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Abstract

The proliferation of Conversational Al agents
(CAAs) has emphasised the need to distinguish
between human and machine-generated texts,
with implications spanning digital forensics
and cybersecurity. While prior research pri-
marily focussed on distinguishing human from
machine-generated text, our study takes a more
refined approach by analysing different CAAs.
We construct linguistic profiles for five CAAs,
aiming to identify Uniquely Identifiable Lin-
guistic Patterns (UILPs) for each model us-
ing authorship attribution techniques. Author-
ship attribution (AA) is the task of identify-
ing the author of an unknown text from a pool
of known authors (Juola, 2008). Our research
seeks to answer crucial questions about the ex-
istence of UILPs in CAAs, the linguistic over-
lap between various text types generated by
these models, and the feasibility of Authorship
Attribution (AA) for CAAs based on UILPs.
Promisingly, we are able to attribute CAAs
based on their original texts with a weighted
F1-score of 96.94%. Further, we are able to
attribute CAAs according to their writing style
(as specified by prompts), yielding a weighted
F1-score of 95.84%, which sets the baseline for
this task. By employing principal component
analysis (PCA), we identify the top 100 most
informative linguistic features for each CAA,
achieving a weighted F1-score ranging from
86.04% to 97.93%, and an overall weighted
F1-score of 93.86%.

1 Introduction

Recent advances in deep learning and natural lan-
guage processing have led to the emergence of
conversational Al agents (CAA), which we define
as large language models (LLMs) that can gener-
ate natural language as a dialogue system would.
These have been applied in tasks such as ques-
tion answering and text summarisation (Zhao et al.,
2023). The widespread use of CAAs has high-
lighted the importance of determining the origin

of a text (Desaire et al., 2023; Fagni et al., 2021;
Mitrovi¢ et al., 2023). Authorship attribution for
CAA:s, i.e., the ability to ascertain the authorship
of texts generated by CAAs, is crucially important
in the area of user protection (e.g., the prevention
of online hate crimes or distribution of misinforma-
tion) and academic malpractice (Mahmood et al.,
2019). This arises due to the increasing popularity
of CAAs (Desaire et al., 2023), which can be used
as an obfuscation tool, allowing users to hide their
writing style and spread potentially harmful content
anonymously with the use of CAAs. This can be
mitigated by building methods for CAA attribution:
the task of identifying the CAA responsible for pro-
ducing written text. Furthermore, it is important
for such methods to reliably attribute texts to the
corresponding CAAs that produced them, even if
the texts were generated for different textual genres
and thus follow different writing styles.

Prior research has predominantly focussed
on distinguishing between human and machine-
generated text (Fagni et al., 2021; Mitrovi¢ et al.,
2023; Becker et al., 2023; Islam et al., 2023a;
Markowitz et al., 2023), paying little attention to
the investigation of different CAAs. Our research
draws inspiration from the linguistic theories of
language identity and linguistic patterns within the
compositions of individual authors (Nini, 2023;
Coulthard, 2004). Specifically, our study under-
takes the task of assessing the validity of the afore-
mentioned theories regarding CAAs. As a result,
we have meticulously crafted linguistic profiles for
the following five generative large language mod-
els: GPT-4!, GPT-3.5!, Text-Curie-001', PaLM-22,
and LLaMA2-7b>, aiming to discern the presence
of UILPs. We use these UILPs to perform author-
ship attribution (AA), which involves analysing fea-
tures to identify patterns that can help distinguish
between texts written by different authors (Juola,
2008, 2006; Sari, 2018). Analysing the discernible
patterns in the writing of each CAA is crucial in



enabling CAA attribution, regardless of the text
it generates. We propose a transparent means for
linguistic analysis that is more interpretable across
different CAAs and forms the central emphasis of
this paper.

This research area is novel and has yet to be ex-
plored. As aforementioned, there have been many
attempts to identify texts generated by machines
and humans, however, there has been no investi-
gation on the UILP of CAAs, no comparison of
different CAAs and no research indicating if these
CAAs can be differentiated from each other based
on their linguistic patterns. Moreover, there is a
notable absence of analysis of CAAs based on sty-
lometry, i.e., the statistical analysis of language
often used in the context of forensic linguistics
(Rocha et al., 2016). The research questions (RQs)
we aim to answer in this paper are as follows:

RQ1: To what extent can we perform authorship
attribution (AA) for CAAs based on their orig-
inal texts, through the recognition of their
UILPs?

RQ2: Can we attribute text to CAAs through the
recognition of UILPs in texts that they gener-
ated based on different stylistic prompts?

RQ3: How can we measure the linguistic overlap,
if any, in outputs from the CAA when it gen-
erates distinct texts?

In addressing the above questions, we have made
the following contributions:

* Two new datasets: The first dataset is a col-
lection of original texts created by five CAAs,
while the second dataset is an expanded ver-
sion of the first whereby each text was para-
phrased by the CAAs according to the fol-
lowing five styles: (a) paraphrased with no
specified style, (b) written as a fictitious nar-
rative, (c) written as a tweet, [d] written as a
social media blog post and (e) written as an
academic article.

* An approach to CAA attribution based on a
Logistic Regression (LR) model trained on

"Model details and source: OpenAl’s GPT-3.5. (2021).
https://www.openai.com/

2Model details and source: Bard: The Language Model for
Writing Assistance. (2022). https://www.bardmodel.com/

*Model details and source: LLaMA2-7b: A Large Mul-
tilingual Language Model for Free-Form Editing. (2023).
https://www.1llama7b.ai/

linguistic features and a fine-tuned DeBERTa
model (He et al., 2021).

* A method for identifying linguistic patterns
in the texts generated by the different CAAs
based on principal component analysis (PCA).

2 Related Work

The field of AA encompasses three distinct cate-
gories, as outlined by Juola (2008). The first cat-
egory pertains to closed-set attribution, where the
objective is to identify the author of a text of an
unknown text from a known pool of authors (Juola,
2006). The other categories are authorship verifica-
tion and author profiling. In the case of verification
case true author may not be in the list of suspected
authors and the main challenge is to verify whether
the suspected author is the author of a document
or not. Profiling is the case of providing as much
information about the author from a set of texts.
Information such as their age, education level or
gender, all of which can be seen in their use of lin-
guistic devices (Sari, 2018). Our work is concerned
with closed-set attribution.

Posited by Nini (2023), the Principle of Linguis-
tic Individuality states that at any given moment it
is exceedingly improbable for two individuals to
possess identical linguistic grammars. This princi-
ple is aligned with the basis of AA (Coulthard et al.,
2016) which assumes that writings from one au-
thor would exhibit greater linguistic similarity than
writings from a different author (Burrows, 2002;
Anthonissen and Petré, 2019). However, this the-
ory has not been investigated in the case of CAAs,
which is what we sought to achieve in our work.

Previous research on CAAs has primarily fo-
cussed on only the GPT family of models, with
an emphasis on distinguishing between text writ-
ten by humans and those generated by machines
using transformer models (Fagni et al., 2021; Mitro-
vi¢ et al., 2023), or surface-level linguistic fea-
tures (Desaire et al., 2023; Markowitz et al., 2023).
These studies lack a comparative analysis of vari-
ous CAAs and do not incorporate any stylometric
analysis in their evaluation, which would better cap-
ture the use of CAAs in generating texts in other
scenarios. Other research demonstrates that human
participants were unable to distinguish between
texts written by humans and machines (Islam et al.,
2023b; Cox, 2005).


https://www.openai.com/
https://www.bardmodel.com/
https://www.llama7b.ai/

Model Creator | Size | # Tokens
GPT-4 OpenAl | 1.7T 8192
GPT-3.5 OpenAl | 175B 4097
Text-Curie-001 || OpenAl | 6.7B 2049
PalLM-2 Google — 8192
LLaMA2-7b Meta 7B 2048

Table 1: Comparison of CAAs based on their size in
terms of the number of parameters (unknown for PalLM-
2) and the maximum number of tokens in their output
(# Tokens)

3 Methodology

Different CAAs may exhibit diverse approaches to
conversation. By detecting these difference we al-
low used and developers to understand the specific
characteristics of each CAA. This section details
how the CAAs were selected, the data collection
steps and our approach to CAA attribution.

3.1 Model Selection

The models used for this project include GPT-3.5,
GPT-4, Text-Curie-001, PaLM-2 and, L1aMA2-7b.
All of these models are proficient in the natural
language generation task with varying levels of
sophistication. The Open Al GPT (generative pre-
trained transformer)! models used in this paper
were all trained using reinforcement learning from
human feedback (RLHF) on text data, web pages
and books, among others. GPT-4 (OpenAl, 2023)
is currently the most optimised model; GPT-3.5
has the same capabilities as GPT-4 but operates on
a smaller scale. The Text-Curie-001 model is an
older, now deprecated model produced by Open
Al

PalLM-2 (Pathways Language Model)? devel-
oped by Anil et al. (2023) was pre-trained on a
large quantity of parallel multilingual corpora, web
pages, source code and various other datasets. Pro-
posed by Touvron et al. (2023), LLaMA2-7b3 (Lan-
guage Learning and Meaning Acquisition) was
trained on textual data using a standard optimiser
and RLHF. We refer the reader to Table 1 for de-
tails on each model’s size (in terms of the number
of learned parameters) and the maximum number
of tokens in their output.

lIntlroducing GPT models: https://platform.openai.
com/docs/guides/gpt

Zpal.M-2: https://ai.google/discover/palm2/

SLLaMA: https://ai.meta.com/blog/
large-language-model-1lama-meta-ai/

These models, all created by various develop-
ers, are widely used, with GPT being particularly
prominent (Leiter et al., 2023). Our objective is
to conduct a linguistic comparative study and to
investigate whether these models, irrespective of
their shared training methods, can exhibit unique
patterns in their generated texts. Due to similarities
in the manner in which they were trained, we can
anticipate that these CAAs should, in theory, lack a
significant difference in their UILPs, which could
make them difficult to distinguish from each other.

3.2 Data collection

Our collection of CAA-generated texts was car-
ried out in two phases. In the first phase, a set of
10 prompts was collated, with each prompt cor-
responding to a news category on the BBC web-
site* to cover various topics. The specific topic for
each prompt was derived from the headline that
was most popular at that time within a particular
category. The rationale for selecting these article
topics was to ensure a diversity of texts within the
dataset. For instance, within the education cate-
gory, the most prominent headline pertained to the
impact of Covid-19 anxieties on academic stud-
ies. Table 13 in Appendix A provides a list of
these prompts. An example of the outputs for the
prompts in the different prompt styles can be seen
in 14 in B. These prompts were given as input to all
the CAAs, which generated responses. Data collec-
tion occurred through two methods: manual input
of prompts in the case of PaLLM-2 (through BARD),
or by utilising APIs in the case of LLaMA2-7b
(Touvron et al., 2023) and the GPT models (Ope-
nAl, 2023). For each of the 10 prompts, 20 texts
were generated. Thus, overall, 200 texts were gen-
erated per model except PaLM-2. The data for
PalLM-2 corresponds to only nine queries as the
model’s responses for one of the 10 queries were
inadequate, thus leading to the generation of only
180 texts for this model. This dataset will be re-
ferred to as our original data.

The second phase pertains to the collection of
stylistic data for only GPT 3.5, 4 and Text-Curie-
001 (OpenAl, 2023). We employed only these
three CAAs because they responded effectively to
the prompt, while other CAAs produced nonsensi-
cal texts or simply repeated text. The stylistic data
uses the original data to produce paraphrases of this
text in different stylistic genres. Firstly, we asked

“BBC: https://www.bbc.co.uk/
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each model to paraphrase the original text in a gen-
eral manner, i.e., without specifying a specific style.
The model is then asked to paraphrase the original
text (from the first phase) in four styles: as an aca-
demic paper, as a social media post, as a fictitious
narrative and as a tweet. For each paraphrasing
prompt, 200 texts were generated (corresponding
to the original 200 texts generated as part of the
first phase). In total, there are 1200 texts for each
model: the original 200, a version of those 200
that are general paraphrases, and 200 for each of
the four above-mentioned styles. This set of data
will be referred to as stylistic data. All datasets
were split into training and testing sets following
an 80:20 partition. No cleaning or preprocessing
steps were applied to the data.’

The process of dataset creation posed a chal-
lenge, with certain models generating incoherent
texts which were variations of the input text, or
texts that were too short or too long. This was
due to the absence of predefined constraints dur-
ing the text generation process. The cohesiveness
or semantic soundness of texts is not a major con-
cern in this work as our aim is to focus on context-
independent linguistic features.

3.3 Writeprints as Feature Representation

Abbasi and Chen (2008) proposed the Writeprint:
a set of linguistic features for representing the
distinctive writing style of each author of inter-
est in an AA task. The said feature set is largely
composed of dynamic features, which are context-
dependent, an example of which is the presence
of certain word unigrams or bigrams. For exam-
ple, the presence of the word bigram “yours sin-
cerely” could be indicative of a particular author
when writing emails. However, the same author
is unlikely to use the same bigram in a different
context, e.g., when writing an academic article.
Thus, to represent an author’s writing style regard-
less of context (or textual genre), we extended
the original Writeprint to include static features,
which are context-independent and are present in a
large percentage of texts irrespective of the genre.
The extended feature set differs from the origi-
nal Writeprints in that the former encompasses
previously unexplored aspects of a text, such as
phonology, morphological irregularities, ellipsis,
and omission. Our Extended Writeprint (EWP)

5The datasets will be made publicly available upon paper
acceptance

is provided in full in Appendix C. These features
were extracted from the texts generated by each of
the CAAs of interest with the aid of existing Python
packages, e.g., spaCy (Honnibal et al., 2020) and
NLTK (Bird, 2006). This results in a unique lin-
guistic profile for each model, which is used in two
ways: to determine the most informative features
representing the UILP of each of our CAAs of in-
terest (Section 3.4) and to train traditional machine
learning-based classification models for attributing
a given text to any of the CAAs (Section 3.5).

3.4 Analysing the UILP of CAAs

We employed principal component analysis (PCA)
(Jolliffe and Cadima, 2016) to assess the top 100
most informative linguistic features that represent
each model (based on its generated texts), as well
as the collective top 100 most informative linguistic
features. PCA was performed on the standardised
feature counts. Subsequently, we quantified the de-
gree of overlap among these top 100 features across
the various models, and later on also investigated
the top 200 and 300 features in a similar manner.

We identified unique features for each model
based on the most informative features identified
by PCA. These unique features were then extracted
from the writeprint of the texts. Authorship attri-
bution was then performed using these uniquely
occurring features.

3.5 Classification Models for AA

We cast AA as a multi-class classification problem,
whereby a model takes a given text as input and
outputs a label that corresponds to any one of the
five CAAs.

A variety of traditional machine learning-based
models were trained as classifiers. These include
Support Vector Machine (SVM), Random Forest
(RF) and Logistic Regression (LR) models. Each
of these models was trained on the EWP features
described in Section 3.3, using both default param-
eter values and optimised parameter values. Op-
timised parameter values are defined through the
use of GridSearchCV . We use both default and
optimised hyperparameters (optimised parameter
values can be seen in Appendix ??) to set a baseline
and assess performance, enabling us to quantify the
extent of improvements. The consistent superior-
ity of optimised parameters indicates a robust and

GridSearchCV: https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
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dependable model. To further strengthen this ro-
bustness, we compute the standard deviation (SD).
Our results show that the SD in all experiments is
low, indicating that the data points cluster closely
around the mean. This consistency highlights the
result’s reliability.

Additionally, we sought to compare the AA per-
formance of the above-mentioned traditional ma-
chine learning-based models with a transformer-
based language model (TLM) (Vaswani et al.,
2017), given that TLMs have shown superior per-
formance in classification tasks including those in
the area of digital forensics (Fabien et al., 2020).
In this case, we selected the Decoding-enhanced
BERT with Disentangled Attention (DeBERTa)
model as it has been demonstrated to outperform
other transformer models in a variety of tasks (He
et al., 2021). We employed both a default hyper-
parameter DeBERTa model as well as a finetuned
model. The DeBERTa model was fine-tuned for
our task using our datasets and was trained over
the course of 6 epochs; further details for the ML
and TLM models can be found in Appendix D. All
experiments were run on Google Colab using the
A100 GPU accelerator. Due to the high computa-
tional power required to run the DeBERTa model,
the results presented are over a single run.

4 Evaluation Results and Discussion

In this section, we discuss how the results align
with each research question and if the results sup-
port the existence of a UILP in each CAA.

4.1 Attribution of CAA Original Texts

Table 2 and table 3 present the results for the AA of
the original data. The EWP features were extracted
from all the texts and the methodology was applied,
as described in Section 3.3. From the results, we
can see that the optimised DeBERTa model ob-
tained the highest weighted F1-score at 99.11%.
However, it is worth noting that the discrepancy in
F1 scores across all models is at most merely 5.78%
demonstrating competitive performance. When the
extended feature set is combined with an ML classi-
fier, the weighted F1-scores ranged from 93.33% to
94.88% when default hyperparameters were used
and 93.88% to 96.94% when the model was op-
timised. This demonstrates that each CAA does
have a UILP as we can attribute each model to the
correct CAA with a weighted F1-score of at least
93.33%.

ML Model | Accuracy | W-F1 | SD
SVM [d] 93.56 93.33 | 0.19
RF [d] 96.14 95.02 | 0.69
LR [d] 94.86 94.88 | 0.04
SVM 93.87 93.88 | 0.00
RF 96.54 96.54 | 0.37
LR 96.94 96.94 | 0.00

Table 2: Performance Metrics for Original Data Attribu-
tion: the average Accuracy, Weighted F1-score (W-F1)
and Standard deviation Scores for optimised and default
[d] SVM, LR, RF classifiers (after 5 runs) for all CAAs

Model Accuracy | W-F1
DeBERTa 99.11 99.11
DeBERTa [d] 98.43 98.41

Table 3: Performance Metrics for the original Data At-
tribution: the Accuracy and Weighted F1-score (W-F1)
for a fine-tuned and default [d] DeBERTa model

From the results in Table 4 and Table 5, we can
see that DeBERTa has the highest weighted F1-
score at 99.11%. In this experiment, the discrep-
ancy in F1-scores across all models is 4.94%. Since
all the compared models are OpenAl-engineered, it
is reasonable to anticipate that they exhibit similar
linguistic patterns in their generated texts hence
the lower F1-scores across all experiments. This
experiment displays an impressively competitive
performance with the optimised LR model having
a weighted F1-score of 97.50%, only a 1.61% drop
in the weighted F1-score when compared to a fine-
tuned DeBERTa model.

4.2 Attribution of CAA Stylistic Texts

Apart from AA of the original data, we also investi-
gated AA of stylistic text; this can be considered as

ML Model | Accuracy | W-F1 | SD
SVM[d] | 9433 [94.17 ] 0.68
RF [d] 9587 | 95.88 | 1.23
LR [d] 96.51 | 96.45 | 0.32
SVM 94.11 | 94.17 | 0.00
RF 96.67 | 96.67 | 0.00

| LR [ 9750 [97.50]0.19 |

Table 4: Performance Metrics for the Attribution of all
GPT datasets: the average Accuracy, Weighted F1-score
(W-F1) and Standard deviation Scores for optimised and
default [d] SVM, LR, RF classifiers (after 5 runs) for
GPT-4, GPT-3.5 and, Text-Curie-001



Model Accuracy | W-F1
DeBERTa 99.11 99.11
DeBERTa [d] 98.29 98.33

Model Accuracy | Weighted F1
DeBERTa 88.00 88.00
DeBERTa-1 79.41 79.72

Table 5: Performance Metrics for the GPT Data Attri-
bution: the Accuracy and Weighted F1 (W-F1) for a

fine-tuned and default [d] DeBERTa model

ML Model | Accuracy | Weighted F1 | SD
SVM [d] 75.28 75.43 0.43
RF [d] 78.28 77.94 0.26
LR [d] 75.14 75.26 0.10
SVM 95.56 95.56 0.00
RF 95.25 95.24 0.25
LR 95.83 95.84 0.00

Table 6: Performance Metrics for the Attribution of the
Stylistic data: the average Accuracy, Weighted F1-score
(W-F1) and Standard deviation Scores for optimised and
default [d] SVM, LR, RF classifiers (after 5 runs) for
GPT-4, GPT-3.5 and, Text-Curie-001

cross-genre attribution as we examine the attribu-
tion success of the same CAAs on different stylistic
data.

The results of the AA of the stylistic dataset for
GPT models are presented in Table 6 and Table 7.
As aforementioned, since all models are OpenAl
engineered we expect some linguistic commonal-
ities across different genres of text. Here we at-
tempt to attribute all texts (original, paraphrase,
social media posts, tweets, academic articles and
fictitious narratives) to their respective CAA. The
results here support the notion of the UILP existing
in the different stylistic genres of texts as well as
the notions posited by Juola (2008); Sari (2018);
Coulthard (2004) who suggested that these UILPs
can be identified across different textual genres,
but lower results can be expected when perform-
ing cross-genre attribution. This accounts for the
11.11% reduction in the weighted F1-score when
comparing the original data to the stylistic data
using optimised DeBERTa models. One can ob-
serve a 1.1% weighted F1-score drop when using
an optimised LR model and a 19.62% drop when
comparing the performance of default LR. These
results indicate that each CAA has a distinct UILP
for the stylistic texts, further affirming the idea
that performance decreases across genres due to
varying linguistic patterns (Stamatatos, 2016).

To conclude, we can recognise each CAA,
regardless of the text’s style, with the highest

Table 7: Performance Metrics for the stylistic Data At-
tribution: the Accuracy and Weighted F1-score (W-F1)
for a fine-tuned and default (-1) DeBERTa model

weighted F1-score achieved at 95.83%.

4.3 Principal Component Analysis of CAA

In this section, we identify the top 100 most in-
formative linguistic features across all CAAs as
well as the top 100 most informative linguistic fea-
tures for each CAA; we then assess the extent to
which attribution can be performed based on these
features, for both original and stylistic data.

PCA is a statistical technique used for dimen-
sionality reduction and is used to preserve the most
important information. For all the original data, we
extracted our Extended Writeprint features. Sub-
sequently, we conducted PCA to identify the top
100 most informative linguistic features across the
entire dataset. Attribution was carried out using
these selected top 100 features; the accuracy of
each model was then computed. The outcomes of
this analysis are presented in Tables 8 and 9.

When performing attribution using only the top
100 most informative linguistic features as ex-
tracted for all the original data (see Tables 8 and
9), we found that Text-Curie-001 has the highest
weighted F1-score when using the top 100 features
for any model and has a self-identifying weighted
F1-score of 98.77% using an optimised LR model.
LLaMAZ2-7b obtained the lowest weighted F1-
score when being identified using its own top 100
features at 66.67%. The variation in the results
in this table supports the idea of a UILP. When
looking at the same 100 features for each CAA,
the success in attributing the authors varies with a
difference ranging from 66.67% to 98.77%.

These results support the theory of linguistic in-
dividuality (Nini, 2023) as the CAAs do not have
identical grammars even though the training mate-
rial, methods, the developers are the same or sim-
ilar. This can be seen explicitly in the analysis of
the Open Al GPT models, whereby the F1-score
varies from 96.93% to 88.25%, showing a slight
discrepancy of 8.68%. It is evident that each CAA
struggles to distinguish itself when using its own
top 100 most informative features. However, this
is due to the substantial overlap in these features,



CAA Accuracy | W-F1 | SD
GPT-3.5 91.66 88.25 | 0.01
GPT-4 95.34 93.33 | 0.02
LLaMA2-7b 100 97.85 | 0.00
PalLM-2 89.13 87.23 | 0.01
Text-Curie-001 100 96.93 | 0.00
All 94.40 94.90 | 0.00

CAA Accuracy | W-F1 | SD
GPT-3.5 86.43 85.17 | 0.01
GPT-4 85.00 85.02 | 0.01
LLaMA2-7b 88.89 100 | 0.01
PalLM-2 91.14 83.72 | 0.00
Text-Curie-001 100 100 | 0.00
All 90.31 90.23 | 0.00

Table 8: Results of attribution using an LR model with
default hyperparameters trained on the top 100 most in-
formative linguistic features extracted using PCA across

Table 10: Accuracy and weighted F1-score for each
CAA when performing AA using only their unique fea-
tures

all datasets

CAA Accuracy | W-F1 | SD
GPT-3.5 91.60 89.25 | 0.03
GPT-4 97.63 95.50 | 0.01
LLaMA2-7b 100 97.83 | 0.00
PalLM-2 95.35 93.17 | 0.01
Text-Curie-001 100 96.97 | 0.00
All 96.93 96.93 | 0.02

CAA Accuracy | W-F1 | SD
GPT-3.5 86.42 86.17 | 0.00
GPT-4 86.08 87.18 | 0.00
LLaMA2-7b 93.34 100 | 0.02
PalLM-2 94.74 90.00 | 0.00
Text-Curie-001 98.77 97.56 | 0.00
All 91.84 91.81 | 0.00

Table 9: Results of attribution using an optimised LR
model trained on the top 100 most informative linguistic
features extracted using PCA across all datasets

as demonstrated in Appendix F. On average, they
share more than 50% of their top 100 features with
another CAA. This clarifies why, in Table 12, we
observe an absence of a distinct pattern in CAAs’
ability to identify themselves through their own top
100 features.

There are noticeable instances of misclassifica-
tion concerning GPT-3.5 and GPT-4. The relatively
poorer attribution of GPT-3.5 and GPT-4 can be
explained by the fact that both models are OpenAl-
engineered, have similar training processes and
serve the same purpose. GPT-4 is an improvement
that builds upon the existing capabilities of GPT-
3.5.

Further investigation was performed to delve
into the subtle linguistic differences and to deter-
mine if CAAs can be identified based on their
unique feature sets. We conducted a comparison of
the top 100 features across all CAAs and identified
features unique to each model. After obtaining the
set of distinctive features for each model from this
comparison, we moved on to the original dataset
containing approximately 300 features. For each
model, we exclusively extracted the features that
were unique to that model. For example, during
the attribution for GPT-4, we isolated features X, Y,
and Z as they were uniquely associated with GPT-4

Table 11: Accuracy and weighted F1-score for each
CAA when performing AA using only their unique fea-
tures

in its top 100 most informative features. These spe-
cific features were then extracted for every model
from the comprehensive set of 300 features. Sub-
sequently, we performed attribution analyses for
each model based on this refined set of features.
The differences in results were significant: the
weighted F1-scores ranged from 83.72% to 100%
when using the default parameters of a model. This
changed to 86.17%-100% when we optimised the
hyperparameters (see Table 10 and 11). The results
support the theory that when investigating a CAA’s
inherently unique features, one can attribute each
CAA with greater success. Further results on the
attribution success for each model can be seen in
Tables 10 and 11.

The subsequent phase involved conducting PCA
for each model and extracting the most informative
top 100 features. Following this, we attempted au-
thorship attribution for all models using these top
100 features, and the outcomes are presented in Ta-
ble 12. The results indicate that only LLaMA2-7b
could successfully self-identify as the most similar
CAA based on these features. A more in-depth
linguistic examination of these features revealed
that PCA features are predominantly comprised
of static features, defined as context-independent
and frequently occurring attributes. Furthermore,



CAA GPT-3.5 GPT-4 LLaMA2-7b Pal.M-2 Text-Curie-001
GPT-3.5 80.52 | 80.49 | 82.50 | 82.50 | 78.06 | 78.05 | 88.89 | 88.89 | 90.85 | 90.84
GPT-4 78.16 | 78.16 | 87.50 | 87.50 | 72.95 | 72.94 | 83.54 | 83.54 | 90.91 | 90.91
LLaMA2-7b | 65.64 | 65.63 | 77.16 | 77.14 | 66.67 | 66.67 | 75.00 | 75.04 | 94.75 | 94.74
PalLM-2 82.05 | 82.05 | 84.67 | 84.62 | 86.42 | 86.43 | 79.49 | 79.49 | 97.31 | 97.30
Text-Curie-001 | 98.77 | 98.77 | 95.24 | 95.24 | 98.77 | 98.77 | 97.56 | 97.56 | 98.79 | 98.77
Overall 81.63 | 81.00 | 85.71 | 85.42 | 81.12 | 80.45 | 85.01 | 85.36 | 94.39 | 94.38

Table 12: Table displaying accuracy and weighted F1-scores for models based on their top 100 most informative
linguistic features extracted from the EWP using PCA analysis. Attribution was performed for each model and then
for the entire original dataset using an optimised Logistic Regression model

the diagrams in Figure 1a in Appendix F illustrate
substantial feature overlap among different mod-
els when analysing 300 features. However, as the
features are reduced to find the most unique ones,
there is a noticeable drop in overlap; see Figure 1b
and Figure 1c in Appendix F. This supports the the-
ory of Linguistic Uniqueness (Nini, 2023) and the
existence of a UILP as it is evident that each model
has a set of features that it does not share with the
others. These results pertain solely to the origi-
nal data, with accuracies and weighted F1-scores
obtained using the RF algorithm.

5 Conclusion and future work

In our study, we have addressed three key research
questions. Firstly, we have confirmed the pres-
ence of Uniquely Identifiable Linguistic Patterns
(UILPs) in conversational Al agents (CAAs). This
is supported by high accuracy in attribution success
for both original and stylistic data, with weighted
F1-scores ranging from 93.33% to 96.96% using
features from our Extended Writeprint (EWP) fea-
ture set and traditional machine learning-based clas-
sifiers. We also demonstrate similar performance
using a fine-tuned DeBERTa model, achieving a
99.11% weighted Fl-score. Our results demon-
strate that traditional machine learning-based mod-
els can obtain competitive AA performance com-
pared to a fine-tuned DeBERTa model. Through
PCA analysis, we explored the attribution of CAAs
based on their UILPs and performed AA using
these linguistic features. Our results show that the
combination of our EWP and RF classification ef-
fectively supports cross-genre AA, with weighted
F1-scores ranging from 94.17% to 97.50% for the
AA of the stylistic data. This affirms the princi-
ple of linguistic individuality in CAAs, showcas-
ing their UILPs. These findings validate the exis-
tence of UILPs in CAAs and offer valuable insights

into their distinctive linguistic patterns, with poten-
tial applications in digital forensics, detecting fake
news and plagiarism.

Future work will look to improve both the
datasets introduced in this paper by expanding the
size and scope of the stylistic prompts. We seek to
perform a fine-grained linguistic analysis of a larger
set of CAAs both in English and cross-lingually.

6 Limitations

In our study, text generation using various APIs
that make our CAAs of interest accessible proved
to be a time-intensive process, limiting the vol-
ume of prompts that could be supplied and thus
the text that can be generated. Additionally, certain
models imposed output constraints. For instance,
in the case of PaLM-2, we resorted to manually
inputting prompts into BARD due to the unavail-
ability of the API, which was a time-consuming
endeavour. Furthermore, some CAA outputs did
not produce cohesive texts (in the case of LLaMA2-
7b) or, produced very short texts (in the case of
Text-Curie-001). Further, only a set of three text
genres were investigated: academic articles, ficti-
tious narratives, and tweets and social media posts
(the latter most two falling under the same genre).
To perform cross-genre AA we must expand this
scope to cover a wider array of genres as well as
investigate at different levels of formality.
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Appendix A Prompts for CAAs

News category Prompt
1 | Cost of living Write me an essay on rising house prices in 2023
2 | Climate Write me an essay on what the UK can do to reduce carbon emissions
3 | Tech Write me an essay on Facebook’s transfer of European data to US servers
4 | Politics Write me an essay on the UKs ministerial code
5 | Culture Write me an essay on the Glastonbury festival in the UK
6 | Science Write me an essay on the womb condition adenomyosis
7 | Family and Education | Write me an essay on how Covid anxiety is affecting students and exams
8 | War in Ukraine Write me an essay on Zelensky’s contribution in the war in Ukraine
9 | UK Write me an essay on the Madeleine McCann police search in Portugal
10 | World Write me an essay on the Star Wars original studios

Table 13: The prompts used to collect CAA-generated texts. All original texts were produced all by CAAs: GPT-3.5,
GPT-4, Text-Curie-001, PaLM-2 and LLaMA2-7b. In contrast, only GPT-3.5, GPT-4 and Text-Curie-001 were used
in generating texts according to stylistic variations (paraphrase, as a social media post, as a tweet, as an academic
article and as a fictitious narrative
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Appendix B Data Examples

Style Text
In 2023, a pervasive and pressing issue has gripped households across the globe —
the cost of living crisis. As economic landscapes evolve and global conditions shift,

Original individuals and families find themselves grappling with the ever-increasing burden of
expenses.
In 2023, households worldwide are confronted with a widespread and urgent problem
— the crisis of rising living costs. As economic environments undergo changes and
Paraphrase

global circumstances shift, individuals and families are contending with a growing
weight of expenditures.

Feeling the pinch of the 2023 cost of living crisis! It’s a tough

reality we’re all navigating together. From skyrocketing prices to tightening budgets,
Social media | the struggle is real. Let’s open up the conversation and share our tips on stretching
post those hard-earned pounds, supporting one another through these challenging times.
#CostOfLivingCrisis #CommunitySupport #BudgetingTips
#TogetherWeCanHandlelt

The cost of living is soaring in 2023, and it’s hitting hard! From groceries to

gas, it’s becoming more challenging to make ends meet. Let’s keep

the conversation going on how we can tackle this #CostOfLivingCrisis

together and support those facing financial strain. #Economy2023

The year 2023 has witnessed a growing concern worldwide regarding the

cost of living. The term "cost of living" encompasses the expenses individuals

and families incur to maintain a reasonable standard of living, including housing,
food, transportation, healthcare, education, and other essentials. This

essay seeks to provide a comprehensive analysis of the cost of living crisis

in 2023, focusing on its underlying causes, economic implications, and potential
policy measures to mitigate its effects.

In the year 2023, as the calendar pages turned, people across the nation

Fictitious found themselves entangled in a relentless and unforgiving cost of living

narrative crisis. The once-stable balance of life, as they knew it, had been upended,

and every aspect of their daily existence was impacted.

Tweet

Academic
Paper

Table 14: The GPT-3.5 output for the prompt “Write me a <stylistic_text> on the cost of living crisis in 2023”,
where <stylistic_text> is replaced by one of paraphrase, social media post, tweet, academic article and fictitious
narrative
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Appendix C The Extended WritePrint

Category

Feature

Description

Lexical

Token-based

Word length

Sentence length

Average sentence count, Average word count

Character-based

Upper- and lower-case distribution

Digit frequency

Word length distribution

One to ten plus letters

Top n-grams

Top 50 occurring tri and bi grams

Special characters/punctuation

Frequency counts

Vocabulary richness

Type-token ration (TTR)

Text repetitiveness rate (TRR)

Hapax Legomena

Frequency counts

Clipping

Process of shortening words at any word boundary:
e.g., “Advertisement” to “Ad”

Syntactic

Tagging

Part-of-Speech (POS) tags

Dependency tags

Sentence tags

Term replacement/omission

Ellipsis: e.g. [full sentence] “I like coffee and she likes tea” to
[elliptical sentence] “I like coffee, and she”

Substitutions: e.g. [full sentence] “John went to the store.
John bought back milk” to [substituted sentence] “John went to the store.
He bought back milk”

Morphological Variation

Irregular patterns:

- Present participle form

- Plural forms

- Past tense form

- Past participle form

- Plural form (-ies, -ves, es)

- Possessive form

- Comparative and Superlative form

- Singular form (-y, -0)

Sentence types

Simple, Complex, Compound

Declarative, Interrogative, Exclamatory,

Imperative, Conditional, Comparative, Passive

Semantic

Sentiment scores

Synonym/Homonym counts

Other

Phonetic

Alliteration

Assonance

Consonance

Word lists

Function words

Acronyms/Slang

Table 15: The Extended WritePrint (EWP). This feature set consists of static (context-independent) and dynamic
(context-dependent) features
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Appendix D Hyperparameter settings for the DeBERTa model

Hyperparameter Amended value
num_train_epochs 6
train_batch_size 16
eval_batch_size 16

gradient_accumulation_steps 4
n_gpu -1
max_seq_length 512
class_weight Custom labels specified
early_stopping_patience 2
early_stopping_delta 0.01

Table 16: The hyperparameters used in training the DeBERTa model (He et al., 2021)
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Appendix E Hyperparameter settings for the traditional machine learning-based
classification models

Hyperparameter Amended value
max_depth None
min_samples_leaf 1
min_samples_split 5
n_estimators 300
class_weights Balanced

Table 17: The hyperparameters used in training the Random Forest classifier

Hyperparameter | Amended value
C 10
penalty 12
solver liblinear

Table 18: The hyperparameters used in training the Logistic Regression classifier

Hyperparameter | Amended value
C 0.1
kernel linear

Table 19: The hyperparameters used in training the Support Vector Machine classifier
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740 Appendix F PCA visualisations
741 Key:
742 Model 1: GPT-3.5; Model 2: GPT-4; Model 3: LLaMA2-7b; Model 4: PalLM-2; Model 5: Text-Curie-001.
Model 1 vs. Model 2 Model 1 vs. Model 3
Model 1 vs. Model 2 Model 1 vs. Model 3 .
. . Model 1 Model 2 Model 1 Model 3
Model 1 Model 2 Model 1 Model 3 Model 1 vs. Model 4 Model 1 vs. Model 5
Model 1 vs. Model 4 Model 1 vs. Model 5 .
Mode.I 1 Model 4 Mode|.1 Model 5 Model 1 Model 4 Model 1 Model 5
Model 2 vs. Model 3 Model 2 vs. Model 4 Model 2 vs. Model 3 Model 2 vs. Model 4
Model 2 Model 3 Model 2 Model 4 Model 2 Model 3 Model 2 Model 4
Model 2 vs. Model 5 Model 3 vs. Model 4 Model 2 vs. Model 5 Model 3 vs. Model 4
Model 2 Model 5 Model 3 Model 4 .
Model 3 vs. Model 5 Model 4 vs. Model 5 Model 2 Model 5 Model 3 Model 4
. . Model 3 vs. Model 5 Model 4 vs. Model 5
Model 3 Model 5 Model4  Model 5
(a) Overlap for the top 100 features of all CAAs Model 3 Model 5 Model 4 Model 5
(b) Overlap for the top 200 features of all CAAs
Model 1 vs. Model 2 Model 1 vs. Model 3
Model 1 Model 2 Model 1 Model 3
Model 1 vs. Model 4 Model 1 vs. Model 5
Model 1 Model 4 Model 1 Model 5
Model 2 vs. Model 3 Model 2 vs. Model 4
Model 2 Model 3 Model 2 Model 4
Model 2 vs. Model 5 Model 3 vs. Model 4
Model 2 Model 5 Model 3 Model 4
Model 3 vs. Model 5 Model 4 vs. Model 5
Model 3 Model 5 Model 4 Model 5
(c) Overlap for the top 300 features of all CAAs
Figure 1: Overlap for the top 200 most informative linguistic features extracted based on our EWP using PCA for
all CAAs. Classification results are in Table 12
743
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