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Abstract

Processing sets or other unordered, potentially
variable-sized inputs in neural networks is usually
handled by aggregating a number of input tensors
into a single representation. While a number of ag-
gregation methods already exist from simple sum
pooling to multi-head attention, they are limited
in their representational power both from theoreti-
cal and empirical perspectives. On the search of a
principally more powerful aggregation strategy, we
propose an optimization-based method called Equi-
librium Aggregation. We show that many existing
aggregation methods can be recovered as special
cases of Equilibrium Aggregation and that it is
provably more efficient in some important cases.
Equilibrium Aggregation can be used as a drop-
in replacement in many existing architectures and
applications. We validate its efficiency on three
different tasks: median estimation, class counting,
and molecular property prediction. In all experi-
ments, Equilibrium Aggregation achieves higher
performance than the other aggregation techniques
we test.

1 INTRODUCTION

Early neural networks research focused on processing fixed-
dimensional vector inputs. Since then, advanced architec-
tures have been developed for processing fixed-dimensional
data efficiently and effectively. This format, however, is not
natural for applications where inputs do not have a fixed
dimensionality, are unordered, or have both of these proper-
ties. A strikingly successful strategy for tackling this issue
has been to process such inputs with a series of aggregation
→ transformation operations.

An aggregation operation compresses a set of input ten-
sors into a single representation of a known, predefined
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Figure 1: Global aggregation layers in typical neural net-
works for sets (top) and graphs (bottom). Top: each input
set element xi is first processed individually before being
pooled into a global representation y. This is followed by
a final transformation block. Bottom: for graph data, the
first part of the network is replaced by a graph or message
passing neural network, but the global aggregation step is
similar. In both cases, the global aggregation step drastically
reduces the number of embeddings from many to one, ren-
dering the right choice of aggregation technique critical for
good model performance. The aggregation layer is typically
implemented using sum-, max-, or attention-pooling. We
propose a new aggregation mechanism, called Equilibrium
Aggregation.
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dimensionality that can be then further sent to the down-
stream transformation block. Since the latter deals with
fixed-dimensional inputs with a defined ordering, it can
profit from the variety of techniques available for vector-to-
vector computations.

This pattern can be seen in many architectures. For instance,
Deep Sets [Zaheer et al., 2017] builds a representation of
a set of objects by first transforming each object and then
summing their embeddings. Similarly, Graph Neural Net-
works [Kipf and Welling, 2016, Battaglia et al., 2018] use a
message-passing mechanism, which amounts to aggregat-
ing the set of input messages received by each node from
its neighbours and then transforming the aggregate into a
new message on the next layer (local aggregation). In many
cases, several message passing layers are then followed by
a global aggregation layer, where all node embeddings are
aggregated into one global embedding vector describing the
entire graph. Finally, Transformers [Vaswani et al., 2017]
use self-attention, a mechanism that allows each object in
the input set to interact with every other object and update
its embedding by aggregating value embeddings from the
rest of the set.

Mathematically, the aggregation ϕ(X) = y compresses
the input set X = {x1,x2, . . . ,xN} ∈ 2X into a D-
dimensional vector y ∈ RD. In the case of Deep Sets [Za-
heer et al., 2017] with sum aggregation, this reads

ϕ(X) = ρ(

N∑
i=1

f(xi)), (1)

where f and ρ are the optional input and output transforma-
tions, respectively.

Besides yielding a fixed-dimensional output embedding, (1)
enforces an important inductive bias: permutation invari-
ance. Global properties of sets or graphs (such as the free
energy of a molecule) are independent of the ordering of
the set elements. Taking advantage of such task symmetries
[Mallat, 2016] can add robustness guarantees with respect
to important classes of input transformations, and is known
to help generalisation performance [Worrall et al., 2017,
Weiler et al., 2018, Winkels and Cohen, 2018]. Other ways
of incorporating permutation invariance are max-pooling,
mean-pooling or attention aggregators [Kipf and Welling,
2016, Battaglia et al., 2018, Vaswani et al., 2017, Velickovic
et al., 2018].1

However, it is exactly these aggregation functions which
often introduce a bottleneck in the information flow [Zaheer
et al., 2017, Wagstaff et al., 2019, Cai and Wang, 2020,

1Interestingly, even though in the case of Transformers for
natural language processing the input is an ordered sequence, it
appears beneficial to model the data as an order-independent set
(or fully connected graph) with the sequential structure added via
positional encodings.
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Figure 2: Schematic illustration of Equilibrium Aggregation.
Each input x ∈ X contributes a potential value F (x,y)
which are summed over the set X and, together with the reg-
ularizer R(y), form the total energy. Equilibrium Aggrega-
tion seeks to minimize this energy and the found minimum
serves as the aggregation result.

Chen et al., 2020, Wagstaff et al., 2021]. It is easy to see that
sum aggregation may struggle to selectively extract relevant
information from individual inputs or subsets and while
methods like multi-head attention (effectively amounting to
weighted mean per each head) partially address this issue,
we believe there is a fundamental need for more expressive
aggregation mechanisms.

Motivated by this need, we develop a method called Equi-
librium Aggregation which is a generalization over existing
pooling-based aggregation methods and can be obtained as
an implicit solution to optimization-based formulation of
aggregation. We further investigate its theoretical properties
and show that not only it is a universal approximator of
set functions but that it is also provably more expressive
than sum or max aggregation in some cases. Finally, we
validate our insights empirically on a series of experiments
where Equilibrium Aggregation demonstrates its practical
effectiveness.

2 EQUILIBRIUM AGGREGATION

Our insight for developing better aggregation functions is
grounded in the fact that the standard, pooling-based aggre-
gation methods can be recovered as solutions to a certain
optimization problem:

ϕ(X) = argmin
y

N∑
i=1

F (xi,y), (2)

where F (x,y) is a potential function.

For example, with F (x,y) = (x−y)2 (and assuming X =



R), one obtains the mean aggregation ϕ(X) = 1
N

∑N
i=1 xi,

more examples can be found in Table 1. A natural question
following this observation arises: can a more interesting
aggregation strategy be induced by other choices of the
potential function F (x,y)?

We propose a method called Equilibrium Aggregation that
addresses this question by letting the potential be a learnable
neural network Fθ(x,y) parameterized by θ which takes a
set element x and the aggregation result y ∈ Y = RM as
an input and outputs a non-negative real scalar expressing
the degree of “disagreement” between the two inputs. By
also adding a regularization term, we obtain the energy-
minimization equation for Equilibrium Aggregation:

ϕθ(X) = argmin
y
Eθ(X,y),

Eθ(X,y) = Rθ(y) +

N∑
i=1

Fθ(xi,y), (3)

where for the scope of the paper the regularizer is simply
Rθ(y) = softplus(λ) · ||y||22. A graphical illustration for
this construction can be found on Figure 2.

Interestingly, this makes the result of the aggregation y be
defined implicitly and generally not available as a closed-
form expression. Instead, one can find y by numerically
solving the optimization problem (3), e.g., by gradient de-
scent:

y(t+1) = yt − α∇yEθ(X,y
(t)), ϕθ(X) = y(T ). (4)

Under certain conditions and with a large enough number of
steps T , this procedure provides a sufficiently accurate solu-
tion that is itself well-defined and differentiable: either ex-
plicitly, through the unrolled gradient descent [Andrychow-
icz et al., 2016, Finn et al., 2017], or via the implicit function
theorem applied to the optimality condition of (3) [Bai et al.,
2019, Blondel et al., 2021]. This allows to learn parameters
of the potential θ and also to train the whole model involving
the aggregation end-to-end.

In general, it is not guaranteed that gradient-based optimiza-
tion will converge to the global minimum of (3) when the po-
tential is an arbitrarily structured neural network. However,
with a large enough regularization weight λ, it is possible to
enforce convexity at least in the subspace of Y [Rajeswaran
et al., 2019b]. When the gradient descent is initialized from
a learnable starting point or, as in our implementation, from
the zero vector, it becomes sufficient to find just a stationary
point as long as the next layer in the network makes use of
the aggregation result. Relaxing the need for convergence to
the global minimum together with the use of flexible neural
networks allows to implement a potentially complex and
expressive aggregation mechanism. In our implementation
we employ explicit differentiation through gradient descent
and find that the network generally learns convergent dy-
namics (4) automatically, even with a fairly small number
of iterations such as T = 10.

Aggregation ϕ(X) F (x,y)

Mean 1
N

∑N
i=1 xi (x− y)2

Median x[N/2] |x− y|
Max max{x1, . . . ,xN} max(0,x− y)

Sum
∑N

i=1 xi or
arg min

y

[
y2

2
+

∑
i F (xi, y)

] −x · y

Equilibrium
Aggregation argminy Eθ(X,y)

Neural network
Fθ(x,y)

Table 1: A comparison between Equilibrium Aggregation
and pooling-based aggregation methods. Equations are
given for the scalar case or can be applied coordinate-wise
in higher dimensions.

To additionally encourage convergence, we consider the fol-
lowing auxiliary loss that penalizes the norm of the energy
gradient at each step of optimization:

Laux(X,y, θ) =
1
T

∑T
t=1 ||∇yEθ(X,y

(t))||22. (5)

We simply add the auxiliary loss to the main loss incurred by
the task of interest and optimize the sum during the training.
We further empirically assess convergence of the inner-loop
optimization in Section 5.3.

3 UNIVERSAL FUNCTION
APPROXIMATION ON SETS

According to the universal function approximation theorem
for neural networks [Hornik et al., 1989, Cybenko, 1989,
Funahashi, 1989], an infinitely large multi-layer perceptron
can approximate any continuous function on compact do-
mains in R with arbitrary accuracy. In machine learning,
we typically do not know the function we aim to approxi-
mate. Hence, knowing that neural networks can in theory
approximate anything is comforting. Equally, we seek to
build inductive biases into the networks in order to facilitate
learning, using more sophisticated architectures than multi-
layered perceptrons. It is imperative to be aware whether
and to what extent those modifications restrict the space of
learnable functions.

Similar constructions to Equilibirum Aggrega-
tion, i.e. optimization-defined models defined as
y = argminyG(X,y), have previously been studied in the
literature, especially in the context of permutation-sensitive
(i.e. not permutation invariant) functions [Pineda, 1987,
Finn and Levine, 2017, Bai et al., 2019] and various
results with respect to universal function approximation
were obtained. It is not obvious, however, how these
results translate to the important permutation-invariant
case we consider in this paper. Introducing permutation
invariance self-evidently restricts the space of functions
that can be approximated. In the next section we directly



address the question of what set functions can be learned
by Equilibrium Aggregations and establish a universality
guarantee.

3.1 UNIVERSALITY OF EQUILIBRIUM
AGGREGATION

In this section, we will see that Equilibrium Aggregation
is indeed able to approximate all continuous permutation
invariant functions ψ. We start by stating a few assumptions:
We assume a fixed input set sizeN of scalar inputs2 xi (note
the dropping of the boldface to indicate that these are not
vectors anymore) and a scalar output. We further assume that
input space X is a compact subset of RN . For simplicity,
without loss of generality (as we can always rescale the
inputs), we choose this to be [0, 1]N :

ψ : [0, 1]N → R. (6)

As ψ is permutation invariant, the vector valued inputs can
be seen as (multi)sets. For a discussion on why considering
uncountable domains (i.e. the real numbers) is important for
continuity, see Section 3 of Wagstaff et al. [2019].

We consider a neural network architecture with Equilibrium
Aggregation as a global pooling operation of the following
form:

ϕ(X) = ρ(argmin
y

∑
i

Fθ(xi,y)), (7)

where Fθ (the potential function) and ρ are modeled by
neural networks, which are assumed to be universal function
approximators. Note that, for simplicity of the proof, we
implicitly set the regulariser to 0. We refer to the output of
argmin

∑
i Fθ(xi,y) as the latent space, analogous to the

terminology used in Wagstaff et al. [2019] with respect to
the Deep Sets architecture [Zaheer et al., 2017]. We prove
the following:

Theorem 1 Let the latent space be of sizeM = N , i.e. y ∈
RN . Then all permutation invariant continuous functions
ψ can be approximated with Equilibrium Aggregation as
defined in (7).

Proof For the purpose of this proof, we assume Fθ takes
the form:

Fθ(xi,y) =

M∑
k=1

(
yk
N

− xki )
2, (8)

where k serves both as an index for the vector y and as an
exponent for xi. There are two sums now, an inner one in the

2This is a common simplification in the literature on univer-
sal function approximation on sets. For a discussion on how to
generalise from the scalar to the vector case, see Hutter [2020].

definition of Fθ and an outer one over the nodes in (7). Note
that Fθ is continuous and can therefore be approximated by
a neural network. Importantly, Fθ is also convex and can
therefore assumed to be optimised with gradient descent to
find argmin(y). Note that all M terms can be optimised
independently as X is fixed. It is a well-known fact that
minimising the sum of squares yields the mean:

argmin
z

N∑
i=1

(z − xi)
2 =

1

N

N∑
i=1

xi. (9)

It follows that minimising the sum of energies defined in (8)
yields

ymin
k =

∑
i

xki for k ∈ {1, . . . , N}. (10)

For inputs (x1, ..., xM ) ∈ [0, 1]M , this mapping to y is
evidently continuous and surjective with respect to its range
[0,M ]N . We also know from Lemma 4 in Zaheer et al.
[2017] that this mapping is injective and from Lemma 6 that
it has a continuous inverse.3 ψ is continuous by definition
and, therefore,

ρ = ψ ◦

(
argmin

y

∑
i

Fθ(xi,y)

)−1

(11)

is continuous4 as long as the inputs xi are constrained
to [0,1] and can therefore be approximated by a neural
network. However, via a global re-scaling of the inputs, this
proof can be used for any bounded input domain. Hence,
any permutation invariant, continuous ψ on a bounded
domain can be appoximated via Equilibrium Aggregation
for a latent space of size M = N .

3.2 COMPARISON TO DEEP SETS

So far, we have only been able to prove that Equilibrium
Aggregation scales at least as well as Deep Sets. By that, we
mean that universal function approximation can be achieved
with N =M , i.e. having as many latents as inputs is suffi-
cient. (For Deep Sets, we also know that N =M is neces-
sary [Wagstaff et al., 2019].) Even though we currently do
not know whether it is possible to achieve universal func-
tion approximation with a smaller latent space, there is some
indication that Equilibrium Aggregation may have more rep-
resentational power, as we will lay out in the following:

Using one latent dimension, Deep Sets with max-pooling
can obviously represent ψ(X) = max(X), but it cannot

3We refer to Appendix B.4 in Wagstaff et al. [2019] as to why
the term k = 0 in (10) can be dropped for fixed set sizes.

4The superscript −1 indicates the functional inverse w.r.t. X .



represent (or even approximate) the sum for set sizes larger
than 1. Vice versa, sum-pooling can represent ψ(X) =
sum(X), but it cannot represent max(X) [Wagstaff et al.,
2019]. Equilibrium Aggregation can represent both sum
and max pooling, each with just one latent dimension (i.e.
y ∈ R1) as shown in Table 1.

4 RELATED WORK

Equilibrium Aggregations sits at the intersection of two
machine learning research areas: aggregation functions and
implicit layers. In the following, we give an overview over
the work closest related in each of the fields, respectively.

4.1 AGGREGATION FUNCTIONS

Perhaps the most popular approach for obtaining a permuta-
tion invariant encoding of sets is Sum pooling. A particular
instance of this is Deep Sets [Zaheer et al., 2017], as de-
scribed in (1). A central finding of Wagstaff et al. [2019] is
that the latent space, i.e. the dimensionality of the result of∑

i f(xi) ∈ RM needs to be at least as large as the number
of inputs N , i.e. M ≥ N in order to guarantee universal
function approximation. This applies to many other aggre-
gation methods as well and, to the best of our knowledge,
there is currently no known pooling operation which does
not introduce this scaling issue.

Principal Neighbourhood Aggregation (PNA) [Corso et al.,
2020] addresses the limitations of each individual pooling
operator such as Sum or Max by combining four different
pooling operators and three different scaling strategies re-
sulting into a simultaneous 12-way aggregation. Despite
the more sophisticated aggregation procedure, Corso et al.
[2020] come to very similar conclusions as Zaheer et al.
[2017] and Wagstaff et al. [2019], namely that N = M is
both necessary and sufficient. They prove the necessity for
any set of aggregators as well as the sufficiency for a spe-
cific set. In our work, we further expand this line of thinking
by allowing the model to learn the desired aggregation
operator which may include PNA or something drastically
different.

Learnable Aggregation Functions (LAF) [Pellegrini et al.,
2020] provide a similar framework for learning an aggrega-
tion operator by expressing it as a combination of several
weighted Lp norms, where the weights and the p parameters
are trained jointly with the model. Even though LAFs are
capable of expressing operators used in PNA and beyond,
it is not clear how they can reproduce other aggregation
methods such as attention. In contrast, our method can learn
attention (see Supplementary Material for details) as well
as even more expressive aggregation functions.

Further generalization of the functional form of the aggrega-
tion operator leads to the Karcher or Fréchet mean [Grove

and Karcher, 1973], which are defined as a solution to the
distance-generalization problem over a metric space X with
a metric d(·, ·):

x̄ = argmin
x̄∈X

N∑
i=1

d2(x̄,xi), xi ∈ X .

While closely related to the Karcher or Fréchet mean, Equi-
librium Aggregation differs in not restricting the aggrega-
tion result to the same space as X and allowing radically
non-symmetrical potential functions, together with the regu-
larizer.

Finally, Janossy Pooling [Murphy et al., 2019] generalizes
the idea of standard, coordinate-wise pooling to make use
of higher-order interactions between set elements. Despite
the potential for practical effectiveness, it is unclear whether
these developments guarantee better approximation results
in the general case [Wagstaff et al., 2021]. While Equi-
librium Aggregation is also fully compatible with Janossy
Pooling and may profit from even more expressive energy
functions with pairwise or triplet interactions, this may not
be necessary as such interactions can be emulated within the
optimization process and ultimately come at a significant
computational cost for larger set sizes.

In addition to formulating more expressive pooling opera-
tors, there is also a body of work concerned with multi-step
parametric models for set encoding [Vinyals et al., 2015,
Lee et al., 2019]. Inevitably, to achieve permutation invari-
ance these models rely on some kind of a pooling as a
building block, such as the ones outlined above. Equilib-
rium Aggregation being a drop-in replacement for sum- or
attention-pooling can be used in those models, too.

4.2 IMPLICIT AND OPTIMIZATION-BASED
MODELS

Gradient-based optimization has been utilized in a large
number of applications [Amos, 2019]: image denois-
ing [Putzky and Welling, 2017], molecule generation [Duve-
naud et al., 2015, AlQuraishi, 2019], planning [Amos et al.,
2018] and combinatorial search [Hottung et al., 2020, Bar-
tunov et al., 2020] to name a few. While there is a large body
of work where gradient descent dynamics is decoupled from
learning, (e.g., Du and Mordatch [2019], Song and Ermon
[2019], our work is particularly closely related to methods
that seek to learn the underlying objective function end-to-
end, such as Putzky and Welling [2017], Rubanova et al.
[2021].

A closely-related family of methods involve the idea of
defining computations inside a model implicitly, i.e. via
a set of conditions that a particular variable must obey
instead of prescribing directly how the variable’s value
should be computed. Deep Equilibrium Models (DEQs)
formulate this via a fixed point of an update rule speci-



fied by the model [Pineda, 1987, Liao et al., 2018, Bai
et al., 2019] and Implicit Graph Neural Networks explore
this idea in the context of graphs [Gu et al., 2020]. Neural
ODEs [Chen et al., 2018] allow to parametrize a deriva-
tive of a continuous-time function specifying the computa-
tion of interest. iMAML [Rajeswaran et al., 2019a] consid-
ers an implicit optimization procedure for the purpose of
finding model parameters suitable for gradient-based meta-
learning [Finn et al., 2017].

Our work is similar in spirit but focuses specifically on the
aggregation block for encoding sets, which can be seen as a
small but generic building block that can be combined with
arbitrary model architectures. Similarly to OptNet [Amos
and Kolter, 2017], we propose a layer architecture that can
be used inside another implicit or traditional multi-layer
neural network.

4.3 LEARNING ON DISTRIBUTIONS

An important use-case for set encoding is machine learning
models aiming at learning a distribution from a finite sample.
A recent example is Neural Processes [Garnelo et al., 2018],
which builds a simple permutation-invariant representation
of the training set via averaging of its encoded elements
and a similar construction of Edwards and Storkey [2016].
Equilibrium Aggregation can be applied to building a more
advanced variation on this idea that substitutes the average
pooling with a maximum a posteriori (MAP) parameter es-
timation (see the Supplementary Material for details). It is
also straight forward to replace the MAP formulation with
the parametric variational inference approach, further bridg-
ing the gap between set encoding and distribution learning.

5 EXPERIMENTS

In this section, we describe three experiments with the goal
of analyzing the performance of Equilibrium Aggregation
in different tasks and comparing it to existing aggregation
methods. Our intention is not to achieve state of the art
results on any particular task. Instead, we strive to consider
archetypal scenarios and applications in which performance
significantly depends on the choice of aggregation method
so it can be studied in isolation from other issues.

In all experiments we let the models to train for 107 steps
of Adam optimizer [Kingma and Ba, 2014]. Since max-
imizing performance is not the goal of our experiments,
we do not perform an extensive hyperparameter search,
only limiting it to a sweep over the learning rate (chosen
from {10−4, 3×10−4, 10−3}) and the auxiliary loss weight
(on MOLPCBA only). To that end, we use a small subset
of the training set reserved for validation (Omniglot and
MOLPCBA benchmarks only). We rely on a single GPU
training regime using Nvidia P100s and V100s. All exper-

101 102

Embedding Size

10 6

10 5

M
SE

Equilibrium
Sum
Multi-Head Attention

Figure 3: Median estimation of a 100-number set with three
different aggregation methods. The bold lines correspond to
the average performance over 5 seeds, the faded lines show
the best performing seed of the respective model. Mean
square error is computed for varied set embedding sizes on
8× 105 number of sets.

imental code is written in Jax primitives [Bradbury et al.,
2018] using Haiku [Hennigan et al., 2020]. Source code for
the most crucial parts of our implementation can be found
in the Supplementary Material.

5.1 MEDIAN ESTIMATION

In this experiment, the neural network is tasked with predict-
ing the median value of a set of 100 randomly sampled num-
bers. Each set is sampled from either a Uniform, Gamma
or Normal distribution with fixed parameters, similarly
to Wagstaff et al. [2019]. The basic architecture for pooling-
based aggregation baselines consists of first embedding each
number in the set with a fully connected ResNet [He et al.,
2016] with layer sizes [256, 256, D], where D is the set
embedding size. Then, the embeddings are pooled with the
corresponding method into a D-dimensional vector and the
median is predicted from it using another fully connected
network with layer sizes [D, 128, 1]. A simple square loss
is used to regress the median.

Equilibrium aggregation, in contrast, performs the input en-
coding and aggregation simultaneously by doing a 5-step
gradient optimization of (3) with the potential function im-
plemented as a ResNet with layer sizes [256, 256, 1] taking
a D + 1-dimensional input (D for the implicit aggregation
result and 1 for the input number). The result is then also
transformed into the prediction using the same output net-
work as in the baseline methods.

We compare three models, Sum aggregation analogous to
Deep Sets [Zaheer et al., 2017], Multi-head attention with 4
heads, each operating with D/4 dimensional keys, values
and learned query vectors, and Equilibrium Aggregation
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Answer: number of unique characters (4 / 10)

(a) Task setup.
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(b) Train (dashed) and test (solid) accuracy for different aggrega-
tion methods.

Figure 4: Omniglot class counting task.

as described above. For each of the models we vary the
embedding size and assess the mean square error after 107

training steps. Empirical results are shown on Figure 3.

Equilibrium aggregation achieves one (for average across 5
seeds) or two (for the best out of 5 seeds) orders of magni-
tude better estimation error than the baseline pooling meth-
ods which confirms its higher representational power in this
simple setting. Importantly, in this experiment, there is no
distinction between training and test distributions as the
samples are continuously drawn and never repeated. Hence,
we are primarily testing the representation power of the
approaches as opposed to data efficiency in this particular
example. However, it is worth noting that all architectures
have roughly the same amount of trainable parameters. Pre-
sumably, the low error achieved by Equilibrium Aggregation
suggests that it managed to discover or reasonably well ap-
proximate the analytical solution F (x,y) = |x− y|.

5.2 OMNIGLOT CLASS COUNTING

We proceed to the more challenging task of counting the
number of unique character classes in a set of 16 Om-
niglot images, which is inspired by Lee et al. [2019]. Om-
niglot [Lake et al., 2015] is a dataset of handwritten charac-
ters that are organized into alphabets and then into character
classes for each of which only 20 instances are available.
We randomly choose between 1 and 10 character classes
and sample their images to form the input set. The model
then needs to aggregate those images and infer the num-

ber of unique character classes by outputting a vector of
probabilities for each of the 1, 2, . . . , 10 possible number of
classes (see Figure 4a for a visual illustration).

Original images are downsized to 32×32 and encoded using
a convolutional ResNet with [16, 32, 64] hidden channels
in each of the three blocks correspondingly. Each block
operates with 3×3 filters and a stride of 2 and hence reduces
spatial sizes of the input tensor by half. The ResNet output is
then flattened and linearly projected into a 256-dimensional
input embedding. After the encoding step, as in the previous
experiment, Sum, Multi-Head Attention with 4 heads and
Equilibrium Aggregation perform set aggregation into 256-
dimensional set embedding and predicted the number of
classes using a simple softmax distribution using a fully-
connected ResNet with layer sizes of [128, 10]. Equilibrium
Aggregation also uses a ResNet potential with [512, 512, 32]
structure where the output of the last layer is squared and
then summed to form a scalar potential value. We used 10
iterations of inner-loop optimization in this experiment.

Each model is trained on the characters from Omniglot train
set for 107 steps and with a batch size of 8. Train and test
accuracies are reported in Figure 4b. One can see that, again,
Equilibrium Aggregation outperforms both of the baselines,
both in terms of train and test set accuracy. This shows that,
on the one hand, Equilibrium Aggregation has a significantly
larger capacity and thus better fits the training data. On the
other hand, this capacity results into better generalization
and, presumably, a more robust aggregation strategy.

5.3 GLOBAL AGGREGATION IN GRAPH
NEURAL NETWORKS

Finally, we study the effect of different aggregation meth-
ods in the global readout layer of a graph neural network
(GNN) on a well-established MOLPCBA benchmark [Hu
et al., 2020]. In this task, the model is required to predict
128 global binary properties of an input molecule. This is
traditionally implemented within the GNN framework by
first applying several layers of message-passing on a graph
and then aggregating the resulting 300-dimensional node
embeddings into a single 300-dimensional graph represen-
tation from which the predictions are made. Since there is
more than one prediction task per molecule, mean average
precision (MAP) is used as an evaluation metric. The test
MAP is reported for the best MAP attained on the validation
set as the model is training. The validation and test met-
rics are periodically evaluated from model snapshots taken
approximately every 104 training steps.

For this experiment, we choose two popular GNN architec-
tures, namely a Graph Convolutional Network (GCN) [Kipf
and Welling, 2016] and a Graph Isomorphism Network
(GIN) [Xu et al., 2018] that both use a simple Sum readout
in their canonical implementations by Hu et al. [2020]. We



Table 2: Comparison between different aggregation methods on MOLPCBA.

Local Aggregation Global Aggregation Validation MAP Test MAP

Graph Convolutional Network
[Kipf and Welling, 2016]

Sum
Multi-Head Attention

Principal Neighbourhood Aggregation
Equilibrium Aggregation

0.223
0.248
0.226
0.269

0.203
0.229
0.209
0.252

Graph Isomorphism Network
[Xu et al., 2018]

Sum
Multi-Head Attention

Principal Neighbourhood Aggregation
Equilibrium Aggregation

0.255
0.254
0.262
0.263

0.232
0.234
0.244
0.246

Equilibrium Aggregation Equilibrium Aggregation 0.269 0.258
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Figure 5: Inner-loop optimization statistics on MOLPCBA
with the GIN architecture. The pink curve shows the maxi-
mum value of the L1 norm along any dimension of the gra-
dient on the last (15th) iteration of the inner loop. A value of
10−2 indicates a small gradient update and therefore good
convergence of the optimizer. The dark purple curve tracks
the auxiliary loss, i.e. the L2 norm of the gradient update
averaged across all 15 optimization steps (see (5)). Overall,
these curves indicate stable, convergent behaviour despite a
modest number of inner-loop optimization steps.

leave the architectures unchanged and only vary the global
readout operation. Our implementation uses the Jraph li-
brary [Godwin* et al., 2020] and dynamic batch training
with up to 8 graphs and 1024 nodes in a batch.

For the potential network we use an architecture similar
to the previous experiment with layer sizes [600, 300, 32],
sum-of-the-squares output and 15 iterations for energy min-
imization.

The results are provided in Table 2. Overall, the empirical
findings on MOLPCBA are consistent with the previous ex-
periments with Multi-Head Attention providing a noticeable
performance improvement over the basic Sum aggregation
and Equilibrium Aggregation performing even better. In
addition, we also evaluate Principal Neighbourhood Aggre-
gation (PNA) [Corso et al., 2020], which has been proposed
to address limitations an each individual pooling method
in the context of GNNs and combines 12 combinations
of scaled pooling methods. When combinining PNA with
the GCN model, our experiments only show minor perfor-
mance improvements over Sum pooling, in part because of
increased overfitting. However, when applied to the GIN
architecture, it achieves performance levels almost on par
with Equilibrium Aggregation.

These results confirm one of the central hypotheses of this
research: namely that the global aggregation of node em-
beddings is a critical step in graph neural networks. Perhaps
surprisingly, the GCN generally benefited more from more
advanced aggregation methods which is probably due to
smaller number of parameters and thus decreased risk of
overfitting. It is also worth noting that top performing GNN
architectures achieve significantly higher test MAP on this
task (see, e.g., Yuan et al. [2020], Brossard et al. [2020]).

In addition, we test an architecture where both local (i.e.
node-level) and the global aggregations are performed us-
ing Equilibrium Aggregation. This model yields even better
performance, albeit only marginally. While more careful
architecture design that takes into account the specifics of
Equilibrium Aggregation could potentially lead to larger per-



formance improvements, it should be noted that the molecu-
lar graphs in this task are relatively small and aggregation
on the local level may be not the most critical step for a
typical GNN.

Besides the task performance we also investigate the be-
haviour of the inner-loop optimization. Figure 5 plots two
major statistics that quantify this: the max-norm of the fi-
nal iterate of the optimization maxd |∇yd

E(X,y(T ))| and
Laux (5). One can see that both rapidly decrease during the
training and that a good degree of convergence is achieved.
We observe similar behaviour with GCN and on other tasks
we considered earlier.

6 DISCUSSION AND CONCLUSION

This work provides a novel optimization-based perspective
on the widely encountered problem of aggregating sets that
is provably universal. Our proposed algorithm, Equilibrium
Aggregation, allows learning a problem-specific aggrega-
tion mechanism which, as we show, is beneficial across
different applications and neural network architectures. The
consistent empirical improvement brought by the use of
Equilibrium Aggregation not only shows that many exist-
ing models are struggling from aggressive compression and
inefficient representation of sets but also suggests a whole
new class of set- or graph-oriented architectures that employ
a composition of Equilibrium Aggregation operations. Be-
yond GNNs, other classes of models, such as Transformers,
may also profit from more expressive aggregation opera-
tions, specificially in modelling long-term memory – a topic
strongly connected to compression of sets [Rae et al., 2019,
Bartunov et al., 2019], as well as potentially reduce the
number of layers needed.

While there is a strong indication that using Equilibrium Ag-
gregation as a building block is effective, the incurred com-
putational cost may require more developments in differen-
tiable optimization [Ernoult et al., 2020], architecture [Amos
et al., 2017] and hardware design [Kendall et al., 2020], es-
pecially in order to compete with modern extra large models.

Acknowledgements

We thank Peter Battaglia, Petar Veličković, Marcus Hut-
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