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Abstract

We propose a Bayesian framework for estimating
causal effects from federated observational data
sources. Bayesian causal inference is an important
approach to learning the distribution of the causal
estimands and understanding the uncertainty of
causal effects. Our framework estimates the poste-
rior distributions of the causal effects to compute
the higher-order statistics that capture the uncer-
tainty. We integrate local causal effects from dif-
ferent data sources without centralizing them. We
then estimate the treatment effects from observa-
tional data using a non-parametric reformulation
of the classical potential outcomes framework. We
model the potential outcomes as a random function
distributed by Gaussian processes, with defining
parameters that can be efficiently learned from
multiple data sources. Our method avoids exchang-
ing raw data among the sources, thus contributing
towards privacy-preserving causal learning. The
promise of our approach is demonstrated through
a set of simulated and real-world examples.

1 INTRODUCTION

Causal effect estimation is important in many real-life situa-
tions. For example: What is the effect of war in a specific
region on world food supply? How would the blood pressure
of a patient change if that patient took a new drug? How
does coronary heart disease affect age- and gender-specific
mortality rates? These questions are common in many areas,
including personalized medicine [Powers et al., 2018], digi-
tal experiments [Taddy et al., 2016], political science [Green
and Kern, 2012], etc., and especially recent events in the
Covid-19 pandemic and the war of Ukraine. In practice, the
relevant data essential for accurate and meaningful causal
inference may reside in multiple, decentralized data sources

which cannot be shared or combined due to geographical,
organizational, process, and/or privacy constraints. Some al-
ternative solutions such as establishing data use agreements
or creating secure data environments may not be possible
and are often not easily implemented. In addition, it is im-
portant to know whether the causal estimands are reliable.
Thus, estimating a confidence interval of the relevant causal
effect together with its point estimates would give helpful
insights into the uncertainty of the causal estimand. For ex-
ample, a narrow confidence interval for individual treatment
effect of smoking on lung cancer, where zero falls outside
the confidence interval, means that the patient is at a higher
risk of getting cancer.

Most of the recent causal effect estimators, e.g., Louizos
et al. [2017], Shalit et al. [2017], Madras et al. [2019], are
point estimates without considering the uncertainty of the
causal estimands. Bayesian approaches, e.g., Imbens and
Rubin [1997], Daniels et al. [2012], Talbot et al. [2015], Gut-
man et al. [2018], Ning et al. [2019], on the other hand, aim
to learn the posterior distributions of the causal estimands to
obtain higher-order statistics that capture the uncertainty. To
derive these posterior distributions of the causal estimands,
however, most, if not all of the existing efforts involve pool-
ing the distributed data from multiple sources centrally to
compute the model marginal likelihood, thus violating the
privacy constraints mentioned above.

We propose a Bayesian framework that can learn the causal
effects of interest without combining data sources to a cen-
tral site, and, at the same time, learn higher-order statistics
of the causal effects to understand their uncertainty. This
federated learning approach [McMahan et al., 2017] has not
been well studied for causal inference. Our contributions
are summarized as follows:

• We propose the Federated Causal Inference (FedCI) 1

framework that fuses federated learning and causal infer-
ence to incorporate multiple data sources while maintain-

1Source code: https://github.com/vothanhvinh/
FedCI.
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ing the sources at their local sites.

– FedCI generalizes the Bayesian imputation approach
[Imbens and Rubin, 2015] to a more generic model
based on Gaussian processes (GPs); the resulting
model is decomposed into multiple components,
each of which handles a distinct data source.

– FedCI minimizes information transmitted among
the sources, thus enabling privacy-preserving causal
inference. The framework could support multiparty
computation and differential privacy in future.

• We propose a variational approximation scheme for the
proposed model, whose evidence lower bound can be de-
composed additively across different data sources. This
allows the parameters to be optimized via federated gradi-
ent averaging. We then leverage the computed predictive
distribution to efficiently estimate the desired treatment
effect quantities.

• We empirically evaluate the proposed framework on
benchmark datasets, and show its competitive perfor-
mance as compared to the recent baseline approaches
trained on the combined datasets.

2 RELATED WORK

Causal inference. In most causal inference literature, the
estimation of causal effects is performed directly on ac-
cessible local data sources. Hill [2011], Alaa and van der
Schaar [2017, 2018] proposed nonparametric approaches
to estimate causal effects. A growing literature, including
Shalit et al. [2017], Yoon et al. [2018], Yao et al. [2018],
Künzel et al. [2019], Nie and Wager [2021], used paramet-
ric methods to model the potential outcomes. Louizos et al.
[2017], Madras et al. [2019] used the formulation of Pearl
[1995] to estimate causal effects under the existence of la-
tent confounding variables. Bica et al. [2020a,b] formalized
potential outcomes for temporal data with observed and un-
observed confounding variables to estimate counterfactual
outcomes for treatment plans. Imbens and Rubin [1997],
Daniels et al. [2012], Talbot et al. [2015], Gutman et al.
[2018], Ning et al. [2019] are typical Bayesian methods
that learn posterior distributions of the causal estimands.
All these works were not proposed for the context of multi-
source data which cannot be shared and combined as a
unified dataset. Our model, in contrast, learns treatment ef-
fects while preserving the source data at their local sites. It
is different from the problem of transportability of causal
relations [e.g., Pearl and Bareinboim, 2011, Bareinboim
and Pearl, 2013b,a, 2016, Lee et al., 2020], where theoret-
ical tools were developed to transport causal effects from
a source population to a target population, which does not
take into account the above data privacy constraint.

Federated learning. Federated learning aims to train an
algorithm across multiple decentralized clients, thus re-
spect the privacy information of the data [McMahan et al.,

2017]. Federated stochastic gradient descent [Shokri and
Shmatikov, 2015] and federated averaging [McMahan et al.,
2017] are two variations of federated learning. Recent de-
velopments of federated learning, e.g., Álvarez et al. [2019],
Zhe et al. [2019], de Wolff et al. [2020], Joukov and Kulić
[2020], Sattler et al. [2019], Mohri et al. [2019] are formal-
ized for a typical classification or regression problem. Also,
it has recently been applied in facilitating multi-institutional
collaborations without sharing patient data [Rieke et al.,
2020, Sheller et al., 2020] and healthcare informatics [Lee
and Shin, 2020, Xu et al., 2021]. Other biomedical applica-
tions of federated learning include predicting adverse drug
reactions [Choudhury et al., 2019], stroke prevention [Ju
et al., 2020], mortality prediction [Vaid et al., 2020], predict-
ing outcomes in SARS-COV-2 patients [Flores et al., 2021],
etc. Ng and Zhang [2022], Gao et al. [2021] are noticeable
works that estimate causal graphs in federated setting, which
is different from our work in estimating casual effects.

Following some recent works [e.g., Shalit et al., 2017, Yao
et al., 2018, Oprescu et al., 2019, Künzel et al., 2019, Nie
and Wager, 2021], we develop a federated causal inference
algorithm based on the potential outcomes framework. We
summarize the related models in the subsequent sections.

2.1 POTENTIAL OUTCOMES AND THE
BAYESIAN IMPUTATION MODEL

The concept of potential outcomes was proposed in Neyman
[1923] for randomized trial experiments. Rubin [1975, 1976,
1977, 1978] re-formalized the framework for observational
studies. We consider the causal effects of a binary treatment
w, with w = 1 indicating assignment to ‘treatment’ and
w = 0 indicating assignment to ‘control’. Following the
literature, the causal effect for individual i is defined as a
comparison of the two potential outcomes, yi(0) and yi(1),
where these are the outcomes that would be observed under
wi = 0 and wi = 1, respectively. We can never observe
both yi(0) and yi(1) for any individual i, because it is not
possible to go back in time and expose the i–th individ-
ual to the other treatment. In this work, we generalize the
Bayesian imputation model of Imbens and Rubin [2015]
since it captures uncertainty of the causal estimands in a
Bayesian setting:

yi(0) = β>0 xi + ε0i, yi(1) = β>1 xi + ε1i, (1)

where ε0i and ε1i are the Gaussian noises. The key to
compute treatment effects is yi(0) and yi(1). So we
need to impute one of the two outcomes. Let yi,obs,
yi,mis be the observed and unobserved (or missing) out-
come. The idea is to find the marginal distribution
p(yi,mis|yobs,X,w). Once the missing outcomes are im-
puted, the treatment effects can be estimated. To pro-
ceed, Imbens and Rubin [2015] suggested four steps
based on the following equation p(yi,mis|yobs,X,w) =



∫
p(yi,mis|yobs,X,w, θ)p(θ|yobs,X,w)dθ, where θ =
{β0,β1}. The aim is to find p(yi,mis|yobs,X,w, θ) and
p(θ|yobs,X,w), and then compute the integral to obtain
p(yi,mis|yobs,X,w), which is a non-parametric prediction.

The above procedure shows that learning the distribution
p(yi,mis|yobs,X,w) would require data from all sources
since it is conditional on yobs, X, and w. Thus, it violates
the data privacy constraint. In Sections 3.3, 3.4 and 3.5,
we generalize this model with Gaussian processes and de-
compose it into multiple components to perform federated
inference of the causal effects, which minimizes the risk of
privacy leak of the data.

3 OUR APPROACH

We generalize the Bayesian imputation model presented in
Section 2.1 to a generic model based on Gaussian Processes
(GPs). We introduce the Federated Causal Inference (FedCI)
method to decompose the model into multiple components,
each associated with a data source, to estimate causal effects
under a federated setting.

3.1 PROBLEM FORMULATION

Problem setting & notations. Suppose we have m data
sources that are organized and curated at their local sites.
Each source is denoted by Ds = {(ws

i, y
s
i,obs,x

s
i)}ns

i=1,
where s = 1, 2, . . . ,m, and the quantities ws

i , y
s
i,obs and

xs
i are the treatment assignment, observed outcome asso-

ciated with the treatment, and covariates of individual i in
source s, respectively. In this work, we focus on binary treat-
ment ws

i ∈ {0, 1}, thus ysi,obs can be either of the potential
outcomes ysi(0) or ysi(1), i.e., for each individual i, we can
only observe either ysi(0) or ysi(1), but not both of them.
We further denote the unobserved or missing outcome as
ysi,mis. These variables are related to each other through the
following equations:

ysi(1) = ws
iy

s
i,obs + (1− ws

i)y
s
i,mis, (2)

ysi(0) = (1− ws
i)y

s
i,obs + ws

iy
s
i,mis. (3)

Thus, ysi(1) = ysi,obs when ws
i = 1 and ysi(1) = ysi,mis

when ws
i = 0, and similarly for ysi(0). For notational con-

venience, we further denote ys(0) = [ys1(0),..., ysns
(0)]>,

ys
obs = [ys1,obs,..., y

s
ns,obs]

>, and similarly for ys(1), ys
mis,

Xs and ws.

Causal effects of interest. We estimate the individual treat-
ment effect (ITE)2 and the average treatment effect (ATE)
defined as follows:

τsi := ysi(1)− ysi(0), τ :=
∑m

s=1

∑ns

i=1 τ
s
i/n, (4)

2Also known as conditional average treatment effect (CATE).

where ysi(1), ysi(0) are realization outcomes of the corre-
sponding random variables, and n =

∑m
s=1 ns.

The causal estimands. Inserting Eq. (2) and (3) into (4),
we obtain the estimate of ITE:

E[τsi] = (2ws
i − 1)(ysi,obs − E

[
ysi,mis

∣∣yobs,X,w
]
), (5)

Var[τsi] = (2ws
i − 1)2Var

[
ysi,mis

∣∣yobs,X,w
]
, (6)

where yobs, X, w denote the vectors/matrices of the ob-
served outcomes, covariates and treatments concatenated
from all the sources. The estimate of ATE is as follows:

E[τ]=(2w − 1)>(yobs−E[ymis|yobs,X,w])/n, (7)

Var[τ]=(2w−1)>Cov[ymis|yobs,X,w](2w−1)/n2, (8)

where 1 is a vector of ones.

Hence, the remaining task is to learn the posterior
p(ymis

∣∣yobs,X,w), which is the predictive distribution of
ymis given all the covariates, treatments and observed out-
comes from all sources.

3.2 ASSUMPTIONS

The following assumptions are made to enable federated
causal estimations:
Assumption 1 (Strong Ignorability). (i) The potential
outcomes are independent of the treatment assignment
conditional on the covariates (unconfoundedness), i.e.,
ysi(1), ysi(0) ⊥⊥ ws

i|xs
i, and (ii) every individual has some

positive probability to be assigned to every treatment
(positivity), i.e., 0 < p(ws

i = 1|xs
i) < 1. [Rosenbaum and

Rubin, 1983]
Assumption 2 (Stable Unit Treatment Value Assumption
or SUTVA). (i) The potential outcomes for any individual
do not vary with the treatments assigned to other individ-
uals, and (ii) there are no different forms or versions of
each treatment level, which would lead to different potential
outcomes. [Imbens and Rubin, 2015]
Assumption 3. The individuals from all sources share the
same set of common covariates.
Assumption 4. There exists a set of features such that any
individual is uniquely identified across different sources. We
refer to this set as ‘primary key’.
Assumption 5. Data in different sources are drawn from
parts of the population. The multi-source data, which may
be homogeneous or heterogeneous in nature, together reflect
the characteristics of the population.

Assumption 1 and 2 are standards in causal inference, as
discussed in, e.g., Imbens and Rubin [2015], Shalit et al.
[2017]. Assumption 3 is reasonable, e.g., decentralized data
in Choudhury et al. [2019], Vaid et al. [2020], Flores et al.
[2021] (to name a few) satisfy this assumption for federated
learning. In Assumption 4, a ‘primary key’ is not limited



to the observed data used for inference as described in Sec-
tion 3.1, but it can include any features to uniquely identify
an individual, such as {nationality, national id} of a patient.
Assumption 4 allows a secure preprocessing procedure to
remove repeated individual records in different sources, if
necessary, without sharing raw data among the sources (see
Appendix A for details). Assumption 5 ensures that there
is no imbalanced data bias across the sources. In the subse-
quent sections, we assume that all of the above assumptions
are satisfied, and the preprocessing procedure is already
performed if necessary.

3.3 GP-BASED IMPUTATION

The model presented in Eq. (1) is a simple Bayesian linear
model. In this section, we present a more general nonlinear
Bayesian model. In particular, since β0 and β1 in Eq. (1)
follow multivariate normal distributions, the two compo-
nents β>0 xi and β>1 xi also follow multivariate normal dis-
tributions. The generalisation of these two components are
f0(xi) = β>0 ω(xi) and f1(xi) = β>1 ω(xi), where ω(xi)
is a vector of basis functions with input xi. This formulation
would lead to the fact that the marginal of f0(x) and f1(x)
are Gaussian processes (GPs). Thus, we propose:

yi(0) = f0(xi) + ε0i, yi(1) = f1(xi) + ε1i, (9)

where f0(xi) and f1(xi) are two random functions eval-
uated at xi, i.e., f0(xi) ∼ GP(µ0(X),K) and f1(xi) ∼
GP(µ1(X),K), where K denotes the covariance ma-
trix computed with a kernel function k(x,x′). Similar
to the imputation model of Imbens and Rubin [2015],
this model also requires finding the marginal distribution
p(yi,mis |yobs,X,w), through accessing the observed data
from all the sources.

Similarly, although this model is generic, it requires access
to all the observed data to compute K, which is impossible
without violating the privacy constraints mentioned above.
In the subsequent sections, we propose a federated model to
address this problem.

3.4 THE PROPOSED MODEL

Recall that the aim is to find p(ymis |yobs,X,w) so that we
may in turn compute Eqs. (5)-(8) to arrive at the quanti-
ties of interest. To that end, we propose to model the joint
distribution of the potential outcomes as follows:[

ysi(0)
ysi(1)

]
= Ψ

1
2

([
f s0(xi)
f s1(xi)

]
+

[
gs0
gs1

])
+ Σ

1
2 εsi, (10)

where εsi ∼ N(0, I2) is to handle the noise of the outcomes.

As mentioned in Section 2.1 and 3.3, all the outcomes from
all sources are interdependent in the Bayesian imputation ap-
proach, which is problematic for federated learning. This de-
pendency is handled via f sj(xi) and gsj (j ∈ {0, 1}), which

enable federated learning for the proposed model. We refer
to the dependency handled by f sj(xi) as intra-dependency
and the one captured by gsj as inter-dependency.

Intra-dependency. f s0(xi) and f s1(xi) are GP-distributed
functions, which allows us to model each source dataset
simultaneously along with its heterogeneous correlations.
Specifically, we model f s0(xi) ∼ GP(µ0(Xs),Ks) and
f s1(xi) ∼ GP(µ1(Xs),Ks), where Ks is a covariance ma-
trix computed by a kernel function k(xs

i,x
s
j), and µ0(·),

µ1(·) are functions modelling the mean of these GPs. Param-
eters of these functions and hyperparameters in the kernel
function are shared across multiple sources. The above GPs
handle the correlations within one source only.

Inter-dependency. To capture dependency among the
sources, we introduce variable g = [g0,g1], where g0 =
[g1

0 ,..., g
m
0 ]> ∼ N(r0,M) and g1 = [g1

1 ,..., g
m
1 ]> ∼

N(r1,M). Both gs0 and gs1 are shared within the source
s, and they are correlated across multiple sources s ∈
{1,...,m}. The correlations among the sources are mod-
elled via the covariance matrix M which is computed with
a kernel function. The inputs to the kernel function are the
sufficient statistics (we used mean, variance, skewness, and
kurtosis) of each covariate xs within the source s. We de-
note the first four moments of covariates as x̃s ∈ R4dx×1

and the kernel function as γ(x̃s, x̃s′), which evaluates the
correlation of two sources s and s′. This formulation im-
plies that g0 and g1 are GPs. The elements of r0 and r1

are computed with the mean functions r0(x̃s) and r1(x̃s),
respectively. Herein, we only share the sufficient statistics
of covariates, but not covariates of a specific individual.

The two variables Ψ and Σ. These are positive semi-
definite matrices capturing the correlations between the
two possible outcomes ysi(0) and ysi(1), Ψ

1
2 and Σ

1
2 are

their Cholesky decomposition matrices. Note that Ψ and
Σ are also random variables. Since these are positive semi-
definite matrices, we model their priors using Wishart distri-
bution Ψ ∼Wishart(V0, d0), Σ ∼Wishart(S0, n0), where
V0,S0 ∈ R2×2 are predefined positive semi-definite matri-
ces and d0, n0 ≥ 2 are predefined degrees of freedom.

3.5 THE PROPOSED ALGORITHM

Based on some results on the joint distribution of potential
outcomes, we construct a federated objective function for
the proposed federated causal inference algorithm (FedCI).

3.5.1 Joint Distribution of the Outcomes

We first present some results that are helpful in constructing
the federated objective function in Section 3.5.2. The proofs
of these results are in the appendices. To simplify the ex-
position, we denote gs = [gs

0,g
s
1], where gs

0 = [gs0,..., g
s
0]>

and gs
1 = [gs1,..., g

s
1]>.



Lemma 1. Let Ψ, Σ, K, µ0(Xs), µ1(Xs), and gs satisfy
the model in Eq. (10). Then,[
ys(0)
ys(1)

] ∣∣∣Ψ,Σ,Xs,ws,gs

∼ N

((
Ψ

1
2 ⊗ Ins

)[
µ0(Xs) + gs

0

µ1(Xs) + gs
1

]
,Ψ⊗Ks + Σ⊗ Ins

)
,

where ⊗ is the Kronecker product.

The proof of Lemma 1 is presented in Appendix C. From
Lemma 1, we observe that Ψ, Ks, Σ, and Ins are positive
semi-definite, thus the covariance matrix Ψ⊗Ks + Σ⊗ Ins

is positive semi-definite due to the fundamental property
of Kronecker product. This is why we choose Ψ and Σ
to be positive semi-definite in our model; otherwise, the
covariance matrix is invalid. From Lemma 1, we can obtain
the result in Lemma 2 as follows:

Lemma 2. Let Ψ, Σ, K, µ0(Xs), µ1(Xs), and gs satisfy
the model in Eq. (10). Then,[
ys

obs
ys

mis

]∣∣∣Ψ,Σ,Xs,ws,gs∼N

([
µobs(X

s)
µmis(X

s)

]
,

[
Ks

obs Ks
om

(Ks
om)> Ks

mis

])
.

The mean functions µobs(X
s) and µmis(X

s) are:

µobs(X
s) = (1−ws)�m0 + ws �m1,

µmis(X
s) = ws �m0 + (1−ws)�m1,

where we denote m0 = ψ∗11(µ0(Xs) + gs
0) and m1 =

ψ∗21(µ0(Xs) + gs
0) + ψ∗22(µ1(Xs) + gs

1) with ψ∗ij is the
(i, j)–th element of Cholesky decomposition matrix of Ψ, 1
is a vector ones, and � is the element-wise product. The
covariance matrices Ks

obs, K
s
mis, and Ks

om are computed by
kernel functions:

kobs(xi,xj)=
[
(1− wi)(1− wj)ψ11+wiwjψ22

+(1− wi)wjψ12+wi(1− wj)ψ21

]
k(xi,xj)

+
[
(1− wi)σ11+wiσ22

]
1i=j ,

kmis(xi,xj)=
[
wiwjψ11+(1− wi)(1− wj)ψ22

+(1− wi)wjψ21+wi(1− wj)ψ12

]
k(xi,xj)

+
[
wiσ11+(1− wi)σ22

]
1i=j ,

kom(xi,xj)=
[
(1− wi)(1− wj)ψ21+wiwjψ12

+(1− wi)wjψ22+wi(1− wj)ψ11

]
k(xi,xj)

+
[
(1− wi)σ21+wiσ12

]
1i=j ,

where ψab and σab are the (a, b)–th elements of Ψ and Σ,
respectively.

The proof of Lemma 2 is in Appendix D. Lemma 2 has
two important roles in our work. First, we can obtain the
conditional likelihood to help infer the parameters and hy-
perparameters of our proposed model. Second, we can also
obtain the posterior of ys

mis to help us estimate ITE and ATE.

3.5.2 Federated Objective Function

The proposed model in Eq. (10) would lead to an ob-
jective function that can be decomposed into m compo-
nents, each associated with a data source. Since estimating
p(ys

mis

∣∣ys
obs,X

s,ws) exactly is intractable, we sidestep this
intractability via a variational approximation. To achieve
this, we maximize the following evidence lower bound
(ELBO) L:

log p(yobs |X,w) = log

∫
p(yobs,g,Ψ,Σ |X,w)dgdΨdΣ

≥
m∑
s=1

Ls =: L, (11)

where

Ls = Eq
[
log p(ys

obs|·)
]
− 1

m

( ∑
z∈{g,Ψ,Σ}

DKL[q(z)‖p(z)]
)
.

Herein, DKL[·] is the Kullback–Leibler divergence. Details
of the ELBO are presented in Appendix B. The conditional
likelihood p(ys

obs|·) is obtained from Lemma 2 by marginal-
izing out ys

mis, i.e.,

p(ys
obs|Xs,ws,Ψ,Σ,gs) = N(ys

obs;µobs(X
s),Ks

obs). (12)

The above conditional likelihood is free of σ21 and σ12,
which capture the correlation of two potential outcomes.
Thus the posteriors of these variables would coincide with
their priors, i.e., the correlation cannot be learned but set
as a prior. This is well-known as one of the potential out-
come cannot be observed [Imbens and Rubin, 2015]. In
Eq. (11), the ELBO L is derived from the of joint marginal
likelihood of all m sources, and it is factorized into m com-
ponents Ls, each component corresponds to a source. This
enables federated optimization of L. The first term of Ls

is expectation of the conditional likelihood with respect to
the variational posterior q(g,Ψ,Σ), thus this distribution is
learned from data of all the sources. In the following, we
present its factorization.

Variational posterior distributions. We use the typical
mean-field approximation to factorize among the varia-
tional posteriors q(Ψ,Σ,g) = q(Ψ) q(Σ) q(g). Let ỹs

obs(0),
ỹs

obs(1), x̃s, and w̃s (s = 1, 2,...,m) be the first four mo-
ments of the observed outcomes, covariates, and treatment
of the s–th source. Let X̃ = [x̃1,..., x̃m]>, ỹobs(0) =
[ỹ1

obs(0),..., ỹmobs(0)]>, ỹobs(1) = [ỹ1
obs(1),..., ỹmobs(1)]>,

and w̃ = [w̃1,..., w̃m]>. We parameterize

q(g) =
∏
j∈{0,1} N(gj ;hj(ỹobs(0), ỹobs(1), X̃, w̃),U),

where h0(·) and h1(·) are the mean functions, U is the co-
variance matrix computed with a kernel function κ(us, us

′
),

where us := [ỹs
obs(0), ỹs

obs(1), x̃s, w̃s].



Since Ψ and Σ are positive semi-definite matrices, we model
their variational posterior as Wishart distribution:

q(Ψ)=Wishart(Ψ;Vq, dq), q(Σ)=Wishart(Σ;Sq, nq),

where dq, nq are degrees of freedom, Vq,Sq are the scale
matrices. We set the form of these scale matrices as follows

Vq =

[
ν2

1 ρν1ν2

ρν1ν2 ν2
2

]
, Sq =

[
δ2
1 ηδ1δ2

ηδ1δ2 δ2
2

]
,

where νi, ρ, δi, η are parameters to be learned and ρ, η ∈
[0, 1].

Reparameterization. To maximize the ELBO, we approx-
imate the expectation in Ls with Monte Carlo integration,
which requires drawing samples of g, Ψ and Σ from their
variational distributions. This requires a reparameteriza-
tion to allow the gradients to pass through the random
variables g, Ψ and Σ. The reparameterization trick for g
are: gj = hj(ỹobs(0), ỹobs(1), X̃, w̃) + U

1
2 ξj , j ∈ {0, 1},

where ξj ∼ N(0, Im) and U
1
2 is the Cholesky decom-

position matrix of U. Since q(Ψ) is a Wishart distribu-
tion, we introduce the following procedure to draw Ψ:
Ψ = V

1
2
q ζ(V

1
2
q )>, ζ ∼ Wishart(I2, dq), where V

1
2
q is the

Choleskey decomposition matrix of Vq . Likewise, we also
apply this procedure to draw Σ.

Federated optimization algorithm. With the above model
and its objective function, we can compute gradients of
the learnable parameters separately in each source without
sharing data to a central server. We summarize our procedure
in Algorithm 1.

3.5.3 Predicting Causal Effects from Multiple Sources

To understand why data from all the sources can help predict
causal effects in a source s, we observe that

p(ys
mis

∣∣yobs,X,w) (13)

' Eq
[
p(ys

mis

∣∣ys
obs,X

s,ws,Ψ,Σ,g)
]

= p(ys
mis

∣∣ys
obs,X

s,ws︸ ︷︷ ︸
(i)

, Θ︸︷︷︸
(ii)

, ỹobs(0), ỹobs(1), X̃, w̃︸ ︷︷ ︸
(iii)

).

Eq. (13) is an approximation of the predictive distribution of
the missing outcomes ys

mis and it depends on the following
three components:

(i). The observed outcomes, covariates and treatment
assignments from the same source s.

(ii). The shared parameters Θ learned from data of all the
sources.

(iii). Sufficient statistics of the observed data from all the
sources.

The two last components (ii) and (iii) indicate that the pre-
dictive distribution in source s utilizes knowledge from

all the sources through Θ and the sufficient statistics
[ỹobs(0), ỹobs(1), X̃, w̃]. This explain why data from all of
the sources help predict missing outcomes in source s.

Algorithm 1: Federated causal inference
Parameters :Let Θ be set of parameters

1 begin
2 Initialize Θ and send to all source machines;
3 repeat
4 for source machine s ∈ {1, 2, . . . ,m} do
5 Compute∇ΘL

s and send to server;
6 In the central server, do the following steps:
7 begin
8 Collect gradients from all sources;
9 Compute∇ΘL =

∑m
s=1∇ΘL

s;
10 Update Θ←Θ + learning_rate×∇ΘL;
11 Broadcast the new Θ to all sources;
12 until stopping condition;

4 EXPERIMENTS

The baselines and experimental objectives. We first ex-
amine the performance of FedCI. We then compare the
performance of FedCI against recent causal inference meth-
ods, such as BART [Hill, 2011], TARNet, CFR Wass (CFR-
Net with Wasserstein distance), CFR MMD (CFRNet with
maximum mean discrepancy distance) [Shalit et al., 2017],
CEVAE [Louizos et al., 2017], OrthoRF [Oprescu et al.,
2019], X-learner [Künzel et al., 2019], and R-learner [Nie
and Wager, 2021]. All these methods do not consider learn-
ing causal effects in a federated setting. This analysis aims
to show the efficacy of FedCI as compared with the base-
lines trained in three different cases: (1) training a local
model on each source data, (2) training a global model with
the combined data of all sources, (3) using bootstrap ag-
gregating (also known as bagging, which is an ensemble
learning method) of Breiman [1996] wheremmodels are lo-
cally trained on each source data; then taking average of the
predicted treatment effects of each model. Although case (2)
violates the privacy constraint of federated data, we use it
for comparison purposes. In general, we would like to assess
the performance of the federated causal inference approach
against the baselines using combined data in case (2).

We use publicly available libraries and source codes to
implement the baseline methods. In particular, CEVAE,
TARNet, CFR Wass, and CFR MMD are readily avail-
able on github. We use the online packages BartPy for
BART, causalml [Chen et al., 2020b] for X-learner
and R-learner, and econml [Microsoft Research, 2019]
for OrthoRF. For all the methods, we fine-tune the learn-
ing rate in {10−1, 10−2, 10−3, 10−4} and regularizers in
{101, 100, 10−1, 10−2, 10−3}.
Evaluation metrics. We report two evaluation metrics: (i)
precision in estimation of heterogeneous effects (PEHE)
[Hill, 2011] for evaluating ITE, and (ii) absolute error for



evaluating ATE. Details are presented in Appendix E. These
metrics are for point estimates, which are the mean of ITE
and ATE in their estimated distributions. We also report the
estimated distribution of ATE in our model.

4.1 SYNTHETIC DATA

We analyses FedCI in terms of three types of outcomes: (1)
real-value, (2) binary, and (3) count. While (1) is examined
in a well-specified case for the outcomes, (2) and (3) are
studied in misspecified cases.

4.1.1 Real-value Outcomes

Data. Obtaining ground truth for evaluating causal inference
algorithm is challenging. Thus, most methods are evaluated
using synthetic or semi-synthetic datasets. In this experi-
ment, we simulate the data with the following distributions:

xij∼U[−1, 1], yi(0)∼N(λ(b0+x>i b1), σ2
0),

wi∼Bern(ϕ(a0+x>i a1)), yi(1)∼N(λ(c0+x>i c1), σ2
1),

where ϕ(·) is the sigmoid function, λ(·) is the softplus func-
tion, and xi = [xi1,..., xidx ]> ∈ Rdx with dx = 20. We
simulate two synthetic datasets: DATA-1 and DATA-2. For
DATA-1, the ground truth parameters are randomly set as
follows: σ0 = σ1 = 1, (a0, b0, c0) = (0.6, 0.9, 2.0), a1 ∼
N(0, 2 · Idx), b1 ∼ N(0, 2 · Idx), c1 ∼ N(1, 2 · Idx). For
DATA-2, we set (b0, c0) = (6, 30), b1 ∼ N(10 · 1, 2 · Idx),
c1 ∼ N(15 · 1, 2 · Idx), and the other parameters are set
similar to that of DATA-1. The purpose is to make two dif-
ferent scales of the outcomes for the two datasets. For each
dataset, we simulate 10 replications with n = 5000 records.
We only keep {(yi, wi,xi)}ni=1 as the observed data, where
yi = yi(0) if wi = 0 and yi = yi(1) if wi = 1. We di-
vide the data into five sources, each consists of ns = 1000
records. In each source, we use 50 records for training, 450
for testing and 400 for validation. We report the evaluation
metrics and their standard errors over the 10 replications.
The parameters chosen for this simulation study satisfy As-
sumption 1 since yi(0) and yi(1) are independent of wi
given xi. Assumption 2 is respected as the treatment on an
individual i does not effect the outcome of another individ-
ual j (i 6= j). Since we fixed the dimension of xi and draw
it from the same distribution, Assumption 3 is implicitly
satisfied. Assumption 4 holds true since each record drawn
from the above distributions is attributed to one individual.
This means that there are no duplicates of individuals in
more than one source. Assumption 5 is also satisfied since
we have divided the data equally from one dataset.

FedCI vs. training on combined data. Figure 1 reports
the three evaluation metrics of FedCI compared with two
data source settings: training on combined data and training
locally on each data source. As expected, the figures show
that the errors of FedCI are as low as those of training on
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Figure 1: Federated inference analysis on DATA-1.
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Figure 2: The impact of inter-dependency on DATA-1.

Table 1: Out-of-sample errors on DATA-1 where top-3 per-
formances are highlighted in bold (lower is better). The
dashes (—) in ‘loc’ and ‘agg’ indicate that the numbers are
the same as those of ‘com’.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 3 sources 5 sources 1 source 3 sources 5 sources

BARTloc — 6.04±.05 6.02±.04 — 0.59±.14 0.53±.10
X-Learnerloc — 5.81±.13 5.77±.09 — 0.44±.24 0.51±.13
R-Learnerloc — 5.94±.05 5.94±.03 — 0.65±.05 0.66±.02
OthoRFloc — 5.83±.12 6.23±.13 — 0.31±.08 0.52±.10
TARNetloc — 4.25±.07 4.22±.06 — 0.85±.04 0.81±.02
CFR Wassloc — 4.10±.04 3.92±.03 — 0.81±.02 0.80±.02
CFR MMDloc — 4.11±.06 3.93±.03 — 0.80±.03 0.79±.02
CEVAEloc — 3.82±.09 3.50±.06 — 0.63±.11 0.52±.03

BARTagg — 5.97±.05 5.94±.03 — 0.64±.14 0.47±.11
X-Learneragg — 5.18±.09 5.09±.05 — 0.46±.24 0.52±.13
R-Learneragg — 5.94±.05 5.93±.03 — 0.65±.05 0.66±.03
OthoRFagg — 4.19±.13 3.66±.08 — 0.36±.13 0.48±.12
TARNetagg — 4.02±.04 4.00±.05 — 0.79±.04 0.77±.02
CFR Wassagg — 3.92±.03 3.75±.03 — 0.78±.03 0.76±.02
CFR MMDagg — 4.01±.05 3.80±.02 — 0.78±.03 0.76±.02
CEVAEagg — 3.65±.10 2.99±.06 — 0.41±.05 0.37±.04

BARTcom 5.98±.06 5.97±.06 5.93±.03 0.83±.11 0.56±.16 0.38±.09
X-Learnercom 5.48±.15 4.60±.09 4.15±.04 0.93±.22 0.60±.11 0.30±.07
R-Learnercom 5.93±.06 5.73±.08 5.54±.06 0.78±.10 0.47±.09 0.30±.07
OthoRFcom 5.86±.40 3.60±.12 2.94±.05 0.55±.14 0.45±.14 0.34±.09
TARNetcom 3.93±.07 3.87±.05 3.80±.03 0.80±.04 0.77±.04 0.76±.02
CFR Wasscom 3.77±.05 3.73±.04 3.71±.02 0.80±.04 0.75±.04 0.75±.02
CFR MMDcom 3.90±.06 3.73±.04 3.70±.02 0.82±.05 0.75±.04 0.75± .02
CEVAEcom 3.79±.07 2.85±.06 2.72±.04 0.51±.13 0.23±.07 0.20±.06

FedCI 3.71±.10 2.35±.09 1.99±.05 0.69±.12 0.31±.12 0.29±.06

the combined data. This result verifies the efficacy of the
proposed federated algorithm.

Inter-dependency component analysis. We study the im-
pact of the inter-dependency component (see Section 3.4)



Table 2: Out-of-sample errors on DATA-2. Please see the
full table in Appendix F.1.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 3 sources 5 sources 1 source 3 sources 5 sources

BARTcom 18.0±0.4 17.7±0.2 17.4±0.1 3.54±1.3 2.94±0.8 1.84±0.5
X-Learnercom 21.1±0.9 17.9±0.4 16.2±0.2 4.55±1.4 3.29±1.0 2.37±0.8
R-Learnercom 25.9±0.6 23.5±0.5 21.3±0.4 19.0±0.8 15.6±0.7 12.3±0.6
OthoRFcom 37.8±2.7 10.7±0.5 9.83±0.5 7.88±2.2 1.99±0.4 2.36±0.6
TARNetcom 36.1±0.4 35.5±0.2 35.0±0.2 7.11±0.4 7.10±0.3 7.08±0.2
CFR Wasscom 35.1±0.4 34.5±0.2 34.1±0.2 7.10±0.4 7.01±0.3 6.90±0.2
CFR MMDcom 35.1±0.4 35.0±0.2 34.9±0.2 7.12±0.4 7.02±0.3 7.01±0.2
CEVAEcom 20.1±0.5 18.4±0.6 16.6±0.6 1.50±0.3 1.38±0.4 1.89±0.2

FedCI 9.28±0.4 6.34±0.2 5.53±0.1 2.37±0.5 1.47±0.4 0.74±.2

by removing it from the model. Figure 2 presents the er-
rors of FedCI compared with ‘no inter-dependency’ (FedCI
without inter-dependency). The figures show that the errors
in predicting ITE and ATE of ‘no inter-dependency’ seem
to be higher than those of FedCI. This result showcases the
importance of our proposed inter-dependency component.

In Figure 1, the error εATE of FedCI increases as the number
of sources increases from 1 to 2. In Figure 2, εATE of FedCI
is larger than that of without inter-dependency. These results
might be due to the non-convex optimisation which could
lead to a local minima. A potential direction to improve is to
use a minibatch stochastic gradient descent for GPs [Chen
et al., 2020a].

Contrasting with existing baselines. In this experiment,
we compare FedCI with the existing causal inference meth-
ods. All these baseline methods do not consider estimating
causal effects on multiple sources. Thus, we train them
in three cases as explained earlier: (1) train locally (loc),
(2) train with combined data (com), and (3) train with
bootstrap aggregating (agg). Note that case (2) violates
constraint that data are stored at their local sites. We ex-
pect that the error of FedCI to be close to case (2) of
the baselines. Table 1 and 2 report the performance of
each method in estimating ATE and ITE. Regardless of
different scales on the two synthetic datasets, the figure
shows that FedCI achieves competitive results as compared
with all the baselines. FedCI is in the top-3 performances
among all the methods. Importantly, FedCI obtains lower
errors than those of BARTcom, X-Learnercom, R-Learnercom,
OthoRFcom, TARNetcom, CFR Wasscom, and CFR MMDcom,
which were trained on combined data and thus violate con-
straint of federated data setting. Compared with CEVAEcom,
FedCI is better than this method in predicting ITE and com-
parable with this method in predicting ATE (slightly higher
errors). However, we emphasize again that this result is ex-
pected since FedCI is a federated learning algorithm while
CEVAEcom works directly on combined data.

The estimated distribution of ATE. To analyse uncertainty,
we present in Figure 3 the estimated distribution of ATE
in the first source (s = 1). The figures show that the true
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Figure 3: Estimated distribution of ATE on source #1 of
DATA-2. The dotted black lines represent the true ATE.

ATE is covered by the estimated interval and the estimated
mean ATE shifts towards its true value (dotted lines) when
more data sources are used. This result might provide useful
information about the application in practice.

4.1.2 Misspecification Analysis: Binary and Count
Outcomes

Data. In this experiment, we analyse the performance when
the model is misspecified. We compare FedCI with the
baselines in two cases: binary outcomes and count outcomes.
We reuse the ground truth distributions of xij and wi as in
Section 4.1.1. For the outcomes, we simulate them with the
following distributions:

Binary outcomes: yi(0) ∼ Bern(ϕ(b0+x>i b1)),

yi(1) ∼ Bern(ϕ(c0+x>i c1)).

Count outcomes: yi(0) ∼ Poisson(exp(b0+x>i b1)),

yi(1) ∼ Poisson(exp(c0+x>i c1)).

Results and discussion. From Table 3 and 4, FedCI gives
competitive results compared with the baselines trained on
combined data. The reason for the good performance for
FedCI and some baselines in these misspecification cases
is because they provide good estimates for the mean of the
missing outcomes. This might in turn be due to the mean
estimation of Gaussian distribution in FedCI coincides with
the mean estimation of the other distributions. Nevertheless,
since these are misspecified cases, the continuous posterior
distribution is not a good estimation. To obtain better pos-
terior distributions of the missing outcomes and the causal
estimands, we would need to consider some other appropri-
ate distributions in our model.

4.2 IHDP DATA

Data. The Infant Health and Development Program (IHDP)
[Hill, 2011] is a dataset with 747 data points, each has
25 covariates. These data are obtained from a randomized
study on the impact of specialist visits to children’s cognitive



Table 3: Out-of-sample errors on binary outcomes data.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 3 sources 5 sources 1 source 3 sources 5 sources

BARTcom 0.77±.01 0.73±.01 0.70±.01 0.41±.01 0.31±.01 0.24±.01
X-Learnercom 0.69±.01 0.60±.01 0.56±.01 0.13±.03 0.10±.02 0.09±.01
R-Learnercom 0.65±.01 0.64±.01 0.62±.01 0.05±.01 0.03±.01 0.03±.01
OthoRFcom 0.94±.04 0.60±.01 0.56±.01 0.17±.03 0.18±.03 0.16±.03
TARNetcom 0.68±.02 0.68±.02 0.65±.01 0.33±.01 0.33±.01 0.32±.01
CFR Wasscom 0.61±.02 0.50±.01 0.50±.01 0.32±.01 0.30±.01 0.30±.01
CFR MMDcom 0.55±.01 0.50±.01 0.50±.01 0.32±.01 0.30±.01 0.30±.01
CEVAEcom 0.39±.01 0.37±.01 0.37±.01 0.08±.02 0.05±.01 0.05±.01

FedCI 0.41±.01 0.40±.01 0.39±.01 0.05±.01 0.04±.01 0.03±.01

Table 4: Out-of-sample errors on count outcomes data.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 3 sources 5 sources 1 source 3 sources 5 sources

BARTcom 6.30±.06 6.29±.04 6.26±.03 0.75±.14 0.59±.18 0.47±.13
X-Learnercom 6.10±.10 5.16±.06 4.72±.03 1.34±.29 0.63±.12 0.42±.08
R-Learnercom 6.27±.06 6.09±.05 5.89±.04 0.82±.13 0.66±.15 0.56±.10
OthoRFcom 6.02±.29 4.15±.06 3.74±.05 0.75±.18 0.54±.17 0.41±.10
TARNetcom 4.54±.14 3.98±.05 3.80±.02 0.77±.10 0.66±.02 0.62±.03
CFR Wasscom 4.08±.04 4.03±.03 3.78±.02 0.72±.04 0.51±.03 0.50±.03
CFR MMDcom 4.15±.06 4.05±.04 3.77±.02 0.69±.07 0.54±.03 0.50±.03
CEVAEcom 3.40±.09 3.31±.07 3.08±.05 0.56±.16 0.40±.12 0.35±.08

FedCI 4.02±.10 3.05±.08 2.66±.04 0.54±.09 0.48±.08 0.25±.05

development. Herein, specialist visit is the treatment and
children’s cognitive development is the outcome. We use
the NPCI package [Dorie, 2016] to simulate two potential
outcomes for the treatment (with or without specialist visit)
of each child. Hence, the true individual treatment effect can
be computed for evaluation purposes. There are 10 replicates
of the dataset, and each of them is divided into three sources
of size 249. For each source, we then split it into three equal
sets for the purpose of training, testing, and validating the
models. The mean and standard error of the aforementioned
evaluation metrics are reported over the above 10 replicates
of the data.

Results and discussion. Similar to the experiment for syn-
thetic datasets, here we also train the baselines in three
cases as explained earlier. We also expect that the errors of
FedCI to be close to the baselines trained with combined
data (com). The results reported in Table 5 show that FedCI
achieves competitive results compared to the baselines (we
skipped the first and second cases (loc and agg), please
see Appendix F.2 for the full table). Indeed, FedCI is in
the top-3 performances among all the methods. This result
again verifies that FedCI can be used to estimate causal
effects effectively under privacy-perserving, federated data
settings. The estimated distribution of ATE is presented in
Appendix F.2 due to limited space.

5 CONCLUSION

We have introduced FedCI, a Bayesian causal inference
paradigm via a reformulation of multi-output GPs to learn

Table 5: Out-of-sample errors on IHDP dataset. Please see
the full table in Appendix F.2.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 2 sources 3 sources 1 source 2 sources 3 sources

BARTcom 5.98±2.7 4.32±2.1 4.04±2.0 1.80±1.1 2.09±1.1 1.21±0.6
X-Learnercom 4.22±1.6 4.15±1.5 4.06±1.8 1.64±0.7 1.93±0.8 0.84±0.4
R-Learnercom 6.97±2.1 4.43±1.4 4.47±1.7 3.15±0.5 1.34±0.5 1.10±0.3
OthoRFcom 4.49±1.9 3.81±1.3 3.75±1.5 1.86±0.8 1.61±0.6 1.56±0.8
TARNetcom 4.50±1.4 3.15±0.8 3.79±1.1 1.52±0.5 1.18±0.4 0.91±0.3
CFR Wasscom 4.37±1.2 2.93±0.6 2.85±0.9 1.18±0.7 0.72±0.2 0.67±0.1
CFR MMDcom 4.43±1.3 2.85±0.6 2.83±1.1 2.32±0.8 0.63±0.2 0.54±0.2
CEVAEcom 3.16±0.6 2.34±0.6 2.31±0.7 2.02±0.4 0.53±0.1 0.48±0.2

FedCI 2.88±0.8 2.36±0.5 2.35±0.6 1.43±0.7 1.03±0.4 0.51±0.2

causal effects, while keeping data at their local sites. An
inference method involving the decomposition of ELBO is
presented, allowing the model to be trained in a federated
setting.

This work is an important step towards a privacy-preserving
causal learning model. One interesting future research di-
rection is to combine FedCI with differential privacy to
give a stronger privacy guarantee. This new direction would
require adding an appropriate noise component, such as
Laplace noise, to the parameters while training the model.
Our future research would also involve further exploration
on combining FedCI with differential privacy for Gaussian
processes [Smith et al., 2018] and multiparty differential pri-
vacy algorithms [Pathak et al., 2010, Rajkumar and Agarwal,
2012, Hamm et al., 2016].

The inherent use of GPs in our approach would incur com-
putational time of inverse covariance matrix in each source
of cubic time complexity. Another possible future research
direction is to reformulate this in terms of sparse Gaussian
process models [Hensman et al., 2013, Hoang et al., 2017,
2020].
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