. 6220 66.17 7530 80.53 8293 85.87 88.30
ImgN. 59.63 6020 60.77 61.70 6223 6243 63.00

Parameter Sensitivity Study. Figure 4 reports
the accuracy effect of 7,, 75, and €. The find-
ing is that when the values of 7, and 7, approach

Table 4: The analysis study to evaluate the
effect of N. We conduct experiments on
the DTD, UCFE.(UFC101), Euro.(EuroSAT), and

0 in Figure 4(a), the accuracy of MUOT-CLIP
drops significantly. Since UOT will degenerates
into classical OT with both 7, and 73, approaching
0, the advantages of UOT over classical OT can

SUN.(SUN397) datasets with IV changes.

#of Prompts N=1 N=2 N=4 N=8

be further verified. In Figure 4(b), the accuracy DTD 57.77 58.10 5827 58.33
drops as € increases, which is consistent with the UCF. 71.57 7243 7323 73.10
fact that the larger the weight of the entropy reg- Euro. 7420 75.20 75.30 75.17
ularization term in Eq. (3), the larger the effect of SUN. 66.13 6593 6620 66.93

the approximation approach and the less accurate
the solution.

Efficiency Analysis. To evaluate the efficiency of MUOT-CLIP, we calculate the execution time
of PLOT and MUOT-CLIP. Specially, we choose a relatively small dataset EuroSAT and a larger
dataset ImageNet to analyze the scalability of the methods. The total execution time on EuroSAT and
ImageNet are reported in Figure 4(c). Due to the scalable UOT solver with entropy regularization
term, the latency of MUOT-CLIP is modest on EuroSAt compared to PLOT. On the larger ImageNet
dataset, the execution time of MUOT-CLIP is less than that of PLOT in most cases.

5 CONCLUSIONS

In this paper, we first investigate the limitation of current prompt learning based methods for few-
shot CLIP and the modality gap existing in the feature space of CLIP. Starting from the observation
that classical OT cannot filter out noises when measuring the distance in feature space, we propose
to extend the formulation of it to UOT. To mitigate the effect of the modality gap, we leverage UOT
to measure both inter- and intra- modality distance and construct a novel framework MUOT-CLIP
for the few-shot adaptation of CLIP. Without introducing additional learnable parameters other than
the learnable prompts, MUOT-CLIP outperforms the recent state-of-the-art methods in the few-shot
classification task. We believe that research on the measure and property of visual and textual feature
embedding under few-shot scenario will promote the real-world application of VLMs.
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A APPENDIX

A.1 PROOF FOR THE SCALABLE SOLUTION OF UOT

Given any unbalanced optimal transport problem with KL-Divergence with regularization:
m>lI& jU = <C, 7T>F + TaDa('?TlN”a) + TbDb(']Tle\/[|b) — 67‘[(71')
T2

s.t. (Optional ) : mly =a, = 1y =b,

where H(mw) = —(m,log(m) — 1). The constraints are optional for the following UOT deduction.
The notions of M and N here refer to the number of source and target distribution samples, not
specifically the number of local image features and the number of prompts.

The Lagrange multipliers of UOT with KL-Divergence is given as:
max min Jv = 1. KL (mly|l@) + (f,71y) + 7KL (7 1ab) +
g T2

<g, 7TT1]u> — eH(m) + Gruor,
Please note that the f and g here are dual variables of EUOT. Then,
Crvor=(C— fR1y -1y ®g',m)= Z (Cij — fi — g5) mij-
,J

Taking the differentiation on 7r;;, we can obtain the following results:

N M
0T > ™
- :7’alogija1 +fz+7'b10g72 » +9; [(Cij — fi — g;) + elog m;;]
ij i '
N M
1 Tid : ”
= Cij + 71 log 72;21 L+ log 722? iz elogm;; = 0.
i J

Then we can setup as:

N )
Zj | Tij = G; €Xp (—{—a)
€

_ (fi+gj_cij>
, Tij =exp | ——— | .

Therefore, we can obtain the important result as we expected.

r?)i;leZTa <a,exp (—£)>+Tb <b exp( )> Zzljzlex (M)

We can optimize Jg as follows. First, we optimize f as:

N
%?? = —a; exp (—f) + exp <JZ¢> Zexp

and thus,

and thus,
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In summary, we can rewrite the results via involving two new variables fz-l = exp (%) and g; =

exp ()

) Tate
f (t) _ a;

i - T(t—1 Cij
‘ EJN=1 gj(f )exp(—TJ)

o ® =

b
Tpte
b.
M (t) ’ Cij ’
iz fi exp(— eJ )

and,

’ ’ CZ
r = £ oxp (_ 6]) .

A.2 IMPLEMENTATION DETAILS

The implementation of CoOp (Zhou et al., 2022b) has different versions with different class token
positions and parameter initialization strategies. The MUOT-CLIP model is constructed on CoOp
(Zhou et al., 2022b), with the position of the class token at the end and the random parameter
initialization strategy. The length of learnable context tokens is set as 16. Following previous work
(Zhou et al., 2022b; Chen et al., 2023), we adopt ResNet-50 (He et al., 2016) as the backbone of the
image encoder. The number of local visual feature is M = 7 x 7. The parameters of UOT are set
as 7, = 7, = 1, = 0.1. The number of prompts is set as N = 4 when comparing to the baselines.
We repeat the experiments three times to obtain the average accuracy of each method.

We train MUOT-CLIP via the SGD optimizer with 0.002 initial learning rate, CosineAnnealingL.R
schedule, and a warmup trick with 10~ learning rate. For small datasets such as FGVCAircraft
(Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al.,
2013), the batch size is set as 32, while for the larger datasets such as ImageNet (Deng et al., 2009)
and SUN397 (Xiao et al., 2010), the batch size is set as 128. All experiments are executed on 4
NVIDIA RTX 4090D GPUs.

The detailed training and testing pipeline are in Algorithm 1 and 2 respectively.

Algorithm 1 Training Pipeline of MUOT-CLIP

Input: Few-shot labeled image data {(z?,y?)}, pretrained CLIP model with text encoder 7 and
image encoder Z.

Parameter: The value of 7, 7, and ¢, maximum number of inner and outer iteration Tj,, and T,;.
Output: Learned prompts V.

1: Tnitialize V, = {V{"}2_,.
2: fortoys = 1,2,3,..., Ty do
3:  Obtain the visual feature set F§ via Z(z?) .
Obtain the textual feature set Gy, via {’T(V,gn)) N
FgGk
IF{ Gl
Tackle the EUOT problem via Eq. (12) with T3, iterations to obtain U, i(Ti"') and V' (Tin)
Calculate the optimal transport plan 7w* via Eq. (13).
Calculate the inter-modality distance dr(F$, G},) via Eq. (4).
9:  Calculate the predicted probability P(yf = klxf, V) via Eq. (5).
10:  Update the prompts with Ly of Eq. (6).
11: end for
12: return V;

Calculate the cost matrix Cy, = 1 —

A

A.3 EXECUTION TIME EXPERIMENTS

To evaluate the efficiency of MUOT-CLIP, we calculate the execution time of PLOT and MUOT-
CLIP. Specially, we choose a relatively small dataset EuroSAT and a larger dataset ImageNet to
analyze the scalability of the methods. The total execution time on EuroSAT and ImageNet are

14
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Algorithm 2 Inference Pipeline of MUOT-CLIP

Input: Query images {z}, pretrained CLIP model with text encoder 7 and image encoder Z,
Learned prompts V,
Parameter: The value of 7,, 7, and €, maximum number of inner and outer iteration 75,,.
Qutput: Predicted class k*.

: Obtain the visual feature of query image F{ via Z(z).
Obtain the average visual feature of retrieved images Fz via Eq. (8).
Obtain the textual feature set G, via text encoder 7.
Calculate the inter-modality distance dp(F, Gy) of Eq. (9) via Eq. (12) with T},, iterations.
Calculate the intra-modality distance dT(Fg, F7) of Eq. (10) via Eq. (12) with T;,, iterations.
Obtain dj, via Eq. (11).
return £* = miny, d,

AR A ol S oy

reported in Table 5 and Table 6. Due to the scalable UOT solver, the latency of MUOT-CLIP is
modest on EuroSAt compared to PLOT. On the larger ImageNet dataset, the execution time of
MUOT-CLIP is less than that of PLOT in most cases.

Shots 1 2 4 8 16

PLOT 28s 55s  58s 141s 171s
MUOT-CLIP 37s 68s 67s 143s 175s

Table 5: Execution time of PLOT and MUOT-CLIP when training on EuroSAT. The random seed is
fixed as 1.

Shots 1 2 4 8 16
PLOT 316s 519s 767s 1733s 3369s
MUOT-CLIP 288s 467s 817s 1742s 3365s

Table 6: Execution time of PLOT and MUOT-CLIP when training on ImageNet. The random seed
is fixed as 1.

Shots 1 2 4 8 16

Tip-Adapter-F ~ 85.70£0.16 86.05+0.46 86.40+0.29 87.66+0.28  89.08 £0.27
LP++ 8424 +136 8574+0.56 86.94+048 87.71+0.65 88.38+0.61
PLOT 87.27+0.85 87.13+£0.60 88.57+0.11 87.17+0.55 87.10+0.44
PLOT+"T-I” 87.70+0.66 88.07+0.31 88.47+038 87.83+0.78 87.77+0.06
PLOT+"T-T” 86.77+0.64 86.83+0.60 88.67+0.25 87.13+£0.42 86.97£0.32
MOUT-CLIP 87.20+0.53 87.73+£032 88.63+x0.61 87.50+0.53 87.70+0.10

Table 7: Comparison of the mean and standard deviation of the accuracy on OxfordPets dataset.

Shots 1 2 4 8 16

Tip-Adapter-F~ 67.73+0.57 68.18+0.84 71.17+0.67 84.11+0.49 93.02+0.28
LP++ 78.21 £1.01 84.69+0.70 89.56+0.45 92.61+0.32 94264024
PLOT 72.00 £0.50 82.00+1.31 8827+0.76  92.63+0.47 9537 +0.68
PLOT+"T-1” 72.07 £ 0.61 81.30+046 87.80+026 92.80+0.10 95.10+0.10
PLOT+'T-T” 74.17+0.38 8270+1.32 88.60+0.87 92.77+040 95404044
MOUT-CLIP 75.30 £0.95 82.83+049 88.60+020 93.03+0.12 95.13+0.31

Table 8: Comparison of the mean and standard deviation of the accuracy on Flowers102 dataset.
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Shots 1 2 4 8 16

Tip-Adapter-F ~ 18.23£0.19  19.12+0.20 20.55+£0.20 23.60+0.29 30.37+0.25
LP++ 19.69+£0.39 21.58+046 2422+0.60 27.73+048 31.73+0.44
PLOT 17.77£1.25 1937+0.76 2280+1.25 26.63+0.71 31.30%0.36
PLOT+"T-I” 19.13£042 1973049 2290+£096 27.13+0.68 32.03+0.45
PLOT+"T-T” 19.07+£0.78 20.50+0.70 24.17+1.23 27.67+0.70 32.60+0.79
MOUT-CLIP 20.10£0.35 21.10+x044 2493+£0.29 2833+0.67 33.53+0.29

Table 9: Comparison of the mean and standard deviation of the accuracy on FGCVAircraft dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 4692+ 1.01 4850+1.08 57.16+0.53 62.38+047 6523+0.82
LP++ 4697 +1.37 5244+£099 57.75+0.82 6242+0.53 66.40+0.50
PLOT 4723+223 51.17+3.71 55.70+044 61.60+0.66 65.20+0.53
PLOT+"T-1” 4737+1.39 5330+1.39 5593+0.81 62.63 +£0.68 66.20 +0.62
PLOT+'T-T” 47.67+290 5190+3.53 57.97+0.59 6257+1.10 66.10+0.52
MOUT-CLIP 48.87+2.00 5457+064 5827+0.59 63.43+0.67 66.57+1.00

Table 10: Comparison of the mean and standard deviation of the accuracy on DTD dataset.

Shots 1 2 4 8 16

Tip-Adapter-F ~ 47.63 £2.64 57.62+1.86 6930+£241 7522+132 7859+1.48
LP++ 5723 £1.63 61.65+1.66 68.67+2.21 7586+099 80.53+1.05
PLOT 56.20+£4.60 64.00+4.12 70.77+£2.12 78.00+226 82.70+0.17
PLOT+"T-I” 59.23£230 6323+x2.08 72.63+£0.70 79.70+1.54 82.83+£0.35
PLOT+"T-T” 57.70£3.05 6437+0.60 7237+£3.52 7850+2.72 83.07+0.81
MOUT-CLIP 62.20£2.04 66.17+0.29 7530+£1.22 80.53+2.61 82.93+0.42

Table 11: Comparison of the mean and standard deviation of the accuracy on EuroSAT dataset.

Shots 1 2 4 8 16

Tip-Adapter-F ~ 57.24 £0.23  58.12+0.50 59.34+0.20 6425+0.19 71.38+0.23
LP++ 5720+£0.65 5995+036 6344+034 67.81+024 7233+0.18
PLOT 56.17+0.59 5840+0.66 62.70+0.70 67.03+049 7290+1.21
PLOT+"T-I” 57.23 +£0.21 58.60+0.89 63.03+£0.74 67.50+0.53 7227 +0.31
PLOT+'T-T” 56.27 +£0.55 5830050 63.00x090 67.20+0.44 73.07+0.95
MOUT-CLIP 57.63 +£0.51 58.80+0.80 63.33+0.70 6747+0.64 72.57+0.06

Table 12: Comparison of the mean and standard deviation of the accuracy on StanfordCars dataset.

Shots 1 2 4 8 16

Tip-Adapter-F ~ 77.53+0.14  77.53+0.22 77.82+0.27 7826+£0.22 7899+0.15
LP++ 76.61 £0.77 7722+0.55 77.79+034 78.53+0.14 78.88+0.19
PLOT 78.03+0.06 7790+050 77.30+x026 7550+0.17 77.17+0.51
PLOT+"T-1” 78.00+0.17 78.33+0.21 78.03+0.25 76.13+0.25 77.30+0.17
PLOT+'T-T” 7770 £0.10 77.80+0.53 77.27 £0.31 75.63 +£0.23 77.23+0.35
MOUT-CLIP 77.97+0.15 78.13+0.31 77.93+025 76.13+0.15 7747+0.12

Table 13: Comparison of the mean and standard deviation of the accuracy on Food101 dataset.
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Shots 1 2 4 8 16

Tip-Adapter-F ~ 61.02+£0.36  62.15+0.28 63.86+0.19 67.25+0.16 70.94+0.13
LP++ 6247027 64.65+025 6728+£0.27 69.34+0.14 71.23+0.07
PLOT 62.63£0.50 6237+035 6527+£045 6643+0.67 69.63+0.20
PLOT+"T-I” 62.63£0.32 6297+049 6527+£0.67 66.77+0.15 69.60+0.10
PLOT+"T-T” 63.20+£0.56 62.77+x0.74 65.80+£0.56 67.33+049 70.37+0.15
MOUT-CLIP 63.43+£046 63.77+023 6620+£0.53 67.80+0.17 70.30%0.10

Table 14: Comparison of the mean and standard deviation of the accuracy on SUN397 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F ~ 87.35+0.64 88.17+0.29 89.49+0.25 90.54+0.34 92.10+0.25
LP++ 88.56 +0.43 89.53+035 90.87+0.19 91.84+024 9273+0.17
PLOT 89.03 £ 0.25 89.87+0.25 90.67+0.06 90.93+045 92.93+0.60
PLOT+"T-I” 80.23+0.12 89.73+0.15 91.03+£0.06 91.50+020 93.03+0.49
PLOT+'T-T” 890.53+0.15 90.13+0.35 91.33+0.12 91.10x046 93.10+0.62
MOUT-CLIP 89.67+0.15 90.67+029 91.73+0.15 91.93+0.32 93.37+0.38

Table 15: Comparison of the mean and standard deviation of the accuracy on Caltech101 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 6428 £0.54 6548+043 67.61+£0.28 72.05+0.53 77.30+0.21
LP++ 6541 +£0.37 69.20+0.52 71.68+0.41 74.86 £0.36  77.46 +0.39
PLOT 64.37+048 67.83+0.05 70.67+1.09 7580+0.52 77.77+0.38
PLOT+'T-I” 64.57+0.15 67.70+£026 71.77+029 77.07+1.16 78.77+0.35
PLOT+'T-T” 65.60+095 6927+040 7237+087 7593+040 78.07%0.15
MOUT-CLIP 66.17+0.55 69.87+0.25 73.23+0.12 77.30+0.79 78.83+0.25

Table 16: Comparison of the mean and standard deviation of the accuracy on UCF101 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F~ 60.59 £0.14 61.42+0.05 62.12+0.06 63.41+£0.07 65.06+0.04
LP++ 61.18+0.08 61.56+0.14 6255+0.12 63.76+£0.07 64.73 +0.05
PLOT 5790+1.56 5990+0.50 60.37 +1.31 60.57+£0.93 60.67 +0.38
PLOT+"T-1” 59.53+0.25 59.83+0.21 60.03+0.38 60.53+0.75 60.30+0.35
PLOT+"T-T” 5820+1.32 60.13+£0.50 60.77 +0.81 61.33+0.72 61.93+0.35
MOUT-CLIP 59.63 £ 0.31 60.20+0.17 60.77+0.35 61.70+£0.53 62.23+0.21

Table 17: Comparison of the mean and standard deviation of the accuracy on ImageNet dataset.

A.4 DETAILED RESULTS FOR COMPARISON AND ABLATION

For each method, we run 3 times under each setting. The mean and standard deviation of the
accuracy of Tip-Adapter-F (Zhang et al., 2022), LP++ (Huang et al., 2024), PLOT (Chen et al.,
2023) , MUOT-CLIP and its variants on all the 11 datasets are reported in Table 7-17. MUOT-
CLIP consistently achieves competitive performance over the baselines. In addition, the overall
performance of the ablated versions of MUOT-CLIP are better than that of PLOT (Chen et al.,
2023), which proves the effectiveness of UOT based inter- and intra- modality distance measure as
well as the contributions of each components.
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Shots 1 2 4 8 16 32 64
OxfordPets 87.2 87.73  88.63 87.5 87.7 88.7 89.87
Flowers102 75.3 82.83 88.6 93.03 95.13 96.63  96.97

FGCVAircraft 20.1 21.1 2493 2833 3353 36.4 35.77

DTD 48.87 5457 5827 6343 6657 6933  71.83

EuroSAT 62.20 66.17 7530 80.53 8293  85.87 88.3
StanfordCars 57.63 58.8 63.33 6747 7257 7553  75.63
Food101 7797 78.13 7793  76.13  77.47 78.4 79.33
SUN397 63.43  63.77 66.2 67.8 70.3 71.93 7213
Caltech101 89.67 90.67 91.73 9193 9337 93.77 93.9
UCF101 66.17 69.87 7323 7730 78.83 80.23 81.30
Euro. 62.20 66.17 7530 80.53 8293 85.87 88.30
ImgN. 59.63 60.20 60.77 61.70 62.23 6243  63.00

Table 18: Detailed Results for Shots Ablation.

N 1 2 4 8

OxfordPets 87.33+090 87.87+0.21 88.63+0.61 88.70 +0.26
Flowers102 87.30+0.62 88.27+0.42 88.60+0.20 88.70 +0.10
FGCVAircraft  23.90+2.67 2390+1.67 2493+0.29 24.80+0.61
DTD 5777040 58.10+x1.01 58.27+0.59 58.33+0.35
EuroSAT 7420044 7520+ 1.15 7530+1.22 75.17+0.60
StanfordCars 62.30+£0.52 6297+1.11 63.33+£0.70 63.27+0.29
Food101 76.80+1.37 77.03+£1.05 7793+£0.25 78.43+0.21
SUN397 66.13+0.25 6593+035 66.20+0.53  66.93 +0.32
Caltech101 90.83+0.38 91.33+0.32 91.73+0.15 91.73+0.38
UCF101 7157040 7243+025 73.23+0.12 73.10+0.17

Table 19: Prompts number ablation on different datasets.The number of shots is fixed as 4.

A.5 DETAILED RESULTS FOR SHOTS ABLATION

To evaluate the performance of MUOT-CLIP with more shots (e.g., 32 shots and 64 shots), we
conduct extensive experiments on all the 11 datasets with 1, 2, 4, 8, 16, 32, and 64 shots respectively.
The number of prompts is fixed as N = 4. In almost all the datasets, MUOT-CLIP achieves the
highest accuracy with 64 shots, which proves its ability to be scalable to more labeled training data.
The detailed results are in Table 18.

A.6 DETAILED RESULTS FOR PROMPTS NUMBER ABLATION

We evaluate the performance of MUOT-CLIP with different number of prompts on various datasets.
The results are reported in Table 19.
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