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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) has demonstrated remarkable
zero-shot capabilities across a variety of domains. To enhance its performance
in data-scarce settings, few-shot adaptation methods have been developed. Other
than fine-tuning the parameters (e.g., the adapter-based approach), prompt learn-
ing methods learn proper prompts to minimize the distance between the visual fea-
ture and the textual feature. Optimal Transport (OT) has proven highly effective
as a measurement metric for evaluating the feature space of CLIP. However, clas-
sical OT, which forces equality constraints on both the source and target weights
of the transport plan, is susceptible to noises (e.g., the misleading local regions in
images and unrelated words in prompts). Furthermore, both the adapter-based and
prompt learning methods usually overlook the modality gap existing in the feature
space and thus risk to obtain suboptimal performance. In this paper, we extend the
formulation of classical OT to unbalanced optimal transport (UOT) for better mea-
surement. The UOT based distance measure can filter out noises adaptively. To
boost the few-shot adaptation performance, a framework that measures both the
inter- and intra- Modality distance based on UOT for CLIP is proposed, which
is termed MUOT-CLIP. In addition, a scalable UOT solver with entropy regular-
ization term is used for the efficient optimization of the model. Compared with
the state-of-the-art methods, MUOT-CLIP consistently exhibits favorable perfor-
mance on the few-shot classification benchmark of 11 datasets.

1 INTRODUCTION

Pretrained on large-scale web data, contrastive language-image pretraining (CLIP) (Radford et al.,
2021) has witnessed widespread application in various downstream tasks (Ma et al., 2025; Wang
et al., 2024; Yu et al., 2024a; Singha et al., 2023). Despite the impressive performance demonstrated
by the zero-shot classification capability of CLIP (Song et al., 2022), its few-shot adaptation to
novel unknown datasets remains a challenge. Many efforts have been made to further improve the
performance of CLIP in data-limited scenarios (Huang et al., 2024; Zhu et al., 2024).

A typical approach is the adapter-based fine-tuning, which optimizes the parameters of the adapters
added to either the image encoder or the text encoder or other selected layers with task-specific learn-
ing objective (Gondal et al., 2024; Gao et al., 2024; Zhang et al., 2022). Other than fine-tuning the
parameters, typical prompt learning methods (e.g., CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a)) learn more suitable prompts by replacing the fixed template with learnable vectors,
which are optimized to minimize the distance between the visual feature and the textual feature.
However, a single sentence is intuitively not sufficient to represent a class. To this end, PLOT (Chen
et al., 2023) leverages optimal transport (OT) to tackle the problem that multiple prompts tend to
converge to a single point when matching each prompt with the visual features respectively. How-
ever, the inherent defects make it susceptible to the irrelevant or even misleading elements of images
or prompts, as shown in Figure 1(a).

Further, both the adapter-based and prompt learning methods above often overlook the modality
gap existing inherent in the multimodal embeddings they have learned. Recent literature (Eslami &
de Melo, 2024; Zhang et al., 2024b; Liang et al., 2022) reveals that there is a modality gap existing
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Figure 1: Visualization of the solutions of classical OT (a) and UOT (b). For each subgraph, on the
left is the 2D visualization of the source samples and target samples, and on the right is the heatmap
of the obtained optimal transport plan π. For more intuitive observation, we link the corresponding
samples by gray lines with gray values proportional to the elements of π.

in the feature space of VLMs such as CLIP, caused by a combination of model initialization and con-
trastive learning optimization. The modality gap of CLIP may lead to the suboptimal classification
performance under few-shot setting.

To boost the few-shot performance of CLIP, researches make improvements from two perspectives,
i.e., (1) better alignment via added adapter or projector (2) taking advantage of the visual features of
few-shot images. For example, SPP (Zhu et al., 2024) projects the visual and textual features into
their respective subspaces to achieve alignment via local visual features. Tip-Adapter (Zhang et al.,
2022) constructs the adapter using a key-value cache model from the few-shot training set.

In this paper, we analyze the fundamental flaws of classical OT that it cannot filter irrelevant or even
misleading elements and propose to measure the inter- and intra- Modality distance via Unbalanced
Otimal Transport for few-shot CLIP. A novel prompt learning based framework MUOT-CLIP is
constructed that takes advantage of both the textual features of the learned prompts and the visual
features of the retrieved prototype images, to improve the few-shot adaptation performance of CLIP
on the image classification task.

Specially, in the training phase, the multiple prompts are optimized under the guidance of UOT based
inter-modality distance. The barycenter of the retrieved images in the feature space is estimated to
construct the visual prototype for each class. For few-shot inference, the classification of query
image is predicted with both inter- and intra- modality UOT as the distance measures. In addition, a
Sinkhorn-like solver is used to optimize the UOT problem in a scalable way. The main contributions
of this paper can be summarized as follows,

• To achieve better measurement in the feature space, we analyze the inherent defects of clas-
sical OT and propose to measure both the inter- and intra- modality distance via extended
UOT, which can adaptively filter noise.

• To mitigate the negative effect caused by modality gap and boost the few-shot adaptation
performance of CLIP, the MUOT-CLIP framework that leverages both the textual features
of prompts and the visual features of local retrieved images is constructed. For the compu-
tational efficiency of the overall framework, a scalable UOT solver is proposed.

• We evaluate MUOT-CLIP on 11 widely-adopted datasets for CLIP based few-shot classifi-
cation. Extensive ablation studies and analysis are also conducted to validate the effective-
ness of each components and explore their properties.

2 RELATED WORK

2.1 FEW-SHOT ADAPTATION OF CLIP

Few-shot adaptation focuses on improving CLIP with limited labeled data, which mainly has two
types of approaches, i.e., adapter tuning and prompt learning.

Adapter Tuning. Adapter tuning (Liu et al., 2025; Zhang et al., 2024a; He et al., 2021) is a common
method used to adapt pretrained models to downstream tasks. Adapter-based methods for CLIP
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usually add adapters after the frozen image encoder or text encoder. For instance, CLIP-Adapter
(Gao et al., 2024) learns new features with an additional bottleneck layer and performs residual-
style feature blending with the pretrained features. Tip-Adapter (Zhang et al., 2022) makes use of
the few-shot training images and prompts to construct a key-value cache model and updates the
encoding prior knowledge. SPP (Zhu et al., 2024) incorporates local image features and treats them
as bridges for better image-text alignment.

Prompt Learning. As a parameter-efficient approach, prompt learning attracts a lot of attention in
the research of few-shot CLIP. CoOp (Zhou et al., 2022b) proposes to optimize unified and class-
specific prompts through back-propagation, following which there are many variants. CoCoOp
(Zhou et al., 2022a) addresses the generalization issue through conditional prompt learning. To learn
more diverse and comprehensive prompts, PLOT (Chen et al., 2023) introduces the theory of OT to
measure the distance between the textual features and the visual features. However, the formulation
of OT used in (Chen et al., 2023) is limited as classical OT, which has the inherent drawback for
distance measure as analyzed in Methodology. To move foreword, we extend its formulation to UOT
to adaptively filter out noises without the cost of computational efficiency.

Other Paradigms. In addition, there are few-shot adaptation approaches adopting other paradigms,
e.g., linear probing. LP++ (Huang et al., 2024) proposes a stronger baseline with specific modeling
of the classifier weights, blending visual prototypes and text embeddings. CLAP (Silva-Rodriguez
et al., 2024) introduces a class-adaptive linear probe objective and optimizes the balancing term via
an adaptation of the general augmented Lagrangian method.

In this paper, we focus on the improvement of prompt learning based framework and boost the
few-shot classification accuracy via inference-phase strategy.

2.2 OPTIMAL TRANSPORT

OT quantifies the discrepancy or distance between two distributions by calculating the minimum
transport cost. As a mathematical tool, recent advances have shown promising potential of OT
for machine learning tasks, e.g., generative models (Zheng et al., 2024), representation learning
(Yu et al., 2024b) and reinforcement learning (Asadulaev et al., 2024). The most common form
is the entropy regularized classical OT solved by Sinkhorn (Cuturi, 2013), which is known for its
computational efficiency. However, directly applying classical OT to few-shot CLIP may bring
suboptimal performance. Tailored for the distance measure in the feature space of CLIP, we adopt
the UOT formulation with scalable solver to measure both inter- and intra- modality distance.

3 METHODOLOGY

This section begins by illustrating the problem definition and the describe the overview of MUOT-
CLIP. The property of UOT is analyzed and then the components of the model are presented in detail
as well as the optimization process.

3.1 PROBLEM DEFINITION

Few-Shot Adaptation of CLIP. Pretrained on a vast dataset of web-based image-text pairs. CLIP
(Radford et al., 2021) can adapt to the classification of unseen data without supervision , which
is termed Zero-Shot CLIP for clarity. Few-shot adaptation of CLIP aims at fully leveraging the
limited labeled data to enhance the performance on a novel dataset. In the few-shot setting of CLIP,
there are labeled data {(xs

i , y
s
i )} that make up the training set S, where xi is the image with label

ysi ∈ {1, 2, . . . ,K}. The query set Q is composed of query images xq
i with labels yti . The predicted

label is denoted as ŷti .

Overview. As shown in Figure 2, MUOT-CLIP is a framework that formulates the measure of
image-text distance dT and image-image dI distance as UOT problem for better few-shot adaptation
capability. dT guides the learning of the prompts Vk = {V(n)

k }Nn=1 = {{vnk,l}Ll=1}Nn=1, where L is

the length of V(n)
k and N is the number of prompts for each class. k is the index of class. For the

inference phase, the combination of both dT and dI models the probability that xt
i belongs to each

class, i.e., P (yti = k|xt
i,S,V).
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Figure 2: Overview of the architecture of the three-step MUOT-CLIP framework. In the prompt
learning step, the text encoder T and the image encoder I are frozen and the learnable vectors of the
prompts are optimized with LU of Eq. (6). In the M&R step, the few-shot images are retrieved in a
specific manner as the visual prototypes of each class. Finally, both the inter-modality distance (i.e.,
the distance between the feature embedding of learned prompts and query images) and the intra-
modality distance (i.e., the distance between the feature embedding of retrieved prototype images
and query images) are used for inference.

3.2 DISTANCE MEASURE IN FEATURE SPACE.

In this subsection, we analyze the motivation and the underlying principle for the UOT based dis-
tance measure. First, we revisit the definition of classical OT (Khamis et al., 2024).

Definition 1 (Classical OT) Given the cost matrix C (e.g., cosine similarity) from source features
to target features, the classical OT is to find the optimal transport plan π that minimizes the total
transport cost,

WC := min
π∈Π(α,β)

⟨C,π⟩F , Π(α,β) :=
{
π ∈ RM×N

+ : π1N = a,πT1M = b
}
, (1)

where WC is total transport cost. α and β are the source and target distribution respectively. a
and b are the probability weights that sum up to 1.

The key insight is that WC can be viewed as the distance measure in the feature space (e.g., the
distance between the visual feature and the textual feature (Chen et al., 2023)).

However, when it comes to discriminative tasks (e.g., image classification), a common case is that
there are irrelevant or even misleading elements in an image, which may interfere with prediction.
Moreover, due to the few-shot setting, the learnable vectors in the prompts are usually not fully
tuned during the training phase. However, the definition of classical OT forces all the weights of
a to be assigned to b and the constraint on the target weights must be maintained. This approach
risks mistakenly correlating the important local feature with irrelevant prompts or paying too much
attention to the feature of misleading regions in an image. Thus, classical OT based distance measure
is not compatible with classification task to some extent and often leads to suboptimal results. In
this context, we propose to extend the formulation of classical OT to UOT as follows,

Definition 2 (UOT) Based on the definition of classical OT, UOT relaxes the equality constraints
on both source weights and target weights via the regularization terms,

WU := min
π∈Π

⟨C,π⟩F + τaDa(π1N∥a) + τbDb(π
T1M |b), Π :=

{
π ∈ RM×N

+

}
, (2)

where Da and Db are typically set as Kullback–Leibler (KL) divergence (Van Erven & Harremos,
2014).

The minimization objective of Eq. (2) can be rewritten as below for computational efficiency (Pham
et al., 2020),

ĴU = ⟨C,π⟩F + τaDa(π1N∥a) + τbDb(π
T1M |b)− ϵH(π). (3)
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3.3 UOT FOR PROMPT LEARNING

We adopt the UOT based distance measure to construct the loss function and thus the learned
prompts are guided to focus on more important regions of given image that are related with its class.
With the text encoder T , we can obtain the textual feature Gk = {T (V(n))

k }Nn=1 = {G(n)
k }Nn=1 ∈

RN×d. The visual encoder I has multi-head attention pooling layer whose output is R(H×W+1)×d

corresponding to M = (H×W ) local visual features and one global visual feature, where H and W
are the height and width of its input feature map and d is the dimension of feature embedding. With
the textual feature Gk and visual feature Fs

i ∈ RM×d, we can measure the inter-modality distance
between given image and the prompts belonging to class k as,

dT (F
s
i ,Gk) = WU (α,β

∣∣1− Fs
iG

T
k

∥Fs
i∥∥Gk∥

) ∈ R. (4)

Then the predicted prediction probability is computed as,

P̂ (ysi = k|xs
i ,V) =

exp((1− d(Fs
i ,Gk))/τ)∑K

k′=1 exp((1− d(Fs
i ,Gk′ ))/τ)

, (5)

and the learning objective for the optimization of learnable vectors vnl is,

LU = − 1

K

K∑
k=1

ẏsi,kP̂ (ysi = k|xs
i ,V) (6)

where ẏsi = {ẏi,k}Kk=1 denotes the one-hot encoding ysi .

3.4 INTER- AND INTRA- MODALITY UOT BASED INFERENCE

To obtain the prototype images for each class, a memory and retrieval (M&R) mechanism is estab-
lished. Specially, the prototype images set Ŝ is retrieved as subset of the set S, i.e., R = MR(S) =
{(xr

i , y
r
i )}. xr

i and yri are the retrieved few-shot images and the corresponding labels respectively.
There are different implementations for image retrieval, e.g., full retrieval or d(Fs

i ,G
∗
k) guided par-

tial retrieval, where G∗
k is the learned prompt. We estimate the barycenter of class k retrieved images

in the feature space as,

F̄s
k =

1

H

H∑
i=1

I(xr
i ) ∈ RM×d (7)

To mitigate the modality gap between the visual feature and the textual feature, we propose to
measure the probability P (ŷti = k|xt

i,S,V) from the perspective of both inter- and intra- modality
distance. The inter-modality distance can be calculated based on the formulation of Eq. (4), Taking
into account both text-image and image-image similarity, the probability P (ŷti = k|xt

i,S,V) can be
measured indirectly via,

dk = µdT (F
q
i ,G

∗
k) + (1− µ)dI(F

q
i , F̄

s
k)

= WU (α,β
∣∣1− Fq

iG
∗T
k

∥Fq
i ∥∥G∗

k∥
) +WU (α,β

∣∣1− Fq
i F̄

sT
k

∥Fq
i ∥∥F̄s

k∥
),

(8)

where µ ∈ [0, 1] is the weighted factor. The class k with the minimum dk is the predicted class ŷti .

3.5 MODEL OPTIMIZATION

MUOT-CLIP is basically a three-step framework that performs prompt learning guided by dT , esti-
mates the barycenter of the retrieved images belonging to each class k in the feature space, and then
predicts the classification of the query image with dT and dI . The component that counts for the
efficiency and performance of MUOT-CLIP is the UOT module. For computational efficiency and
GPU compatibility, we use the following solver to optimize the UOT problem in a scalable way. For

5
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the UOT problem with the minimization objective formulation of Eq. (3), Da and Db are set as KL
divergence. We tackle it in an iterative manner,

f
′(t)
i =

[
ai∑N

j=1 g
′(t−1)
j exp

(
−

Cij
ϵ

)
] τa

τa+ϵ

g
′(t)
j =

[
bj∑M

i=1 f
′(t)
i exp

(
−

Cij
ϵ

)
] τb

τb+ϵ
, (9)

where f
′

i = exp(fi/ϵ), g
′

j = exp(gj/ϵ) and f , g are the dual variables of UOT. t is the current
number of iterations. The computed transport plan of the tth iteration is,

π
(t)
ij = f

′(t)
i g

′(t)
j exp

(
−Cij

ϵ

)
(10)

Then the UOT based distance is calculated as, WU = ⟨C,π∗⟩F , where π∗ is the optimal transport
plan. Please refer to the appendix in the supplementary material for detailed proof.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. We conduct few-shot classification experiments on 11 datasets, including OxfordPets
(Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), FGVCAircraft (Maji et al., 2013)
, DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), StanfordCars (Krause et al., 2013),
Food101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010), Caltech101 (Fei-Fei et al., 2004),
UCF101 (Soomro et al., 2012), and ImageNet (Deng et al., 2009).

Baselines. We compare MUOT-CLIP with three categories of approaches, (1) Adapter-based meth-
ods: Tip-Adapter (Zhang et al., 2022), CLIP-Adapter (Gao et al., 2024), and SSP (Zhu et al., 2024)
(2) prompt learning methods: CoOp (Zhou et al., 2022b) and PLOT (Chen et al., 2023) (3) LP++
(Huang et al., 2024), a linear probing method that achieves performance comparable to other base-
lines. For effective comparison, we choose the fine-tuned version of Tip-Adapter (Zhang et al.,
2022), which is termed Tip-Adapter-F.

Implementation Details. MUOT-CLIP is constructed on CoOp (Zhou et al., 2022b), with the po-
sition of the class token at the end and the random parameter initialization strategy. The length of
learnable context tokens is set as 16. Unless otherwise stated, the number of prompts is N = 4. Fol-
lowing previous work (Zhou et al., 2022b; Chen et al., 2023), we adopt ResNet-50 (He et al., 2016)
as the backbone of the image encoder. The number of local visual feature is M = 7 × 7. We train
MUOT-CLIP via the SGD optimizer with 0.002 initial learning rate, CosineAnnealingLR schedule,
and a warmup trick with 10−5 learning rate. For small datasets such as FGVCAircraft (Maji et al.,
2013), Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al., 2013), the batch
size is set as 32, while for the larger datasets such as ImageNet (Deng et al., 2009) and SUN397
(Xiao et al., 2010), the batch size is set as 128. All experiments are executed on 4 NVIDIA RTX
4090D GPUs. Please refer to the appendix in the supplementary material for more details.

4.2 MAIN RESULTS

Overall Performance. In Table 1, we report the quantitative results obtained by MUOT-CLIP and
the recent literature in the few-shot image classification task. we present the accuracy (i.e., the
percentage of correct predictions) on each dataset and the average accuracy over all the 11 datasets,
with 1,2,4,8,16 shots images for training respectively. For the accuracy of each method, we report the
average of 3 runs. The first observation is that MUOT-CLIP achieves the best average accuracy on all
the shots settings. For the accuracy on each dataset with different shots settings, MUOT-CLIP tops
more than half of the rankings. Secondly, we can observe the increase of the accuracy with more
shot images, which shows that MUOT-CLIP benefits from more training data while still achieves
comparable performance under the extreme 1-shot setting. In addition, the performance advantage
of MUOT-CLIP over the baselines does not come at the cost of significantly more training latency

6
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Table 1: The classification accuracy (%) comparison on few-shot image classification tasks across
11 datasets.The datasets include Pets.(OxfordPets), F102.(Flowers102), FGVC.(FGCVAircraft),
DTD, Euro(EuroSAT), Cars.(StanfordCars), F101.(Food101), SUN.(SUN397), C101.(Caltech101),
UCF.(UFC101), and ImgN.(ImageNet). To compare the overall performance of each method, the
average accuracy (%) across all the 11 datasets with the number of shots fixed is reported. The
bold value indicates the optimal under its experimental setup, whereas the underlined indicates the
suboptimal.We report the average of accuracy of 3 runs. Please refer to the supplementary material
for the variance and more detailed data.

Dataset Pets. F102. FGVC. DTD Euro. Cars. F101. SUN. C101. UCF. ImgN. Avg
Zero-shot CLIP 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77

1 shot
CoOp 85.89 68.12 9.64 44.39 50.63 55.59 74.32 60.29 87.53 61.92 57.15 59.59
Tip-Adapter-F 85.70 67.73 18.23 46.92 47.63 57.24 77.53 61.02 87.35 64.28 60.59 61.29
PLOT 87.27 72.00 17.77 47.23 56.20 56.17 78.03 62.63 89.03 64.37 57.90 62.60
CLIP-Adapter 85.99 73.49 17.49 45.80 61.40 55.13 76.82 61.30 88.60 62.20 61.20 62.67
LP++ 84.24 78.21 19.69 46.97 57.23 57.20 76.61 62.47 88.56 65.41 61.18 63.43
Tip+SSP 86.32 76.05 19.74 46.81 59.17 57.60 77.58 61.49 88.76 63.02 61.71 63.48
Ours 87.20 75.30 20.10 48.87 62.20 57.63 77.97 63.43 89.67 66.17 59.63 64.38

2 shot
CoOp 82.64 77.51 18.68 45.15 61.50 58.28 72.49 59.48 87.93 64.09 57.81 62.32
Tip-Adapter-F 86.05 68.18 19.12 48.50 57.62 58.12 77.53 62.15 88.17 65.48 61.4 62.94
PLOT 87.13 82.00 19.37 51.17 64.00 58.40 77.90 62.37 89.87 67.83 59.90 65.45
CLIP-Adapter 86.73 81.61 20.10 51.48 63.90 58.74 77.22 63.29 89.37 67.12 61.52 65.55
LP++ 85.74 84.69 21.58 52.44 61.65 59.95 77.22 64.65 89.53 69.20 61.56 66.20
Tip+SSP 87.03 79.5 22.71 50.77 62.36 59.11 77.62 62.84 89.01 66.09 61.82 65.35
Ours 87.73 82.83 21.10 54.57 66.17 58.80 78.13 63.77 90.67 69.87 60.20 66.71

4 shot
CoOp 86.70 86.20 21.87 53.49 70.18 62.62 73.33 63.47 89.55 67.03 59.99 66.77
Tip-Adapter-F 86.40 71.17 20.55 57.16 69.30 59.34 77.82 63.86 89.49 67.61 62.12 65.89
PLOT 88.57 88.27 22.80 55.70 70.77 62.70 77.30 65.27 90.67 70.67 60.37 68.46
CLIP-Adapter 87.46 87.17 22.59 56.86 73.38 62.45 77.92 65.96 89.98 69.05 61.84 68.61
LP++ 86.94 89.56 24.22 57.75 68.67 63.44 77.79 67.28 90.87 71.68 62.55 69.16
Tip+SSP 86.81 84.13 23.67 54.79 67.21 61.47 77.64 64.27 90.14 67.80 61.98 67.26
Ours 88.63 88.60 24.93 58.27 75.30 63.33 77.93 66.20 91.73 73.23 60.77 69.90

8 shot
CoOp 85.32 91.18 26.13 59.97 76.73 68.43 71.82 65.52 90.21 71.94 61.56 69.89
Tip-Adapter-F 87.66 84.11 23.60 62.38 75.22 64.25 78.26 67.25 90.54 72.05 63.41 69.88
PLOT 87.17 92.63 26.63 61.60 78.00 67.03 75.50 66.43 90.93 75.80 60.57 71.12
CLIP-Adapter 87.65 91.72 26.25 61.00 77.93 67.89 78.04 67.50 91.40 73.30 62.68 71.40
LP++ 87.71 92.61 27.73 62.42 75.86 67.81 78.53 69.34 91.84 74.86 63.76 72.04
Tip+SSP 87.19 88.63 27.78 58.98 72.28 63.89 77.75 65.68 90.91 69.28 62.22 69.51
Ours 87.50 93.03 28.33 63.43 80.53 67.47 76.13 67.80 91.93 77.30 61.70 72.29

16 shot
CoOp 87.01 94.51 31.26 63.58 83.53 73.36 74.67 69.26 91.83 75.71 62.95 73.42
Tip-Adapter-F 89.08 93.02 30.37 65.23 78.59 71.38 78.99 70.94 92.10 77.30 65.06 73.82
PLOT 87.10 95.37 31.30 65.20 82.70 72.90 77.17 69.63 92.93 77.77 60.67 73.89
CLIP-Adapter 87.84 93.90 32.10 65.96 84.43 74.01 78.25 69.55 92.49 76.76 63.59 74.44
LP++ 88.38 94.26 31.73 66.40 80.53 72.33 78.88 71.23 92.73 77.46 64.73 74.42
Tip+SSP 88.83 90.62 30.18 62.23 73.62 67.19 77.94 67.01 91.56 70.95 62.75 71.17
Ours 87.70 95.13 33.53 66.57 82.93 72.57 77.47 70.30 93.37 78.83 62.23 74.60

or parameter size. Please refer to the supplementary material for details of the execution time of
MUOT-CLIP compared with the baseline.

Comparison with and CoOp and PLOT. Since the MUOT-CLIP model is constructed on the base
of typical prompt learning methods i.e., CoOp (Zhou et al., 2022b) and PLOT (Chen et al., 2023),
we focus on the comparison of MUOT-CLIP with both CoOp and PLOT. As shown in Table 1,
MUOT-CLIP performs better than both of them on most of the 11 datasets and exhibits relatively
significant advantage in terms of average accuracy. This empirically proves the effectiveness of the
UOT based inter- and intra- modality distance measure.

4.3 ABLATION STUDY AND FURTHER ANALYSIS

Effectiveness of Different Components. We conduct ablations in Table 2 and report the accuracy
of different versions on the DTD (Cimpoi et al., 2014) and FGVCAircraft (Maji et al., 2013) datasets
with 1,2,4,8,16 shots images for training respectively. The “T-I” denotes inter-modality text-image
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(a) Origin (b) Classical OT (c) UOT (a) Origin (b) Classical OT (c) UOT

Figure 3: Visualization of the heatmaps of the optimal transport plan π produced by classical OT
and UOT. Images of (a) are the original images. The red boxes in (b) indicate the unreasonable part
of the heatmap and the corresponding regions are bounded by the green boxes in (c).

Table 2: The ablation study of UOT-based inter- and intra- modality distance on DTD and FGV-
CAircraft datasets. For simplicity, the “T-I” denotes inter-modality text-image distance and the “I-I”
denotes intra-modality image-image distance.

T-I I-I
DTD FGVC

1 2 4 8 16 1 2 4 8 16

× × 47.23 51.17 55.70 61.60 65.20 17.77 19.37 22.80 26.63 31.30
✓ × 47.37 53.30 55.93 62.63 66.20 19.13 19.73 22.90 27.13 32.03
× ✓ 47.67 51.90 57.97 62.57 66.10 19.07 20.50 24.17 27.67 32.60
✓ ✓ 48.87 54.57 58.27 63.43 66.57 20.10 21.10 24.93 28.33 33.53

distance and the “I-I” denotes intra-modality image-image distance. The version with both “T-I”
and “I-I” is the complete MUOT-CLIP model. The version without the former refers to replacing
the UOT module used for measuring the inter-modality distance with the classical OT. The version
without latter performs inference only based on the inter-modality distance. As the baseline in this
experiment, the version without both of them degenerates to PLOT (Chen et al., 2023). The versions
that adopt UOT to measure only inter- or intra- modality distance outperform the baseline under all
the settings of Table 2, which proves the individual contributions of these components. In addition,
the complete version of the MUOT-CLIP model achieves better accuracy than its variants. This
shows the effectiveness and advantages of the framework design of MUOT-CLIP.

Visualization of the Optimal Transport Plan. The definition of the formulation of classical OT
and UOT determines that the distance measure based on classical OT is inevitably affected by noises,
whereas that based on UOT can adaptively filter out noises. For more intuitive analysis, we visualize
the heatmap of the optimal transport plan π for images of two different classes. UOT can capture
the outline of the target more completely, while fragmentation and confusion are observed in the
heatmap of π produced by classical OT, as shown in the red boxes of Figure 3(b), which is the
reason for the advantage of the UOT based MUOT-CLIP over PLOT.

Performance with More Shots. Table 1-2 conduct few-shot image classification experiments with
no more than 16 shots images. We evaluate the performance change of MUOT-CLIP with more
shots images. Specially, other than the common setting of 1, 2, 4, 8, 16 shots, we conduct addi-
tional experiments with 32 and 64 shots images on the DTD, UFC101, EuroSAT, and ImageNet
datasets. As shown in Table 3, a significant trend is that more shots images bring higher classifi-
cation accuracy. This can be factorized into two aspects:(1) more shots images improve the quality
of learned prompts through prompt learning (2) more shots images lead to more effective intra-
modality measure during inference because the verage visual feature of prototype images can be
more representative for the corresponding class with more retrieved images. This also demonstrates
the robustness of MUOT-CLIP that not only works in typical few-shot settings, but also in scenarios
with more labeled data.

Prompts Number Ablation. In this paper, we follow the setting of PLOT (Chen et al., 2023) to set
the number of prompts as 4 for fairness. To evaluate the effect of the number of prompts N on the
performance of the proposed method, we evaluate with different settings of N in Table 4 and find
that N = 4 is enough and more prompts cannot bring a significant improvement.

8
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Figure 4: Parameter sensitivity analysis of τa, τb and ϵ. (a) Accuracy effect of τa and τb. (b)
Accuracy effect of ϵ. (c) Running time of PLOT and MUOT-CLIP with the change of shots.

Table 3: The analysis study to observe the change of the image classification accuracy of MUOT-
CLIP with more shots on four datasets. The bold value indicates the number of shots with the best
accuracy on the same dataset.

Shots 1 2 4 8 16 32 64

DTD 48.87 54.57 58.27 63.43 66.57 69.33 71.83
UCF. 66.17 69.87 73.23 77.30 78.83 80.23 81.30
Euro. 62.20 66.17 75.30 80.53 82.93 85.87 88.30
ImgN. 59.63 60.20 60.77 61.70 62.23 62.43 63.00

Table 4: The analysis study to evaluate the
effect of N . We conduct experiments on
the DTD, UCF.(UFC101), Euro.(EuroSAT), and
SUN.(SUN397) datasets with N changes.

# of Prompts N = 1 N = 2 N = 4 N = 8

DTD 57.77 58.10 58.27 58.33
UCF. 71.57 72.43 73.23 73.10
Euro. 74.20 75.20 75.30 75.17
SUN. 66.13 65.93 66.20 66.93

Parameter Sensitivity Study. Figure 4 reports
the accuracy effect of τa, τb, and ϵ. The find-
ing is that when the values of τa and τb approach
0 in Figure 4(a), the accuracy of MUOT-CLIP
drops significantly. Since UOT will degenerates
into classical OT with both τa and τb approaching
0, the advantages of UOT over classical OT can
be further verified. In Figure 4(b), the accuracy
drops as ϵ increases, which is consistent with the
fact that the larger the weight of the entropy reg-
ularization term in Eq. (3), the larger the effect of
the approximation approach and the less accurate
the solution.

Efficiency Analysis. To evaluate the efficiency of MUOT-CLIP, we calculate the execution time
of PLOT and MUOT-CLIP. Specially, we choose a relatively small dataset EuroSAT and a larger
dataset ImageNet to analyze the scalability of the methods. The total execution time on EuroSAT and
ImageNet are reported in Figure 4(c). Due to the scalable UOT solver with entropy regularization
term, the latency of MUOT-CLIP is modest on EuroSAt compared to PLOT. On the larger ImageNet
dataset, the execution time of MUOT-CLIP is less than that of PLOT in most cases.

5 CONCLUSIONS

In this paper, we first investigate the limitation of current prompt learning based methods for few-
shot CLIP and the modality gap existing in the feature space of CLIP. Starting from the observation
that classical OT cannot filter out noises when measuring the distance in feature space, we propose
to extend the formulation of it to UOT. To mitigate the effect of the modality gap, we leverage UOT
to measure both inter- and intra- modality distance and construct a novel framework MUOT-CLIP
for the few-shot adaptation of CLIP. Without introducing additional learnable parameters other than
the learnable prompts, MUOT-CLIP outperforms the recent state-of-the-art methods in the few-shot
classification task. We believe that research on the measure and property of visual and textual feature
embedding under few-shot scenario will promote the real-world application of VLMs.
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A APPENDIX

A.1 PROOF FOR THE SCALABLE SOLUTION OF UOT

Given any unbalanced optimal transport problem with KL-Divergence with regularization:

min
π≥0

ĴU = ⟨C,π⟩F + τaDa(π1N∥a) + τbDb(π
T1M |b)− ϵH(π)

s.t. ( Optional ) : π1N = a, π⊤1M = b,

where H(π) = −⟨π, log(π) − 1⟩. The constraints are optional for the following UOT deduction.
The notions of M and N here refer to the number of source and target distribution samples, not
specifically the number of local image features and the number of prompts.

The Lagrange multipliers of UOT with KL-Divergence is given as:

max
f ,g

min
π≥0

ĴU = τaKL (π1N∥a) + ⟨f ,π1N ⟩+ τbKL
(
π⊤1M∥b

)
+〈

g,π⊤1M

〉
− ϵH(π) + CEUOT,

Please note that the f and g here are dual variables of EUOT. Then,

CEUOT =
〈
C − f ⊗ 1⊤

N − 1M ⊗ g⊤,π
〉
=

∑
i,j

(Cij − fi − gj)πij .

Taking the differentiation on πij , we can obtain the following results:

∂J
∂πij

= τa log

∑N
j=1 πij

ai
+ fi + τb log

∑M
i=1 πij

bj
+ gj [(Cij − fi − gj) + ϵ log πij ]

= Cij + τa log

∑N
j=1 πij

ai
+ τb log

∑M
i=1 πij

bj
+ ϵ log πij = 0.

Then we can setup as:
∑N

j=1 πij = ai exp
(
− fi

τa

)
∑M

i=1 πij = bj exp
(
− gj

τb

) , πij = exp

(
fi + gj − Cij

ϵ

)
.

Therefore, we can obtain the important result as we expected.

min
f ,g

JE = τa

〈
a, exp

(
− f

τa

)〉
+ τb

〈
b, exp

(
− g

τb

)〉
+ ϵ

M∑
i=1

N∑
j=1

exp

(
fi + gj − Cij

ϵ

)
.

We can optimize JE as follows. First, we optimize f as:

∂JE

∂fi
= −ai exp

(
− fi
τa

)
+ exp

(
fi
ϵ

) N∑
j=1

exp

(
gj − Cij

ϵ

)
= 0,

and thus,

exp

(
fi
ϵ

)
=

 ai∑N
j=1 exp

(
gj−Cij

ϵ

)


τa
τa+ϵ

Then we optimize g as follows:

∂JE

∂gj
= −bj exp

(
−gj
τb

)
+ exp

(gj
ϵ

) M∑
i=1

exp

(
fi − Cij

ϵ

)
= 0,

and thus,

exp
(gj
ϵ

)
=

 bj∑M
i=1 exp

(
fi−Cij

ϵ

)


τb
τb+ϵ
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In summary, we can rewrite the results via involving two new variables f
′

i = exp
(

fi
ϵ

)
and g

′

i =

exp
(
gi
ϵ

) 
f

′(t)
i =

[
ai∑N

j=1 g
′(t−1)
j exp

(
−

Cij
ϵ

)
] τa

τa+ϵ

g
′(t)
j =

[
bj∑M

i=1 f
′(t)
i exp

(
−

Cij
ϵ

)
] τb

τb+ϵ

,

and,

π
(t)
ij = f

′(t)
i g

′(t)
j exp

(
−Cij

ϵ

)
.

A.2 IMPLEMENTATION DETAILS

The implementation of CoOp (Zhou et al., 2022b) has different versions with different class token
positions and parameter initialization strategies. The MUOT-CLIP model is constructed on CoOp
(Zhou et al., 2022b), with the position of the class token at the end and the random parameter
initialization strategy. The length of learnable context tokens is set as 16. Following previous work
(Zhou et al., 2022b; Chen et al., 2023), we adopt ResNet-50 (He et al., 2016) as the backbone of the
image encoder. The number of local visual feature is M = 7 × 7. The parameters of UOT are set
as τa = τb = 1, ϵ = 0.1. The number of prompts is set as N = 4 when comparing to the baselines.
We repeat the experiments three times to obtain the average accuracy of each method.

We train MUOT-CLIP via the SGD optimizer with 0.002 initial learning rate, CosineAnnealingLR
schedule, and a warmup trick with 10−5 learning rate. For small datasets such as FGVCAircraft
(Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al.,
2013), the batch size is set as 32, while for the larger datasets such as ImageNet (Deng et al., 2009)
and SUN397 (Xiao et al., 2010), the batch size is set as 128. All experiments are executed on 4
NVIDIA RTX 4090D GPUs.

The detailed training and testing pipeline are in Algorithm 1 and 2 respectively.

Algorithm 1 Training Pipeline of MUOT-CLIP
Input: Few-shot labeled image data {(xs

i , y
s
i )}, pretrained CLIP model with text encoder T and

image encoder I.
Parameter: The value of τa, τb and ϵ, maximum number of inner and outer iteration Tin and Tout.
Output: Learned prompts Vk.

1: Initialize Vk = {V(n)
k }Nn=1.

2: for tout = 1, 2, 3, . . . , Tout do
3: Obtain the visual feature set Fs

i via I(xs
i ) .

4: Obtain the textual feature set Gk via {T (V(n)
k )}Nn=1 .

5: Calculate the cost matrix Ck = 1− Fq
iGk

∥Fq
i ∥∥Gk∥ .

6: Tackle the EUOT problem via Eq. (12) with Tin iterations to obtain U
(Tin)
i and V (Tin).

7: Calculate the optimal transport plan π∗ via Eq. (13).
8: Calculate the inter-modality distance dT (F

s
i , Gk) via Eq. (4).

9: Calculate the predicted probability P̂ (ysi = k|xs
i ,V) via Eq. (5).

10: Update the prompts with LU of Eq. (6).
11: end for
12: return V∗

k

A.3 EXECUTION TIME EXPERIMENTS

To evaluate the efficiency of MUOT-CLIP, we calculate the execution time of PLOT and MUOT-
CLIP. Specially, we choose a relatively small dataset EuroSAT and a larger dataset ImageNet to
analyze the scalability of the methods. The total execution time on EuroSAT and ImageNet are
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Algorithm 2 Inference Pipeline of MUOT-CLIP
Input: Query images {xq

i }, pretrained CLIP model with text encoder T and image encoder I,
Learned prompts V∗

k
Parameter: The value of τa, τb and ϵ, maximum number of inner and outer iteration Tin.
Output: Predicted class k∗.

1: Obtain the visual feature of query image Fq
i via I(xq

i ).
2: Obtain the average visual feature of retrieved images F̄s

k via Eq. (8).
3: Obtain the textual feature set G∗

k via text encoder T .
4: Calculate the inter-modality distance dT (F

s
i ,Gk) of Eq. (9) via Eq. (12) with Tin iterations.

5: Calculate the intra-modality distance dT (F
q
i , F̄

s
k) of Eq. (10) via Eq. (12) with Tin iterations.

6: Obtain dk via Eq. (11).
7: return k∗ = mink dk

reported in Table 5 and Table 6. Due to the scalable UOT solver, the latency of MUOT-CLIP is
modest on EuroSAt compared to PLOT. On the larger ImageNet dataset, the execution time of
MUOT-CLIP is less than that of PLOT in most cases.

Shots 1 2 4 8 16

PLOT 28s 55s 58s 141s 171s
MUOT-CLIP 37s 68s 67s 143s 175s

Table 5: Execution time of PLOT and MUOT-CLIP when training on EuroSAT. The random seed is
fixed as 1.

Shots 1 2 4 8 16

PLOT 316s 519s 767s 1733s 3369s
MUOT-CLIP 288s 467s 817s 1742s 3365s

Table 6: Execution time of PLOT and MUOT-CLIP when training on ImageNet. The random seed
is fixed as 1.

Shots 1 2 4 8 16

Tip-Adapter-F 85.70 ± 0.16 86.05 ± 0.46 86.40 ± 0.29 87.66 ± 0.28 89.08 ± 0.27
LP++ 84.24 ± 1.36 85.74 ± 0.56 86.94 ± 0.48 87.71 ± 0.65 88.38 ± 0.61
PLOT 87.27 ± 0.85 87.13 ± 0.60 88.57 ± 0.11 87.17 ± 0.55 87.10 ± 0.44
PLOT+”T-I” 87.70 ± 0.66 88.07 ± 0.31 88.47 ± 0.38 87.83 ± 0.78 87.77 ± 0.06
PLOT+”T-T” 86.77 ± 0.64 86.83 ± 0.60 88.67 ± 0.25 87.13 ± 0.42 86.97 ± 0.32
MOUT-CLIP 87.20 ± 0.53 87.73 ± 0.32 88.63 ± 0.61 87.50 ± 0.53 87.70 ± 0.10

Table 7: Comparison of the mean and standard deviation of the accuracy on OxfordPets dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 67.73 ± 0.57 68.18 ± 0.84 71.17 ± 0.67 84.11 ± 0.49 93.02 ± 0.28
LP++ 78.21 ± 1.01 84.69 ± 0.70 89.56 ± 0.45 92.61 ± 0.32 94.26 ± 0.24
PLOT 72.00 ± 0.50 82.00 ± 1.31 88.27 ± 0.76 92.63 ± 0.47 95.37 ± 0.68
PLOT+”T-I” 72.07 ± 0.61 81.30 ± 0.46 87.80 ± 0.26 92.80 ± 0.10 95.10 ± 0.10
PLOT+”T-T” 74.17 ± 0.38 82.70 ± 1.32 88.60 ± 0.87 92.77 ± 0.40 95.40 ± 0.44
MOUT-CLIP 75.30 ± 0.95 82.83 ± 0.49 88.60 ± 0.20 93.03 ± 0.12 95.13 ± 0.31

Table 8: Comparison of the mean and standard deviation of the accuracy on Flowers102 dataset.
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Shots 1 2 4 8 16

Tip-Adapter-F 18.23 ± 0.19 19.12 ± 0.20 20.55 ± 0.20 23.60 ± 0.29 30.37 ± 0.25
LP++ 19.69 ± 0.39 21.58 ± 0.46 24.22 ± 0.60 27.73 ± 0.48 31.73 ± 0.44
PLOT 17.77 ± 1.25 19.37 ± 0.76 22.80 ± 1.25 26.63 ± 0.71 31.30 ± 0.36
PLOT+”T-I” 19.13 ± 0.42 19.73 ± 0.49 22.90 ± 0.96 27.13 ± 0.68 32.03 ± 0.45
PLOT+”T-T” 19.07 ± 0.78 20.50 ± 0.70 24.17 ± 1.23 27.67 ± 0.70 32.60 ± 0.79
MOUT-CLIP 20.10 ± 0.35 21.10 ± 0.44 24.93 ± 0.29 28.33 ± 0.67 33.53 ± 0.29

Table 9: Comparison of the mean and standard deviation of the accuracy on FGCVAircraft dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 46.92 ± 1.01 48.50 ± 1.08 57.16 ± 0.53 62.38 ± 0.47 65.23 ± 0.82
LP++ 46.97 ± 1.37 52.44 ± 0.99 57.75 ± 0.82 62.42 ± 0.53 66.40 ± 0.50
PLOT 47.23 ± 2.23 51.17 ± 3.71 55.70 ± 0.44 61.60 ± 0.66 65.20 ± 0.53
PLOT+”T-I” 47.37 ± 1.39 53.30 ± 1.39 55.93 ± 0.81 62.63 ± 0.68 66.20 ± 0.62
PLOT+”T-T” 47.67 ± 2.90 51.90 ± 3.53 57.97 ± 0.59 62.57 ± 1.10 66.10 ± 0.52
MOUT-CLIP 48.87 ± 2.00 54.57 ± 0.64 58.27 ± 0.59 63.43 ± 0.67 66.57 ± 1.00

Table 10: Comparison of the mean and standard deviation of the accuracy on DTD dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 47.63 ± 2.64 57.62 ± 1.86 69.30 ± 2.41 75.22 ± 1.32 78.59 ± 1.48
LP++ 57.23 ± 1.63 61.65 ± 1.66 68.67 ± 2.21 75.86 ± 0.99 80.53 ± 1.05
PLOT 56.20 ± 4.60 64.00 ± 4.12 70.77 ± 2.12 78.00 ± 2.26 82.70 ± 0.17
PLOT+”T-I” 59.23 ± 2.30 63.23 ± 2.08 72.63 ± 0.70 79.70 ± 1.54 82.83 ± 0.35
PLOT+”T-T” 57.70 ± 3.05 64.37 ± 0.60 72.37 ± 3.52 78.50 ± 2.72 83.07 ± 0.81
MOUT-CLIP 62.20 ± 2.04 66.17 ± 0.29 75.30 ± 1.22 80.53 ± 2.61 82.93 ± 0.42

Table 11: Comparison of the mean and standard deviation of the accuracy on EuroSAT dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 57.24 ± 0.23 58.12 ± 0.50 59.34 ± 0.20 64.25 ± 0.19 71.38 ± 0.23
LP++ 57.20 ± 0.65 59.95 ± 0.36 63.44 ± 0.34 67.81 ± 0.24 72.33 ± 0.18
PLOT 56.17 ± 0.59 58.40 ± 0.66 62.70 ± 0.70 67.03 ± 0.49 72.90 ± 1.21
PLOT+”T-I” 57.23 ± 0.21 58.60 ± 0.89 63.03 ± 0.74 67.50 ± 0.53 72.27 ± 0.31
PLOT+”T-T” 56.27 ± 0.55 58.30 ± 0.50 63.00 ± 0.90 67.20 ± 0.44 73.07 ± 0.95
MOUT-CLIP 57.63 ± 0.51 58.80 ± 0.80 63.33 ± 0.70 67.47 ± 0.64 72.57 ± 0.06

Table 12: Comparison of the mean and standard deviation of the accuracy on StanfordCars dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 77.53 ± 0.14 77.53 ± 0.22 77.82 ± 0.27 78.26 ± 0.22 78.99 ± 0.15
LP++ 76.61 ± 0.77 77.22 ± 0.55 77.79 ± 0.34 78.53 ± 0.14 78.88 ± 0.19
PLOT 78.03 ± 0.06 77.90 ± 0.50 77.30 ± 0.26 75.50 ± 0.17 77.17 ± 0.51
PLOT+”T-I” 78.00 ± 0.17 78.33 ± 0.21 78.03 ± 0.25 76.13 ± 0.25 77.30 ± 0.17
PLOT+”T-T” 77.70 ± 0.10 77.80 ± 0.53 77.27 ± 0.31 75.63 ± 0.23 77.23 ± 0.35
MOUT-CLIP 77.97 ± 0.15 78.13 ± 0.31 77.93 ± 0.25 76.13 ± 0.15 77.47 ± 0.12

Table 13: Comparison of the mean and standard deviation of the accuracy on Food101 dataset.
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Shots 1 2 4 8 16

Tip-Adapter-F 61.02 ± 0.36 62.15 ± 0.28 63.86 ± 0.19 67.25 ± 0.16 70.94 ± 0.13
LP++ 62.47 ± 0.27 64.65 ± 0.25 67.28 ± 0.27 69.34 ± 0.14 71.23 ± 0.07
PLOT 62.63 ± 0.50 62.37 ± 0.35 65.27 ± 0.45 66.43 ± 0.67 69.63 ± 0.20
PLOT+”T-I” 62.63 ± 0.32 62.97 ± 0.49 65.27 ± 0.67 66.77 ± 0.15 69.60 ± 0.10
PLOT+”T-T” 63.20 ± 0.56 62.77 ± 0.74 65.80 ± 0.56 67.33 ± 0.49 70.37 ± 0.15
MOUT-CLIP 63.43 ± 0.46 63.77 ± 0.23 66.20 ± 0.53 67.80 ± 0.17 70.30 ± 0.10

Table 14: Comparison of the mean and standard deviation of the accuracy on SUN397 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 87.35 ± 0.64 88.17 ± 0.29 89.49 ± 0.25 90.54 ± 0.34 92.10 ± 0.25
LP++ 88.56 ± 0.43 89.53 ± 0.35 90.87 ± 0.19 91.84 ± 0.24 92.73 ± 0.17
PLOT 89.03 ± 0.25 89.87 ± 0.25 90.67 ± 0.06 90.93 ± 0.45 92.93 ± 0.60
PLOT+”T-I” 89.23 ± 0.12 89.73 ± 0.15 91.03 ± 0.06 91.50 ± 0.20 93.03 ± 0.49
PLOT+”T-T” 89.53 ± 0.15 90.13 ± 0.35 91.33 ± 0.12 91.10 ± 0.46 93.10 ± 0.62
MOUT-CLIP 89.67 ± 0.15 90.67 ± 0.29 91.73 ± 0.15 91.93 ± 0.32 93.37 ± 0.38

Table 15: Comparison of the mean and standard deviation of the accuracy on Caltech101 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 64.28 ± 0.54 65.48 ± 0.43 67.61 ± 0.28 72.05 ± 0.53 77.30 ± 0.21
LP++ 65.41 ± 0.37 69.20 ± 0.52 71.68 ± 0.41 74.86 ± 0.36 77.46 ± 0.39
PLOT 64.37 ± 0.48 67.83 ± 0.05 70.67 ± 1.09 75.80 ± 0.52 77.77 ± 0.38
PLOT+”T-I” 64.57 ± 0.15 67.70 ± 0.26 71.77 ± 0.29 77.07 ± 1.16 78.77 ± 0.35
PLOT+”T-T” 65.60 ± 0.95 69.27 ± 0.40 72.37 ± 0.87 75.93 ± 0.40 78.07 ± 0.15
MOUT-CLIP 66.17 ± 0.55 69.87 ± 0.25 73.23 ± 0.12 77.30 ± 0.79 78.83 ± 0.25

Table 16: Comparison of the mean and standard deviation of the accuracy on UCF101 dataset.

Shots 1 2 4 8 16

Tip-Adapter-F 60.59 ± 0.14 61.42 ± 0.05 62.12 ± 0.06 63.41 ± 0.07 65.06 ± 0.04
LP++ 61.18 ± 0.08 61.56 ± 0.14 62.55 ± 0.12 63.76 ± 0.07 64.73 ± 0.05
PLOT 57.90 ± 1.56 59.90 ± 0.50 60.37 ± 1.31 60.57 ± 0.93 60.67 ± 0.38
PLOT+”T-I” 59.53 ± 0.25 59.83 ± 0.21 60.03 ± 0.38 60.53 ± 0.75 60.30 ± 0.35
PLOT+”T-T” 58.20 ± 1.32 60.13 ± 0.50 60.77 ± 0.81 61.33 ± 0.72 61.93 ± 0.35
MOUT-CLIP 59.63 ± 0.31 60.20 ± 0.17 60.77 ± 0.35 61.70 ± 0.53 62.23 ± 0.21

Table 17: Comparison of the mean and standard deviation of the accuracy on ImageNet dataset.

A.4 DETAILED RESULTS FOR COMPARISON AND ABLATION

For each method, we run 3 times under each setting. The mean and standard deviation of the
accuracy of Tip-Adapter-F (Zhang et al., 2022), LP++ (Huang et al., 2024), PLOT (Chen et al.,
2023) , MUOT-CLIP and its variants on all the 11 datasets are reported in Table 7-17. MUOT-
CLIP consistently achieves competitive performance over the baselines. In addition, the overall
performance of the ablated versions of MUOT-CLIP are better than that of PLOT (Chen et al.,
2023), which proves the effectiveness of UOT based inter- and intra- modality distance measure as
well as the contributions of each components.
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Shots 1 2 4 8 16 32 64

OxfordPets 87.2 87.73 88.63 87.5 87.7 88.7 89.87
Flowers102 75.3 82.83 88.6 93.03 95.13 96.63 96.97

FGCVAircraft 20.1 21.1 24.93 28.33 33.53 36.4 35.77
DTD 48.87 54.57 58.27 63.43 66.57 69.33 71.83

EuroSAT 62.20 66.17 75.30 80.53 82.93 85.87 88.3
StanfordCars 57.63 58.8 63.33 67.47 72.57 75.53 75.63

Food101 77.97 78.13 77.93 76.13 77.47 78.4 79.33
SUN397 63.43 63.77 66.2 67.8 70.3 71.93 72.13

Caltech101 89.67 90.67 91.73 91.93 93.37 93.77 93.9
UCF101 66.17 69.87 73.23 77.30 78.83 80.23 81.30

Euro. 62.20 66.17 75.30 80.53 82.93 85.87 88.30
ImgN. 59.63 60.20 60.77 61.70 62.23 62.43 63.00

Table 18: Detailed Results for Shots Ablation.

N 1 2 4 8

OxfordPets 87.33 ± 0.90 87.87 ± 0.21 88.63 ± 0.61 88.70 ± 0.26
Flowers102 87.30 ± 0.62 88.27 ± 0.42 88.60 ± 0.20 88.70 ± 0.10
FGCVAircraft 23.90 ± 2.67 23.90 ± 1.67 24.93 ± 0.29 24.80 ± 0.61
DTD 57.77 ± 0.40 58.10 ± 1.01 58.27 ± 0.59 58.33 ± 0.35
EuroSAT 74.20 ± 0.44 75.20 ± 1.15 75.30 ± 1.22 75.17 ± 0.60
StanfordCars 62.30 ± 0.52 62.97 ± 1.11 63.33 ± 0.70 63.27 ± 0.29
Food101 76.80 ± 1.37 77.03 ± 1.05 77.93 ± 0.25 78.43 ± 0.21
SUN397 66.13 ± 0.25 65.93 ± 0.35 66.20 ± 0.53 66.93 ± 0.32
Caltech101 90.83 ± 0.38 91.33 ± 0.32 91.73 ± 0.15 91.73 ± 0.38
UCF101 71.57 ± 0.40 72.43 ± 0.25 73.23 ± 0.12 73.10 ± 0.17

Table 19: Prompts number ablation on different datasets.The number of shots is fixed as 4.

A.5 DETAILED RESULTS FOR SHOTS ABLATION

To evaluate the performance of MUOT-CLIP with more shots (e.g., 32 shots and 64 shots), we
conduct extensive experiments on all the 11 datasets with 1, 2, 4, 8, 16, 32, and 64 shots respectively.
The number of prompts is fixed as N = 4. In almost all the datasets, MUOT-CLIP achieves the
highest accuracy with 64 shots, which proves its ability to be scalable to more labeled training data.
The detailed results are in Table 18.

A.6 DETAILED RESULTS FOR PROMPTS NUMBER ABLATION

We evaluate the performance of MUOT-CLIP with different number of prompts on various datasets.
The results are reported in Table 19.
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