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Abstract

Contextual queries are common in multi-turn001
spoken dialogues with virtual assistants. For002
example, a user could omit an aforementioned003
entity using anaphora or nominal ellipsis (entity004
carry over), or correct a previous recognition005
error by repeating mistaken words or phrases006
(correction by repetition). While prior work007
have touched on these use cases individually,008
we present a joint query rewriting approach to009
tackle both. This phonetically aware pointer010
network model rewrites conversational queries011
in both use cases into a single context indepen-012
dent query. We compare our joint model with013
two cascading single task models chained to-014
gether on a randomly sampled and anonymized015
virtual assistant dataset. In our experiments,016
the joint model not only outperforms cascading017
models by 2.3 points token F1 and 3.6 points018
exact match accuracy, but also does so while019
being 1.6 times faster regarding p95 latency.020

1 Introduction021

Intelligent virtual assistants have been broadly022

adopted in daily life. To facilitate natural, multi-023

turn interactions with users, contextual understand-024

ing plays a crucial role in modern virtual assistants.025

Natural conversations are short and context depen-026

dent. For example, a user may refer to previously027

mentioned entities through anaphora or nominal028

ellipsis. We call this use case Entity Carry over,029

shown in Table 1. When a user issues the query030

Where was Stephen Sondheim from, they might031

expect that the virtual assistant remembers the con-032

text, and refer to Stephen Sondheim with a pro-033

noun in the next query. There are many existing034

works that tackle similar use cases. (Naik et al.,035

2018) follows a slot filling paradigm. Entity candi-036

dates are preserved in a pool of slot values, and they037

resolve context dependent queries by carrying-over038

slots from previous context. (Yang et al., 2019) for-039

mulated Chinese nominal ellipsis into zero pronoun040

(Kong and Ng, 2013), combining both pronoun and041

Entity Carry Over
Turn 1 Where was Stephen Sondheim from
Turn 2 Which college did he go to
Rewrite Which college did Stephen Sondheim go to

Correction by Repetition
Turn 1 Where is my sugar from
Turn 2 I said Meshuggah
Rewrite Where is Meshuggah from

Table 1: Example dialogues for Entity Carry Over and
Correction by Repetition. Examples shown are author-
created examples based on anonymized and randomly
sampled virtual assistant logs. Utterances labeled as
“Rewrite” are context independent counterparts for Turn
2 utterances.

nominal ellipsis resolution into anaphora resolu- 042

tion. More recently, Query Rewriting (QR) ap- 043

proaches became increasingly popular. Unlike slot 044

filling and anaphora resolution, which requires ar- 045

chitectural changes in downstream systems to adopt 046

them, query rewriting turns contextual queries into 047

its context independent counterpart, which can be 048

directly executed by existing QA systems, like in 049

Table 1. This allows the downstream systems to 050

stay stateless, making QR more seamless to in- 051

tegrate. (Quan et al., 2019; Rastogi et al., 2019; 052

Su et al., 2019) formulated query rewriting as a 053

summarization task based on variants of Pointer- 054

Generator Networks (See et al., 2017). (Yu et al., 055

2020) proposed a few shot learning approach based 056

on GPT-2 (Radford et al., 2019), and (Tseng et al., 057

2021) showed that joint learning between query 058

rewriting and co-reference resolution benefits both 059

tasks due to their complementary nature. 060

Another interesting use case is Correction by 061

Repetition. A user may find an error in the rec- 062

ognized text, and attempt to correct the error by 063

repeating the request either fully or partially in a 064

followup. As shown in Table 1, the virtual assis- 065

tant made a mistake of recognizing Meshuggah 066

as my sugar. The user then repeated the intended 067
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phrase in the second turn. (Litman et al., 2006; Ki-068

taoka et al., 2005; Lopes et al., 2015) proposed var-069

ious detection methods for correction by repetition.070

(Nguyen et al., 2021) proposed a Query Rewrit-071

ing solution based on Pointer Network (Vinyals072

et al., 2015) that rewrites correction by repetition073

dialogues into context independent queries.074

In this work, we propose a Joint Contextual075

Query Rewrite (JCQR) framework which handles076

both entity carry over and correction by repetition,077

and is efficient enough to run on edge devices. We078

designed a Pointer Network (Vinyals et al., 2015)079

based model with Phonetic Similarity Attention080

(PSA), which takes in a concatenated dialog his-081

tory, and produces a sequence of indices, indicating082

which of the tokens in the dialog history should be083

copied over to form the rewritten utterance. The084

model was evaluated on a large-scale dataset that085

consists of 350k anonymized QA dialogs randomly086

sampled from virtual assistant query logs. Our087

experiments show that our joint model substan-088

tially outperforms chained single task models by089

2.3 points token F1 and 3.6 points exact match ac-090

curacy, which indicates these two tasks can benefit091

from each other due to their similarities in problem092

definition and output space. The joint model is also093

1.6 times faster as to 95th percentile latency, mak-094

ing it more suitable for edge device deployment.095

2 Data096

Collecting data for conversational use cases that097

are not supported in the current virtual assistant is098

a challenging problem: Once a user has tried an un-099

supported use case and fails, s/he is not likely to use100

similar queries again. Instead of mining directly101

for entity carry over and correction by repetition,102

we took the following approach, illustrated in Fig103

1:104

• Anonymize data105

• Look for existing improvement opportuni-106

ties where user experience can be more con-107

venient if entity carry over and correction by108

repetition are available109

• Annotate / synthetically generate conversa-110

tional queries given improvement opportu-111

nities to create desired data points112

For entity carry over, the improvement opportu-113

nities are defined as user queries that have different114

intents on the same entity in two consecutive turns.115

The intuition behind this is that a user will be able116

to omit the redundant entity using anaphora or nom-117

Figure 1: Illustration of data collection process. Ex-
amples shown are author-created examples based on
anonymized and randomly sampled virtual assistant
logs. In both examples, utterances in green are im-
provement opportunities found in real-world usage, ut-
terances in yellow are either annotated or synthetically
generated, representing our best guess of what the user
could do if conversational queries are well-supported.
During data collection phase, we follow the solid lines.
Given context independent improvement opportunities,
conversational queries in yellow are generated. During
model training, we follow the dotted lines. The model
is provided with context dependent queries, as well as
previous context utterances, and is asked to produce
context independent queries in the final green box.

inal ellipsis with an oracle virtual assistant that can 118

handle such contextual requests. After these im- 119

provement opportunities were collected, we asked 120

annotators to simplify these queries as if they had 121

access to an oracle virtual assistant. An example is 122

shown at the top in Figure 1. Two consecutive turns 123

with an overlapping entity Stephen Sondheim are 124

found during the data collection phase. Annotators 125

then simplified Turn 2 with a pronoun into Which 126

college did he go to. During the model training 127

phase, given Turn 1 context and aforementioned 128

annotation, we trained the model to generate con- 129

text independent Turn 2 on the left. This dataset 130

contains 150k 2-turn dialogues, with 80%, 10%, 131

and 10% training, validation and test split. 132

For correction by repetition, improvement op- 133

portunities are defined as the scenario where the 134

user tapped on the transcribed prompt to edit Turn 135

1 query into something else in a followup turn. We 136

also ensure that the resulting utterance after edit is 137

one of the ASR hypotheses of Turn 1 so that the 138

issue in Turn 1 is likely to be an ASR transcrip- 139

tion error. The intuition is that the virtual assistant 140

should be able to handle users’ edit action through 141

voice query in a follow up turn when there was an 142

error with Turn 1 ASR transcription. In addition, 143

we randomly attach common prefixes, such as I 144

said, to the context dependent Turn 2. An example 145

is shown at the bottom in Figure 1. During the data 146
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Figure 2: JCQR Architecture. The example shown is
an author-created example based on anonymized and
randomly sampled virtual assistant logs.

collection phase, after we found that user corrected147

my sugar into Meshuggah, we attach a prefix I said148

before Meshuggah to form a synthetic context de-149

pendent Turn 2 query. During the model training150

phase, similar to entity carry over, we feed con-151

text dependent dialog into the model to generate152

context independent Turn 2. This dataset contains153

200k 2-turn dialogues, with 80%, 10%, and 10%154

training, validation and test split.155

3 Model156

To meet our latency requirements on edge devices,157

we chose LSTM-based Pointer Networks (Vinyals158

et al., 2015) as our backbone instead of a large159

pretrained LM due to its lightweight architecture160

and much reduced search space, as described be-161

low. As illustrated in Figure 2, the model gener-162

ates a sequence of indices pointing to the input163

token sequence, indicating which token should be164

copied over in order to form the output. This design165

choice is backed by the assumption that, all tokens166

in the rewritten utterance can be found as part of167

the original dialogue. It’s worth noting that while168

this assumption always holds for our correction by169

repetition data, it can also cause minor grammati-170

cal issues like missing prepositions and incorrect171

inflection for entity carry over. Fortunately, QA sys-172

tems are often robust against these kinds of issues,173

so it is an acceptable tradeoff.174

Embedding Two turn queries are first concate-175

nated in reverse chronological order separated by176

a special token. We used a static word embedding177

to generate token embeddings ti ∈ RD. Contex-178

tualized embedding methods will also apply here179

should latency allow. We then used Acoustic Neigh-180

boring Embedding (Jeon, 2022) to generate pho-181

netic embeddings pi ∈ RD. Acoustic Neighboring182

Embedding is a biLSTM that takes graphemes as183

input, and ensures that similar sounding graphemes184

are close to each other regarding their euclidean 185

distance. Note that any other phonetic similarity 186

preserving embedding method can also be applied 187

here. 188

Phonetic embeddings are introduced to support 189

correction by repetition, where phonetic similari- 190

ties between Turn 1 and Turn 2 tokens is a strong 191

signal for this use case. To better utilize these em- 192

beddings, we propose Phonetic Similarity Atten- 193

tion (PSA): First, we calculate a pairwise squared 194

euclidean distance matrix D between tokens in 195

Turn 1 and Turn 2. Assume the index of special 196

token "[SEP]" is m, we have 197

dij =

{
∥pi − pj∥22, if (i−m)(j −m) < 0

∞, otherwise.
(1) 198

Next, we calculate a phonetic similarity aware at- 199

tention distribution based on this matrix: 200

psaij =
exp (−dij/(2σ

2))∑
j exp (−dij/(2σ2))

, (2) 201

σ is a hyperparameter determining the skewness of 202

this attention distribution. The intuition behind this 203

definition is that, psaij ≥ psaik, ∀k, if token j in 204

turn 2 sounds the most similar to token i in turn 1. 205

With this attention, we calculate a weighted aver- 206

age over all token embeddings in the conversation 207

for the token i, and concatenate it with ti itself to 208

obtain the final embeddings ei 209

ei = (ti,
∑
j

psaijtj). (3) 210

Encoder Decoder Similar to pointer networks 211

(Vinyals et al., 2015), embeddings are passed into 212

an encoder LSTM to construct a contextualized 213

encoding, while a decoder LSTM contains a con- 214

cat attention over encoder encodings, and produces 215

an output distribution across input tokens at each 216

time step. One key difference as compared with 217

standard LSTM decoder lies in the input of the de- 218

coder at each time step. Instead of feeding in a 219

previously predicted token, we use the previously 220

predicted index to retrieve the encoder encodings 221

as input for the decoder, adding another connection 222

between the encoder and decoder. In our experi- 223

ments, this can make a single-layer LSTM encoder 224

decoder’s performance comparable to a two-layer 225

LSTM. This allowed us to drive latency down fur- 226

ther without accuracy penalties. After a sequence 227

of indices is predicted, we use this sequence to 228

index the input tokens, which gives us the final 229

rewrite output. 230
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Method ECo CbR p95 Latency
F1 EM F1 EM

Cascading
E → C 90.50± 0.06 87.02± 0.08 91.58± 0.05 74.70± 0.17 1
C → E 90.53± 0.07 87.03± 0.10 91.68± 0.04 75.06± 0.13 1

Joint
Naive 90.62± 0.07 87.16± 0.10 92.33± 0.05 76.55± 0.13 0.61
JCQR 90.65± 0.12 87.16± 0.15 92.90± 0.11 78.30± 0.40 0.61

Table 2: Experiment results for JCQR. We report 95% confidence interval for token F1 and exact match accuracy
generated from 32 independent trials. Statistically significant improvements are marked in bold. 95th percentile
latency was measured on the combined test set, treating the latency of the cascading baseline models as 1 unit time

4 Experiments231

4.1 Metrics232

We compute a bag of words token level F1 metric233

on the subset of tokens that are present in the tar-234

get rewrite, but not in the corresponding context235

dependent query. This metric reflects the model’s236

ability to carry over tokens from previous context.237

We also calculate an exact string match accuracy238

(EM) between the model prediction and the target239

rewrite as a more strict comparison. Metrics for240

entity carry over (ECo) and correction by repetition241

(CbR) are measured separately. We also measured242

the 95 percentile latency for the joint models, using243

the latency of the cascading baseline models as 1244

unit time.245

4.2 Baselines246

We compare our JCQR model with the following247

baselines. All encoders and decoders involved are248

configured as single layer LSTMs with 128 hidden249

size (bi-LSTM for encoders).250

Cascading Single Task Models are two single251

task models daisy-chained together in a cascad-252

ing fashion. Each model uses the same model ar-253

chitecture as JCQR, with an additional classifier254

identifying if an input dialogue falls under its corre-255

sponding use case. We consider two configurations:256

entity carry over fisrt E → C, and correction by257

repetition first C → E.258

Naive Joint Model trains both tasks in one259

model. Instead of having a Phonetic Similarity At-260

tention like JCQR, this model simply concatenates261

token embeddings ti and phonetic embeddings pi262

to obtain the final embeddings êi263

4.3 Results264

Our experimental results are shown in Table 2.265

Comparing the cascading single task models with266

the joint models on entity carry over task, while 267

joint models do have slightly better mean token F1 268

score and exact match accuracy, the difference is 269

not statistically significant. The advantage starts to 270

show in correction by repetition, where we see as 271

much as 2.3 points F1 score improvement and 3.6 272

points exact match accuracy gain. This improve- 273

ment is mainly attributed to the output space simi- 274

larity between these two tasks. While entity carry 275

over and correction by repetition each have their 276

own unique use case patterns, their target rewrit- 277

ten utterances live in a common pool of context 278

independent queries. Multitask learning allows the 279

decoder to be sufficiently trained, which is espe- 280

cially helpful for correction by repetition since the 281

number of tokens that need to be copied from pre- 282

vious contexts are much greater in CbR than ECo. 283

Joint models are also 1.6 times faster as to 95th 284

percentile latency, which is expected considering 285

the cascading nature of baselines. 286

Comparing between two joint model variants, 287

JCQR shows 0.6 points F1 improvement and 1.8 288

points exact match improvement comparing to 289

naive model, thanks to Phonetic Similarity Atten- 290

tion. PSA emphasizes on similar sounding tokens 291

between turns, which is crucial to correction by 292

repetition. Considering it only improves consump- 293

tion of phonetic information, we don’t expect a 294

difference in entity carry over metrics. 295

5 Conclusion 296

We proposed a generalizable joint contextual query 297

rewriting framework using Phonetic Similarity At- 298

tention (PSA) for entity carry over and correction 299

by repetition. The joint model substantially outper- 300

forms cascading single task models, while being 301

more efficient and edge device friendly. We show- 302

cased the accuracy and latency benefits of joint 303

learning for query rewrite, and we hope this frame- 304

work could benefit future related research. 305

4



References306

Woojay Jeon. 2022. Acoustic neighbor embeddings.307

Norihide Kitaoka, Naoko Kakutani, and Seiichi Naka-308
gawa. 2005. Detection and recognition of correction309
utterances on misrecognition of spoken dialog sys-310
tem. Syst. Comput. Japan, 36(11):24–33.311

Fang Kong and Hwee Tou Ng. 2013. Exploiting zero312
pronouns to improve chinese coreference resolution.313
In EMNLP, pages 278–288.314

Diane Litman, Marc Swerts, and Julia Hirschberg. 2006.315
Characterizing and predicting corrections in spo-316
ken dialogue systems. Computational Linguistics,317
32(3):417–438.318

José Lopes, Giampiero Salvi, Gabriel Skantze, Alberto319
Abad, Joakim Gustafson, Fernando Batista, Raveesh320
Meena, and Isabel Trancoso. 2015. Detecting rep-321
etitions in spoken dialogue systems using phonetic322
distances. In Sixteenth Annual Conference of the323
International Speech Communication Association.324

Chetan Naik, Arpit Gupta, Hancheng Ge, Lam-325
bert Mathias, and Ruhi Sarikaya. 2018. Contex-326
tual slot carryover for disparate schemas. CoRR,327
abs/1806.01773.328

Hoang Long Nguyen, Vincent Renkens, Joris Pelemans,329
Srividya Pranavi Potharaju, Anil Kumar Nalamalapu,330
and Murat Akbacak. 2021. User-Initiated Repetition-331
Based Recovery in Multi-Utterance Dialogue Sys-332
tems. In Proc. Interspeech 2021, pages 226–230.333

Jun Quan, Deyi Xiong, Bonnie Webber, and Changjian334
Hu. 2019. Gecor: An end-to-end generative ellipsis335
and co-reference resolution model for task-oriented336
dialogue. In Proceedings of the 2019 Conference on337
Empirical Methods in Natural Language Processing338
and the 9th International Joint Conference on Natu-339
ral Language Processing (EMNLP-IJCNLP), pages340
4539–4549.341

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,342
Dario Amodei, Ilya Sutskever, et al. 2019. Language343
models are unsupervised multitask learners. OpenAI344
blog, 1(8):9.345

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and346
Mathias Lambert. 2019. Scaling multi-domain dia-347
logue state tracking via query reformulation. In Pro-348
ceedings of the 2019 Conference of the North Amer-349
ican Chapter of the Association for Computational350
Linguistics: Human Language Technologies, Vol-351
ume 2 (Industry Papers), pages 97–105, Minneapolis,352
Minnesota. Association for Computational Linguis-353
tics.354

Abigail See, Peter J. Liu, and Christopher D. Manning.355
2017. Get to the point: Summarization with pointer-356
generator networks. In Proceedings of the 55th An-357
nual Meeting of the Association for Computational358
Linguistics (Volume 1: Long Papers), pages 1073–359
1083, Vancouver, Canada. Association for Computa-360
tional Linguistics.361

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Peng- 362
wei Hu, Cheng Niu, and Jie Zhou. 2019. Improv- 363
ing multi-turn dialogue modelling with utterance 364
ReWriter. In Proceedings of the 57th Annual Meet- 365
ing of the Association for Computational Linguistics, 366
pages 22–31, Florence, Italy. Association for Com- 367
putational Linguistics. 368

Bo-Hsiang Tseng, Shruti Bhargava, Jiarui Lu, Joel 369
Ruben Antony Moniz, Dhivya Piraviperumal, Lin 370
Li, and Hong Yu. 2021. CREAD: combined reso- 371
lution of ellipses and anaphora in dialogues. CoRR, 372
abs/2105.09914. 373

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 374
2015. Pointer networks. In Advances in Neural 375
Information Processing Systems, volume 28. Curran 376
Associates, Inc. 377

Wei Yang, Rui Qiao, Haocheng Qin, Amy Sun, Luchen 378
Tan, Kun Xiong, and Ming Li. 2019. End-to-end 379
neural context reconstruction in Chinese dialogue. 380
In Proceedings of the First Workshop on NLP for 381
Conversational AI, pages 68–76, Florence, Italy. As- 382
sociation for Computational Linguistics. 383

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, 384
Paul N. Bennett, Jianfeng Gao, and Zhiyuan Liu. 385
2020. Few-shot generative conversational query 386
rewriting. CoRR, abs/2006.05009. 387

5

http://arxiv.org/abs/2007.10329
http://aclweb.org/anthology/D/D13/D13-1028.pdf
http://aclweb.org/anthology/D/D13/D13-1028.pdf
http://aclweb.org/anthology/D/D13/D13-1028.pdf
https://doi.org/10.1162/coli.2006.32.3.417
https://doi.org/10.1162/coli.2006.32.3.417
https://doi.org/10.1162/coli.2006.32.3.417
http://arxiv.org/abs/1806.01773
http://arxiv.org/abs/1806.01773
http://arxiv.org/abs/1806.01773
https://doi.org/10.21437/Interspeech.2021-1536
https://doi.org/10.21437/Interspeech.2021-1536
https://doi.org/10.21437/Interspeech.2021-1536
https://doi.org/10.21437/Interspeech.2021-1536
https://doi.org/10.21437/Interspeech.2021-1536
https://doi.org/10.18653/v1/N19-2013
https://doi.org/10.18653/v1/N19-2013
https://doi.org/10.18653/v1/N19-2013
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P19-1003
https://doi.org/10.18653/v1/P19-1003
https://doi.org/10.18653/v1/P19-1003
https://doi.org/10.18653/v1/P19-1003
https://doi.org/10.18653/v1/P19-1003
http://arxiv.org/abs/2105.09914
http://arxiv.org/abs/2105.09914
http://arxiv.org/abs/2105.09914
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.18653/v1/W19-4108
https://doi.org/10.18653/v1/W19-4108
https://doi.org/10.18653/v1/W19-4108
http://arxiv.org/abs/2006.05009
http://arxiv.org/abs/2006.05009
http://arxiv.org/abs/2006.05009

