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ABSTRACT

Generative adversarial net (GAN)-based tabular data generation has recently re-
ceived significant attention for its power for data augmentation when available
data is limited. Most prior works have applied generic GAN frameworks for
tabular data generation without explicitly considering inter-variable relationships,
which is important for modeling tabular data distribution. In this work, we de-
sign Causal-TGAN, a causally-aware generator architecture that can capture the
relationships among variables (continuous-type, discrete-type, and mixed-type)
by explicitly modeling the pre-defined inter-variable causal relationships. The
flexibility of Causal-TGAN is its capability to support different degrees of subject
matter expert domain knowledge (e.g., complete or partial) about the inter-variable
causal relations. Extensive experimental results on both simulated and real-world
datasets demonstrate that exploiting causal relations in deep generative models
could improve the generated tabular data quality compared to the state-of-the-art.
Code is available at https://github.com/BiggyBing/Causal-TGAN-Public.

1 INTRODUCTION

Tabular data is one of the most common types of data, and it is used in a wide range of applications,
including medical diagnosis (Ulmer et al., 2020), financial applications (e.g., risk analysis and
investment strategy recommendation) (Clements et al., 2020), fraud detection (Cartella et al., 2021),
recommendation systems (Sun et al., 2019) etc. However, the availability of high-quality tabular data
is sometimes limited due to incomplete records or the high cost associated with data collection. As a
remedy, tabular data synthesis has recently received significant attention.

Prior works of GANs for image/language demonstrate that designing a specialized network that can
capture the correlations among features has significant advantages (e.g., (Radford et al., 2015; Yu
et al., 2017)). But, note that correlation among features in tabular data could potentially be weaker
than spatial (for images) or semantic (for language data) relationships. This is because images or
languages contain position-related correlations that may not hold for tabular data. However, unlike
image or language data, tabular datasets are usually well-structured, and the values of each column
(feature) in the tabular data are usually measurements with a physical meaning, such as age or income.
This motivates us to ask if the interaction between the features can be captured in some way and used
in the generation process.

We believe that the causal relationships between these variables can be the answer to the above ques-
tion. Causality among the features of a table can indicate how these features interact with each other
and then progress to produce the tabular data. More formally, the common cause principle (Spirtes
et al., 2000b) states that every correlation is either due to a direct causal effect linking the correlated
entities or is brought about by a third factor, a so-called common cause. For example, there could be
three possible causal relations between variables A and B to make them dependent, i.e., A causes B,
B causes A, or another variable C causes both A and B. It is now clear that the interaction between
the features can be captured by causality. The interactions among a set of random variables, to some
extent, entail the joint distribution of these variables.

1

https://github.com/BiggyBing/Causal-TGAN-Public


Published as a workshop paper at ICLR 2022

In this work, we show that exploiting these causal relations in deep generative models delivers
synthesized data that more accurately captures the target data distribution. Additionally, we use
special treatments to deal with common issues in tabular data generation (see Section 4.1). We
name our method Causal-TGAN (Causally-aware Tabular Data Generative Neural Net). Causal-
TGAN explicitly models inter-feature causal relationships (usually described via a causal graph
) via a causally-aware generator. We can treat the true causal graph as expert knowledge. The
expert knowledge can be either obtained from domain experts or data by using the causal graph
discovery methods (Glymour et al., 2019). The availability of accurate and complete knowledge (i.e.,
causal relations known for all variables) sometimes can be difficult. Therefore, we propose a hybrid
generative mechanism for data generation when causal relations are known only for some variables
(Section 4.2).

We summarize our contributions as follows: (i) Causal-TGAN, a tailored architecture for tabular
data generation, that can incorporate (complete and incomplete) inter-variable causal relationships
from a domain expert; (ii) Detailed experimental results demonstrating that Causal-TGAN is better
(compared to other methods) at capturing the target data distribution on both simulated and real-world
datasets.

2 RELATED WORK

GANs for Tabular Data Generation Prior work has exploited various methods for improving
GAN-based tabular data generation. The improvements are made by either prepossessing the variable
to make its distribution easier to be modeled by GANs (Xu et al., 2019), augmenting the GAN
frameworks (Park et al., 2018; Kim et al., 2021), or both (Zhao et al., 2021). The study that considers
inter-variable correlations includes CorGAN (Torfi et al., 2020), which leverages the one-dimensional
convolutional GAN architecture to capture the correlation in electronic healthcare records (EHR).
However, EHR data have a stronger positional correlation, which a patient’s health condition is
correlated to the past. It remains unclear how CorGAN will perform on data without such positional
correlation, which is common in tabular data. Our Causal-TGAN explicitly encodes the inter-variable
causal correlations and is considered more general than positional relations.

Causally-aware Generator Besides Causal-TGAN, we explicitly leave out CGNN (Goudet et al.,
2018), CausalGAN (Kocaoglu et al., 2017) and DECAF (van Breugel et al., 2021), which incorporate
similar causally-aware generator. Though similarity in generator structure, their objectives are
different and hence the applications of the causality-driven generators are explored in different aspects.
CGNN’s goal is to infer the causal structures; Causal-GAN and DECAF generate interventional
data which do not exists in the original data distribution but are causally reasonable. In contrast, our
Casual-TGAN’s goal is to better model the in-distribution (i.e., original data distribution) by taking
advantage of inter-variable causal relations. In addition to the causality-driven generator architecture,
we consider to use variable encoding for dealing with irregular variable distribution and a hybrid
generation mechanism to facilitate its practicality.

3 BACKGROUND
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Figure 1: An example of SCM. Left: the causal
graph, right: the triplet that contains endogenous
variables, exogenous variables and causal mecha-
nisms.

Structural Causal Models Mathematically,
an structural causal models (SCM) Pearl (2009)
MG with a causal graph G can be represented by
a tripletMG = 〈X ,F ,U〉 that contains a set of
endogenous variables X = {X1, X2, ..., Xd},
a set of causal equations (mechanisms) F =
{f1, f2, ..., fd} and a set of exogenous variables
U = {U1, U2, ..., Ud}, where each Ui is inde-
pendently sampled from a distribution U . The
causal relationship “Xi causes Xj” is repre-
sented in the causal graph by a directed edge that
orientates from Xi to Xj , i.e., Xi → Xj . The
value of Xj is determined by its causal equa-
tion Xj = fj(PaG(Xj), Uj) where PaG(Xj)
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denotes all the parent nodes of Xj in G. Uj is
the exogenous variable of Xj and can be seen as the cumulative effect of all unobserved causes of
Xj . Figure 1 illustrates an example of SCM with 5 variables.

4 METHOD

4.1 VARIABLE ENCODING

Real-world tabular data present several challenges to tabular data generation, such as mixed-type
variables, irregular distribution (e.g., non-Gaussian distribution), and multimodality. The non-
Gaussian distribution of continuous variables can cause gradient varnish issues when they are
min-max normalized; Moreover, the mode collapse issues of conventional image GANs will also
happen to tabular data generation where the continuous variables sometimes have multi-mode. To
overcome the problems raised by the complex distribution of a continuous variable, Causal-TGAN
embraces the idea of mode-specific normalization (Xu et al., 2019) to continuous variables.

The mode-specific normalization first fits a variational Gaussian mixture model (VGM) for the
columns containing continuous variables. Let us assume that the fitted VGM of a column consists of
n Gaussian components. Then, a single value from this column can be encoded as a vector of length
n+ 1. The first n elements denote a one-hot vector indicating the most likely Gaussian component
that the value belongs to. The last (i.e., n+ 1st) element is the mean and variance-normalized value
of the corresponding Gaussian component. For discrete variables, we use one-hot encoding to encode
them. We point out that using variable encoding is one distinct of Causal-TGAN compared with other
causality-driven generators.

4.2 GENERATOR CONSTRUCTION

Generator with Causal Graph G Causal-TGAN use multilayer perceptron (MLP) to explicitly
model an SCM with causal graph G. Each causal mechanism fi is constructed by a neural network
Gi: R|E(PaG(Xi))|+1 → R|E(Xi)|, where E: R→ Rn is process of the variable encoding operation
that maps a scalar (resp. a set of scalars) into encoded vector (resp. a set of vectors) of length n.
Values of each variable Xi can be generated by:

xi = Gi(ui, paG(Xi)) ∀i (1)
where paG(Xi) are the generated values of the parent nodes of Xi and ui is sampled from the
pre-defined exogenous variable distribution (e.g. Gaussian) of Xi. Following the topological order,
one sample can be generated autoregressively as G(u) = [G1(u1, paG(X1)), ..., Gk(uk, paG(Xk))].

Causal-TGAN with Partial Knowledge Causal-TGAN can consume only partial knowledge
(i.e., causal diagram known only partially for a few variables) for data generation when complete
knowledge is not accessible, or domain experts only have high confidence only in partial knowledge.
To do this, we first fit Causal-TGAN on a subset of the target dataset containing only the variables
with known causal relations. Then we leverage a conditional GAN1, Ccond, to generate the rest of
the variables conditioned on the variables used by Causal-TGAN:

xcond
S = Ccond(e, x

causal
S ) (2)

where e is the noise vector. xcond
S and xcausal

S are the generated samples from the Ccond and G
respectively. Then, under the partial knowledge setting a complete data sample is generated by
concatenating xcond

S and xcausal
S . Unlike other SCM-based generators, our new hybrid generating

mechanism provides more flexibility in incorporating causal information into SCM-based generators,
which facilitates practicality.

4.3 TRAINING CAUSAL-TGAN

Either the Causal-TGAN or the Conditional GAN is trained using WGAN loss with gradient
penalty (Gulrajani et al., 2017). Note that, when training conditional GAN, we freeze the pa-
rameters of the causal-driven generator (i.e., G) and update the parameters of the conditional GAN
(i.e., Ccond) only.

1We use the conditional GAN implementation at https://github.com/sdv-dev/CTGAN
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5 EXPERIMENTAL RESULTS

5.1 SETTINGS

Datasets We use both simulated (causal graph is known) and real datasets (causal graph is unknown)
in our experiment. For the simulated dataset, we pick 8 well-known Bayesian Networks to create the
simulated datasets of discrete-type, continuous-type, and mixed-type and use their network structures
as the true causal graphs. For real datasets, we select 6 mixed-type datasets that are commonly used
for classification and regression in machine learning. We use PC algorithms (Spirtes et al., 2000a) to
estimate the causal structures for real-world datasets. We summarize the details and statistics of these
datasets in Appendix A.

Baselines Several generative models proposed for tabular data—MedGAN (Choi et al., 2017),
TableGAN (Park et al., 2018), CTGAN and TVAE (Xu et al., 2019)–were used as the baseline. We
use Identity to denote the model that generates training data. Therefore, the method that has a closer
performance to Identity is considered better. For all the baseline models, we use the recommended
hyperparameters presented in the original papers or provided in their implementations. We train
the Causal-TGAN model with a batch size of 500 for 400 epochs. For clarity of presentation, we
highlight the best performance in bold font and underline the second-best performance.

Evaluation Metrics For experiments on real-world data, we evaluate the machine learning ef-
ficacy (MLe) of the generated data. MLe measures how well the synthetic data can be the proxy
of the target data in the machine learning tasks. It is measured as the performance on original test
datasets of machine learning models which are trained on the generated data. Machine learning
models and their settings used for calculating MLe are described in Appendix B. Different than
real-world datasets, simulated datasets do not contain machine learning tasks (i.e., labels), which
makes it difficult to measure MLe for simulated datasets. Instead, we leverage Kullback–Leibler
divergence (KLD) and Log-cluster (LC) (Goncalves et al., 2020) as metrics that used for simulated
datasets. KLD quantifies how much one probability distribution differs from another probability
distribution. LC score is intended to evaluate synthetic datasets in unsupervised machine learning
tasks. To measure log-cluster, we first concatenate the synthetic dataset and the real dataset into
a single dataset. Secondly, a clustering method is applied to the concatenated dataset with a fixed
number of clusters G. Then the log-cluster score can be calculated as:

LC(XS , XR) = log(
1

G

G∑
i=1

[
nr
i

ni
− c]2) (3)

where ni is the number of samples in the ith cluster and nr
i is the number of samples in ni that form

the target dataset. c is defined the as ratio of the number of samples in the target dataset to the number
of samples in the concatenated dataset. A large value of LC score indicates a severe mismatch in
cluster members, indicating a disparity between the distribution of target and synthetic datasets. We
set G equal to 100 in our experiments.

5.2 RESULTS

The results on both simulated and real-world datasets are reported in Table 1.

Results on Simulated Datasets Notice from the table that Causal-TGAN outperforms all the
baseline models on all types of datasets on average. Surprisingly, TableGAN outperforms CTGAN on
continuous datasets by a large margin even though TableGAN has no special treatment for continuous
variables. One possible reason for this is that the continuous variables in the simulated datasets do
not conform to a mixture Gaussian distribution. CTGAN’s mixture Gaussian modeling could be
introducing extra complexity on variable distribution, which can undermine CTGAN’s efficiency.
However, note that, even though Causal-TGAN employs the same encoding strategy as CTGAN, it
still outperforms TableGAN by incorporating causal knowledge.

Results on Real-world Datasets We train Causal-TGAN with partial knowledge setting to evaluate
it on real-world datasets. Specifically, we estimated the causal relations for variables of the majority
data type for each dataset. We then use the estimated causal relations for generating the variables of
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Method
Simulated Datasets Real-world Datasets

Discrete Continuous Mixed Mixed

KLD ↓ LC ↑ KLD ↓ LC ↑ KLD ↓ LC ↑ F1 R2

Identity 0 ∞ 0 ∞ 0 ∞ 0.686 0.342

MedGAN 0.406 2.311 7.088 1.407 0.901 1.784 0.230 2.970
TableGAN 0.280 3.634 0.999 6.501 0.478 2.391 0.428 0.130

TVAE 0.104 4.276 1.635 3.846 0.098 2.834 0.460 0.238
CTGAN 0.266 3.231 1.576 2.729 0.355 2.858 0.575 0.384

Causal-TGAN 0.054 5.499 0.391 6.614 0.059 2.931 0.629 0.294

Table 1: Results on simulated and real-world datasets. For simulated datasets, we report KLD and
LC (log-cluster) scores. For real-world datasets, we report F1 scores (for classification datasets) and
R2 (for regression datasets) as the MLe scores. The scores are calculated as the average value over
all datasets of the same type. Results for each single dataset are reported in Appendix C.

the majority data type and use the conditional generator to generate the rest. The reason for this is that
the existing causal discovery methods for mixed-type data either cannot produce causal structures of
high accuracy or have an exponential time complexity with respect to the size of the dataset. Our
strategy can ensure as much and accurate as knowledge can be delivered into the modeling process.
The results on real-world datasets are reported in Table 5. It illustrates that, even when full knowledge
is absent, Causal-TGAN outperforms all the baseline models.

5.3 ABLATION STUDY

To understand the efficiency of each component in Causal-TGAN, we implement an ablation study on
real-world datasets. We try to understand Causal-TGAN in two aspects where there is (1) no special
treatment for variables and (2) no expert knowledge. Specifically, when studying Causal-TGAN
operating without special treatment for variables, we consider the following settings. (1) w/o M.:
continuous variables are standardized into [−1, 1] instead of using mode-specific normalization. (2)
w/o G.: use softmax activation function instead of gumbel-softmax function (Jang et al., 2016) for
all activation functions that used for generating one-hot vectors. (3) w/o E.: we remove all variable
encoding strategies. Instead, we standardize continuous variables and convert categorical variables
into integers. Table 2 illustrates the results of ablation study.

Settings w/o M. w/o G. w/o E. w/o knowledge

Performance -23.98% -22.16% -75.97% -16.17%

Table 2: Ablation study results on special treatments on variables and information of inter-variable
causal relation. The performance (measured as MLe) changes on real-world datasets are reported.

When there is no expert knowledge in generating real-world datasets, the performance decreases. This
result demonstrates the efficiency by incorporating inter-variable causal information. Additionally, in
the absence of special treatments for tabular data variables, the best-case, and worst-case performance
drop is 21.30% and 75.97%, respectively. Note that removing treatments for variables reduces
Causal-TGAN to other causally-aware generators discussed in Section 2. This result illustrates the
superior of Causal-TGAN on tabular data generation over other causally-aware generators.

6 CONCLUSION

We propose Causal-TGAN, a tabular data generative model that leverages inter-variable causal
relationships. This method can handle discrete, continuous, and mixed data types. When combined
with an auxiliary conditional GAN, the proposed approach can flexibly consume different types or
qualities (complete or partial) of expert knowledge about the underlying causal structures. Extensive
experimental evaluation on simulated and real-life datasets indicates superior performance and
practicality of Causal-TGAN when compared to several other baseline generative models available in
the literature.
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A DATASETS DESCRIPTION

We investigate our model architecture on various simulated and real tabular datasets. In this section,
we introduce these datasets and we record data processing steps for some real datasets.

Dataset Name # train/test # Cols. # B # C # R Dataset Name # train/test # Cols. # B # C # R Task

Simulated Dataset Real Dataset

asia 10k/10k 8 0 8 0 adult 23k/10k 15 2 7 6 C
child 10k/10k 20 0 20 0 census 200k/100k 41 3 31 7 C

insurance 10k/10k 27 7 20 0 cabs 37k/5k 13 1 5 7 C
alarm 10k/10k 37 10 27 0 loan 31k/5k 17 1 7 9 C

ecoli70 15k/15k 46 0 0 46 news 31k/8k 59 14 0 45 R
arth150 25k/25k 107 0 0 107 kings 16k/5k 16 0 2 14 R

healthcare 15k/15k 7 0 3 4
mehra 25k/25k 24 0 4 20

Table 3: Summary of datasets. Note that, # denotes the number of and Col. is the abbreviation of
columns. The machine learning tasks for real-world datasets are listed in the last column, where
C stands for classification and R stands for regression. We separate the train and test datasets by
randomly sampling from the whole dataset.

Simulated Datasets: We pick 8 well-known Bayesian Networks as simulated datasets - alarm,
asia, child insurance, arth150, ecoli70, healthcare and mehra. Specifically, alarm, asia, child and
insurance are generated by Bayesian Networks. Arth150 and ecoli70 are generated by Gaussian
Bayesian Networks and hence are of continuous variable type. Healthcare and mehra are generated
by Conditional Linear Gaussian Bayesian Networks which contain both discrete and continuous
variables.

Real Datasets: We select 6 commonly used machine learning datasets. Adult consists of demographic
information in the U.S. and is collected by the 1994 Census Survey, where we predict two classes of
high (>$50K) and low (≤$50K) income. Census is similar to Adult, but it has different columns.
Loan is about bank loan status prediction. Cabs is collected by an Indian cab aggregator service
company for predicting the types of customers. We select King from Kaggle. Kings dataset contains
house sale prices for King County in Seattle between May 2014 and May 2015. News dataset has
a heterogeneous set of features about articles published by Mashable in a period of two years for
predicting the number of shares in social networks. Adult and census are for binary classification,
and cabs are for multi-class classification. Kings and news are for regression.

We process cabs and kings datasets. For cabs, we only use data from train datasets since only train
datasets contains labels. For kings datasets, we remove irrelevant columns. The details of data
processing are as follow:

• Cabs: We first only take the training set part of the original dataset. Next, we delete the
rows that contain null values and ‘Trip_ID’ column. Then, we split the processed dataset
into train set and test set according to 10% and 90%.

• King: We removed 5 irrelevant columns: ‘id’, ‘date’, ‘zipcpde’, ‘lat’ and ‘long’. After that,
we split whole dataset into train set and test set according to 20% and 80%.

The statistics of datasets are summarized in Table 3 and the websites for all the datasets are listed as
follows:

• Simulated Datasets: http://www.bnlearn.com/bnrepository/
• Adult: http://archive.ics.uci.edu/ml/datasets/adult
• Census: https://archive.ics.uci.edu/ml/datasets/census+income
• Cabs: https://www.kaggle.com/arashnic/taxi-pricing-with-mobility-analytics
• Loan: https://www.kaggle.com/zaurbegiev/my-dataset
• Kings: https://www.kaggle.com/harlfoxem/housesalesprediction
• News: https://archive.ics.uci.edu/ml/datasets/online+news+popularity
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B SETTINGS OF MACHINE LEARNING MODELS

Tasks Model Description

Classification
Adaboost n_estimators=50, and others=defaulted values.

Decision Tree max_depth=20, max_leaf_nodes=50, and others=defaulted values.
MLP hidden_layer_sizes=50, early_stopping=True, and others=defaulted values.

Regression Linear Regression All settings with defaulted values.
MLP hidden_layer_sizes=100, early_stopping=True, and others=defaulted values.

Table 4: Classifier and Regressor used in the evaluation of Machine Learning Efficacy. The names of
all parameters that used in the description are consistent with those defined in scikit-learn.

C BENCHMARK RESULTS ON ALL DATASETS

Method adult census loan cabs kings news

F1 F1 Macro Macro R2 R2

Identity 0.677 0.648 0.664 0.756 0.647 0.038

MedGAN 0.045 0.000 0.548 0.328 -4.758 -1.182
TableGAN 0.496 0.367 0.511 0.340 0.547 -0.521
CTGAN 0.628 0.459 0.637 0.576 -0.761 0.006
TVAE 0.611 0.464 0.380 0.385 0.531 -0.055

Causal-TGAN 0.662 0.509 0.661 0.684 0.563 0.025

Table 5: Machine learning efficacy on real-world datasets.

Method asia alarm child insurance ecoli70 arth150 healthcare mehra

KLD LC KLD LC KLD LC KLD LC KLD LC KLD LC KLD LC KLD LC

MedGAN 1.806 -2.108 -0.081 -2.125 -0.068 -2.563 -0.033 -2.449 7.088 -1.396 N/A -1.417 1.067 -1.573 0.734 -1.996
TableGAN 0.635 -2.612 0.237 -3.935 0.178 -3.651 0.069 -4.34 0.243 -6.888 1.754 -6.114 0.256 -2.841 0.7 -1.94

TVAE 0.054 -3.12 0.168 -4.537 0.108 -4.999 0.088 -4.446 1.084 -5.597 2.187 -2.095 0.042 -3.587 0.154 -2.08
CTGAN 0.344 -3.668 0.489 -2.631 0.141 -3.126 0.091 -3.501 1.613 -2.639 1.538 -2.819 0.232 -3.682 0.478 -2.035

Causal-TGAN 0.012 -3.454 0.084 -5.381 0.061 -6.689 0.06 -6.472 0.502 -6.847 0.28 -6.382 0.007 -3.817 0.11 -2.046

Table 6: Benchmark results on simulated datasets.
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