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Full Point Encoding for Local Feature Aggregation
in 3-D Point Clouds
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Abstract— Point cloud processing methods exploit local point
features and global context through aggregation which does not
explicitly model the internal correlations between local and global
features. To address this problem, we propose full point encoding
which is applicable to convolution and transformer architectures.
Specifically, we propose full point convolution (FuPConv) and
full point transformer (FPTransformer) architectures. The key
idea is to adaptively learn the weights from local and global
geometric connections, where the connections are established
through local and global correlation functions, respectively.
FuPConv and FPTransformer simultaneously model the local
and global geometric relationships as well as their internal
correlations, demonstrating strong generalization ability and high
performance. FuPConv is incorporated in classical hierarchical
network architectures to achieve local and global shape-
aware learning. In FPTransformer, we introduce full point
position encoding in self-attention, that hierarchically encodes
each point position in the global and local receptive field.
We also propose a shape-aware downsampling block that
takes into account the local shape and the global context.
Experimental comparison to existing methods on benchmark
datasets shows the efficacy of FuPConv and FPTransformer
for semantic segmentation, object detection, classification, and
normal estimation tasks. In particular, we achieve state-of-the-
art semantic segmentation results of 76.8% mIoU on S3DIS
sixfold and 73.1% on S3DIS Area 5. Our code is available at
https://github.com/hnuhyuwa/FullPointTransformer.

Manuscript received 2 March 2023; revised 24 November 2023 and 8 April
2024; accepted 1 June 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant U2013203, Grant
62373140, Grant U21A20487, and Grant 62103137; in part by the National
Key Research and Development Program under Grant 2023YFB4704500; in
part by the Project of Science Fund for Distinguished Young Scholars of
Hunan Province under Grant 2021JJ10024; in part by the Leading Talents
in Science and Technology Innovation of Hunan Province under Grant
2023RC1040; in part by the Project of Science Fund of Hunan Province under
Grant 2022JJ30024; in part by the Project of Talent Innovation and Sharing
Alliance of Quanzhou City under Grant 2021C062L; in part by the Key
Research and Development Project of Science and Technology Plan of Hunan
Province under Grant 2022GK2014; and in part by the Natural Science Fund
of Hunan Province under Grant 2022JJ40100. The work of Ajmal Mian was
supported by the Australian Research Council Future Fellowship Award by the
Australian Government under Project FT210100268. (Yong He and Hongshan
Yu contributed equally to this work.) (Corresponding author: Hongshan Yu.)

Yong He, Hongshan Yu, Xiaoyan Liu, and Wei Sun are with the College
of Electrical and Information Engineering, School of Robotics, Quanzhou
Institute of Industrial Design and Machine Intelligence Innovation, Hunan
University, Yuelu, Changsha 410082, China (e-mail: h.yong@hnu.edu.cn;
yuhongshancn@hotmail.com; xiaoyan.liu@hnu.edu.cn; david-sun@126.com).

Zhengeng Yang is with the College of Engineering and Design,
Hunan Normal University, Yuelu, Changsha 410082, China (e-mail:
yzg050215@163.com).

Ajmal Mian is with the Department of Computer Science, The
University of Western Australia, Perth, WA 6009, Australia (e-mail:
ajmal.mian@uwa.edu.au).

Digital Object Identifier 10.1109/TNNLS.2024.3409891

Index Terms— 3D point clouds, convolution, deep learning,
global context, local features, transformer.

I. INTRODUCTION

POINT cloud processing has drawn considerable research
interest due to its wide range of applications in

autonomous driving [1], [2], [3], robotics [4], and industrial
automation [5]. Learning effective features from raw point
clouds is difficult due to its irregular nature. Early methods
transformed points into regular grids (e.g., multiview images
[6], [7], voxels [8], [9]), for seamless application of grid
convolutions. However, the discretization process inevitably
sacrifices important geometric information, distorts object
shapes, and results in a huge computational overhead.

To learn features from raw point clouds, the pioneering work
PointNet [10] employs shared multilayer perceptrons (MLPs)
on each point and uses maxpooling to aggregate the features
into a global representation. Such a design ignores local
structures that are crucial for shape representation. To alleviate
this problem, PointNet++ [11] additionally exploits local
aggregation and adopts MLPs to learn local features. However,
the local aggregator still treats the points independently, losing
sight of the overall shape.

To gain a deeper understanding of the shape inherent in
irregular point clouds, it is essential to employ the correlation
function to quantify the connection among points, allowing
the model to leverage the fine-grained details (e.g., edge,
corner, and surface) and contextual information (e.g., scene
layout). Inspired by 2-D convolutions, some methods exploit
point convolutions that learn the convolutional weights from
local geometric connections. Early point convolutions use
MLPs [12], [13], [14], [15], [16] as the convolutional weight
function to learn weights from point coordinates. Other works
approximate the weight functions as correlation functions [17],
[18], [19], [20]. Some methods associate coefficients (derived
from point coordinates) [15], [16], [21] with weight functions
to adjust the learned weights.

Self-attention was introduced to focus on important details
in point clouds. Early methods in this category usually
operate on global receptive field [22], [23], [24], [25], [26],
[27] and learn the attention maps through a scalar dot-
product. Differently, point transformer (PT) [28] employs
self-attention to the local receptive field and uses vector
attention instead of scalar dot-product for learning the local
geometric connections. Applying aggregation modules on
local regions can effectively learn the local structure, but
falls short of capturing the global context. To learn both

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 06,2024 at 07:44:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2916-3068
https://orcid.org/0000-0003-1973-6766
https://orcid.org/0000-0001-6880-4441
https://orcid.org/0000-0002-8953-2235
https://orcid.org/0000-0002-8644-2998
https://orcid.org/0000-0002-5206-3842


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Full point position encoding makes each point aware of its
position in the global and local receptive field (top), helping the proposed
FPTransformer to simultaneously model global and local geometric cues as
well as their internal correlations. FPTransformer enhances discriminating
features of long-range shapes, e.g., edges, improving full shape awareness.

local and global features, some methods integrate local and
nonlocal feature aggregation modules into their network in
a serial [26], [29] or parallel [27] manner. However, such
pipelines still ignore the internal correlations between the
local and global features local and the global features besides
significantly increasing the network parameters and leading
to poor generalization. Although hierarchical architecture
can help local aggregation to get a global receptive field
and learn global features, this has three limitations: shallow
encoding layers over limited local receptive field can not
learn the super long-range features of high-resolution points;
deep encoding layers over global receptive field struggle to
accurately learn super long-range features of low-resolution
points; the robustness of global features learned by deep
encoding layers highly depends on the local features learned
by shallow encoding layers.

We propose full point position encoding, applicable to
convolution and transformer modules. Specifically, we propose
full point convolution (FuPConv) and Full PT (FPTransformer)
that exploit the local features and global context along with
their interactions. FuPConv learns the global points layout
in the global receptive field by a global correlation function,
and then learns the local points layout in the local receptive
field by a local correlation function, in a hierarchical manner.
In FPTransformer, we introduce a novel position encoding
scheme into the self-attention that fully encodes the position
information in the local as well as the global receptive field
in a hierarchical manner. This makes each point aware of
its position in the global and local structure. To summarize,
the full point encoding in the FuPConv and FPTransformer
learns global features within the global receptive field, then
groups these global features into the local receptive field,
and finally learns local features based on these grouped
global features over the local receptive field. By alternately

encoding features in the global and local receptive field
within every local aggregation, full point encoding makes
each point aware of its position in the global and local
structure, helping local aggregation to better connect the
global features with the local features over multiple different
resolution points. Fig. 1 intuitively compares the local position
encoding (LPE) in PT [28] to full point position encoding
in our FPTransformer. FPTransformer enhances the feature
discrimination of long-range shapes (e.g., edges), improving
full shape awareness. In FPTransformer, we also propose a
shape-aware downsampling block that integrates hierarchical
MLPs with the farthest point subsampling to maintain the
shape information in terms of point positions as well as
features. Our contributions are summarized as follows.

1) We derive a general formulation for local feature
aggregation methods, including local point-wise MLP,
point convolution, and PT, to highlight their limitations.

2) Based on the above general formulation, we propose
a full point encoding method so as to simultaneously
model local and global geometric features of point
clouds along with their internal correlations. Using our
novel encoding, we propose two network architectures,
namely, FuPConv and FPTransformer and show promis-
ing results with both.

3) We propose a learnable downsampling block that
performs local and global shape-aware downsampling
by incorporating the full point position encoding of the
proposed FPTransformer into point-wise MLPs.

We conduct extensive experiments on benchmark datasets
to show the efficacy of our proposed methods and their
strong generalization ability to different tasks such as
semantic segmentation, object detection, classification, and
normal estimation. FuPConv achieves competitive results on
semantic segmentation, classification, and normal estimation
tasks compared to various point convolution-based methods.
FPTransformer achieves state-of-the-art semantic segmenta-
tion performance with 76.8% mIoU on S3DIS sixfold and
73.1% mIoU on S3DIS Area 5. Incorporating FPTransformer
into existing detection networks gives considerable perfor-
mance improvement on ScanNetv2 and KITTI datasets.

II. RELATED WORK

A. Point-Wise MLPs

To maximally preserve the geometric information, recent
deep neural networks prefer to directly process raw point
clouds. The pioneering work PointNet [10] uses shared
MLPs to exploit point-wise features and adopts a symmetric
function (i.e., maxpooling) to aggregate these features into
global features. However, it fails to consider the geometric
relationships of local points. PointNet++ [11] addresses
this issue by adopting a hierarchical network that benefits
from sampling and grouping. Subsequent works successively
propose efficient grouping [16], [24], [27], [30], [31] and
sampling [26], [32], [33], [34], [35] methods to improve
performance. However, MLP still treats each local point
individually and ignores their geometric connections.

Follow-up works construct geometric connections between
points to enrich point-wise features and then apply shared
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MLPs to them. For instance, some methods [36], [37]
handcraft the geometric connections through curves, triangles,
umbrella orientation, or affine transformation. Graphs are
also used to connect local points [26], [38], [39] or global
points [40], [41], [42], [43], for subsequent geometric
representation, i.e., edge, contour, curvature, and connectivity.
Although geometric connections do not largely increase the
learnable network parameters, the parameters of these hand-
crafted representations or graphs must be optimized for
different datasets with varying densities or shape styles.

B. Point Convolution

Inspired by 2-D convolutions, various works successfully
proposed novel convolutions on points or their graphs that
dynamically learn convolutional weights through functions
that operate on local geometric connections. Hence, the
weight functions enable convolutions to be aware of the
overall object shape. Early methods paid more attention
to the weight function design. Most convolutional weight
functions are approximated by MLP [12], [15], [16], [44], [45].
Other approaches treat weight functions as local correlation
functions such as spline function [19], a family of polynomial
functions [20], or standard unparameterized Fourier function
[46] to learn the convolution weights from the local geometric
connections.

Unlike the above dynamic convolution kernels, KPConv
[18] and KCNet [17] fixed the convolution kernel for
robustness to varying point density. These networks predefine
the kernel points on the local region and learn convolutional
weights on the kernel points from their geometric connections
to local points using linear and Gaussian correlation functions,
respectively. Here, the number and position of kernel points
need to be optimized for different datasets.

Convolutional weights are generally learned from local
geometric connections by weight functions. Hence, con-
volutional weight learning highly depends on geometric
connections. Some works construct additional low-level
geometric connections (e.g., relative positions, 3-D Euclidean
distances [44], [45]) to enrich the input to the weight function.
Another line of works [15], [16], [21] associates a coefficient
(derived from point coordinates) with the weight function
to adjust the learned convolutional weights. Convolutional
weights learned from low-level geometric connections cannot
embed the global context in the convolution operation.
Besides, point cloud resolution decreases at deeper layers in
many networks, and the geometric connections constructed
by the sparse points may get distorted, leading to nonrobust
weights learned by the weight function.

C. Point Transformer

Early self-attention modules operate on global points [22],
[23], [24], [25], [26], [27] to learn the geometric point
connections (i.e., attention map) through scalar dot-product.
Such a pipeline suffers from high computational costs and
struggles to learn large and complex 3-D scenes. PT [28],
[47], on the other hand, employs self-attention to local
points and uses vector attention instead to construct the

geometric connections between points. This not only requires
fewer computations but also helps the PT to learn robust
attention weights from high-level geometric connections while
encoding local point geometry. The success of PT shows the
importance of point position encoding. Sparse convolution [48]
performs convolution on all valid neighborhood voxels that
are efficiently found using a hash table. Similarly, fast PT [49]
leverages local self-attention with a voxel hashing architecture.

Applying the above local aggregation modules can learn
the local structure well. However, the local regions divide the
global scene into several subscenes, breaking the semantic
continuity and integrity. To exploit the long-range features,
the stratified transformer [50] densely selects nearby points
over a cubic window and sparsely selects distant points.
This stratified strategy enlarges the effective receptive field
without too much computational overhead. However, by using
a window-based approach, the Stratified Transformer focuses
on an expanded local region rather than the global region.
Moreover, the hyper-parameters such as the window size and
number of distant points must be optimized for different
datasets with varying densities. Consequently, super long-
range features (e.g., line features) are not learned effectively
because the local features aggregation module cannot exploit
the global context. To address this issue, works [26], [27],
[51] separately extract local features and global context by
local and nonlocal aggregation, and then combine them in a
serial and parallel manner. However, these approaches require
enormous computations and are still unable to extract the
inherent relationship between local features and global context.
Motivated by these problems, we propose FPTransformer,
to simultaneously exploit local features, global context, and
their correlations.

III. METHOD

We revisit the three types of local point aggregations, i.e.,
local point-wise MLP, point convolution, and PT, and then
derive a general formulation in Section III-A. Based on the
general formulation, we present FuPConv in Section III-B
and FPTransformer in Section III-C, followed by our down
sampling block in Section III-D and finally, in Section III-E,
we give our network details.

A. Rethinking Local Point Aggregation

Assume we have an unordered point cloud pi ∈ RN×3 and
its corresponding features fi ∈ RN×C . Here, pi is a position
vector, fi is a feature vector and may contain additional
attributes such as color or surface normal. N and C are the
number of points and feature channels, respectively. We denote
the K neighbors of pi as pi j ∈ RK×3 and their corresponding
features are fi j ∈ RK×C .

1) Local Point-Wise MLP: The general formulation of local
point-wise MLP on a point set pi can be expressed as

Gi = 3K
j=1MLP

(
fi j

)
(1)

where MLP is a point-to-point mapping function that maps
input features fi j to output features Gi . 3K

j=1 is a symmetric
operation (SOP), e.g., maxpool. The input points have no
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communication with each other. To establish communication,
some works use a function to construct geometric connections
between points to enhance point-wise features and then
employ an MLP on these enriched point-wise features

Gi = 3K
j=1MLP

(
F1

(
pi j , fi j

))
. (2)

Here, F1(·) is as a geometric construction function (e.g.,
hand-crafted geometric descriptor, graph filter, MLP). These
functions do not largely increase the network parameters,
however, their parameters still need to be optimized, which
impacts their ability to generalize across different datasets with
varying point densities or shapes.

2) Local Point Convolution: Point convolutions introduce
the weight function to convolutions such that it learns weights
from local point coordinates to dynamically adjust the point-
wise features, expressed as

Gi =

K∑
j=1

W
(

pi j
)

fi j (3)

where W(·) is a weight function. Learning weights from the
lowest level geometric information (i.e., point coordinates)
may not lead to robust convolutional weights. Therefore,
some works [15], [16], [21] associate coefficients with weight
functions that further adjust the learned weights. Others [44],
[45] propose geometric construction functions that incorporate
additional low-level geometric information (e.g., Euclidean
distance, position difference, and feature difference) to enrich
the input to the weight functions so that they can learn
more robust convolutional weights. These are, respectively,
expressed as

Gi =

K∑
j=1

C
(

pi j , fi j
)
W

(
pi j

)
fi j (4)

Gi =

K∑
j=1

W
(
F2

(
pi j , fi j

))
fi j . (5)

Here C(·) is the coefficient (also derived from point
coordinates or features) of the weight function, and F2(·)

is defined as a geometric construction function to construct
the rich low-level geometric information, such as distance,
coordinate difference, and feature difference.

The resolution of the point cloud decreases at the deeper
encoder layers in a hierarchical network leading to the
distortion of low-level geometric connections derived from
sparse points. Learning convolutional weights from such
distorted geometric information can lead to nonrobust weights.

3) Local PT: Local PT solves the above problems and can
be expressed as

Gi =

K∑
j=1

W
(
F2

(
fi j

)
+ δ

(
pi j

))(
F1

(
fi j

)
+ δ

(
pi j

))
(6)

where + is the addition operation, δ(·) is the LPE that
maps the point position in the local coordinate system from
low-dimension (3-D) space to high-dimension space. This
makes each local point well aware of its position in the
local shape. As illustrated in Fig. 2, the design of local

feature aggregations share the similar idea that they utilize the
robust weights/attention stream to adjust the feature stream.
In general, the weight/attention learned from richer local
geometric correlations makes the aggregated local features
more robust. Observing the above formulations of the three
classical local feature aggregation methods, we introduce a
general formulation for local feature aggregation as

Gi =

K∑
j=1

C
(

pi j , fi j
)
W

(
F2

(
pi j , fi j

)
+ δ

(
pi j

))
×

(
F1

(
pi j , fi j

)
+ δ

(
pi j

))
. (7)

Although existing local aggregation methods get promising
performance on local point structures, they have two
limitations, 1) they pay little to no attention to the global
geometric structure and 2) they completely ignore the internal
connections between global and local structures.

B. Full Point Convolution

To exploit local features as well as the global context
features along with their correlations, the FuPConv is
expressed as

G(i) =

K∑
j=1

Wc
(
S2

(
pi , pi j ,S1(pi , pin)

))
fi j (8)

where S1 and S2 denote the global and local correlation
functions. Wc is an adaptive weight function that learns
the convolutional weights from local and global geometric
connections. pin is the global neighborhood points of pi .

1) Global Correlation Function: The goal of the global
correlation function is to construct the geometric connection
between global and local points, enriching the local points with
global information. We define the global correlation function
as

S1(·) =

N∑
n=1

R(pi , pin) (9)

where R(·) is the relation between pin and each point pi ,
which should be higher when pin is closer to pi . Inspired
by [18], we propose global linear relation function

R(·) = max
(

0, 1 −
∥pi − pin∥

σ

)
(10)

where ∥·∥ is the Euclidean distance between global points and
local points. σ is the influence coefficient that controls the
influence of global points to each point. We set the correlation
of global point to center point as S1i and its corresponding
global correlation to neighborhood points as S1i j .

2) Local Correlation Function: Learning convolutional
weights highly depends on the local geometric connections.
Therefore, we construct sufficient geometric connections using
a local connection function. We define the local correlation
function as

S2(·) = pi j +
(

pi j − pi
)
+

∥∥pi j − pi
∥∥ +

(
S1i − S1i j

)
(11)

where pi is the center point position, pi j − pi is the position
difference, ∥p j − pi∥ is the 3-D Euclidean distance and
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Fig. 2. Architecture of three local feature aggregations. The local connections (i.e., convolution weights/attention weights) learned by weight/attention function
W(·) adjust the features adaptively, improving the local shape awareness of feature aggregations.

+ denotes concatenation. Note that there is no learnable
parameter in local and global correlation functions, but they
require point distances. These distances are inherited from the
farthest point sampling (FPS) in the same encoding layer.

3) Efficient Weight Function: The goal of adaptive weight
function Wc(·) is to learn the kernel weights. The output of
the adaptive weight function is

Wc = ρc
(
φc

(
S2

(
pi , pi j ,S1(pi , pin)

)))
(12)

where φc is implemented with MLPs: RN×K×8
→ RN×K×C×C

and ρc indicates softmax normalization. Learning a mount
of weights from limited geometric connections ∈ RK×8 is
inefficient. To this end, we formulate an efficient FuPConv
based on the following lemma.

Lemma: FuPConv is equivalent to the following formu-
lation: G = Max(Tc2 ⊗ Conv1×1(Tc1,Fc)), where Conv1×1
is 1 × 1 convolution, ⊗ is matrix multiplication and Max
is maxpooling operation, Tc1 ∈ RC×Cm×C is the kernels of
1 × 1 convolution, and Tc2 ∈ RK×Cm is the weight matrix
learned by adaptive weight function.

Proof: To better understand the FuPConv reformulation,
set attention weight matrix Wc ∈ RN×K×C as Wc(i, j, c)|i =

1, . . . , N , j = 1, . . . , K , c = 1, . . . , C , and set fi j ∈ RN×K×C

as Fc(i, j, c)|i = 1, . . . , N , j = 1, . . . , K , c = 1, . . . , C ,
where i , j , and c are the index of the global, neighbor points,
and input feature channels. According to (8), FuPConv can be
expressed as

G(i) =

K∑
j=1

C∑
c=1

Wc(i, j, c)Fc(i, j, c). (13)

Since the weight function is approximated by MLPs
implemented as 1 × 1 convolutions, the weight matrix
generated by the weight function can be expressed as

Wc(i, j, cin) =

Cm∑
cm=1

Tc2(i, j, cm)T T
c1(i, c, cm) (14)

where cmid and Cmid are the index and number of output
channels of the middle layer. Substituting (14) into (13), we get

G(i) =

K∑
j=1

C∑
c=1

Wc(i, j, c)Fc(i, j, c)

=

K∑
j=1

C∑
c=1

 Cm∑
cmid=1

Tc2(i, j, cm)T T
c1(i, c, cm)

Fc(i, j, c)

=

K∑
j=1

Cm∑
cm=1

Tc2(i, j, cm)

C∑
c=1

(
T T

c1(c, cmid)Fc(i, j, c)
)

= Sum(Tc2 ⊗ Conv1×1(Tc1,Fc)). (15)

According to the above reformulation, FuPConv comprises
two operations including one 1 × 1 convolution and one
matrix multiplication. Using this formulation, we divide the
kernel weight matrix Wc ∈ RN×K×C×C into two parts: 1 × 1
convolution weight matrix Tc1 ∈ RC×(Cm×C) and weight matrix
Tc2 ∈ RN×K×Cm , where the Tc1 are learned in data-driven
manner, and Tc2 are efficiently learned though the adaptive
weight function according to the local and global geometric
connections. Here, the adaptive weight function can be defined
as

T2 = ρce
(
φce

(
S2

(
pi , pi j ,S1(pi , pin)

)))
(16)

where φce is a nonlinear function implemented with MLPs:
RN×K×8

→ RN×K×Cm . ρce indicates softmax normalization.
The weight function transfers K × 8 dimension geometric
connection information to N × K × Cm dimension weight
matrix, where Cm is smaller than C . With the above
reformulation, convolution can learn more robust weights from
limited geometric connections. Our reformulated FuPConv is
shown in Fig. 3(a). Compared to the simple point convolution
[see Fig. 2(3)], the FuPConv differs in two key aspects: 1) the
simple point convolution learns the convolutional weights from
the local geometric connections, while the FuPConv learns the
weights from the rich geometric connections constructed by
global and local correlation function. 2) FuPConv reformulates
the convolution operation into two operations including one
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Fig. 3. (a) Proposed FuPConv block which takes the N × 3 input point coordinates and N × C features from the previous layer to output N × C features.
FuPConv incorporates full point correlation (global, local, and global–local correlation) into each point. (b) Proposed FPTransformer block which takes the
N × 3 input point coordinates and N × C features from the previous layer to output N × C features. FPTransformer incorporates FPE into each point.

1 × 1 convolution and one matrix multiplication, learning
more robust weights.

C. Full PT

We also bring this idea into PT, we propose an
FPTransformer that exploits local features as well as the global
context and their internal correlations. Give a point (pi , fi ),
we use three linear projections to project the point features fi

to the query qi , key ki , and value feature vectors vi , expressed
as

qi = Wq fi , ki = Wk fi , vi = Wv fi (17)

where Wq , Wk , and Wv (RN×C
→ RN×C ) are projection

functions implemented as linear layers. The FPTransformer
applied on the point (pi , fi ) and its corresponding point set
(pi j , fi j ) can be formulated as

Gi =

K∑
j=1

Wa
((

qi − ki j
)
+ δa

full

)(
vi j + δa

full

)
. (18)

Here,
∑

refers to an aggregation function such as summation,
δa

full is the full position encoding (FPE) for FPTransformer,
and Wa(·) is the attention function (i.e., weight function)
that learns the attention map from the geometric connection
between key point and query point.

1) Full Position Encoding: Point features are derived from
their coordinates and already contain position information,
however, this information may get diluted in deep aggregation
layers. Therefore, we add fine-grained position information
to features in each aggregation layer. Another limitation of
existing position encoding methods is that they tend to map
relative positions in the local coordinate system from low
dimensional (3-D) space to higher dimensions. This enhances
the awareness of local geometric connections but does not
encode the global context. We propose full point position

encoding that includes global and LPE. We define global
position encoding (GPE) on point pi ∈ RN×3 as

δa
global,i =

[
φa

global(pi ), pi

]
(19)

the GPE function φa
global is an MLP: RN×3

→ RN×C .
[, ] is concatenation operation. The output of GPE is
δa

global,i ∈ RN×(C+3). We denote the neighborhood point
position of δa

global,i as δa
global,i j | j = 1, 2, . . . , K , where K is

the number of neighborhood points. The FPE on local points
δa

global,i j ∈ RN×K×(C+3) is defined as

δa
full = φa

local

(
δa

global,i − δa
global,i j

)
(20)

where the LPE function φa
local is an MLP: RN×K×(C+3)

→

RN×K×C . The output of FPE is δa
full ∈ RN×K×C . With this

hierarchical position encoding, each point perceives high-
dimensional position information in its global and local
receptive fields.

2) Efficient Attention Function: The attention function plays
an important role in our FPTransformer by encoding the
geometric connections (i.e., features difference) between query
and key points into the attention map. The attention function
is formulated as

Wa(·) = ρa
(
φa

((
qi − ki j

)
+ δa

full

))
(21)

where φa is an MLP (RN×K×C
→ RN×K×C ) and ρa is the

softmax normalization to keep the attention weights in the
range (0, 1). The attention function transfers N × K × C
geometric connection information to an attention weight
matrix Wa of the same dimension. Since, the generation of
attention weight matrixWa ∈ RN×K×C requires large memory,
we formulate an efficient attention layer as per the following
lemma.

Lemma: FPTransformer is equivalent to the following
reformulation: Gi = Sum(Ta ⊙ Fa), where Ta ∈ RN×K×1×Cm
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are the attention weights obtained from the attention function,
Fa ∈ RN×K×C/Cm×Cm is the reshaped feature. ⊙ is the element-
wise multiplication and Sum is the summation.

Proof: To better understand the FPTransformer refor-
mulation, set attention weight matrix Wa ∈ RN×K×C as
Wa(i, j, c)|i = 1, . . . , N , j = 1, . . . , K , c = 1, . . . , C ,
and set (vi j + δa

full) ∈ RN×K×C as V(i, j, c)|i = 1, . . . , N ,

j = 1, . . . , K , c = 1, . . . , C , where i , j , and c are the index of
the global, neighbor points, and input feature channels. As per
to (18), FPTransformer can be expressed as

Gi =

K∑
j=1

C∑
c=1

Wa(i, j, c) ⊙ V(i, j, c)

=

K∑
j=1

C/Cm×Cm∑
c/cm×cm=1

Wa(i, j, c/cm × cm) ⊙ V(i, j, c/cm × cm)

=

K∑
j=1

C/Cm∑
c/cm=1

Cm∑
cm=1

Wa(i, j, c/cm, cm) ⊙ V(i, j, c/cm, cm).

(22)

Here, Cm is the number of middle channels (Cm < C), and cm

is the index of the middle channel. We set {Wa(i, j, 1, cm)|i =

1, . . . , N , j = 1, . . . , K , cm = 1, . . . , Cm} ∈ RC/Cm as a
vector from attention weight matrix Wa ∈ RN×K×C/Cm×Cm ,
and make these C/Cm number of vectors share the same
attention weights. Hence, (22) can be expressed as

Gi =

K∑
j=1

C/Cm∑
c/cm=1

Cm∑
cm=1

Wa(i, j, c/cm, cm) ⊙ V(i, j, c/cm, cm)

=

K∑
j=1

C/Cm∑
c/cm=1

Cm∑
cm=1

Wa(i, j, 1, cm) ⊙ V(i, j, c/cm, cm)

= Sum(Ta ⊙ Fa). (23)

Here, Fa ∈ RN×K×C/Cm×Cm is the reshaped feature.
Ta ∈ RN×K×1×Cm are the attention weights obtained from the
efficient attention function defined as

Wa(·) = ρae
(
φae

((
qi − ki j

)
+ δa

full

))
(24)

where φae is an MLP (RN×K×C
→ RN×K×Cm ) and ρae is

softmax normalization. The attention function transfers N
× K × C dimensional geometric connection information
to a N × K × Cm dimensional attention weight matrix.
Similarly, using this reformulation, the transformer can learn
more robust weights from limited geometric information.
Details of Cm are further discussed in Section IV-E. Our
reformulated FPTransformer is shown in Fig. 3(b). Compared
to the simple PT [see Fig. 2(6)], the FPTransformer differs in
two key aspects: 1) the simple PT with the LPE only has local
geometric awareness. In contrast, the FPTransformer with the
full point position encoding has local and global geometric
awareness. 2) FPTransformer introduces the attention-sharing
mechanism into vector attention, learning more robust weights.

D. Shape-Aware Downsampling (SADS) Block

The shape information of the subsampled point cloud
is represented not only by the point positions but also

Fig. 4. Proposed SADS block. Grouping is done based on the current features
to which the FPE is added for subsequent downsampling.

by the point features. Classical farthest-point sampling can
effectively maintain shape information at the point position
level. However, the low-resolution subsampled point cloud
may suffer from shape distortion at the position level, and
may also face challenges in preserving shape details at the
feature level.

To overcome this problem, we propose a SADS block
with learnable parameters (see Fig. 4). SADS incorporates a
low-level feature learner to maximally preserve the low-level
features (i.e., shape details) of the scene. Our downsampling
block can be expressed as

Gi = max
(
MLP

(
fi j + H

))
(25)

where fi j ∈ RM×K×C are the features from the grouping
operation, M is the number of points sampled by FPS, H
are the hierarchical features of points (see Fig. 4), and “max”
is maxpooling. The hierarchical features basically include low-
level global and local features. The global features on point
pi ∈ RN×3 are learned by

f d
global,i =

[
φd

global(pi ), pi

]
(26)

where φd
global is an MLP: RN×3

→ RN×C . The low-level global
features of point pi are f d

global,i ∈ RN×(C+3). After sampling
and grouping, we denote the neighborhood point position of
sampled point f d

global,i ∈ RM×(C+3) as f d
global,i j ∈ RM×K×(C+3).

The hierarchical features H are defined as

H = φd
local

(
f d
global,i − f d

global,i j

)
(27)

where the LPE function is an MLP: RM×K×(C+3)
→

RM×K×C . This way, simple but effective hierarchical MLPs are
integrated into a conventional sampling block, to ensure that
each subsampled point integrates the most prominent shape
information at both the position and feature levels.

E. Network Architecture

For FuPConv, we choose the basic PointNet++ [11] as
the backbone and replace the MLPs with FuPConv to form
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TABLE I
SEMANTIC SEGMENTATION RESULTS ON S3DIS DATASET AREA-5. WE REPORT THE MIOU, MACC, AND OA. THE BEST RESULT IS IN BOLD,

AND THE SECOND BEST IS UNDERLINED. “*” MEANS THAT THE MODEL USED TEST TIME AUGMENTATIONS

TABLE II
SEMANTIC SEGMENTATION RESULTS ON S3DIS WITH SIXFOLD CROSS VALIDATION

Fig. 5. Visualization of semantic segmentation results on S3DIS Area-5 without test time augmentations. The red boxes highlight areas in the scenes where
our proposed FPTransformer performs particularly better than the PT.

the new network architectures for three tasks, i.e., semantic
segmentation, classification, and normal estimation.

For FPTransformer and SADS block, we use a U-Net-like
architecture with five encoding and decoding layers and skip
connections, covering semantic segmentation, 3-D detection,
and classification. The first encoding and decoding layers
consist of one MLP and FPTransformer. Other encoding layers
contain one SADS block and several FPTransformer blocks
(details in Section IV). We set the feature dimensions C as
[32, 64, 128, 256, 512] and the middle feature dimension
Cm as [4, 8, 16, 32, 64] for the five encoding and decoding
layers. The ratio of up/down sampling is set as [1, 4, 4, 4, 4]
for both encoder/decoder. Decoding layers, besides the first,

contain one upsampling block and one FPTransformer. For
segmentation, we add an MLP at the end to predict the final
point-wise labels. For detection, we use the network as a
3-D backbone (excluding the prediction layer). We adopt the
shared grouping that uses the same neighbor indices in the
proposed modules (i.e., FuPConv, FPTransformer, and SADS),
to improve the efficiency of the proposed full point encoding.

IV. EXPERIMENTAL RESULTS

We evaluate our network on semantic segmentation, 3-D
detection, shape classification, and normal estimation tasks
and perform detailed ablation studies to demonstrate the
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effectiveness and robustness of the proposed FuPConv,
FPTransformer, and SADS.

A. Semantic Segmentation

1) Datasets: We evaluate our network on two large-scale
indoor scene datasets, S3DIS and ScanNet. S3DIS [60]
contains colored point clouds annotated point-wise with
13 classes. It covers 271 rooms from six large-scale indoor
scenes (a total of 6020 m2). We conduct sixfold cross-
validation on S3DIS and, in line with other works, conduct
more extensive comparisons on Area 5 as the test set, which
is not in the same building as the other areas. ScanNet [61]
contains colored point clouds of indoor scenes with point-
wise semantic labels of 20 object categories. It is split into
1201 scenes for training and 312 for validation. For the
FuPConv network, we adopt a data preprocessing strategy
similar to PointNet++ and divide the entire point cloud
scene into several blocks to reduce the number of input
points. Each block contains 4096 points only. Similarly,
for the FPTransformer network, we employ a voxel-based
downsampling similar to PT [28], to decrease the overall
number of points in the point cloud. In addition, we heavily
utilize shared grouping operations across our proposed
FuPConv, FPTransformer, and SADS modules, which share a
set of indices obtained through the K -nearest neighbor (KNN)
search.

2) Network Configuration: For semantic segmentation on
S3DIS, we set the FPTransformer block in the five encoding
layers depths [1, 2, 2, 6, 2]. We adopt the SGD optimizer and
weight decay as 0.9 and 0.0001. The base learning rate is set
as 0.5 and the learning rate is scheduled by the MultiStepLR
every 30 epochs. We train and test the model with batch size
16 on 4 GPUs and batch size 4 on a single GPU, respectively.
We adopt downsampling, scaling, contrast, translation, jitter,
and chromatic translation to preprocess training data. We set
the voxel size as 4 cm and the maximum number of voxels to
80 000. On ScanNet, we set the FPTransformer block in the
five encoding layer depths as [1, 3, 3, 9, 3]. The base learning
rate is set as 0.1. We use downsampling, rotation, flip, scaling,
and jitter to preprocess training data. We set the voxel size as
2 cm and the maximum number of voxels as 120 000.

3) Results: We compare our method with the recent state-
of-the-art on three metrics, i.e., mean class-wise intersection
over union (mIoU), mean class-wise accuracy (mAcc), and
network parameters (Para.). Table I provides detailed results
on S3DIS Area-5. Our network equipped with FPTransformer
and SADS achieves the best performance 73.1%, 78.8%,
and 91.7% in terms of mIoU, mAcc, and OA, respectively.
It also achieves competitive results (top 2) on 9 out of
the 13 categories including ceiling, floor, wall, column,
window, door, table, board, and clutter. Moreover, compared
to the classical vector attention-based method (i.e., PT), the
performance of our method exceeds it by a large margin
on some long-range shape classes such as column, door,
table, and board. Compared to the previous state-of-the-art
vector attention-based method (e.g., PT and PT V2), window
attention-based method (e.g., stratified transformer), and point-
wise MLP-based method (e.g., PointNeXt), our FPTransformer

TABLE III
SEMANTIC SEGMENTATION RESULTS (MIOU) ON SCANNET

gets significant improvements on all three metrics, i.e., mIoU,
mAcc, and OA. Besides, our FuPConv achieves the best
performance among classical Convolution-based methods such
as KPConv and PAConv and exceeds the baseline PointNet++

15% in the term of mIoU.
We report results in Table II for the sixfold validation setting

on S3DIS dataset. Our method performs the best, achieving
state-of-the-art results on all three metrics, i.e., 76.8% mIoU,
84.4% mAcc, and 91.5% OA. Notably, our method achieves
the best performance on 8 out of the 13 categories and achieves
the second-best performance on another three categories.
Fig. 5 shows visualizations of our results on S3DIS Area 5
without test time augmentations in comparison to PT. We can
see that our method is more robust to long-range shapes such
as bookcases and boards.

Table III shows semantic segmentation results on ScanNet
validation set as well as test set, and compares the proposed
FPTransformer to existing state-of-the-art. Compared to PT
(which also uses vector attention), our method gets significant
improvement of +5.0 in mIoU (see Table III last row).
Our method even outperforms the multimodal BPNet [62].
Compared to the Stratified Transformer, our method gets
+1.3% and +1.8% higher mIoU on the validation and test
sets, respectively. Compared to the PT V2, our method gets
better performance (+0.2%, +0.3% mIoU) on validation and
test, respectively.

B. Three-Dimensional Object Detection

We conduct experiments for 3-D object detection to show
the generalization ability of the FPTransformer.

1) Datasets: We conduct experiments on two popular
datasets: ScanNetV2 [61] and KITTI [67]. ScanNetV2 consists
of 1513 indoor scenes and 18 object classes. On this dataset,
we adopt the mean Average Precision (mAP) metric under the
threshold of 0.25 (mAP@0.25) and 0.5 (mAP@0.5) without
considering the bounding box orientations. KITTI is a large-
scale outdoor dataset captured with a LiDAR sensor. It has
7518 tests and 7481 training samples (further divided into
train-validation splits). We calculate mAP for easy, moderate,
and hard cases, at 11 and 40 recall positions following the
official KITTI protocol.

2) Network Configuration: For ScanNetV2, we select two
detection architectures: VoteNet [74] and Group-free-3D [75].
For KITTI, we choose PointRCNN [65] and PVRCNN [66].
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TABLE IV
THREE-DIMENSIONAL OBJECT DETECTION RESULTS ON THE KITTI VALIDATION SET. WE REPORT MAP AT 11 AND 40 RECALL

POSITIONS, SIMILAR TO PRIOR WORKS [65], [66]

Fig. 6. Visualization of detection results on ScanNetV2. The red arrows indicate objects in the scenes where the VoteNet equipped with FPTransformer
performs better than the original VoteNet.

TABLE V
DETECTION RESULTS ON SCANNETV2 VALIDATION SET FROM THE

BENCHMARK WEBSITE. WE REPORT MAP AT THRESHOLDS OF
0.25 AND 0.5 IOU. “**” DENOTES MODEL REPRODUCED BY [68]

VoteNet, Group-Free-3D, and PointRCNN have a similar
network architecture. They use a 3-D backbone to extract
point features for subsequent object bounding box prediction.
We replace their 3-D backbones with our network. PVRCNN
integrates voxel and point features, where the voxel features
are learned by 3-D sparse convolution using multiple encoding
layers and summarized into a small set of key points via
the voxel set abstraction module. We replace the abstraction
module with our FPTransformer. During training, we keep the
same parameters of the original PointRCNN and PVRCNN
networks. However, for VoteNet, we change the number of
input points to 40 960 and epochs to 260. For Group-Free-3D,
we only adopt the point coordinates as input features.

3) Results: Table IV shows results on the KITTI dataset.
Our method consistently improves the performance of both
detectors for Recall@40 and improves 13 out of 18 cases

for Recall@11. PointRCNN with FPTransformer obtains
remarkable improvements of 5.75%, 6.57%, and 7.34%
(Recall@40) on the easy, moderate, and hard cases of the
“Pedestrian” class. PVRCNN with FPTransformer obtains
significant improvements of 1.77% and 3.29% for the hard
cases of “Pedestrian,” and “Cyclist.”

As shown in Table V, when FPTransformer is plugged
into the VoteNet and Group-Free-3D networks, the detec-
tion performance improves significantly on ScanNetV2.
Specifically, the VoteNet official model with FPTransformer
obtains 3.7% mAP@0.25 and 5.5% mAP@0.5 improvements.
Similarly, the VoteNet reproduced by [68] with FPTransformer
obtains 2.3% mAP@0.25 and 5.2% mAP@0.5 improvements
on the MMDetection3D platform. As shown in Fig. 6,
FPtransformer helps VoteNet to reduce false positive detection.
Our FPTransformer backbone also improves the accuracy
of both versions of the Group-Free-3D detection network.
Specifically, the Group-Free-3D (12 decoder layers and
512 object candidates) with our FPTransformer backbone
gains 2.4% mAP@0.25 and 1.5% mAP@0.5 improvement,
outperforming all prior models equipped with transformer
modules such as 3DETR [70] and TokenFusion [72], on the
mAP@0.25 metric.

C. Classification

1) Synthetic Data: We first evaluate FuPConv and
FPTransformer on ModelNet40 [76] which comprises 12 311
CAD models from 40 categories. The data is divided into
9843 training and 2468 test models. We uniformly sample
1024 points from each model and only use their (x, y, z)
coordinates as input. The training data is augmented by
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TABLE VI
CLASSIFICATION RESULTS ON MODELNET40 AND SCANOBJECTNN

DATASET. OUR NETWORK ACHIEVES THE BEST OA. “x, y, z” AND “n”
REPRESENT COORDINATES AND NORMAL VECTOR. “K” STANDS

FOR ONE THOUSAND. “PN++” STANDS FOR POINTNET++

randomly translating in the range [−0.2, 0.2], scaling in the
range [0.67, 1.5].

2) Real-World Data: We also evaluate our network on
the real-world ScanObjectNN dataset [77] which includes
15 000 objects categorized into 15 classes. Unlike the synthetic
ModelNet40 objects, these objects have occlusion, background
noise, deformed geometric shapes, and nonuniform surface
density providing a more challenging scenario. We conduct
experiments on its hardest perturbed variant (i.e., PB_T50_RS
variant). We uniformly sample 1024 points from each object
and only use their (x, y, z) coordinates as input. The training
data is augmented similarly to ModeleNet40.

3) Network Configuration: We use the same network
configuration for ModelNet40 and ScanOjectNN. During
training, we use an SGD optimizer with 0.9 momentum and
0.1 initial learning rate to train our model for 350 epochs with
a batch size of 32. We adopt cosine annealing to dynamically
adjust the learning rate when it drops to 0.001 and use a
dropout ratio of 0.4.

4) Results: We compare our method with representative
state-of-the-art methods in Table VI using the overall accuracy
(OA) metric. For better comparison, we also show the
input data type and number of input points for each
method. The FuPConv network achieves competitive OA of
93.9% on ModelNet40 and 85.6% on ScanObjectNN, giving
significant improvements of 3.2% and 7.7% over the backbone
PointNet++ [11]. On ModelNet40, our network outperforms
the classical local point convolution KPConv [18], by 1% even
though KPConv uses 7000 input points and our network only
uses 1024 points. Moreover, our network outperforms RS-
CNN when the voting strategy is not used.

The FPTransformer network achieves the stat-of-the-art OA
of 94.3% on ModelNet40 and 86.5% on ScanObjectNN.

TABLE VII
NORMAL ESTIMATION RESULTS ON MODELNET40. “x, y, z”

REPRESENTS COORDINATES AND “K” STANDS FOR THOUSAND

On ModelNet40. Our network outperforms the vector
attention-based method (e.g., PT) by 0.6% and scalar attention-
based method (e.g., PointASNL) by 1.4%, even though
PointASNL additionally uses surface normals as input.
With the test time augmentation, our method gets better
performance (+0.1% OA) compared to PT V2. Our network
exceeds the previous state-of-the-art MLP-based method
PointNext by 1.1%

On ScanObjectNN, our network gets the second highest
accuracy of 86.5%, outperforming most of existing methods,
and exceeding MLP-based method PointMLP by 1.1%, using
the same number of input points. Superior performance on
real-world datasets indicates that our method is more suitable
for practical applications.

D. Normal Estimation

1) Data: Surface normal estimation in point clouds is
significant to 3-D reconstruction and rendering. We take
normal estimation as a supervised regression task and use the
semantic segmentation architecture to achieve it. We conduct
the experiment on the ModelNel40 [76], where each point
is labeled with its three-directional normal. During training,
we uniformly sample 1024 points from each model and only
use their (x, y, z) coordinates as input.

2) Network Configuration: The normal estimation network
has a similar architecture to the semantic segmentation
network apart from the final softmax layer. The K -nearest
neighborhood in encoding layers is set to 16. We use the SGD
optimizer with 0.9 momentum and 0.05 initial learning rate to
train our network for 200 epochs with a batch size of 32. The
cosine annealing starts to dynamically adjust the learning rate
when it drops to 0.0005.

3) Results: Table VII summarizes our normal estimation
results. FuPConv achieves the competitive performance with
an error of 0.12. It reduces the error of the backbone
PointNet++ [11] by 58.6% and reduces the error compared
to prior state-of-the-art RS-CNN [45] by 20%. FPTrans-
former achieves state-of-the-art performance with a minimum
error of 0.10.

E. Ablation Studies

We conduct ablation studies to demonstrate the effectiveness
of FPTransformer and SADS block. The first three ablation
experiments are performed on S3DIS Area 5 [60], and the
fourth and fifth ablation experiment is performed on ScanNet
[61] (segmentation dataset). We conduct the last ablation study
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TABLE VIII
SEGMENTATION PERFORMANCE OF OUR MODEL ON S3DIS AREA FIVE

WITH DIFFERENT POSITION ENCODING. THE NETWORK DOES NOT
INCLUDE SADS BLOCK

TABLE IX
ABLATION STUDY ON THE NUMBER Cm OF MIDDLE CHANNELS

IN EFFICIENT ATTENTION FUNCTION. “M” MEANS MILLION

TABLE X
ABLATION STUDY FOR DIFFERENT SAMPLING BLOCKS.
△ STANDS FOR THE DIFFERENCE. “M” MEANS MILLION

on ScanObjectNN [77] and S3DIS [60] to determine the
optimal coefficient σ in FuPConv.

1) Position Encoding: We study the effects of different
encoding strategies used for the position encoding in our
transformer encoder. We compare the proposed FPE with some
classical position encoding strategies such as LPE and GPE.
For each of the three cases, we test with learnable MLP or
nonlearnable Sinusoidal [82] position encoding. The results
are shown in Table VIII. We can see that the performance
of GPE is lower than that of LPE. The underlying cause is
that GPE lacks geometric connection information. When an
FPE strategy is incorporated into the Transformer, the network
achieves the highest performance. Our results also show that
the MLP encoder is more flexible than Sinusoidal encoder.
This indicates our proposed PT with FPE has more geometric
awareness.

2) Efficient Attention: We study the effect of middle
channel numbers on our efficient attention function. For this,
we test four cases in encoding and decoding layers. Table IX
compares the mIoU, mAcc, OA, and network parameters
(Para.) of different cases. As we can see, the difference in the
number of parameters is not much but when the number of
middle channels is set as [4, 8, 16, 32, 64], the network gets the
best results on all three metrics. More middle channel numbers
slightly increase network parameters and the network can not
find a good local optimum with limited training. Conversely,
fewer middle channel numbers weaken the geometric encoding
ability of the transformer. Overall, the performance of the
network remains stable, even for large variations in the channel
numbers.

3) Sampling Block: To prove the effectiveness of our
proposed SADS block, we compare it with two types
of downsampling blocks including the baseline general
downsampling (GDS) block and the transition downsampling
(TDS) block [28]. GDS consists of one sampling, one

TABLE XI
ABLATION STUDY FOR OBJECT DETECTION ON SCANNETV2

USING DIFFERENT NUMBER OF NEIGHBORHOOD POINTS

TABLE XII
CLASSIFICATION AND SEMANTIC SEGMENTATION RESULTS OF

FUPCONV WITH DIFFERENT INFLUENCE COEFFICIENT σ

grouping, and maxpooling operation. Table X shows the
performance of our network with different sampling blocks.
Compared to the TDS, the network integrated with the SADS
block gets a higher improvement (+3%, +2.2%, and +1.2%)
in terms of mIoU, mAcc, and OA with only a minor increase
in parameters (+0.4M).

4) Neighborhood Point: Table XI provides detection results
of VoteNet [74] integrated with FPTransformer for the
different number of neighborhood points. We use the
ScanNetV2 dataset for this experiment and reproduce VoteNet
using its official code as well as integrate the FPTransformer
into it. As we can see when the neighborhood points are set as
[8, 28, 8, 8, 8], the network achieves the best performance of
62.31% on the mAP@0.25 metric and when the neighborhood
points are set as [8, 32, 16, 16, 16], the network gets the best
performance of 38.87% on the mAP@0.5 metric.

5) Coefficient σ : We vary the coefficient σ and observe
the performance of our network on ScanObjectNN and S3DIS
datasets. As shown in Table XII, our network is not sensitive
to the choice of σ , and the best performance is achieved
on ScanObjectNN and S3DIS with coefficient 1.2 and 0.2,
respectively.

F. Robustness Analysis

1) Robustness to Density: We compare the robustness of
our models to point density with several typical baselines such
as PointNet [10], PointNet++ [11], DGCNN [41], as well
as classical convolutional network such as RS-CNN [45],
PointASNL [27]. For a fair comparison, all the networks are
trained on modelnet40_normal_resampled dataset [76] with
1024 points using only coordinates as the input. During the
test, we use downsampled points of 1024, 512, 256, 128, and
64 as input to the trained model. Results are shown in Fig. 7.
As the input points get sparse, the classification accuracy of
all networks drops. Overall, our FuPConv and FPTransformer
remain more robust than other networks.

2) Robustness to Transformation: To demonstrate the
robustness of our FPTransformer, we evaluate its performance
on S3DIS under a variety of perturbations in the test
data, including permutation, translation, scaling, and jitter.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 06,2024 at 07:44:55 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: FULL POINT ENCODING FOR LOCAL FEATURE AGGREGATION IN 3-D POINT CLOUDS 13

Fig. 7. FuPConv shows the highest robustness to decreasing the density of
input points. All models were trained with 1024 points. An example guitar is
shown for illustration.

TABLE XIII
ROBUSTNESS STUDY FOR RANDOM POINT PERMUTATIONS

TABLE XIV
ROBUSTNESS TO BACKGROUND NOISE ON SCANOBJECTNN

WITHOUT VOTING STRATEGY [45]

As shown in Table XIII (top), our method’s performance
remains extremely stable under various transformations.
Specially, the performance even improves (+0.21%, +0.27%,
and +0.10% mIoU) under the −0.2 translation in x-, y-, and
z-axis, and ×1.2 scaling and jitter.

We further evaluate the transformation robustness of our
FuPConv on ModelNet40 at test time. Table XIII (bottom)
shows that all methods are invariant to permutations. In terms
of sensitivity to point scaling, FuPConv performs relatively
better when the scaling range is decreased. FuPConv achieves
the best accuracy under all transformations.

3) Robustness to Noise: To verify the robustness of FuP-
Conv and FPTransformer to noise, we conduct experiments
on the PB_T50_RS variant with background noise (“obj_bg”)
and without background noise (“obj_nobg”) of ScanObjectNN.
Table XIV compares the results of our models with some
baselines provided in [77]. The OA of all networks decreases
when trained and tested in the presence of background noise.
However, our model gets the highest accuracy and the lowest
performance drops 0.7% and 1.6% from “obj_nobg” variant

to “obj_bg” variant, outperforming all compared networks by
a large margin.

V. CONCLUSION

We proposed a novel full point encoding to simultaneously
explore the local and global features of point clouds as well as
their internal correlations by encoding the point positions on
the global and local receptive field in a hierarchical manner.
Using the proposed full point encoding, we designed FuPConv
and FPTransformer that use the rich geometric connections
exploited by full point encoding to derive robust convolutional
weights and attention weights, respectively. We proposed
SADS to maintain the shape information at the point position
and feature levels. We evaluated their performance across
various tasks such as semantic segmentation, 3-D detection,
classification, and normal estimation. Extensive experiments
on challenging benchmarks, as well as thorough ablation
studies and theoretical analysis, show the robustness and
effectiveness of our method on real-world datasets. It is
important to exploit the internal connections between local
features and global features for irregular data such as point
clouds. We hope that our idea of full-point encoding will
inspire the research community to rethink local and global
feature extraction as a single step.
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