
A Tree-Structured Multi-Task Model Recommender

Lijun Zhang1 Xiao Liu1 Hui Guan1

1College of Information and Computer Sciences, University of Massachusetts Amherst

Abstract Tree-structured multi-task architectures have been employed to jointly tackle multiple vision
tasks in the context of multi-task learning (MTL). The major challenge is to determine where
to branch out for each task given a backbone model to optimize for both task accuracy
and computation efficiency. To address the challenge, this paper proposes a recommender
that, given a set of tasks and a convolutional neural network-based backbone model, auto-
matically suggests tree-structured multi-task architectures that could achieve a high task
performance while meeting a user-specified computation budget without performing model
training. Extensive evaluations on popular MTL benchmarks show that the recommended
architectures could achieve competitive task accuracy and computation efficiency compared
with state-of-the-art MTL methods. Our tree-structured multi-task model recommender is
open-sourced and available at https://github.com/zhanglijun95/TreeMTL.

1 Introduction

Multi-task learning (MTL) aims to solve multiple tasks simultaneously. Compared to independently
learning tasks, it is an effective approach to improve task performance while reducing computation
and storage costs. However, over-sharing information between tasks can cause task interference
(Sener and Koltun, 2018; Maninis et al., 2019) and accuracy degradation. The major challenge in
designing a multi-task architecture is thus to identify an intermediate state between over-shared
and independent architectures (i.e., a partially-shared architecture), which not only preserves the
benefits of lower computation cost and memory overhead, but also avoid task interference as much
as possible to guarantee acceptable task accuracy. Such a partially-shared architecture is also called
a tree-structured multi-task architecture. Its shallow network layers are shared across tasks like tree
roots, whereas deeper ones gradually grow more task-specific like tree branches (Vandenhende
et al., 2019). Identifying the best tree-structured multi-task architecture needs to determine where
to branch out for each task to optimize for both computation efficiency and task accuracy.

Previous works opted for the simplest strategy of sharing the initial layers of a backbone model,
after which all tasks branch out simultaneously (Ruder, 2017; Nekrasov et al., 2019; Suteu and Guo,
2019; Leang et al., 2020). Since the point at which the branching occurs is determined manually,
they call for domain expertise when tackling different tasks and usually result in unsatisfactory
solutions due to the enormous architecture design space. To automate architecture design, one line
of work deduced the layer sharing possibility based on measurable task relatedness (Lu et al., 2017;
Vandenhende et al., 2019; Standley et al., 2020) and minimized the total task dissimilarity when
designing multi-task architectures. However, they ignore task interactions that could bring the
potential generalization improvement and positive inhibition of overfitting when multiple tasks are
trained together (Ruder, 2017; Vandenhende et al., 2020). Another line of work attempted to learn
how to branch a network such that the overall multi-task loss is minimized via differentiable neural
architecture search (Bruggemann et al., 2020; Guo et al., 2020). Such end-to-end frameworks inte-
grated the architecture search with the network training process, which easily leads to sub-optimal
multi-task architectures (Choromanska et al., 2015; Sun et al., 2020) due to training difficulties.
Besides, the learned multi-task architectures cannot guarantee to meet a user-defined computation
budget since these methods are like a black box where users cannot control the exploring process.

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:lijunzhang@cs.umass.edu
mailto:xiaoliu1990@cs.umass.edu
mailto:huiguan@cs.umass.edu
https://github.com/zhanglijun95/TreeMTL
https://creativecommons.org/licenses/by/4.0/

In this paper, we overcome the aforementioned limitations and propose a tree-structured multi-
task model recommender. It takes as inputs an arbitrary convolutional neural network (CNN)
backbone model and a set of tasks in interest, and then predicts the top-𝑘 tree-structured multi-task
architectures that achieve high task accuracy while meeting a user-specified computation budget.
Our basic idea is to build a task accuracy estimator that can predict the task accuracy of each
multi-task model architecture in the design space without performing model training. The task
accuracy estimator captures task interactions by leveraging the task performance of well-trained
two-task architectures instead and enables ranking of all multi-task architectures with more than
two tasks using their predicted task accuracy. The recommender can then enumerate the design space
and identify the multi-task models with the highest predicted task accuracy. Unlike differentiable
neural architecture search-based approaches, the recommender is a white-box that allows users to
easily control the computation complexity of the multi-task architectures. The basic idea poses
three major research questions:

• RQ 1: how to build an accurate task accuracy estimator that enables a faithful ranking of the
multi-task architectures in the design space based on their estimated task performance?

• RQ 2: how to represent multi-task model architectures such that a recommender can completely
enumerate the design space for estimating their performance?

• RQ 3: how to automatically support various CNN backbone models?

To answer RQ 1, our task accuracy estimator predicts the task accuracy of a multi-task ar-
chitecture by averaging the task accuracy of associated well-trained two-task architectures. A
ranking score of the multi-task architecture is calculated as the weighted sum of the tasks’ accuracy,
where the weight of each task is determined by quantified accuracy variance to ensure faithful
ranking. To answer RQ 2, we propose a novel data structure called Layout to represent a multi-task
architecture and an operation called Layout Cut to derive multi-task architectures. We further
propose a cut-based recursive algorithm that is proved to be able to enumerate the design space
completely. To answer RQ 3, we design a branching point detector to automatically separate a CNN
backbone model into a sequence of computation blocks where each block corresponds to a possible
branching point.1 The detector saves manual efforts in applying the recommender to an arbitrary
CNN architecture.

Experiments on popular MTL benchmarks, NYUv2 (Silberman et al., 2012) and Tiny-Taskonomy
(Zamir et al., 2018), using different backbone models, Deeplab-ResNet34 (Chen et al., 2017) and
MobileNetV2 (Sandler et al., 2018), demonstrate that the recommended tree-structured multi-task
architectures achieve competitive task accuracy compared with state-of-the-art MTL methods
under specified computation budgets. Our empirical evaluation also demonstrates that ranking of
the multi-task architectures using estimated task accuracy without training has a high correlation
(Pearson’s 𝛾 is 0.5 ∼ 0.85) with the oracle ranking after training for different CNN architectures.

2 Related Works

Multi-task learning (MTL) is commonly categorized into either hard or soft parameter sharing
(Ruder, 2017; Vandenhende et al., 2020). In hard parameter sharing, a set of parameters in the
backbone model are shared among tasks. In soft parameter sharing (Misra et al., 2016; Ruder et al.,
2019; Gao et al., 2019), each task has its own set of parameters. Task information is shared by
applying regularization on parameters during training, such as enforcing the weights of the model
for each task to be similar. In this paper, we focus on hard parameter sharing as it produces memory-
and computation-efficient multi-task models.

1A branching point usually corresponds to a micro-architecture such as a residual block in ResNet50, following prior
works (Vandenhende et al., 2019; Guo et al., 2020; Bruggemann et al., 2020).

2

…

Branching Point Detector

A backbone model

Model with

branching points

Design Space Enumerator

Multi-task model

candidates

Task Accuracy Estimator

3 Tasks

Performance table

Model Accuracy ↓ Flops

#23 87.98 > C

#5 87.12 < C

#48 86.76 < C

#3 86.68 > C

… … …

Computational Budget C

Available

Figure 1: Tree-structured multi-task model recommender workflow.

Early works on multi-task architecture design rely on domain expertise to decide which layers
should be shared across tasks and which ones should be task-specific (Long et al., 2017; Nekrasov
et al., 2019; Suteu and Guo, 2019; Leang et al., 2020). Due to the enormous design space, such
approaches are difficult to find an optimal solution.

In recent years, researchers attempt to automate the procedure of designing multi-task architec-
tures. Deep Elastic Network (DEN) (Ahn et al., 2019) uses reinforcement learning (RL) to determine
whether each filter in convolutional layers can be shared across tasks. Similarly, AdaShare (Sun
et al., 2019) and AutoMTL (Zhang et al., 2021) learn task-specific policies that select which lay-
ers to execute for a given task. Some other works (Gao et al., 2020; Wu et al., 2021) adopt NAS
techniques to explore feature fusion opportunities across tasks. Their primary goal is to improve
task accuracy instead of computation efficiency by minimizing the overall multi-task loss. Thus
there is no guarantee that the searched multi-task model architectures will meet the computation
budget. Also, their architecture search procedure requires substantial search time and is usually
hard to converge since the sharing strategy and network parameters generally prefer the alternating
training principle to stabilize the training process (Xie et al., 2018; Sun et al., 2019; Wu et al., 2019).

Our work pays more attention to balancing task accuracy and computation efficiency through
recommending branching structures for multi-task models. There also exist several interesting
methods under this direction. FAFS (Lu et al., 2017) starts from a thin network where tasks initially
share all layers and dynamically grows the model in a greedy layer-by-layer fashion depending on
task similarities. It computes task similarity based on the likelihood of input samples having the same
difficulty level. What-to-Share (Vandenhende et al., 2019) measures the task affinity by analyzing the
representation similarity between independent models for each task. It recommends the multi-task
architecture with the minimum total task dissimilarity. However, because the task dissimilarity
between two tasks is always non-negative, the theoretical optimal multi-task architecture would
be always independent models whose total task dissimilarity is zero. In contrast to pre-computing
the task relatedness, BMTAS (Bruggemann et al., 2020) and Learn-to-Branch (Guo et al., 2020)
utilize differentiable neural architecture search to construct end-to-end trainable frameworks that
integrate the architecture exploration with the network training process. These learning-based
methods easily lead to the suboptimal multi-task model (Choromanska et al., 2015; Sun et al., 2020)
due to difficulties in training and cannot guarantee the resulting multi-task architecture to obey a
user-defined computation budget.

3 Proposed Approach
Given a backbone model with 𝐵 branching point and a set of 𝑇 tasks, our goal is to build a
recommender that, when deployed, predicts 𝑘 tree-structured multi-task architectures that achieve
a high task accuracy while meeting a user-specified computation budget 𝐶 . Figure 1 illustrates

3

1, 2 31,

1, 2, 3

1

1

 2

1,1,1,1,

11

1

1,1,

2

 21,1,1,1,1,1,1,1,1,

2

22 3

1, 2 33 2

, 2, 3 2, , 3

1, 21, 2

, , ,

33

3

1, 2 3 2

1, 2, 3 2

(a) A multi-task model for three tasks.

1 3

1, 3

1

1

1, 3

1

1,1,1,1,

1 3

33

 3 31,1,1,

33

3

1, 31, 3

1, 31, 3

1

2 3

2, 3

2

2

2, 3

2

2,2,2,2,

2 3

33

 3 32,2,2,2,

33

3

2, 32, 3

2, 32, 3

2

1, 21, 2

1, 2

1

1

1 2

1,1,1,

1

1 2

 2 21,1,1,

2

2

1 21 2

1, 21 2

1, 21, 2

,1, 2

(b) Associated two-task models.
Figure 2: Amulti-task architecture and the related two-task architectures. The average of task accuracy

in (b) is a good indicator of the task accuracy in (a).

the offline building process and the online usage of the recommender. During the offline building
process, users provide an arbitrary CNN-based backbone model and a set of tasks. A branching point
detector will automatically identify the sequential computational blocks in the backbone model,
each of the blocks corresponding to a viable branching point. A task accuracy estimator is then built
based on the given set of tasks and the identified branching points to predict the performance of all
the tree-structured multi-task architectures in the design space, which are explored using a design
space enumerator. The performance of these multi-task architectures including their other attributes
such as model size, FLOPs etc. could be stored in a performance table to facilitate online queries.
When deployed, the recommender takes a user-specified computation budget 𝐶 as input, and
suggests multi-task architectures by looking up the performance table on the fly. We next elaborate
the three major components, task accuracy estimator, design space enumerator, and branching point
detector in detail.

3.1 Task Accuracy Estimator

Task accuracy estimator predicts the task accuracy of a tree-structured multi-task architecture
without performing actual model training. The problem is challenging because predicting a
single-task architecture’s accuracy is already non-trivial and multi-task architectures introduce
more complexities due to task interactions and interference. Task accuracy estimator addresses the
problem by leveragingwell-trained two-task architectures to quantify task accuracy and interactions
and predict the performance of a multi-task architecture. Specifically, for any tree-structured multi-
task architecture, the estimator predicts its task accuracy by averaging the task accuracy of all the
associated two-task architectures. A two-task architecture is considered associated if it meets both
conditions: (1) the two tasks are a subset of the tasks in the multi-task architecture; (2) the two
tasks have the identical branching point as in the multi-task architecture.

Figure 2 illustrate the basic idea. Figure 2(a) shows a multi-task architecture constructed from
a backbone model with five branching points for three tasks and Figure 2(b) shows the three
associated two-task architectures. The numbers inside each block indicate among which tasks the
block is shared. Tasks 1 and 2 branch out after the third block, which is the same branching point
as the first two-task architecture in Figure 2(b). Similarly, tasks 1 and 3 branch out after the second
block, which is the same branching point as the second two-task architecture in Figure 2(b). We
estimate task 1 accuracy of the multi-task architecture by averaging task 1 accuracy of the first and
second two-task architectures, task 2 accuracy from those of the first and third two-task models,
and task 3 accuracy from those of the second and third two-task models.

The ultimate goal of the task accuracy estimator is to enable ranking of multi-task architectures
based on their estimated task accuracy. Due to the noise in training two-task architectures (Pham
et al., 2020), an estimated task accuracy of a multi-task architecture could suffer from some accuracy
variance and lead to an inaccurate ranking. A ranking score is thus calculated as the weighted sum
of the tasks’ performance. Tasks with higher accuracy variance have lower task weight.

To quantify accuracy variance and task weight, we adopt the Singular Value Decomposition
Entropy (SVDE) (Li et al., 2008; Jelinek et al., 2019) to measure the regularity of each task 𝑡𝑖 ’s
performance in its 𝐵 + 1 two-task architectures with another task 𝑡 𝑗 . SVDE has two important
features that make it suitable for regularity measurement. (1) SVDE is scale-invariant — that is,

4

it characterizes the accuracy trend rather than the absolute values of the accuracy sequence. (2)
SVDE is order-aware since it is designed for data sequences, not just for a set of data. The order
of data items affects data regularity, which is captured by SVDE. SVDE reflects the number of
orthogonal vectors contributed to a task performance sequence (Δ𝑡 (0)

𝑖
, . . . ,Δ𝑡 (𝐵)

𝑖
|𝑡𝑖 , 𝑡 𝑗), where Δ𝑡 (𝑏)𝑖

is 𝑡𝑖 ’s performance in a two-task model that branches at 𝑏-th point. Higher entropy indicates lower
regularity and thus higher variance. The task weight of 𝑡𝑖 is the average of the negative entropy
over all possible two task combinations (𝑡𝑖 , 𝑡 𝑗),∀𝑗 ≠ 𝑖:

𝑤𝑖 =
1

𝑇 − 1

∑︁
𝑗 ∈T , 𝑗≠𝑖

−𝑆𝑉𝐷𝐸 (Δ𝑡 (0)
𝑖

, . . . ,Δ𝑡 (𝐵)
𝑖

|𝑡𝑖 , 𝑡 𝑗), (1)

where T is the set of tasks and 𝑇 = |T | is the number of tasks. The final ranking score of a
multi-task architecture is:

𝑆 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ([𝑤1, . . . ,𝑤𝑇])𝑇 [Δ𝑡1, . . . ,Δ𝑡𝑇], (2)

where 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ([𝑤1, . . . ,𝑤𝑇]) is the normalized task weights so that their sum is equal to one.
Estimating the accuracy of a multi-task architecture requires training of its associated two-task

architectures. Given 𝑇 number of tasks and 𝐵 number of branching points, the total number of
two-task architectures to train is 𝐶2

𝑇
· (𝐵 + 1), where 𝐶2

𝑇
is the number of two task combinations.

The training overhead of the two-task architectures is much less than training all the multi-task
architectures whose number is𝑂 ([(2𝑇−1 − 1) · 𝐵]𝑇−1). Our experiments in Section 4.3 demonstrate
that the ranking of multi-task architectures using estimated task accuracy without training has a
high correlation (Pearson’s 𝛾 is 0.5 ∼ 0.85) with the oracle ranking from training for different CNN
architectures.

3.2 Design Space Enumerator

Design space enumerator formalizes the representation of tree-structured multi-task architectures
so that the recommender can completely enumerate the design space. It introduces a data structure
called Layout and an operator called Layout Cut to derive multi-task architectures. Based on the two
core concepts, we propose a cut-based recursive algorithm to enumerate all possible architectures.

Definition 3.1 (Layout). A layout is a symbolized representation of a tree-structured multi-task
architecture. Formally, for 𝑇 tasks and a backbone model with 𝐵 branching points, a layout L =

[𝐿1, 𝐿2, · · · , 𝐿𝐵], where 𝐿𝑖 is a list of task sets at the 𝑖-th branching point. Task sets in 𝐿𝑖 = [𝐿1𝑖 , 𝐿2𝑖 , · · ·]
are subsets of tasks T and satisfy two conditions: (1) 𝐿1𝑖 ∪𝐿2𝑖 ∪· · · = T , and (2) 𝐿𝑝

𝑖
∩𝐿𝑞

𝑖
= ∅,∀𝐿 {𝑝,𝑞 }

𝑖
∈ 𝐿𝑖 .

A task set 𝐿𝑝
𝑖
means the set of tasks in 𝐿

𝑝

𝑖
sharing the 𝑖-th block. Figure 2 illustrates the

layouts of a multi-task architecture and three two-task architectures. We define the initial layout as
L0 = [[T], · · · , [T]︸ ︷︷ ︸

𝐵

] = [[{𝑡1, . . . , 𝑡𝑇 }], · · · , [{𝑡1, . . . , 𝑡𝑇 }]︸ ︷︷ ︸
𝐵

], which means all the tasks share all the

blocks in the multi-task model.

Definition 3.2 (Layout Cut). A layout cut is an operator that transforms one layout to another layout
by selecting an available task set and dividing it into two task sets.

Based on Definition 3.2, we propose a cut-based algorithm to enumerate all possible layouts,
namely tree-structured multi-task architectures. The main idea is to recursively apply layout cuts
on the initial layout L0 and all the generated layouts until no new layout is generated.

Theorem 3.1. The cut-based layout enumeration algorithm could explore the design space of tree-
structured multi-task models completely.

5

3.3 Branching Point Detector

Branching point detector allows the recommender to support an arbitrary CNN backbone model
without manual reimplementation. Its design is motivated by the observation that common CNN
backbone models are a sequence of computation blocks, such as residual blocks in ResNet50 (He
et al., 2016) and bottleneck blocks in MobileNetV2 (Sandler et al., 2018). These computation blocks
are typically treated as branching points in MTL (Vandenhende et al., 2019; Bruggemann et al.,
2020) and satisfy two requirements. (1) They contain trainable parameters so that whether they are
shared across tasks is likely to make a difference in task accuracy. (2) They are connected to each
other sequentially–that is, there is no link across non-sequential blocks. The two requirements
inspire us to design a two-stage branching point detector.

The first stage is to identify groups of operators called candidate blocks in a given backbone
model. Each candidate block is a subgraph in the computation graph of the backbone model that
takes only one input tensor and produces only one output tensor. The branching point detector
leverages the Cut Theorem2 in the Graph Theory to partition the original computation graph of
the backbone model into candidate blocks. A subgraph can be divided into two subgraphs if the
size of the minimum cut is one; otherwise, the subgraph can be no longer partitioned and is a
candidate block. Because a candidate block could contain operators that have no parameters at all,
the second stage is to merge candidate blocks that contain only unparameterized layers (e.g., ReLU,
Pooling) and normalization layers (e.g., Batch Normalization) with adjacent candidate blocks (e.g.,
Convolution Layer) to generate final computation blocks (e.g., ConvBNReLU). Each computation
block corresponds to a viable branching point.

The proposed branching point detector enables the recommender to automatically parse the
backbone model and produce two-task architectures and multi-task architectures based on a layout.
It saves manual efforts in generalizing multi-task architecture search across different backbone
models. We also allow users to flexibly add or remove branching points to adjust the architecture
search space.

4 Experiments
4.1 Experiment Settings

Datasets and Tasks. Our experiments are conducted on two popular datasets in multi-task learning,
NYUv2 (Silberman et al., 2012) and Tiny-Taskonomy (Zamir et al., 2018). The NYUv2 dataset
consists of RGB-D indoor scene images and three tasks, 13-class semantic segmentation, depth
estimation, and surface normal prediction. Tiny-Taskonomy contains indoor images and five tasks:
semantic segmentation, surface normal prediction, depth estimation, keypoint detection, and edge
detection. The data splits follow prior works (Sun et al., 2019; Zhang et al., 2021).
Loss Functions and Evaluation Metrics. In NYUv2, Semantic segmentation uses a pixel-wise
cross-entropy loss for each predicted class label, and is evaluated using mean Intersection over
Union and Pixel Accuracy (mIoU and Pixel Acc, the higher the better). Surface normal prediction
uses the inverse of cosine similarity between the normalized prediction and ground truth, and is
evaluated using mean and median angle distances between the prediction and the ground truth
(the lower the better), and the percentage of pixels whose prediction is within the angles of 11.25°,
22.5° and 30° to the ground truth (Eigen and Fergus, 2015) (the higher the better). Depth estimation
uses the L1 loss, and the absolute and relative errors between the prediction and the ground truth
are computed (the lower the better). In Taskonomy, all the tasks are trained using the same loss as
in NYUv2 and directly evaluated by the task-specific loss. Since tasks have multiple evaluation
metrics and their value can also be at different scales, we compute a single relative performance
metric following (Maninis et al., 2019; Sun et al., 2019). The overall performance is the average of

2https://en.wikipedia.org/wiki/Minimum_cut

6

https://en.wikipedia.org/wiki/Minimum_cut

Table 1: Performance of top-5 recommended architectures on NYUv2 using Deeplab-ResNet34.

Model FLOPs
(%) ↓

#Params
(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation
Δ𝑡 ↑mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑ Error ↓ 𝜃 , within ↑
Δ𝑡2 ↑ Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 26.50 58.20 - 17.70 16.30 29.40 72.30 87.30 - 0.62 0.24 57.80 85.80 96.00 - -
#0 -66.67 -66.66 25.23 57.69 -2.8 17.14 15.15 35.85 72.20 85.54 6.0 0.55 0.23 63.85 89.38 97.03 5.8 3.0
#45 -36.56 -35.45 25.18 57.36 -3.2 17.26 14.93 36.33 72.27 85.16 6.4 0.58 0.22 62.70 88.79 96.93 5.5 2.9
#50 -46.87 -46.13 24.72 56.71 -4.6 17.24 15.13 32.17 72.66 85.75 3.6 0.56 0.23 63.87 88.72 96.81 5.6 1.5
#37 -34.87 -33.70 26.30 57.94 -0.6 17.24 15.16 35.78 71.90 85.43 5.7 0.61 0.22 60.09 87.18 96.31 2.6 2.6
#49 -46.87 -46.13 25.56 57.62 -2.3 17.77 15.70 33.18 70.99 84.64 2.3 0.55 0.22 64.62 89.78 97.55 7.8 2.6

the relative performance over all tasks, namely Δ𝑡 = 1
𝑇

∑
𝑖=1 Δ𝑡𝑖 . The units for relative performance

Δ𝑡𝑖 and Δ𝑡 are percentage (%).
Baselines for Comparison. Our baselines include both tree-structured MTL methods and general
MTL approaches. For state-of-the-art tree-structured MTL methods, we compare withWhat-to-
Share3 (Vandenhende et al., 2019), BMTAS4 (Bruggemann et al., 2020), Learn-to-Branch5 (Guo
et al., 2020), Task-Grouping5 (Standley et al., 2020). For general MTL approaches, we compare with
following baselines: the Single-Task baseline where each task has its own model and is trained
independently, popular MTL methods (e.g., Cross-Stitch (Misra et al., 2016), Sluice (Ruder et al.,
2019), NDDR-CNN (Gao et al., 2019),MTAN (Liu et al., 2019)), and state-of-the-art NAS-based MTL
methods (e.g. DEN (Ahn et al., 2019), AdaShare (Sun et al., 2019), AutoMTL (Zhang et al., 2021)).

We use the same backbone model in all baselines and in our approach for fair comparisons. We
use Deeplab-ResNet34 (Chen et al., 2017) and MobileNetV2 (Sandler et al., 2018) as the backbone
model and the Atrous Spatial Pyramid Pooling (ASPP) architecture as the task-specific head. Both
of them are popular architectures for pixel-wise prediction tasks. The branching points of Deeplab-
ResNet34 are generated by our branching point detector and then further customized to be five
according to He et al. (2016) to reduce search space, each computation block corresponding to one
ConvBNReLU block or one Residual Block. Similarly, MobileNetV2 is split into separate Inverted
Blocks firstly and then its branching points are defined by merging adjacent blocks into five larger
ones with similar computation cost measured by FLOPs.

4.2 Performance of Recommended Tree-Structured Multi-Task Models

Table 1∼2 report the real task performance of the recommended tree-structured multi-task models
after training using Deeplab-ResNet34. It reports both absolute values of all evaluation metrics and
the relative performance. The first column “Model” lists the index of the recommended models.
Overall, the recommendation of our framework is consistent with the common belief that MTL can
achieve higher task accuracy and improved efficiency for each task by leveraging commonalities
across related tasks (Caruana, 1997; Ruder, 2017).

The superiority of our recommender can be observed more clearly in Table 2. With different
computation budgets (specified by the number of backbone models in column “Com. Budget”),
our recommender could always recommend multi-task architectures with high task performance
within the computation constraint. Unlike prior works (Sun et al., 2019; Bruggemann et al., 2020),
which have to re-train the whole architecture searching framework when the computational
requirement changes, there is no extra effort for our framework to re-predict the top architectures.
The recommender can suggest top architectures on the fly by filtering out architectures that do not
satisfy the given requirement.

3We implemented the algorithm ourselves since the work is not open-sourced.
4It has implementation on MobileNetV2 only.
5Its tree-structured multi-task model for Taskonomy is implemented based on the architecture reported in the paper

by ourselves since the work is not open-sourced.

7

Table 2: Performance of top-1 recommended architectures on Taskonomy using Deeplab-ResNet34
under different computation budgets.

Models Com.
Budget

FLOPs
(%) ↓

#Params
(%) ↓

Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.
Δ𝑡 ↑Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - - 0.5217 - 0.8070 - 0.0220 - 0.2024 - 0.2140 - -

#353 w/o -11.31 -7.90 0.5168 0.9 0.8745 8.4 0.0195 11.4 0.2003 1.0 0.2082 2.7 4.9
#958 4 Models -22.05 -21.27 0.5268 -1.0 0.8744 8.4 0.0202 8.2 0.1887 6.8 0.2159 -0.9 4.3
#1046 3 Models -41.93 -41.27 0.5368 -2.9 0.8723 8.1 0.0201 8.6 0.1987 1.8 0.2118 1.0 3.3
#817 2 Models -60.00 -60.00 0.5891 -12.9 0.8725 8.1 0.0200 9.1 0.1915 5.4 0.2105 1.6 2.3
#0 1 Model -80.00 -80.00 0.5994 -14.9 0.8390 4.0 0.0265 -20.5 0.1947 3.8 0.2072 3.2 -4.9

4.3 Evaluation of the Task Accuracy Estimator

Table 3: Pearson’s 𝛾 between the predicted ranking
and the oracle ranking.

Method Deeplab-ResNet34 MobileNetV2
NYUv2 Taskonomy NYUv2 Taskonomy

What-to-Share -0.478 -0.147 -0.4901 -0.754
Ours 0.699 0.768 0.504 / 0.772 0.836

Our recommender can get a predicted rank-
ing of all the multi-task architectures based on
their estimated task performance from the task
accuracy estimator. To evaluate the predicted
ranking, we also get an oracle ranking, by ac-
tual training the multi-task architectures. We
use the Pearson correlation coefficient (Pear-
son’s 𝛾) (Benesty et al., 2009) of the predicted
ranking and the oracle ranking to evaluate the
efficacy of the task accuracy estimator component. We compare with the correlation of What-to-
Share (Vandenhende et al., 2019), the only existing branched MTL method which could sort the
architectures according to task dissimilarity scores. Table 3 reports the correlation results. For
reproducibility, the random seed of the experiments is set as 10. For NYUv2 on MobileNetV2, we
also conduct the same experiment with seed 20. The range of 𝛾 is [−1, 1]. The larger the value of 𝛾
is, the stronger the positive correlation, and the better the predicted ranking. Overall, our estimated
architecture ranking has a moderately high correlation (i.e., 0.4 ≤ 𝛾 < 0.7) or even very strong
correlation (i.e., 0.7 ≤ 𝛾 < 0.9) with the oracle ranking according to the interpretation of Pearson’s
𝛾 (Akoglu, 2018), which demonstrates the reliability of the task accuracy estimator and the effec-
tiveness of our recommender. In contrast, What-to-Share produces negative correlations, indicating
that their estimations from task dissimilarity are unreliable. Compared with What-to-Share, our
recommender improves the correlation significantly.

4.4 Comparison with State-of-the-Art MTL Methods

Table 4 summarizes the comparisons with state-of-the-art MTLmethods for Taskonomy on Deeplab-
ResNet34. Table 5 and 6 report the results on MobileNetV2. Generally, the best multi-task archi-
tectures suggested by our recommender could achieve competitive or even higher overall task
performance as indicated by the Δ𝑡 columns.

Our work is closest toWhat-to-Sharewhich also ranks all the candidate multi-task architectures
and outperforms it by 4.8% in terms of the overall task performance. Task-Grouping focuses on
deciding how to split the tasks into groups according to the given computation budget so that
one group will share the entire backbone model. Compared to Task-Grouping, our recommender
yields better branching models under the same budget. For instance, when the budget is three
models, our top-1 multi-task architecture could achieve higher task performance (3.3% vs 2.4%)
with lower computation cost (-41.93% vs -40%) and number of parameters (-41.27% vs -40%) than
Task-Grouping.

Compared with manually-design multi-task architectures, Cross-Stitch, Sluice, NDDR-CNN,
and MTAN, which usually consist of separate networks for each task and define a mechanism for

8

Table 4: Comparison with state-of-the-art MTL methods for Taskonomy using Deeplab-ResNet34.

Models FLOPs
(%) ↓

#Params
(%) ↓

Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.
Δ𝑡 ↑Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 0.5217 - 0.807 - 0.022 - 0.2024 - 0.214 - -

What-to-Share -0.13 -0.01 0.5378 -3.1 0.8696 7.8 0.0233 -5.9 0.2019 0.2 0.2113 1.3 0.1
Task-Grouping -40.00 -40.00 0.5388 -3.3 0.8743 8.3 0.0202 8.2 0.2037 -0.6 0.2151 -0.5 2.4
Cross-Stitch 0.00 0.00 0.57 -9.3 0.779 -3.5 0.021 4.5 0.199 1.7 0.217 -1.4 -1.6

Sluice 0.00 0.00 0.596 -14.2 0.795 -1.5 0.023 -4.5 0.196 3.2 0.207 3.3 -2.8
NDDR-CNN 8.38 8.20 0.599 -14.8 0.8 -0.9 0.022 0.0 0.196 3.2 0.203 5.1 -1.5

MTAN -10.55 -9.80 0.621 -19.0 0.787 -2.5 0.022 0.0 0.197 2.7 0.206 3.7 -3.0
Learn-to-Branch -68.11 -67.67 0.5214 0.1 0.8503 5.4 0.0235 -6.8 0.2021 0.1 0.2171 -1.4 -0.5

DEN 2.15 -77.60 0.737 -41.3 0.786 -2.6 0.026 -18.2 0.192 5.1 0.203 5.1 -10.4
AdaShare -5.42 -71.20 0.562 -7.7 0.802 -0.6 0.022 0.0 0.191 5.6 0.200 6.5 0.8
AutoMTL -3.85 -50.10 0.536 -2.7 0.873 8.2 0.021 4.5 0.191 5.6 0.197 7.9 4.7

Top-1 w/o budget -11.31 -7.90 0.5168 0.9 0.8745 8.4 0.0195 11.4 0.2003 1.0 0.2082 2.7 4.9
Top-1 within 3 models -41.93 -41.27 0.5368 -2.9 0.8723 8.1 0.0201 8.6 0.1987 1.8 0.2118 1.0 3.3

Table 5: Comparison with Branched MTL methods for NYUv2 using MobileNetV2.

Model FLOPs
(%) ↓

#Params
(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation
Δ𝑡 ↑mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑ Error ↓ 𝜃 , within ↑
Δ𝑡2 ↑ Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 20.36 49.44 - 18.17 16.62 28.37 70.20 85.58 - 0.77 0.28 47.92 78.46 92.81 - -
What-to-Share -8.41 -0.30 21.10 49.03 1.4 17.82 15.71 30.61 72.60 86.08 3.9 0.67 0.25 54.71 83.25 94.97 9.3 4.8

BMTAS -64.46 -33.41 18.98 48.40 -4.4 17.71 16.09 29.74 72.70 86.90 3.1 0.60 0.24 60.73 87.25 96.33 15.9 4.9

Top-1 -66.67 -66.67 19.36 48.97 -2.9 17.99 16.02 31.43 70.41 84.65 2.9 0.61 0.23 60.02 86.89 96.34 15.7 5.2

feature sharing between independent networks, our recommended architectures perform higher
task performance (4.9% vs -1.6%/-2.8%/-1.5%/-3.0%) with computation cost (-11.31% vs 0%/8.38%/-
10.55%) and the number of parameters reduction (-7.90% vs 0%/8.20%/-9.80%).

We also compare with NAS-based methods, including NAS-based branched MTL methods such
as Learn-to-Branch and BMTAS, and NAS-based general MTL approaches such as DEN, AdaShare,
and AutoMTL. Learn-to-Branch and BMTAS explore the same tree-structured architecture design
space as our recommender. However, since they resort to integrating space searching with network
training, the searched multi-task models are usually sub-optimal. Instead, our recommender could
overcome the limitation to identify multi-task architectures with higher task performance, 5.4%
higher than Learn-to-Branch, and 0.3%/4.1% higher than BMTAS on NYUv2 and Taskonomy using
MobileNetV2 as shown in Table 5 and 6. When comparing to DEN, AdaShare, and AutoMTL,
our recommender identifies multi-task architectures with competitive task performance (4.9% vs
-10.4%/0.8%/4.7%), even though the search space of those methods are larger and more complex
than our tree-structured multi-task model space.

Table 6: Comparison with Branched MTL methods for Taskonomy using MobileNetV2.

Models FLOPs
(%) ↓

#Params
(%) ↓

Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.
Δ𝑡 ↑Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 0.5217 - 0.807 - 0.022 - 0.2024 - 0.214 - -

What-to-Share -5.02 -0.18 1.0283 -1.9 0.7656 -0.1 0.0275 0.7 0.2417 -0.9 0.2688 -0.3 -0.5
BMTAS -78.47 -76.32 1.0239 -1.4 0.7511 -2.0 0.0322 -16.2 0.2202 8.1 0.2508 6.5 -1.0

Task-Grouping -25.11 -5.21 0.9965 1.3 0.7678 0.2 0.0287 -3.6 0.2323 3.0 0.2591 3.4 0.9

Top-1 -53.99 -44.86 0.977 3.2 0.7625 -0.5 0.0277 0.0 0.2232 6.8 0.2519 6.0 3.1

9

5 Conclusion

This paper proposes a tree-structured multi-task model recommender that predicts the top-𝑘
architectures with high task performance given a set of tasks, an arbitrary CNN backbone model,
and a user-specified computation budget. Our recommender consists of three key components, a
branching point detector that automatically detects branching points in any given CNN backbone
model, a design space enumerator that enumerates all the multi-task architecture in the design
space, and a task accuracy estimator that predicts the task performance of multi-task architectures
without performing actual training. Experiments on popular MTL benchmarks demonstrate the
superiority and reliability of our recommender compared with state-of-the-art approaches.
Limitations and Broader Impact Statement. Our research facilitates the adoption of deep learning
techniques to solve many tasks at once in resource-constraint scenarios. It also promotes the
leverage of multi-task learning to increase task performance and computation efficiency. It has
a positive impact on applications that tackle multiple tasks such as environment perceptions for
autonomous vehicles and human-computer interactions in robotic, mobile, and IoT applications.
The negative social impact of our research is difficult to predict since it shares the same pitfalls with
general deep learning techniques that suffer from dataset bias, adversarial attacks, fairness, etc.

References

Ahn, C., Kim, E., and Oh, S. (2019). Deep elastic networks with model selection for multi-task
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6529–6538.

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine,
18(3):91–93.

Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). Pearson correlation coefficient. In Noise
Reduction in Speech Processing, pages 1–4. Springer.

Bruggemann, D., Kanakis, M., Georgoulis, S., and Van Gool, L. (2020). Automated search for
resource-efficient branched multi-task networks. arXiv preprint arXiv:2008.10292.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The loss surfaces of
multilayer networks. In Artificial Intelligence and Statistics, pages 192–204. PMLR.

Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2650–2658.

Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., and Liu, W. (2020). Mtl-nas: Task-agnostic neural architecture
search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11543–11552.

Gao, Y., Ma, J., Zhao, M., Liu, W., and Yuille, A. L. (2019). Nddr-cnn: Layerwise feature fusing in
multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3205–3214.

10

Guo, P., Lee, C.-Y., and Ulbricht, D. (2020). Learning to branch formulti-task learning. In International
Conference on Machine Learning, pages 3854–3863. PMLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778.

Jelinek, H. F., Donnan, L., and Khandoker, A. H. (2019). Singular value decomposition entropy as a
measure of ankle dynamics efficacy in a y-balance test following supportive lower limb taping. In
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pages 2439–2442. IEEE.

Leang, I., Sistu, G., Bürger, F., Bursuc, A., and Yogamani, S. (2020). Dynamic task weighting
methods for multi-task networks in autonomous driving systems. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pages 1–8. IEEE.

Li, S.-y., Yang, M., Li, C.-c., and Cai, P. (2008). Analysis of heart rate variability based on singular
value decomposition entropy. Journal of Shanghai University (English Edition), 12(5):433–437.

Liu, S., Johns, E., and Davison, A. J. (2019). End-to-end multi-task learning with attention. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1871–
1880.

Long, M., Cao, Z., Wang, J., and Philip, S. Y. (2017). Learning multiple tasks with multilinear
relationship networks. In Advances in Neural Information Processing Systems, pages 1594–1603.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R. (2017). Fully-adaptive feature sharing
in multi-task networks with applications in person attribute classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5334–5343.

Maninis, K.-K., Radosavovic, I., and Kokkinos, I. (2019). Attentive single-tasking of multiple tasks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1851–1860.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks for multi-task
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3994–4003.

Nekrasov, V., Dharmasiri, T., Spek, A., Drummond, T., Shen, C., and Reid, I. (2019). Real-time joint
semantic segmentation and depth estimation using asymmetric annotations. In 2019 International
Conference on Robotics and Automation (ICRA), pages 7101–7107. IEEE.

Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., Yu, Y., and Nagappan, N. (2020).
Problems and opportunities in training deep learning software systems: An analysis of variance.
In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering,
pages 771–783.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2019). Latent multi-task architecture learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4822–4829.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4510–4520.

11

Sener, O. and Koltun, V. (2018). Multi-task learning as multi-objective optimization. Advances in
Neural Information Processing Systems, 31.

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and support inference
from rgbd images. In European Conference on Computer Vision, pages 746–760. Springer.

Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., and Savarese, S. (2020). Which tasks should
be learned together in multi-task learning? In Proceedings of the International Conference on
Machine Learning, pages 9120–9132.

Sun, R., Li, D., Liang, S., Ding, T., and Srikant, R. (2020). The global landscape of neural networks:
An overview. IEEE Signal Processing Magazine, 37(5):95–108.

Sun, X., Panda, R., Feris, R., and Saenko, K. (2019). Adashare: Learning what to share for efficient
deep multi-task learning. arXiv preprint arXiv:1911.12423.

Suteu, M. and Guo, Y. (2019). Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844.

Vandenhende, S., Georgoulis, S., De Brabandere, B., and Van Gool, L. (2019). Branched multi-task
networks: deciding what layers to share. arXiv preprint arXiv:1904.02920.

Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., and Van Gool, L. (2020). Revisiting
multi-task learning in the deep learning era. arXiv preprint arXiv:2004.13379, 2:3.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. (2019).
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10734–10742.

Wu, B., Li, C., Zhang, H., Dai, X., Zhang, P., Yu, M., Wang, J., Lin, Y., and Vajda, P. (2021). Fbnetv5:
Neural architecture search for multiple tasks in one run. arXiv preprint arXiv:2111.10007.

Xie, S., Zheng, H., Liu, C., and Lin, L. (2018). Snas: stochastic neural architecture search. arXiv
preprint arXiv:1812.09926.

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S. (2018). Taskonomy:
Disentangling task transfer learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3712–3722.

Zhang, L., Liu, X., and Guan, H. (2021). Automtl: A programming framework for automated
multi-task learning. arXiv preprint arXiv:2110.13076.

12

	Introduction
	Related Works
	Proposed Approach
	Task Accuracy Estimator
	Design Space Enumerator
	Branching Point Detector

	Experiments
	Experiment Settings
	Performance of Recommended Tree-Structured Multi-Task Models
	Evaluation of the Task Accuracy Estimator
	Comparison with State-of-the-Art MTL Methods

	Conclusion

