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Abstract

Understanding material failure is critical for designing stronger and lighter struc-
tures by identifying weaknesses that could be mitigated, predicting the integrity
of engineered systems under stress to prevent unexpected breakdowns, and eval-
uating fractured subsurface reservoirs to ensure the long-term stability of the
reservoir walls, fluid containment, and surrounding geological formations. Existing
full-physics numerical simulation techniques involve trade-offs between speed,
accuracy, and the ability to handle complex features like varying boundary condi-
tions, grid types, resolution, and physical models. While each of these aspects is
important, relying on a single method is often insufficient, and performing a com-
prehensive suite of simulations to capture variability and uncertainty is impractical
due to computational constraints. We present the first foundation model specifi-
cally designed for predicting material failure, leveraging large-scale datasets and a
high parameter count (up to 3B) to significantly improve the accuracy of failure
predictions. In addition, a large language model provides rich context embeddings,
enabling our model to make predictions across a diverse range of conditions. Unlike
traditional machine learning models, which are often tailored to specific systems
or limited to narrow simulation conditions, our foundation model is designed to
generalize across different materials and simulators. This flexibility enables the
model to handle a range of material properties and conditions, providing accurate
predictions without the need for retraining or adjustments for each specific case.
Our model is capable of accommodating diverse input formats, such as images and
varying simulation conditions, and producing a range of outputs, from simulation
results to effective properties. It supports both Cartesian and unstructured grids,
with design choices that allow for seamless updates and extensions as new data
and requirements emerge. Our results show that increasing the scale of the model
leads to significant performance gains (loss scales as N−1.6, compared to language
models which often scale as N−0.5). This model represents a key stepping stone to
advancing predictive capabilities of material science and related fields.

1 Introduction

Fracturing is a common phenomenon observed across a wide range of scientific domains and
engineering applications, including subsurface geology [14], earthquake rupture [13], pipeline
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integrity [24], steel and concrete structures [7], response of human-made systems to impulsive
loads [16], material design [20], high explosives performance [11], and biological structures such as
bones [9], just to name a few. Accurately simulating how these fractures interact with the surrounding
stress field and how they may propagate under strain is crucial for advancements in these fields, but
presents significant challenges due to the high computational costs (full physics simulators) and
complexity (highly heterogenous materials) involved.

Machine learning, and especially natural language processing, has seen remarkable progress through
the development of large-scale models trained on big and diverse datasets [4, 17, 5]. Scientific
domains could similarly benefit from such approaches. However, scientific data presents unique
challenges: it is expensive to generate, challenging for quality control, and often multimodal,
encompassing various formats and simulation types. Despite these hurdles, some scientific fields
have successfully applied large-scale modeling techniques. In protein folding prediction, models
like AlphaFold [15] have achieved unprecedented accuracy in predicting 3D protein structures. In
drug discovery, machine learning models have accelerated the identification of potential therapeutic
compounds [36]. Similarly, in climate modeling, large-scale models have improved the accuracy
of long-term climate predictions [30, 3], and in computational chemistry, they have enhanced the
understanding of molecular interactions [31, 1]. These successes demonstrate the potential of
large-scale models in addressing complex scientific challenges.

In this work, we introduce a multimodal foundation model for predicting material failure. Our
model can perform multiple tasks related to fracture prediction – namely predicting how long it
will take a material to fail after loading and the pattern of fractures that cause the material to fail.
The model is trained on data from three different fracture simulators in a curriculum-style approach.
The first is a rule-based model that captures first order fracture growth behavior and can generate
vast amounts of data on the fly. The second is a quasi-static phase-field fracture simulator that
represents the fracture evolution without considering the inertia of the system. The third uses the
combined finite-discrete element method to capture the full dynamics of a system under load, with
the corresponding fracture initiation, propagation, and arrest, coupled with the resolution of the
interaction between the discrete blocks or parts. This numerical model, while offering the highest
fidelity, is also the most computationally demanding.

Our framework serves as a guide for future work by showcasing how a single foundation model can
progressively learn from datasets with varying levels of physical complexity – ranging from simple,
rule-based simulations to high-fidelity, finite-discrete element models. The model handles diverse
input formats, including both Cartesian and unstructured grids, and supports multiple prediction
tasks such as fracture patterns and time-to-failure across different materials and loading conditions.
This unified approach, which accommodates varied simulation environments and material behaviors,
demonstrates the potential of foundation models to address complex physical systems in ways that
traditional, system-specific models cannot.

We employ a transformer-based architecture derived from the Senseiver [32] model, training models
with up to 3 billion parameters. Our hypothesis is that by scaling to billion-parameter models, coupled
with our architecture, the model will exhibit foundational properties – similar to those observed in
large language models – enabling it to predict material failure across varying material types and
boundary conditions. While still in early stages, this approach shows promise for generalizing
beyond specific datasets and simulation conditions, making it more versatile for a range of scientific
applications. We describe the techniques required to effectively conduct the training of data-driven
models at this scale using scientific data. We also study how the model performance scales both in
terms of the data size and the number of parameters. We find that model accuracy improves much
more rapidly as parameters increase than is found in language models, suggesting that scientific data
may have a structure that can be accurately modeled using fewer parameters than language models.

2 Model Architecture

Our model is built on an encoder-decoder framework designed to handle diverse input types and
perform multiple prediction tasks, Figure 1. While encoder-decoder architectures are common in
other domains, applying them in this context – where the model must process both structured and
unstructured grids and predict complex outputs like fracture patterns and time-to-failure – has not
been widely explored. This combination of handling various grid formats and predicting multiple
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Figure 1: Schematic of our foundation model for predicting material failure.

fracture-related phenomena in a unified framework represents a novel approach in the field of material
science, addressing the unique challenges of fracture failure prediction. The main features of the
model are summarized below, while detailed technical specifications are provided in Appendix A.

2.1 Encoder: Flexible Input Size

The encoder leverages cross-attention mechanisms to process all inputs as 1D sequences (with
multidimensional position encodings – see Appendix A.1), making it agnostic to domain size as
shown in the example predictions of Figure 5. This layer scales linearly with input size. A key aspect
of the encoder is its positional embedding, which maps grid bins to their respective center points.
This is crucial as it allows the model to handle both structured (Cartesian) and unstructured grids
(e.g., triangular elements in our case).

2.1.1 Incorporating Additional Context

Traditionally, context has been integrated using categorical embeddings or trained latent spaces. In
contrast, we propose using a large language model (LLM)-based encoder, offering a more versatile
and future-proof framework. By utilizing rich, pre-trained representations from Meta’s LLaMA-3
8B, our architecture supports a broader range of inputs, including boundary conditions, material
properties, and simulation scenarios. This LLM-based encoder not only retains compatibility with
traditional categorical classes but also expands the model’s ability to generalize across diverse input
types. This architecture ensures adaptability and longevity, allowing us to continuously refine the
base model as new data and tasks emerge. Details about the creation of the LLM embeddings can be
found in Appendix B.

2.2 Decoder: Multiple tasks

When predicting material failure, two factors are key: the final fracture pattern and the time it takes
to reach that point. Our decoder addresses these aspects by generating the final fracture pattern from
an initial condition and predicting the time-to-failure, typically measured in milliseconds. Using
trainable task embeddings, the model outputs both an image of the failure pattern, matching the input
size, and a floating-point number representing the time until failure under specific conditions. This
process is illustrated in Figure 1.

3 Pre-training

3.1 Hardware and Training set-up

We trained our model in the Venado supercomputer housed at Los Alamos National Laboratory.
Named after the Venado Peak (a mountain near Taos, New Mexico), the exascale supercomputer
system consists of 2,560 Nvidia Grace Hopper superchips. Each chip integrates a Grace CPU with
a Hopper architecture GPU, featuring 44 Arm cores. This hardware is well-suited for large-scale
training tasks due to its high computational memory and fast processing capabilities [29]. We used
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16 nodes, each equipped with four H100 GPUs, totaling 64 H100 GPUs for our training setup. To
efficiently distribute the training across these GPUs, we employed DistributedDataParallel (DDP)
with PyTorch Lightning [6]. DDP was selected for its excellent scalability and straightforward
implementation. The ample memory of the H100 allowed the entire model to be loaded on each GPU,
enabling full utilization of parallel processing capabilities. In this setup, each GPU independently
processed different mini-batches with minimal communication overhead, resulting in faster and more
efficient training without the need for complex configurations.

3.2 Pre-training objective

Pre-training played a crucial role in our model’s development. By exposing the model to a large body
of uncurated data, it began to focus on important patterns and key structures, which are essential
for generalization. During pre-training, we generated data on the fly to ensure that the model learns
the tasks effectively. The objective of this first-phase is for the model to understand how to produce
the earliest failure pattern of the material and to approximate the physical time it takes to reach that
pattern.

L =
1

N

N∑
i=1

[−yfi log(ŷfi)− (1− yfi) log(1− ŷi)] +
1

N
(ŷt − yt)

2 (1)

The loss function L consists of two main terms: the first term is the binary cross-entropy loss,
averaged over N , the number of elements in the grid, where yfi represents the true label indicating
the presence or absence of a fracture at the ith element, and ŷfi is the predicted probability of the
failed fracture pattern at that element. The second term is the mean squared error between the
predicted time to failure ŷt and the true time to failure yt.

3.3 Rule-based algorithm for the creation of data

The pre-training of the model is based on the data coming from a rule-based algorithm emulating the
fracturing of materials. The algorithm grows the fractures in the direction normal to the load. For
example if the material is pulled vertically, the fractures grow horizontally following two growth
rules: (-) “X” growth: where the fractures can break through other fractures and continue growing. (-)
“T” growth: where the fractures stop their expansion when they collide with another fracture. These
two scenarios, even if implemented in a rule-based algorithm, are realistic for material fracturing [41].
For example, these models have been successful in predicting fracture growth in sea ice [38]. The
algorithm implementation is detailed in Appendix C.1 together with examples of the generated
failure patterns (Figure 10). The rule-based algorithm generates new realizations within milliseconds,
allowing us to produce data dynamically during training. Instead of relying on a fixed dataset, we
create new realizations at each optimization step. These rule-based simulations run on 72 cores the
Grace CPU while the model is trained on the Hopper GPU.

3.4 Scaling study

We conducted a series of experiments to evaluate how the number of parameters influences the value
of the final loss and, consequently, its accuracy. To scale our model, we increased the number of
channels in both the encoder and decoder, as well as the number of attention blocks. During training,
we varied the position of the fractures within the domain, effectively generating an infinite dataset via
on-the-fly data generation.

In Figure 2 we present the loss curves and accuracy during training, parameterized by model size,
which ranges from 103k to 120M parameters. Detailed hyperparameters for each of these models are
provided in Appendix A.4. By increasing the model size, the final training loss decreases following
the relationship:

L =
3.91× 106

Nparams
1.58 + 3.48× 10−3. (2)

This trend is illustrated in the left panel of Figure 2. We further scaled our model up to 800 million
and 3.2 billion parameters, as shown in Figure 3. When trained with a constant learning rate, as done
in experiments with smaller models, the loss plateaued at a high value and did not decrease further.
To address this, we implemented a learning rate scheduler [8] including a warm-up phase where the

4



0.0 0.5 1.0 1.5 2.0 2.5
Steps ×106

0.01

0.1

L
os

s

0.0 0.5 1.0 1.5 2.0 2.5
Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.95

1.00

Nparams:

Nparams

0.01

103 k 441 k 1.421 M 5.530 M 21.808 M 120.196 M

Figure 2: Training loss (Eq. 1) and accuracy across models with varying parameter counts. Left:
Loss decreases consistently with increased parameters, as shown in the inset plot highlighting the
relationship between parameter count (Nparams) and loss. Right: Accuracy improves significantly
with larger models, nearing 100% for models with over 1 million parameters. Insets detail perfor-
mance differences at high accuracy levels.
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Figure 3: Loss curves illustrating the impact of a warm-up phase on training performance for two
large model sizes (815M and 3.258B parameters). Models trained with a warm-up phase (solid lines)
show significantly improved convergence compared to those trained with constant learning rates
(dashed lines). The results indicate that a warm-up phase is crucial for effectively training larger
models with scientific data.

learning rate increased from 0 to a set point of 10−4 over the first 100,000 steps, followed by a decay
according to a cosine schedule. With the scheduler in place, the model was able to train successfully.

3.5 Pre-training with LLM embeddings context

We conducted a proof-of-concept experiment to evaluate the use of LLM embeddings, leveraging
pre-training data generated by the rule-based algorithm. We hypothesize that incorporating LLM
embeddings will enhance the model’s ability to differentiate between various loading conditions,
fracture orientations, and material types. By embedding these contextual elements during training,
we aim to enhance the model’s ability to generalize across diverse scenarios, improving its predictive
accuracy and versatility. This integration provides a more nuanced understanding of the physical
parameters involved, potentially leading to more robust predictions across a variety of material failure
conditions. In the long term, these language model embeddings will provide a flexible way to describe
simulator types, boundary conditions, material properties, etc.
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The rule-based model simulates two growth behaviors, X and T. This data contains simulation that
use different boundary conditions that either load the material vertically or horizontally, creating
either horizontal or vertical fractures (respectively). We created four LLM embeddings describing
these scnearios, and we employed three of them for training (T-growth horizontal, T-growth vertical,
X-growth horizontal) and the remaining one for testing (X-growth vertical). We trained a model to
predict failure patterns and time to failure for the three training combinations, and we proved the
ability of the model to generalize to the X-growth vertical case – accurate zero-shot prediction. In
Table 1 we compare the accuracy on the prediction of the the failure pattern for the four cases and
in Figure 4 we show in a parity diagram the time to failure predictions for a test set made by 1000
samples. The model achieves over 96% accuracy in predicting failure patterns across all cases in the
test set, and the time-to-failure predictions demonstrate satisfactory performance for this pre-trained
model. As shown in Figure 5, the model is capable of learning the task regardless of image size (with
edges ranging from 80 to 512 pixels) or the number of fractures (between 10 and 30) in the domain.

Horizontal Vertical
T 96.95% 98.54%
X 96.74% 98.33%

Table 1: Accuracy on the fail-
ure pattern for 1000 examples,
blue shades: training embed-
dings, red: testing embedding.
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Figure 4: Time to failure parity diagram, the colors
refer to Table 1.

4 Fine-tuning

We employ a two-step fine-tuning process: first with phase-field simulations and then with finite
discrete element method simulations. This fine-tuning step is critical, as phase-field and finite discrete
element method are powerful physics-based models, offering a far more realistic representation of
material failure than the rule-based models used in pre-training. While the rule-based data provides
the model with foundational learning, fine-tuning on these high-fidelity simulations allows the model
to capture more complex behaviors, ensuring it can generalize effectively to real-world scenarios.

4.1 Phase-field simulations dataset

In the first step of fine-tuning, we employ a phase-field method to generate fracture simulation data.
The phase-field simulation method approximates fractures with a nonlinear diffusive phase-field
[10, 40] driven by the accumulation of elastic strain energy. The phase-field introduces a degradation
to an elastic medium as explained in Appendix C.2. The major advantage of this method is that it can
represent complex fractures and fracture network naturally without explicitly specifying individual
fractures. It can be formulated as explicit time-domain process or quasi-static process. In this work,
we solve the fracturing propagation problem as a quasi-static process to improve the computational
efficiency using the algorithm detailed in Appendix C.2.

We first generate random fracture configurations with orthogonal fractures randomly distributed
in space, and set the initial fractures with a value of one as the initial condition of the phase-field.
We then use this initial condition along with pulling boundary conditions where each model is
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Figure 5: Examples of model predictions of different domain sizes and with varying number of initial
fractures.

stretched from the top and bottom simulate uniaxial tension. With the increase of displacement on the
boundaries and within the model, the strain energy accumulates and the phase-field grows, mimicking
the propagation of fractures. The growth of fractures stops until full failure of the model occurs, i.e.,
where there is connected fracture path between the boundaries of a model.

Three materials, including steel, copper, and PBX-9501 (a polymer-bonded explosive), are simulated
using this model. For each material, 50,000 simulations were conducted, each with a unique random
initial fracture pattern. Of all the simulation data, 90% were used to fine-tune the model, while 5,000
simulations were reserved for testing. Three new LLM embeddings have been created to characterize
the materials and the phase-field model as source of the data.
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Figure 6: Comparison of the training loss of the pre-trained
model vs training from scratch

Material Training set Test set

PBX 0.0189 0.0372
Steel 0.0271 0.0416

Copper 0.0209 0.0290

Table 2: Mean cross-entropy
loss for the training and the
test set for three different ma-
terials.
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Initial Configuration Phase-Field Failure Pattern Prediction
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Figure 7: Comparison of the initial configuration, target, and prediction for PBX-9501, steel, and
copper. The predictions spans between 0 to 1 as they are the raw output of a sigmoid function from
the last layer of the network.

In Figure 6, we present a comparison of the loss curves between a pre-trained model (trained on
the rule-based data as explained in the previous section) and a model trained from scratch (default
initialization in Pytorch). The pre-trained model consistently shows a lower loss, demonstrating an
advantage over training from scratch. This advantage is particularly valuable when the available
dataset is small, as pre-training helps mitigate overfitting. In order to evaluate our fine-tuned model,
we employed cross-entropy as the evaluation metric since it allows us to directly assess the model’s
output without the need to set a threshold for the predictions. Table 2 compares the cross-entropy
values for both the training and test sets, and for the three different materials (PBX-9501, steel, and
copper), showing that our model is not overfitting. Additionally, Figure 7 provides examples of test
set predictions for the three materials, the model predictions spans between 0 to 1 as they are the
raw output from the last layer of the network, representing the model uncertainly in predicting the
presence of a fracture.

4.2 Finite discrete elements simulations dataset

In the second step of fine-tuning, we employ an advanced deformation and fracturing parallel solver,
Hybrid Optimization Software Suite (HOSS) [18], to simulate how a material behaves under axial load.
The simulation domain consists of a 0.25m by 0.25m plane strain sample that contains predefined
horizontal and vertical fractures. In the simulations, the sample was stretched from both the top and
bottom at a constant speed of 1 m/s to simulate uniaxial tension.
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Figure 8: Comparison of the initial configuration, target, and prediction for a HOSS test example.

HOSS is particularly powerful because it not only can model the overall dynamic behavior of a
material but also can accurately capture the fracture processes and interactions between different
discrete parts of the material. In addition, the HOSS simulations are built on unstructured triangular
meshes, which allow for easy incorporation of these preexisting fractures. The computational cost
of HOSS simulation essentially depends on the size of the model, the mesh resolution being used,
and the total simulation time. More details of the HOSS dataset generation and the corresponding
simulation methods are included in Appendix C.3. In order to work with unstructured simulation
data, we implemented a positional encoder that takes as input the coordinates and the associated field
values. This positional encoder can deal with both structured (e.g. images) and unstructured data as
well as short- and long-range spatial relations.

We further fine-tuned the foundation model using the model fine-tuned on the phase-field simulations
to initialize the parameters. This allows us to take advantage of the patterns learnt from the phase-field
dataset training. In fact, we trained on 19000 computationally expensive simulations of PBX-9501,
so the pre-training on the larger phase-field dataset is instrumental for the success for the HOSS
fine-tuning of the model. We used 1000 HOSS simulations as our test set, one sample is shown in
Figure 8, along with the corresponding model predictions. The overall cross-entropy for the training
set is 0.01506, while the one for the test set is 0.0607. This indicates that our foundation model is
performing well on the HOSS simulations, which have a much smaller dataset than the rule-based
and phase-field simulators.

5 Conclusions

In this work, we introduced the first multimodal foundation model for predicting material failure, ca-
pable of handling a diverse range of input types and simulation conditions. Our proposed architecture
demonstrates strong potential for generalization across various complex fracture datasets, moving
beyond the limitations of previous models [25, 35, 12, 39], which were often restricted to specific
material systems and boundary conditions. We found that increasing the number of parameters caused
the loss to drop rapidly on our pre-training dataset – much faster than that of language models. It
remains an open question if this scaling will hold for more complex physics models. We hypothesize
that as the physics becomes more complex and diverse (e.g., including nucleation, fluid flow, grain
boundaries, plasticity, etc.), larger models will be needed to accurately reproduce these multiscale
complex physics simulations. By leveraging large-scale data and a flexible, scalable architecture, our
approach significantly improves the model’s ability to handle both structured and unstructured grids,
predict different fracture behaviors, and accommodate varying loading conditions.

While our results are preliminary, the use of large-scale models, embeddings, and physics-informed
fine-tuning shows promise for broad applicability in material science and related fields. A truly
general material fracture model would have broad applicability in engineering, geoscience, and
beyond for design, optimization, and real-time predictions.
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A Architecture details

The model’s forward pass is composed of two primary components: an encoder and a decoder, which
work together to process input data and generate desired outputs. The main hyperparameters for both
the architecture and training process are outlined in Table 3, while the parameters used to scale up the
architecture are listed separately in Table 4.

Hyperparameter Value

Space bands in positional encoder 32
Number of latents 2048
Number of cross attention heads (encoder) 2
Number of self attention heads (encoder) 2
Number of cross attention heads (decoder) 1
Number of layers Tab. 4
Number of channels Tab. 4
Gradient accumulation 64
Gradient clipping 0.5
Weight decay 0.1
Learning rate (set-point) 10−4

Table 3: Hyperparameters of architecture and training

A.1 Input Processing and Encoding

The encoding process is carried-out as follows:

• Positional Encoding: To help the model distinguish spatial locations, an n-dimensional
positional encoding based on sine and cosine functions is concatenated with each pixel of
the input data. For structured grids, this encoding aligns with the Cartesian coordinates.
For unstructured grids (e.g., in finite element simulations), the positional encoding uses the
coordinates of the element centers, allowing the model to capture the spatial context of the
unstructured data.

• Linear Layer: The input data, which may come in different formats such as Cartesian or
unstructured grids, is initially processed by a linear layer to fit the input’s dimension with
the rest of model’s architecture.

• Latent Representation Initialization: Learnable latent vectors are initialized and repeated
across the batch to match the input size, forming the foundation of the model’s internal
representation.
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Figure 9: Schematic of the integration of the LLM embeddings in the encoder.

• Cross-Attention: Cross-attention is applied between the input data and latent vectors, en-
abling the latent vectors to extract relevant information and refine the internal representation.

• Self-Attention Layers: The latent representation is further processed through self-attention
layers, capturing complex relationships within the latent space. Residual connections
stabilize training and enhance learning efficiency.

A.2 LLM integration

The decoder incorporates additional contextual information from a large language model (LLM)
by embedding LLM-generated features into the latent space. This integration enhances the latent
representation with nuanced, context-specific information, which is particularly valuable for tasks
such as predicting material fractures or interpreting complex spatial behaviors.

To integrate the LLM embeddings with the encoder output, we first applied a linear layer to reduce
their dimensionality to number of channels of the encoder. After applying self-attention to this
representation, we concatenated it with the encoder output, enabling more robust feature integration.
A schematic illustrating this integration is shown in Figure 9.

A.3 Decoding and Output Generation

• Cross-Attention and Output Vectors: The decoder applies cross-attention mechanisms
to merge the enriched latent representation with specific output vectors. These vectors are
divided into two categories:

– Field Outputs: These vectors generate spatial predictions, such as fields or images
that represent the material’s condition across a grid.

– Scalar Outputs: These vectors produce single-value predictions, such as time-to-
failure estimates or other scalar quantities of interest.
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A.4 Scaling up the architecture

Details of the scale-up of the models of Figure 2- 3. We modified the number of channels in the
encoder and in the decoder, and the number of self attention layers as in Table 4. All the other
parameters have been kept constant as detailed in the previous Appendix A.

Nparams
Number of channels

encoder
Number of channels

decoder Number of self attention layers

• 103 k 32 32 3
• 441 k 64 64 4
• 1.421 M 128 128 3
• 5.530 M 256 256 3
• 21.808 M 512 512 3
• 120.196 M 1024 1024 5
• 815 M 2048 2048 10
• 3.258 B 4096 4096 10

Table 4: Scale-up of the models: hyperparameters tuned.

B Creation of LLM embeddings

We utilized a pre-trained large language model, Meta-Llama-3.1-8B-Instruct [37], to generate embed-
dings for various fracture scenarios involving different materials, fracture types, and directions of
applied shear stress. This process allows us to capture the model’s contextual understanding of these
scenarios, which can aid the downstream tasks.

We crafted a diverse set of prompts designed to describe different fracture scenarios. Each prompt
incorporates a specific fracture type, material, and direction of applied shear stress. The prompts
were formulated in multiple sentence structures to introduce variability in the input data and to ensure
comprehensive coverage of potential scenarios.

To understand how the model processes these prompts, we extracted self-attention activations from
selected layers within the model (the first layer, layers 7, 15, and the final layer). Self-attention
activations provide insights into how the model attends to different components of the input sequence,
revealing the internal mechanisms through which the model encodes the provided information.

For each unique combination of fracture type, material type, and shear stress direction, the corre-
sponding prompt was fed into the model. As the model processed the prompt, the self-attention
activations were captured and stored. These activations, representing the model’s internal state at
different layers, were saved as embeddings.

C Datasets

C.1 Rule-based algorithm

This algorithm simulates the propagation of fractures in a 2D material grid over time and checks
for material failure. It begins with initializing a material matrix where cells represent non-fractured
(0) or fractured (1) points. Fractures propagate from specified initial points (called “tips”), which
move in a predefined direction each timestep (horizontal or vertical). The fracture tips have a
freezing mechanism, which temporarily halt their movement when they encounter other fractures,
depending on the simulation mode. In the T growth mode, the fractures stop their expansion when
they encounter other fractures, while in the X growth mode, the fractures freeze temporarily then
continue to propagate in the same direction. As fractures propagate, the material grid is updated to
reflect fractured cells over multiple time steps. The fractures are then analyzed using graph theory,
where the grid is represented as a graph, and neighboring fractured cells are connected by edges. The
algorithm checks if there is a path across the material, either vertically or horizontally, which would
indicate material failure. If such a path exists, the simulation records the time of failure.
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Figure 10: Examples of outcomes of the rule-based algorithm. Initial configuration of the fractures,
Failure pattern for the four different simulation modes: X horizontal, X vertical, T horizontal, T
vertical. In red the path connecting the boundaries of the material (right-left for horizontal growth,
top-bottom for vertical growth) causing the material failure.

Failure patterns for X or T, horizontal or vertical, are shown in Figure 10.

C.2 Numerical simulation of fracture propagation using the phase-field method

In the phase-field fracture propagation theory, the elastic constitutive relation reads [10, 40]:

σ(u) =
[
(1− ξ)(1− ψ)2 + ξ

]
c :

(
∇u+∇uT

)
, (3)

where c = c(x) = cijkl(x) is the fourth-order elasticity tensor of the matrix with up to 21 independent
components; ξ is a small positive number to avoid instability at the fracture ψ, The Neumann boundary
condition for σ is σ · n = tN , where n is the normal vector of the Neumann boundary ∂ΩN of the
computational domain Ω, and t is an external force.

The evolution of the fracture phase-field ϕ is driven by the so-called positive elastic strain energy.
Based on the principle of variation, the governing equation for fracture evolution can be written as
[10, 40]:

Gc

(
w−1

0 ψ − w0∇2ψ
)
= 2(1− ψ)H+(ε, t), (4)

where 2w0 is the characteristic width of a fracture and Gc is the critical energy release rate; H+(ε, t)
is a history energy field defined as the maximum positive elastic energy at x up to t:

H+(ε, t) = max
τ∈[0,t]

Φ+(ε, τ). (5)

While there are a number of choices to define the positive elastic strain energy function Φ+, here we
choose one based on the elastic tensor c in a general form for computing the following elastic energy:

Φ+(ε, t) =
1

2
(ε+)T : c : ε+, (6)

where the tensile-positive elastic strain tensor reads

ε+ =
[
ε+xx, ε

+
yy, ε

+
zz, εyz, εxz, εxy

]T
, (7)

with the tensile-positive strain tensor defined as

ε+ij =
1

2
(εij + |εij |) , (8)

where εij = 1
2 (∂iuj + ∂jui) is the strain tensor. The above definition allows us to define the history

energy function for both isotropic and anisotropic materials in a unified formulation.

We solve the above fracture evolution system using our in-house solver. In specific, we use spectral
elements [19] to discretize the elastic constitutive equation and the phase-field evolution equation,
where the unknowns are vector particle displacement field u and the scalar phase-field ϕ, respectively.
We use an iterative Krylov subspace solver along with a symmetric successive over-relaxation (SOR)
preconditioner to solve the associated sparse linear systems provided by the numerical library PETSc
[2].
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To generate fracture simulation data with the above phase-field method, we first generate a total of
one million 2D random fracture models, where we place a random number of randomly distributed
fractures inside a square domain with a dimension of 0.25 m by 0.25 m. The orientations of the
fractures are either 0 or π/2. Therefore, the resulting fractures are orthogonal in terms of orientation,
but not all of them are overlapping. In this application, we assume varying Dirichlet boundary
conditions, u+

z = t m and u−
z = −t m, where t is the time, as the pulling forces along the vertical

directions of the domain. We discretize the model domain with a total of 127× 127 regular first-order
spectral elements, resulting in a total of 128× 128 degrees of freedom for the phase-field equation 4
and a total of 2× 128× 128 unknowns for the elastic constitutive equation 3 in the 2D scenario.

Figure 11 displays two examples of the generated random fracture models and the snapshots of
fracture evolution under the prescribed boundary conditions for a material, PBX-9501. The material
has a Young’s modulus of 10 GPa, a Poisson’s ratio of 0.36, and a density of 1,820 kg/m3. We adopt a
critical energy release rate of 641 N/m. The results indicate the strong nonlinearity and complexity of
fracture evolution of this material. For both materials, the fracturing occurs after a certain amount of
vertical displacement of boundaries, and quickly propagate to model boundaries. For the first model,
it reaches full breakage (i.e., material failure) at 0.14 ms. However, for the second random fracture
model, the failure does not occur until 0.7 ms, although a partial failure is observed at 0.2 ms. The
results indicate that even for the same material and with the same boundary condition, the pattern
of preexisting fractures may result in notable differences in the final failure pattern and failure time.
From a physics simulation point of view, there is not a simple rule to determine the failure time and
final pattern unless a simulation is conducted. This is where our work aims to achieving through the
aforementioned foundation model trained by a large amount of such fracture simulation data.
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Figure 11: Two examples of random fracture models (a, e) and fracture simulation results (b-d, f-h)
at different time. Note that the failure time (where full breakage of material occurs) of these two
fracture models are different.

In this work, we performed fracturing simulations for a total of three materials: PBX-9501, steel, and
copper. The elasticity parameters of the three materials are detailed in Table 5.

Currently, our in-house phase-field simulator does not consider plasticity (or ductility) of the materials,
but only consider elasticity (brittleness) of the materials. However, since plasticity is an important
mechanical property of many materials, particularly of metals, we are currently working on including
both elasticity and plasticity into the phase-field solver with models such as [34]. Nevertheless, we
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Material C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) ρ (kg/m3) Gc (J/m2)

PBX-9501 15.9 8.5 15.9 3.7 1,820 641
Steel 282.7 121.2 282.7 80.8 7,850 105

Copper 168.4 121.4 168.4 75.4 8,960 20

Table 5: Properties of the materials used in the simulation. C11, C13, C33, and C55 are elasticity
matrix parameters of the material in the Voigt notation; ρ is the mass density, and Gc is the Griffith
critical energy release rate of fracture.

hypothesize that the efficacy and accuracy of our aforementioned foundation model will remain
intact.

C.3 Numerical simulation of fracture propagation using the combined finite discrete-element
method

The Hybrid Optimization Simulation Suite (HOSS) [18] is an advanced computational framework
designed for simulating complex material behaviors, including fracturing and fragmentation. Re-
searchers use HOSS due to its robustness, advanced algorithms, massive parallelization features, and
versatile capabilities. HOSS results have been validated by numerous independent experiments [18].
The non-exhaustive list of HOSS applications include the following: experimental rock mechanics
(e.g. triaxial uniaxial), wellbore and drilling stability, building integrity, seismic studies, high ve-
locity impacts, thermal-hydraulic-mechanic behavior, high explosive performance, tissue and cell
experiments, and weapons penetration.

HOSS employs the combined finite-discrete element method [27] which merges finite element
based analysis of continua with discrete element based transient dynamics, contact detection, and
contact interaction solutions. The solid domain is divided into finite elements, assuming finite
rotations and displacements, and analyzed using a multiplicative decomposition for finite strains [28].
Here, composite triangular elements use selective stress integration to prevent artificial stiffness or
locking. They also employ a unified hypo/hyper-elastic approach that accepts user-defined isotropic
or anisotropic material models[23, 21]. When failure, fracture, or fragmentation occurs, a single
finite element mesh breaks into multiple interacting domains. The same finite element approach is
used to handle the contact between these discrete elements[26]. In-house state-of-the-art discretized
contact solutions handle contact detection and contact interaction[18, 22]

To generate fracture simulation data we first incorporate the same initial seeded fractures generated
from C.2. The randomly distributed fractures are placed in our 2D square domain that is 0.25 m
by 0.25 m that is also confined on the top and bottom by 5 mm plates (Figure 12). We assume free
boundary conditions for the sides of the model and use a linear ramping (0 to 1 · 10−6 s) nodal
velocity boundary conditions for the plates that are ±1 m/s (pulling). We use a fixed time increment
of 1 · 10−8 s. As we can not anticipate the exact time to failure of the material during the simulation
we allow each simulations to run for a specified wall-clock time of 1 hour and 30 minutes using 8
MPI domains and CPU cores, which is the typical duration needed to achieve full failure. Current
simulations use the same isotropic material properties and cohesion terms of a typical brittle rock.
With increasing ML performance new materials and varied conditions will be implemented and
trained on.

Since the simulations produce displacement between fractures the initialized domain increases in size
vertically (Figure 12). These results produce an unstructured grid of information that may also be
long past the first time to failure step. To resolve these difficulties results are post-processed using
the python pyvista package[33] which retains the edges of the elements that fractured in the earliest
failure time while simultaneously retaining the same grid of the initialized domain. Similar to the
phase-field results (C.2) there are a host of complexities that make the results suitable for foundation
model training. Strong nonlinearity and complex fracture patterns emerge due to small perturbations
in preexisting fracture patterns, which cannot be determined ad hoc.
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Figure 12: Single HOSS fracture example at different time steps. Note, time to failure could be
earlier in the simulation but requires post-processing from the final fracture pattern.
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