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Abstract

Scene understanding based on 3D Gaussian Splatting (3DGS) has recently achieved
notable advances. Although 3DGS related methods have efficient rendering capa-
bilities, they fail to address the inherent contradiction between the anisotropic color
representation of gaussian primitives and the isotropic requirements of semantic
features, leading to insufficient cross-view feature consistency. To overcome the
limitation, we proposes FHGS (Feature-Homogenized Gaussian Splatting), a novel
3D feature distillation framework inspired by physical models, which freezes and
distills 2D pre-trained features into 3D representations while preserving the real-
time rendering efficiency of 3DGS. Specifically, our FHGS introduces the following
innovations: Firstly, a universal feature fusion architecture is proposed, enabling
robust embedding of large-scale pre-trained models’ semantic features (e.g., SAM,
CLIP) into sparse 3D structures. Secondly, a non-differentiable feature fusion
mechanism is introduced, which enables semantic features to exhibit viewpoint
independent isotropic distributions. This fundamentally balances the anisotropic
rendering of gaussian primitives and the isotropic expression of features; Thirdly, a
dual-driven optimization strategy inspired by electric potential fields is proposed,
which combines external supervision from semantic feature fields with internal
primitive clustering guidance. This mechanism enables synergistic optimization of
global semantic alignment and local structural consistency. Extensive comparison
experiments with other state-of-the-art methods on benchmark datasets demon-
strate that our FHGS exhibits superior reconstruction performance in feature fusion,
noise suppression, and geometric precision, while maintaining a significantly lower
training time. This work establishes a novel Gaussian Splatting data structure, of-
fering practical advancements for real-time semantic mapping, 3D stylization, and
Vision-Language Navigation (VLN). Our code and additional results are available
on our project page: https://fhgs.cuastro.org/.

1 Introduction

In recent years, scene representation particularly understanding has emerged as a prominent research
focus, as it enables unmanned systems to better perceive and interpret their surrounding environments.
Traditional scene representation frameworks such as Multi-View Stereo (MVS) [1] and Simultaneous
Localization and Mapping (SLAM) [2] can achieve geometric reconstruction. However, these
methods rely on non-differentiable pipelines and remain limited in high-level semantic perception
and nonlinear feature fusion. As a result, the differentiable approaches have gradually come into
focus. Among them, Neural Radiance Fields (NeRF) [3] and 3D Gaussian Splatting (3DGS) [4] have
revolutionized the scene representation framework. NeRF models implicit radiance fields and learns
continuous 3D spatial representations under 2D image supervision via differentiable volume rendering
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Figure 1: The left part demonstrates the inherent contradiction between the anisotropic color ¢ of
gaussian primitives in RGB field and the isotropic requirement of semantic features f. The right
part shows the results in obverse and reverse, indicating that FHGS shows superior reconstruction
performance in terms of feature fusion, noise suppression, and geometric accuracy.

equations, whereas 3DGS adopts explicit anisotropic Gaussian primitives to enable high-quality
reconstruction through efficient rasterization. However, these traditional neural field representations
primarily focus on the fusion of RGB geometric fields, with limited exploitation of semantic features.
In contrast, feature fields require maintaining semantic consistency across multiple viewpoints to
prevent contradictory predictions during viewpoint transitions [3]], as shown in Fig.[I]

Against this backdrop, the integration of semantic feature from transformer-based models [6} [7]
fusing with NeRF and 3DGS framework has begun to emerge. NeRF-based frameworks extend
radiance fields by incorporating learnable semantic feature fields, implicitly enforcing multi-view
semantic consistency through continuous neural representations [8), [0]. However, their inference
speed remains limited due to the dense sampling required by volumetric rendering. In contrast, 3DGS-
based frameworks [10] construct explicit feature fields by directly associating semantic features
with their corresponding explicit primitives. However, as shown in the Fig. [T] an inherent conflict
arises between the anisotropic nature of RGB fields in their rasterization pipeline and the isotropic
representation required for robust semantic features. Existing methods, whether based on implicit or
explicit representations, typically treat features as fully differentiable and optimize them jointly with
appearance. However, this continuous optimization may introduce inconsistencies that interfere with
the self-attention mechanism in transformer, leading to feature noise and degraded rendering quality.

To address the limitations of aforementioned phenomena, we propose FHGS (Feature-Homogenized
Gaussian Splatting), a novel feature fusion framework built upon the GS paradigm which establishes
bidirectional associations between 2D semantic features and 3D feature fields, enabling end-to-
end optimization for multi-view consistent feature fusion. FHGS preserves the efficiency and
explicitness of the gaussian splatting while overcoming the limitations of rasterization-based methods
designed primarily for RGB reconstruction. Specifically, each gaussian primitive is augmented
with non-differentiable semantic features, which represent the frozen pre-trained features within
the 3D space and directly supervised by ground-truth feature maps to enforce semantic consistency
across views. To better achieve multi-view feature consistency under efficient optimization while
preserving isotropic representations within the feature field, we propose a dual-driven mechanism
inspired by physics-inspired principles from electric field modeling. This mechanism, composed
of External Potential Field Driving and Internal Feature Clustering Driving, constrains anisotropy
to photometric properties merely, while enforcing isotropy in the feature field to support consistent
semantic representation.

Extensive experiments of benchmark datasets demonstrate the proposed FHGS not only enhances
semantic fusion quality but also improves geometric reconstruction accuracy and noise robustness
through feature-driven regularization effects. The main contributions of this work are as follows:



* General feature fusion architecture: We propose a GS-based feature field fusion framework
capable of integrating 2D semantic features extracted from large-scale pre-trained models
(e.g., SAM [L1], CLIP [12]), enabling unified optimization from low-level geometry to
high-level semantics.

Integration of non-differentiable features into GS framework: We pioneer about integrating
of frozen features into the differentiable gaussian splatting methods, which fundamentally
resolves the inherent contradiction between the anisotropic nature of gaussian primitives
and the isotropic requirements of semantic features.

Physics-inspired dual-drive mechanism: Inspired from electric field modeling, we design a
joint optimization strategy combining external potential field driving and internal feature
clustering driving, characterized by intuitive logic, computational efficiency, and strong
interpretability. Additionally, the metric based on this mechanism, named FE, is proposed to
evaluate the global consistency of features.

 Performance superiority: Compared with other 3DGS feature fusion frameworks on bench-
mark datasets, our FHGS achieves state-of-the-art fusion performance and enhances geo-
metric reconstruction accuracy, while maintaining a significantly lower training time than
our baseline. Therefore, our framework lays the foundation for future extensions toward
real-time reconstruction and VLN applications.

2 Related Work

2.1 Novel View Synthesis

Neural Radiance Fields [3] models a continuous 3D scene representation through an implicit radiance
field and a differentiable volume rendering equation supervised by 2D images. The core of NeRF
is that it leverages a multilayer perceptron (MLP) to map spatial positions and viewing directions
to color and density values, enabling novel view synthesis with high-quality via ray integration.
Subsequent works such as Mip-NeRF [13]], Instant-NGP [14], and Mip-NeRF 360 [15] further
improve anti-aliasing, training speed, and scalability to large-scale unbounded scenes. However,
the nature of implicit representation of NeRF-based methods [[13| [14} [15] requires dense sampling
and complex network inference, leading to low training and rendering efficiency that limits its
applicability in real-time scenarios.

To overcome the limitations of implicit representations, 3D Gaussian Splatting (3DGS) [4] introduces
an explicit scene representation by decomposing the 3D environment into a set of explicit, anisotropic
gaussian primitives. Combined with the implicit pipeline, this formulation enables efficient training
and rendering. Moreover, the anisotropic view-dependent appearance is further represented using
spherical harmonics, conditioned on the spatial and radiometric properties of each primitive. Com-
pared to NeRF, 3DGS eliminates the need for neural networks in the rendering pipeline, significantly
improving memory efficiency and real-time performance while maintaining high-fidelity recon-
struction. Extending this idea, 2D Gaussian Splatting (2DGS) [[16] enhances multi-view geometric
consistency by anchoring gaussian primitives to the image plane while enforcing depth consistency
constraints. Despite these advances, existing GS-based frameworks remain primarily focused on
geometry reconstruction, without addressing a core challenge of the utilization of semantic features.
Our method FHGS introduces high-level semantic priors from SAM [11], enabling structure-aware
guidance during reconstruction. Different from conventional GS methods that rely purely on dif-
ferentiable photometric cues, our FHGS leverages non-differentiable, high-dimensional semantic
information to guide the optimization of semantic-aware structural distributions, resulting in more
precise and robust reconstructions, especially in challenging regions where appearance cues alone are
insufficient.

2.2 Implicit Feature Fusion

Integrating semantic information or learned features into point-based scene representations is a well-
established strategy, extensively explored in the NeRF-based works [[17, [18} 19} 20,21} 22]] and now
migrating to gaussian splatting. Recent attempts to incorporate features into 2D/3D gaussian splatting
can be clustered into three categories. Mask fusion approaches exemplified by GaussianCut [23] and
Gaussian Grouping [24] provided 2D masks onto the gaussian primitives set and employ graph-cut



or low-dimensional identity embeddings for partitioning. While this method is straightforward for
interactive 2D editing, the resulting correspondence is no longer perceptually obvious in 3D space,
and these method still depends on extensive manual annotation, which fails to capture any high-
dimensional semantic features. External fusion schemes such as SAGA [25]], Semantic Gaussians [26]
and OmniSeg3D [27] distilled 2D features into 3D space through an auxiliary neural network or
contrastive learning, thereby enriching semantic information at the expense of additional parameters,
prolonged training, and deviation from the concise design philosophy of gaussian splatting. Feature
fusion techniques including Feature 3DGS [10]] and LangSplat [28]] learned embeddings with individ-
ual primitive so that semantics render with color. However, these embeddings overwrite or reshape
the high-dimensional tensors supplied by large segmentation models, erasing the self-attention struc-
ture and class relationships encoded therein and often introducing substantial noise that degrades
segmentation quality. As a consequence, subsequent reasoning is confined to image space rather than
the gaussian primitives domain.

Therefore, we model cross-view semantic coherence as a physics-inspired potential-field optimization
that relocates gaussian primitives while preserving their original feature vectors. The pipeline of our
FHGS is self-supervised and globally consistent, retains the full high-dimensional semantic tensor for
downstream tasks such as segmentation, detection and multi-modal prompting, and maintains the
real-time rendering performance fundamental to gaussian splatting.

3 Methodology

The proposed FHGS addresses the semantic distortion and efficiency bottlenecks caused by the
conflict between the anisotropic rendering mechanism of gaussian splatting and the isotropic require-
ments of high-level semantic features. There are three core components of FHGS, which will be
successively illustrated in this section: (1) A general-purpose feature fusion architecture that supports
the integration of multi-view features. (2) A GS framework enhanced with non-differentiable features,
enabling the incorporation of high-dimensional semantic priors. (3) A dual-driven feature fusion
mechanism inspired by physical modeling, which guides the feature optimization process using both
geometric and semantic consistency cues.

3.1 General Feature Fusion Architecture

The pipeline of the General Feature Fusion Architecture is demonstrated in Fig. 2} The Structure
from Motion (SFM) process reconstructs a sparse 3D point cloud PC' via Bundle Adjustment (BA)
firstly. To accelerate the correspondence of 3D point cloud and 2D feature, we construct a spatial
hash table H that indexes the projections of each 3D point pc; across visible views M. Subsequently,
pre-trained model of segmentation is used to generate 2D ground-truth feature maps Fy;. Given a 3D
point pc;, its corresponding pixel 7 in a randomly selected view m € M is retrieved via the spatial
hash table, and the semantic feature f; = F{}(n) is sampled accordingly. Each gaussian primitive is
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Figure 2: Pipeline of the General Feature Fusion Architecture

initialized from a point pc; and inherits its geometric parameters, appearance attributes, and a frozen
semantic feature. Specifically, a primitive is anchored at a center position p; and oriented by two
orthogonal tangent directions t,, and t,, with the normal vector defined as t,, = t,, x t,. These
directions form the rotation matrix R; = [ty ty, ty] € R3%3. The spatial extent on the tangent plane
is described by a planar scale vector S; = (s, S, ). For appearance modeling, each primitive carries
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an RGB color ¢; € R3 and an opacity scalar op; € [0,1]. Additionally, a frozen semantic feature
vector f; is assigned to each primitive, extracted via a non-differentiable image embedding. We write
the complete representation of each gaussian primitive as:

9; = {pi,Ri,S;i,0pi, c;. £ }. (D

The other symbols follow the notation of conventional 3DGS. Any point (u, v) in the tangent plane is
mapped to world space by:

P(u,v) = p; + sutyu + sptyv = H(u,v,1,1) 7 2)
with the homogeneous matrix H € R**4 factories translation, rotation and scale. Given local
coordinates u = (u,v), the unnormalized density is G(u) = exp(—#). Then, let x = (z,y)

be a pixel and define u(x) as the unique point in the splat’s tangent plane whose homogeneous
coordinates satisfy:

x = (zz, yz, z, 1)) = WP(u,v) = WH(u,v,1,1)" 3)
where W € R**4 is the world-to-camera transformation matrix, and z denotes the depth. During the
rasterization process in the GS framework, primitives that intersect with the ray ! emitted from pixel

n are identified. Specifically, the NV primitives covered by ray [ are sorted by their rendering depth,
with index ¢ = 1 and ¢ = N assigned to the farthest and the nearest, respectively. The final color can

be computed as:
N
=) ciw “)
i=1

The weight w; = «;T; is the dynamic differentiable parameter, while a; = op;G; (u(x)) characterizes
the intrinsic properties of gaussian primitives, and T; = H;:l (1 — ;) encodes their transmittance.
During the backward propagation, gradients of w; propagate through the chain rule to drive the opti-
mization of the geometric parameters of gaussian primitives, thereby enhancing scene reconstruction
quality. As the pivotal variable linking geometry and the differentiable rasterization, w; directly
drives both reconstruction accuracy and rendering efficiency.

3.2 Non-Differentiable Features Fusion Mechanism

FHGS integrates a non-differentiable feature driving (NDFD) ( arc pathway in Fig. [3) with the
original GS framework. During the forward process, FHGS directly utilizes F'g; compute the feature
loss L ¢eq+ based on the feature f; and contribution weights w;. It is worth notlng that the forward
process does not require prior feature rendering, which can further reduce the computational costs. In
the backward process, although the feature f; of each gaussian primitive is non-differentiable, the
gradient of L .q can still propagate through w; to optimize { p;, R;, S;, op; }, implicitly guiding
gaussian primitives toward feature-consistent regions.
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Figure 3: Schematic representation of the two mechanisms of FHGS: NDFD and DRF

Compared to the differentiable rasterization framework (DRF) in the conventional GS methods
( arc pathway in Fig.[3), the non-differentiable branch eliminates the need for feature rendering



during the forward process, enabling direct loss computation while preserving the efficiency of
GS framework. This design brings the following characteristics: the anisotropic color rendering
remains dedicated to illumination and shadow modeling, while the multi-view consistency of non-
differentiable features is achieved through w-driven distribution optimization, thereby avoiding direct
conflicts between the rasterization anisotropic mechanism and the isotropic requirements of semantic
features. The detailed pseudo code of NDFD is given in the Appendix.

3.3 Physics-Inspired Dual-Drive Mechanism

Inspired by principles from an intuitive analogy in physical field theory, we model the Fy; within
the rasterization as a feature field in homogeneous space x, as defined in the Eq.[3} we cons1der it as
an "electric field". More concretely, as illustrated in the Fig.[d] we treat the ray [ emitted from pixel
n as an electric field line, and define its semantic property as the ground-truth feature fg; gt(n)
sampled from the 2D feature map. The gaussian primitives are conceptualized as discrete charges"
carrying intrinsic features f;. The feature loss L f.4; is then formulated as the potential energy loss in
this electric field analogy. During the backward process, gradients drive the spatial optimization of
gaussian primitives, analogous to the motion of charges under electric field forces toward regions of
lower potential energy.

External Potential Field Constraint: Following the logic of NDFD, we compute the cumulative
similarity between the features f; intersecting with ray [ and the ground-truth feature f;;, constructing
a similarity loss during the forward process:

N
Lot = > wjo; )
i=1

To eliminate the inherent contradiction between gaussian primitives and ground-truth semantics in
the feature space, FHGS introduces a similarity-based activation function o; = m’ where
¢ = cos (f;,fy:). This sigmoid function maps feature similarity into a polarity-like response,
analogous to the binary behavior of electric charges. More detailed explanation of sigmoid function
are given in the Appendix.

Figure 4: The illustration of proposed Dual-Drive Mechanism: The color of each gaussian primitive
and ray represents their feature properties, and the transparency represents the magnitude of the
weight w; of the primitive on the ray. fy_3 exhibits similarity to posterior accumulated values F;_1,
which is the value of the cluster C only constrained by L;; fiy—4 represents the inter-cluster noise
points of C; and C5 suppressed by Ly; and L.y; fs corresponds to the internal noise points from
cluster Cq, where both L, and L.y effectively optimize the distribution of C'.

Internal Clustering Driving: In order to suppress noise, enhance semantic coherence, and quantify
the semantic feature entropy at pixel n, we simplify the bidirectional traversal of feature similarity
between gaussian primitives during the rasterization process as:

N i—1

Cf—ZZUlwzwj —f - f;)

11]1

= Zozwz i-1—Fi 1 'fi)

6)



The detailed derivation process of L.y can be found in the Appendix. Since both f; and f; are
normalized, cos (f;, f;) simplifies to f; - f;. We can obtain the cumulative weight ,, = Z?:l w;
and cumulative feature F,, = Z?:l w;f; along the ray from far to near. In addition, each current
feature f; is compared only with the cumulative feature F; ;. This avoids spurious repulsion across
unrelated objects and reduces complexity from O(N?) to O(N). Furthermore, the cumulative
weight W;_; encodes the rendering contributions of farther gaussian primitives, implicitly modeling
depth hierarchy. More specifically, the similarity activation function o; suppresses interference from
background clutter, preventing incorrect contributions to foreground semantic clusters (e.g., C7 and
f; in the Fig.[). This mechanism achieves local semantic coherence by anchoring primitives that are
semantically consistent with £y, (e.g., f1), while repelling dissimilar ones, thereby reducing feature
conflicts and reinforcing cluster purity. It effectively suppresses internal noise (e.g., f> in the Fig. )
and eliminates irrelevant outliers in space (e.g., Cy and fyy_3 in the Fig.[d), resulting in cleaner and
more compact semantic regions.

The aforementioned two driving methods, together with L, g3, jointly constrain the semantic fusion
process of 3D scenes. The external potential field driving ensures semantic consistency across views,
while the internal clustering suppresses outlier noise and enhances intra-cluster coherence. Moreover,
the internal-clustering term L refines the fine-grained details captured by L,; and accelerates its
convergence. Two hyper-parameters A\; and Ay are manually selected to balance the contribution of
external semantic guidance and internal clustering regularization, respectively. Finally, we define the
overall loss L as:

L= Lrgb + >\1Lgt + )\2ch

Under the NDFD mechanism, gradient with respect to wy, not only influence the geometry and
appearance of local primitive but also affect the spatial distribution of subsequent gaussian primitives
in the backward traversal. The gradient can be obtained by:

oL S
a'u)c;j ZUk(Wk_l —Fi 1 fk))—‘l_ Z ini(l_fi'fk>
i=k+1

The symmetry between the forward and backward passes allows cumulative terms computed during
the forward traversal to be directly reused in gradient calculations (see Appendix), eliminating
redundant passes and preserving the O(N') complexity of both processes.
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4 Experiments

We implement FHGS within a 2DGS-based framework, deploying tailor-made CUDA kernels to
accelerate the proposed feature-fusion operations. We use the image embedding of SAM [[L1] as input
to the feature. The original 2DGS renderer is retained to export depth-distortion maps, depth maps,
normal maps, and mesh reconstructions, which serve as the inputs to our quantitative and qualitative
evaluations. In the sigmoid activation function, the similarity threshold and slope are empirically
fixed to A = 0.5 and k = 20, respectively, ensuring stable binarization of the feature-matching score
o that governs the polarity of gaussian primitive. For benchmarking, we adopt Feature3DGS [10] as
the baseline. Following its protocol, we report the L feature loss FL1 (lower values indicating higher
feature similarity) under the same rendering pipeline, where smaller FL1 values signify better feature
fusion. Cross-view consistency is further assessed with the ground-truth entropy metric Lg; (Eq.[5);
lower Lg; scores indicate tighter multi-view alignment. To ensure fair comparisons, all experiments
are executed on a workstation equipped with a single NVIDIA GeForce RTX 4090 (24 GB) and an
AMD Ryzen 9 9950X (16 cores). In addition, we use identical feature-extraction pipelines together
with the default 2DGS optimizer settings (learning rate, iteration count, batch size) for both the
baseline and our method, thereby eliminating performance biases due to hyperparameter tuning or
feature-generation differences.

4.1 Comparative experiment

To verify the generalization and robustness of our method, we conduct systematic experiments on a
range of public datasets covering both indoor and outdoor environments. For indoor evaluations, we



Table 1: Quantitative results comparison on indoor scenes

Method DTU-24 DTU-37 MN360-kitchen
PSNRT FE| FL1| Time] PSNR} FE| FL1| Time, PSNRt FE| FL1] Timel
2DGS 301 135 061 6Im 305 131 052 63m 302 132 079  6.5m

Feature3DGS 31.5 052 024 822m 311 0.88 031 73.2m 31.7 0.63 031 113.2m
FHGS (ours) 30.9 0.15 022 52m 30.8 021 018 5.7m 30.8 023 0.21 5.1m

evaluate our method on DTU (scans 24, 37) [29] and Mip-NeRF 360 (Kitchen) [13]], as the results
shown in Table[T} while outdoor evaluations are performed on Mip-NeRF 360 (Garden, Stump) and
Tanks and Temples (TnT Caterpillar) [30], the results are shown in the Table[2] All input images
are uniformly downsampled to a maximum side length of 1,000 pixels to balance computational
efficiency and reconstruction accuracy. Sparse point clouds are initialized with COLMAP [31]] are
used for SfM, with a fixed iteration count of 10,000 to ensure optimization consistency. During
testing, Feature3DGS [[10] failed in TnT [30]] due to its huge utilization of GPU memory.

The experimental results demonstrate that FHGS reduces training time by 15X relative to Fea-
ture3DGS, improves performance by 8-10% over standard 2DGS, and maintains real-time rendering
at > 60 FPS. In terms of feature fusion quality, FHGS achieves the same performance comparable
to Feature3DGS in the FL1 metrics, validating its effectiveness in feature similarity measurement.
FHGS also exhibits superior FE metrics (lower values denote stronger cross-view consistency),
highlighting its advantage in semantic coherence across viewpoints.

Table 2: Quantitative results comparison on outdoor scenes

Method COLMAP [31] MN360-Garden [15] TnT-Caterpillar [30]
PSNRT FE| FLI| Timel PSNRf FE| FLI, Time| PSNRt FE| FLl| Timel
2DGS 274 1.73  0.83 10.16m 31.3 1.67 0.75 6.3m 26.8 1.72  0.76 5.2m

Feature3DGS 28.2 055 042 181m 316 065 033 1554m - - - -
FHGS (ours) 26.5 025 0.24 7.8m 306 025 0.18 6.1m 266 021 041 52m

RGB ground truth Ours(RGB) Feature ground truth Feature3DGS(feature) Ours(feature) 2DGS(normal) Ours(normal)

Figure 5: Qualitative results to compare our FHGS with Feature3DGS [10] in feature map and
2DGS [16] in normal map.

To visually assess fusion quality, we map channels 15, 28 and 31 of the image embedding features to
RGB for rendering. The visualization comparison results in Fig. [5|further demonstrates the superiority
of our FHGS which produces uniform feature distributions with minimal noise, smooth semantic
transitions, and clear boundaries. For geometric reconstruction, our method effectively suppresses
noise and drives geometric structures to converge toward thin planar surfaces, ultimately achieving
high-precision surface reconstruction comparable to MVS. Furthermore, the quantitative results show



that our method achieves higher PSNR values than the baseline in indoor scenes, but lower PSNR in
outdoor scenarios. This improvement arises because low-semantic features such as soil and shadow
regions are effectively filtered out during reconstruction (See Appendix).

Our training is faster and uses less GPU memory in Table[3] These results conclusively demonstrate
that FHGS significantly enhances semantic-geometric consistency in 3D scene representations
while preserving real-time rendering efficiency through the proposed novel fusion mechanism and
optimization strategy. More results of experiments can be found in the Appendix.

Table 3: Quantitative results between FHGS, 3DGS, 2DGS and Feature3DGS on the DTU [29], we
report chamfer distance, PSNR (training-set view), reconstruction time, model size and point number.

Methods CDT PSNRtT Time| PN|] MB (Storage)
3DGS 196 3576 11.2m 532k 113
2DGS 0.83 33.42 5.5m 342k 52
Feature3DGS 1.85  35.25 >24h 642k 745
FHGS (ours) 0.75 34.21 4.8m 196k 183

4.2 Ablation Study

The ablation study is conducted on the scan24 of DTU dataset [29] with 10,000 training iterations to
investigate the effects of the loss functions Ly and L.y on feature fusion, geometric reconstruction,
and optimization efficiency (illustrated in Table[d). Fig.[6](a) illustrates the result of image embedding
from SAM [11]]. The experimental results indicate that these two loss terms serve complementary
roles: As illustrated in the Fig. |§|(d), when Lg; and L.y are both disabled, and visualizing the feature
through the default rendering logic, the resulting feature map diverges markedly from the ground
truth and appears cluttered. When only L. is removed, although the optimization proceeds faster, the
model suffers from semantic contamination and overfitting at the surface level. As shown in the Fig.[6]
(c), numerous valid gaussian primitives are incorrectly discarded, leading to excessive transparency
in the reconstructed geometry and severe degradation in reconstruction quality. When both Lg; and
Ly are jointly applied, the framework achieves an optimal balance: the feature consistency metric
FE improves, geometric structures converge toward thin and planar forms, and convergence speed
increases. Fig.[6](b) has shown that under this configuration, the distribution of the feature field is
uniform and dense, semantic boundaries are sharp and well-defined, and the reconstructed surfaces
retain detailed geometric information. These findings validate the effectiveness of the dual-loss
collaborative optimization strategy.

B o2l

(a) Feature ground truth (b) FHGS (ours) (c) FHGS (w/o Ly) (d) 2DGS (baseline)

Figure 6: Ablation study on the scan24 of DTU dataset [29].

Table 4: Quantitative analysis of ablation experiments on DTU scan24
Methods PSNRT FE| FL1| Time|l PN}
FHGS (ours) 309 015 016 52m 214k

FHGS (w/o Ly) 27.2 010 021 43m 217k
2DGS (baseline) 30.1 135 046 6.lm 329k




5 Conclusion and Discussion

We introduce a Gaussian splatting based framework named FHGS, which incorporates a
non-differentiable feature-driven regularization term to enforce multi-view semantic consistency.
FHGS markedly boosts multi-view feature alignment and geometric reconstruction quality while
maintaining real-time performance, as demonstrated by extensive experiments on diverse indoor
and outdoor datasets. While our FHGS successfully achieves multi-view consistent and accurate
geometric reconstruction, it still has some limitations: our methods remains sensitive to the manually
tuned similarity-activation parameters lambda and k; its hash—table and cumulative-weight buffers
incur considerable GPU memory in large-scale scenes. In future work, we plan to explore adaptive pa-
rameter learning strategies to reduce dependence on manual tuning, and to develop memory-efficient
and compact representations to enhance scalability in large-scale environments.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in our abstract and introduction correctly reflect the
contribution and scope of our paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper comprehensively discuss the limitation in the section of Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the formulas in the paper are numbered and cross-referenced, the detailed
proofs of core theorems are given in the section of Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the two architectures in combination with the schematic diagrams
in the paper. We discuss and explain our proposed algorithm through experiments on a
variety of datasets.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have prepared all the relevant code and ensured that they can be easily
reproduced. If our paper is accepted, we will immediately open source all the data and code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details necessary to understand the
results in the beginning of EXPERIMENTS.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: [NA|
Guidelines:

e The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the sufficient information about the computer sources used
in our experiments in the section of EXPERIMENTS.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All the research conducted in our paper conform the NeurIPS Code of Ethics
in every respect.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: [NA|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

17


https://neurips.cc/public/EthicsGuidelines

Answer:
Justification: [NA|
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets mentioned in the article have been correctly cited, explicitly men-
tioned and respected, and comply with all licensing and usage terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided detailed documentation for all proposed assets, and once the
article is accepted, we will open source it together with all the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Explanation of Non-Differentiable Feature Driving (NDFD)

Algorithm 1 General Feature Fusion and Densification Framework

F,: < GETFEATUREFROMSAM(I,;) > Features
(p, H) < GETPOINTFROMSFM(I;) > Positions & Hash
f < POINTSFEATUREFUSION(p, F, H) > Point Features
(R, S, ¢,0p) < INITATTRIBUTES() > Rotations, Scales, Color, Opacity
10 > Iteration Counter
while not converged do
(m, Iy}, Fy}) < SAMPLETRAINING VIEW() > Camera, Image, Feature
I « DRE(p, R, S, 0p, ¢, m) > Rasterization
Lygp < LOSS(IGE, I72) > Photometric Loss
(Lgt, Leg) < NDFD(p, R, S, 0p, £, Fy;, m) > Semantic Loss
L < Lygp + Lyt + Ley > Total Loss
(p,R,S,0p,c) < ADAM(VL) > Update
if ISREFINEMENTITERATION(i) then
DENSIFICATION(p, R, S, op, ¢, f) > Adaptive Density
end if
14—1+1
end while

Details of the Rasterizater: Our implementation builds directly on the GPU rasterizer proposed
in 3D Gaussian Splatting. Following that design, the image plane of size w X h is partitioned into
16 x 16 px tiles. Each gaussian primitive that overlaps a tile is duplicated for that tile and assigned a
64-bit key whose lower 32 bits encode depth and upper bits encode the tile index. A single parallel
radix sort on these keys resolves global depth order and produces a compact, per-tile, depth-sorted
list of instances; a second pass identifies the start—end range for each tile (see CULLGAUSSIAN,
DUPLICATEWITHKEYS, and SORTBYKEYS in 3DGS). This eliminates sequential primitive traversal
and maximizes GPU utilization.

Algorithm 2 Non-Differentiable Feature Driving Mechanism
function NDFD(p, R, S, op, f,F", m)

gt>
x < HOMOGENIZATION(m) > Camera Homogenization
g <+ Gi(u(x)) + 2DSCREENGAUSSIANS(p, R, S, x) > Screen-space Gaussians
T < CREATETILES(m) > Tile Grid
(I, K) < DUPLICATEWITHKEYS(g,T') > Indices & Keys
SORTBYKEYS(K,I) > Global Sort
T, < IDENTIFYTILERANGES(T, K) > Tile Ranges
Ly <=0, Loy <=0 > Initilize Loss Buffers

forallt € T do
forall: € t do

7 < GETTILERANGE(T, t) > Index Range in K

for all j € r do
oj + SIGMOID(F{3(i), f;) > Polarity Response
w; <~ WEIGHTCALC(g;, op;) > Opacity-weighted Area
Lg[i] += EPFC(wj, f;,05) > External Potential
Lsli] +=1CD(wy, fj,05) > Internal Clustering

end for

end for
end for

return (Lg, L.s)
end function

Non-Differentiable Feature Driving (NDNF): Alg. 2] augments the aforementioned rasterizer with
a feature-centric branch that runs entirely on the sorted gaussian primitives lists and never invokes
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« blending. Given the current view m, camera homogenization first projects gaussian primitives
means into screen space, after which key generation and radix sorting produce per-tile ranges. For
every pixel ¢ in a tile ¢, we then traverse the corresponding range r in front-to-back order. A sigmoid
activation o; = SIGMOID(F{; (i), f;) converts the cosine similarity between the frozen feature f; of
the j-th gaussian primitives and the ground-truth embedding Fy;(i) into a charge-like polarity. The
raster weight w;, which combines projected area and opacity exactly as in o blending, is accumulated
only by this feature branch. Then, two loss terms are computed: the external-potential loss L
attracts oj-weighted features toward F7} (i), whereas the internal-clustering loss L. applies the
cumulative-feature rule to penalize incoherent neighbors. These loss buffers are initialized once per
frame and updated atomically in the innermost loop, so no intermediate feature image is rendered.
During back-propagation, gradients propagate solely through the weights w;, which reuse the same
cumulative prefix employed for a-blending in the forward traversal, thereby retaining the O(N)
complexity of the original rasterizer.

A.1 Derivation of the feature similarity

Internal clustering loss L.g: For a given pixel p, let {(w;, f;)}¥, be the set of gaussian primitive

whose screen-space footprints cover that pixel, where w; is the weight and f; € R? is the frozen
semantic feature of the ¢ — th primitive. The internal-clustering loss:

N N
Leg =YY wiw; (1—cos(f; - f;)) (7

i=1 j=1

computes the entropy of the local feature distribution by accumulating the weighted cosine dissim-
ilarity between every pair of primitives. The process of minimizing L.y pushes feature vectors of
neighboring primitive to align, suppresses noisy outliers, and tightens semantic coherence within the
pixel neighborhood. And simultaneously, this process allows primitives belonging to different objects
to repel each other through their low cosine similarity.

We further convert it to an O(N') backward traversal by noting that feature vectors are normalized,
therefore cos(f;, f;) = fi-f;. We can rearranged the representation of L. as:

N i—1

Loy = ZZJZ- w; wj (1 —cos(fi - f;))
i=1 j=1
N i—1 i—1
= oiwi | Y wi— > wifi- fi
i=1 j=1 j=1

(®)

N 1—1 i—1
= o [ Y wi =Y wifj- fi
i=1 =1 =1

N
=> oiw; (Wisy — Fi1 - f3)
i=1

where the cumulative weight W, _; and cumulative feature F;_; are updated one time in each step
during the front-to-back blend. The final form of L.y retains the physical meaning of pairwise
semantic attraction-repulsion so evaluates in O(N) time. The cumulative values of W _1 and Fy_1
are recorded.

A.2 Calculation process of the gradients

As derived in the main text, we obtain the partial derivatives:

oL =
au}ckf = 0} (kal — kal . fk) + Z g;W; (]- - fz . fk) (9)
] i=k+1

In the forward pass the gaussian primitive is processed in descending depth order from the farthest to
the nearest with respect to the camera. The backward pass visits the same primitive in the reverse
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order. Because the index k is defined with respect to the forward ordering, we re-index the backward
traversal by a new counter ¢ = 1, ..., N. Exploiting this forward—backward symmetry, the gradient
of the internal-clustering loss with respect to the weight of the current primitive can be rewritten as:

L.y
Owq

= 0g(Wn — W) — (Fy — ) + Zalwl f; - £,) (10)

Based on the w; = «;T;, a; = op; G;(u(x)), T; = H;;ll(l — ), we can obtain:

N

aLgt _ 8Lgt ) 3wk _ Tk ) 8Lgt _ Z aLgt ) , (11)
Oy, owy, Oay owy, 1— oy M) ow; i
Analogously to the equation above, we can also obtain:
aLgt aLgt awq aLgt 1 aLgt
= L =T . — - w; 12
0oy ow, Ooy 0 Z ow; 12)

wg 1 -

B Comprehensive Results of Experiments

We conduct a detailed comparison between our method and Feature3DGS on the DTU indoor
dataset. As shown in the Fig.[7} our method yields more uniform feature distributions and sharper
boundaries. Moreover, it effectively suppresses background clutter, which remains prominent in
Feature3DGS. The enhanced clarity and selectivity of our features also benefit downstream tasks
such as segmentation and reconstruction. These observations highlight the strength of our feature
driving mechanism in promoting structural coherence and semantic focus.

Ours
(Feature),

Figure 7: Qualitative results to compare our FHGS with Feature3DGS in feature field. The results
shown that FHGS achieves better feature extraction with more uniform feature distributions, shaper
boundaries and cleaner background.

We further evaluate our method against Feature3DGS on challenging outdoor scenes from the TnT
and MipNeRF360 datasets. As shown in Fig.[8] our method consistently delivers more coherent and
spatially uniform feature fields, with significantly clearer object boundaries and effective suppression
of background noise. In addition to semantic features, we also visualize the surface normal maps
extracted from our reconstruction, which exhibit plausible geometric structures and fine-grained
surface details. These results demonstrate the robustness of our method under natural lighting,
large-scale geometry, and high-frequency textures, confirming its generalization to diverse outdoor
environments.
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RGB ground truth Ours (normal) Ours (feature) Feature3DGS (feature)

Figure 8: Qualitative comparison on outdoor scenes from TnT and MipNeRF360
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