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Abstract

Causal discovery for purely observational, cate-
gorical data is a long-standing challenging prob-
lem. Unlike continuous data, the vast majority of
existing methods for categorical data focus on in-
ferring the Markov equivalence class only, which
leaves the direction of some causal relationships
undetermined. This paper proposes an identifiable
ordinal causal discovery method that exploits the
ordinal information contained in many real-world
applications to uniquely identify the causal struc-
ture. The proposed method is applicable beyond
ordinal data via data discretization. Through real-
world and synthetic experiments, we demonstrate
that the proposed ordinal causal discovery method
combined with simple score-and-search algorithms
has favorable and robust performance compared to
state-of-the-art alternative methods in both ordinal
categorical and non-categorical data. An accompa-
nied R package OCD is freely available at the first
author’s website.

1 INTRODUCTION

Causal discovery [Spirtes et al., 2000, Pearl, 2009] is becom-
ing increasingly more popular in machine learning and finds
numerous applications, e.g., biology [Sachs et al., 2005],
psychology [Steyvers et al., 2003], and neuroscience [Shen
et al., 2020], of which the prevailing goal is to discover
causal relationships of variables of interest. The discovered
causal relationships are useful for predicting a system’s re-
sponse to external interventions [Pearl, 2009], a key step
towards understanding and engineering that system. While
the gold standard for causal discovery remains the con-
trolled experimentation, it can be too expensive, unethical,
or even impossible in many cases, particularly on human
beings. Therefore, inferring the unknown causal structures

of complex systems from purely observational data is often
desirable and, sometimes, the only option.

This paper considers causal discovery for ordinal categorical
data. Categorical data are common across multiple disci-
plines. For example, psychologists often use questionnaires
to measure latent traits such as personality and depression.
The responses to those questionnaires are often categorical,
say, with five levels (5-point Likert scale): "strongly dis-
agree", "disagree", "neutral", "agree", and "strongly agree".
In genetics, single-nucleotide polymorphisms are categori-
cal variables with three levels (mutation on neither, one, or
both alleles). Categorical data also arise as a result of dis-
cretization of non-categorical (e.g., continuous and count)
data. For instance, in biology, gene expression data are often
trichotomized to "underexpression", "normal expression",
and "overexpression" [Parmigiani et al., 2002, Pe’er, 2005,
Sachs et al., 2005] in order to reduce sequencing technical
noise while retaining biological interpretability.

While causal discovery for purely observational categorical
data have been extensively studied, the vast majority of ex-
isting methods [Heckerman et al., 1995, Chickering, 2002]
have exclusively focused on Bayesian networks (BNs) with
nominal (unordered) categorical variables. It has been well
established that a nominal/multinomial BN is generally only
identifiable up to Markov equivalence class in which all BNs
encode the same Markov properties. For example, X → Y
and Y → X are Markov equivalent and also distribution
equivalent [Spirtes and Zhang, 2016] with a multinomial
likelihood; therefore, they are non-identifiable with purely
observational data.

In many real-world applications, categorical data (includ-
ing the aforementioned Likert scale, single-nucleotide poly-
morphisms, and discretized gene expression data) contain
ordinal information. In this paper, we show that this often-
overlooked ordinal information is crucial in causal discovery
for categorical data. We propose an ordinal causal discovery
(OCD) method via an ordinal BN. Assuming causal Markov
and causal sufficiency, we prove OCD to be identifiable
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in general for ordinal categorical data. Score-and-search
BN structure learning algorithms are developed – exhaus-
tive search for small networks (e.g., bivariate data) and
greedy search for moderate-sized networks. Through exten-
sive experiments with real-world and synthetic datasets, we
demonstrate that the proposed OCD is identifiable, robust,
applicable to both categorical and non-categorical data, and
competitive against a range of state-of-the-art causal discov-
ery methods. To the best of our knowledge, we are the first
to exploit the ordinal information for causal discovery in
categorical data. Our major contributions are four-fold.

1. We advocate the usefulness of ordinal information of
categorical data in causal discovery, which has been
overlooked in the literature.

2. We propose the first causal discovery method, OCD,
for ordinal categorical data.

3. We prove that OCD is generally identifiable for bi-
variate data, in contrast to the non-identifiability of
multinomial BNs.

4. We demonstrate the strong utility of OCD by compari-
son with state-of-the-art alternatives using real-world
and synthetic datasets.

1.1 RELATED WORK

For brevity, we review causal discovery methods that are
fully identifiable with observational data.

Non-Categorical Data. Model-based BNs for continuous
data are often represented as additive noise models. Under
such representation, BNs are generally identifiable if the
noises are non-Gaussian [Shimizu et al., 2006], if the func-
tional form of the additive noise model is nonlinear [Hoyer
et al., 2009, Zhang and Hyvärinen, 2009], or if the noise
variances are equal [Peters and Bühlmann, 2014]. Also see
much of the recent literature that focuses on bivariate causal
discovery [Mooij et al., 2010, Janzing et al., 2012, Chen
et al., 2014, Sgouritsa et al., 2015, Hernandez-Lobato et al.,
2016, Marx and Vreeken, 2017, Blöbaum et al., 2018, Marx
and Vreeken, 2019, Tagasovska et al., 2020]. For count
data, Park and Raskutti 2015 proposed a Poisson BN and
showed that it is identifiable based on the overdispersion
property of Poisson BNs. By replacing overdispersion prop-
erty with constant moments ratio property, Park and Park
2019 extended Poisson BNs to the generalized hypergeo-
metric family which contains many count distributions such
as binomial, Poisson, and negative binomial. Recently, Choi
et al. 2020 developed a zero-inflated Poisson BN for zero-
inflated count data.

Categorical Data. For nominal categorical data, causal
identification is possible under certain assumptions [Peters
et al., 2010, Suzuki et al., 2014, Liu and Chan, 2016, Cai
et al., 2018, Compton et al., 2020, Qiao et al., 2021], e.g.,

when the categories admit hidden compact representations
or when data follow a discrete additive noise model. How-
ever, to the best of our knowledge, causal discovery for
ordinal data, which are very common in practice, has not
been studied. Whether a categorical variable is ordinal or
not is, in our opinion, easier to comprehend than the afore-
mentioned assumptions of categorical data (e.g., discrete
additive noise). We remark that a recent paper [Luo et al.,
2021] also considered ordinal data. However, their work is
substantially different from ours. The most prominent dif-
ference is that the causal graph of Luo et al. [2021] is only
identifiable up to Markov equivalence classes whereas the
proposed method is uniquely identifiable, which is proved
for the bivariate case.

Mixed Data. There are recent developments for mixed
data causal discovery [Cui et al., 2018, Tsagris et al., 2018,
Sedgewick et al., 2019], some of which include categorical
data. However, the ordinal nature of the categorical data is
not exploited for causal identification; therefore, these algo-
rithms output Markov equivalent BNs instead of individual
BNs. The latent variable approach by Wei et al. [2018] could
in principle be extended to ordinal data. However, the causal
Markov assumption of latent variables cannot translate to
the observed variables and the inferred causality does not
have direct causal interpretation on the observed variables.

2 BIVARIATE ORDINAL CAUSAL
DISCOVERY

We first introduce the proposed OCD method for bivariate
data, which will be extended to multivariate data in Section
4. Let (X,Y ) ∈ {1, . . . , S} × {1, . . . , L} denote a pair of
ordinal variables with S and L levels, of which the possi-
ble causal relationships, X → Y or Y → X , are under
investigation. Throughout the paper, we make the causal
Markov and causal sufficient assumptions, which are fre-
quently adopted in the causal discovery literature [Pearl,
2009]. The former allows us to interpret the proposed model
causally (beyond conditional independence) whereas the
latter asserts that there are no unmeasured confounders.

The bivariate OCD considers the following probability dis-
tribution for causal model X → Y ,

pX→Y (X,Y ) = p(X)p(Y |X), (1)

where p(X) is a multinomial/categorical distribution with
probabilities π = (π1, . . . , πS) with

∑S
s=1 πs = 1, and

p(Y |X) is defined by an ordinal regression model [Agresti,
2003],

Pr(Y ≤ ℓ|X) = F (γℓ − βX), ℓ = 1, . . . , L, (2)

where βX is a generic notation of β1, . . . , βS for X =
1, . . . , S. Typical choices of the link function F are pro-
bit and inverse logit, which are empirically quite similar;



hereafter we always use the probit link except for the identi-
fiability theory, which is valid for both link functions. We
fix γ1 = 0 for ordinal regression parameter identifiabil-
ity [Agresti, 2003]. Equation (2) implies the conditional
probability distribution Pr(Y = ℓ|X = s) = F (γℓ −
βs) − F (γℓ−1 − βs) for ℓ = 1, . . . , L and s = 1, . . . , S
where γ0 = −∞ and γL = ∞. Let β = (β1, . . . , βS)
and γ = (γ2, . . . , γL−1). We denote the model pX→Y by
pX→Y (X,Y |π,β,γ). Similarly, we define the probabil-
ity model pY→X as pY→X(Y,X|ρ,α,η). If the maximum
likelihood estimate p̂X→Y given observations of (X,Y ) is
strictly larger than p̂Y→X , then X → Y is deemed a more
likely data generating causal model.

3 IDENTIFIABILITY

We will show that the proposed OCD is generally identifi-
able.

Definition 1 (Distribution Equivalence)
pX→Y (X,Y |π,β,γ) and pY→X(Y,X|ρ,α,η)
are distribution equivalent if for any values of
(π,β,γ) there exist values of (ρ,α,η) such that
pX→Y (X,Y |π,β,γ) = pY→X(Y,X|ρ,α,η) for any
X,Y , and vice versa.

Distribution equivalent causal models are clearly not distin-
guishable from each other by examining their observational
distributions. The well-known multinomial BNs are distri-
bution equivalent as illustrated in the following example.

Example 1 (Multinomial BN) Consider a bivariate multi-
nomial BN of X → Y whose conditional p(Y |X) and
marginal p(X) probability distributions are given in Fig-
ure 1(a), and the joint distribution p(X,Y ) is given in Fig-
ure 1(b). Because of the multinomial assumption, we can
find a set of parameters, i.e., the conditional p(X|Y ) and
marginal p(Y ) probabilities (Figure 1(c)) of the reverse
causal model Y → X , which leads to the same joint dis-
tribution. Therefore, the probability distribution does not
provide information for causal identification.

Incorporating the underappreciated ordinal informa-
tion, we will show that pX→Y (X,Y |π,β,γ) and
pY→X(Y,X|ρ,α,η) are generally not distribution equiva-
lent and are, therefore, identifiable.

Theorem 1 (Identifiability of OCD) Let X ∈ {1, . . . , S}
and Y ∈ {1, . . . , L} where S,L > 2. Suppose X → Y
is the data generating causal model and the observational
probability distribution of (X,Y ) is given by

p(X,Y ) = pX→Y (X,Y |π,β,γ).

For almost all (π,β,γ) with respect to the Lebesgue mea-
sure, the distribution cannot be equivalently represented by

the reverse causal model, i.e., there does not exist (ρ,α,η)
such that,

p(X,Y ) = pY→X(Y,X|ρ,α,η),∀X,Y.

The proof based on properties of real analytic functions is
provided in the Supplementary Materials. We demonstrate
Theorem 1 by revisiting Example 1.

Example 2 (Ordinal BN) The conditional p(Y |X) and
marginal p(X) probability distributions in Figure 1(a) coin-
cide with those under the ordinal BN pX→Y (X,Y |π,β,γ)
with π = (0.25, 0.25, 0.5), γ = 1, and β = (1,−1, 1).
Given a large enough dataset, the MLE of p(X,Y )
can be arbitrarily close to that in Figure 1(b). How-
ever, there does not exist any set of parameter values
in the reverse causal model pY→X(Y,X|ρ,α,η) that
produces the conditional p(X|Y ) and marginal p(Y )
probability distributions in Figure 1(c). Therefore, the
reverse causal model pY→X(Y,X|ρ,α,η) cannot ade-
quately fit the data generated from pX→Y (X,Y |π,β,γ).
For example, even with 100,000 observations, the MLE
of p(X,Y ) under pY→X(Y,X|ρ,α,η) still has a large
bias (Figure 1(d)), which will never approach 0. There-
fore, pX→Y (X,Y |π,β,γ) can be distinguished from
pY→X(Y,X|ρ,α,η).

Note that Theorem 1 excludes the binary variable case, un-
der which OCD is not identifiable. This is expected because
there is no difference between ordinal and nominal cat-
egorical variables in this case; the latter is known to be
non-identifiable.

4 EXTENSION TO MULTIVARIATE
ORDINAL CAUSAL DISCOVERY

While the vast majority of the existing identifiable causal
discovery methods for categorical data [Peters et al., 2010,
Suzuki et al., 2014, Liu and Chan, 2016, Cai et al., 2018,
Compton et al., 2020] have primarily focused on bivariate
cases, we extend the proposed bivariate OCD to multivari-
ate data. Let X = (X1, . . . , Xq) ∈ {1, . . . , L1} × · · · ×
{1, . . . , Lq} denote q ordinal variables. Let G = (V,E)
denote a causal BN with a set of nodes V = {1, . . . , q}
representing X and directed edges E ⊂ V × V repre-
senting direct causal relationships (with respect to X). Let
pa(j) = {k|k → j} ⊆ V denote the set of direct causes
(parents) of node j in G and let Xpa(j) = {Xk|k ∈ pa(j)}.
Given G, the joint distribution of X factorizes,

p(X|G) =

q∏
j=1

p
(
Xj |Xpa(j)

)
, (3)

where each conditional distribution p
(
Xj |Xpa(j)

)
is an or-

dinal regression model of which the cumulative distribution



!(#|%) % = 1 % = 2 % = 3
# = 1 0.16 0.84 0.16
# = 2 0.34 0.14 0.34
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% = 1 0.12 0.29 0.33
% = 2 0.64 0.12 0.01
% = 3 0.24 0.59 0.66

!(%, #) % = 1 % = 2 % = 3
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2 0.29
3 0.38

×

×

(a) (b)

(c)

-!(%, #) % = 1 % = 2 % = 3
# = 1 0.104 0.087 0.141
# = 2 0.065 0.071 0.154
# = 3 0.078 0.089 0.211

(d)

Figure 1: Illustration. (a) Conditional p(Y |X) and marginal p(X) probability distributions. They coincide with those
under pX→Y (X,Y |π,β,γ) with π = (0.25, 0.25, 0.5), γ = 1, and β = (1,−1, 1). (b) The joint distribution p(X,Y ) =
p(X)p(Y |X). (c) Conditional p(X|Y ) and marginal p(Y ) probability distributions from the same joint distribution p(X,Y ).
(d) Maximum likelihood estimate of p(X,Y ) under pY→X(Y,X|ρ,α,η) using data generated from p(X,Y ) in (b) with
sample size 100,000.

is given by, for ℓ = 1, . . . , Lj ,

Pr(Xj ≤ ℓ|Xpa(j)) = F

γjℓ −
∑

k∈pa(j)

βjkXk
− αj

 ,

where αj is the intercept and βjkXk
is a generic notation

of βjk1, . . . , βjkLk
for Xk = 1, . . . , Lk. We set γj1 =

βjkLk
= 0 for ordinal regression parameter identifiability

[Agresti, 2003]. The implied conditional probability distri-
bution is given by,

Pr(Xj = ℓ|Xpa(j) = s) = F (γjℓ −
∑

k∈pa(j)

βjkhk
− αj)

−F (γj,ℓ−1 −
∑

k∈pa(j)

βjkhk
− αj),

for ℓ = 1, . . . , Lj and s ∈
∏

k∈pa(j){1, . . . , Lk}. In sum-
mary, the multivariate OCD model is parameterized by
γj = (γj2, . . . , γj,Lj−1), βjk = (βjk1, . . . , βjk,Lk−1), and
αj , for j = 1, . . . , q and k ∈ pa(j).

5 CAUSAL GRAPH STRUCTURE
LEARNING

We develop simple score-and-search learning algorithms to
estimate the structure of causal graphs, which already show
strong empirical performance (see Section 6), although more
sophisticated learning methods such as Bayesian inference
could be adopted to further improve the performance.

Score. We score causal graphs by the Bayesian information
criterion (BIC). We choose BIC over AIC because it favors
a more parsimonious causal graph due to the heavier penalty
on model complexity and generally has a better empirical

performance. Let x = (x1, . . . ,xn) denote n realizations
of X . The score of G (smaller is better) is given by

BIC(G|x) = −2
n∑

i=1

log p̂(xi|G) +K log(n),

where K is the number of model parameters and p̂(xi|G) is
the joint distribution (3) evaluated at xi given the MLE of
model parameters.

Exhaustive Search. For small networks (say q =2 or 3),
we compute the scores for all networks G, and identify
Ĝ = argminG∈G BIC(G|x). While this approach is exact
and useful for bivariate OCD, it becomes computationally
infeasible for moderate-sized networks as the number of
networks |G| grows super-exponentially in q.

Greedy Search. We use a simple iterative greedy search
algorithm [Chickering, 2002, Scutari et al., 2019] for
moderate-sized networks. At each iteration, we score all
the graphs that can be reached from the current graph by an
edge addition, removal, or reversal. We replace the current
graph by the graph with the largest improvement (largest
decrease in BIC) and stop the algorithm when the score
can no longer be improved. The greedy search algorithm is
summarized in Algorithm 1, which is guaranteed to find a
local optimal graph. The algorithm can be improved by tabu
search and random non-local moves [Scutari et al., 2019]
but we do not pursue this direction as the simple greedy
algorithm already yields favorable results against state-of-
the-art alternative methods. The worst per iteration cost is
O(qf(n,m,L)) for q nodes, n observations, m maximum
number of parents, and L = maxj Lj maximum levels,
where f(n,m,L) is the computational complexity of an or-
dinal regression with m regressors. This is because at most
2q score evaluations are required at each iteration [Scutari



Algorithm 1 Greedy Search

Input: data x, initial empty graph G
Compute BIC(G|x) and set BIC⋆=BIC(G|x).
repeat

Initialize Improvement = false.
for all graphs G′ reachable from G do

Compute BIC(G′|x).
if BIC(G′|x) < BIC⋆ then

Set G = G′ and BIC⋆=BIC(G′|x)
Set Improvement = true.

end if
end for

until Improvement is false
Output: graph G

et al., 2019]. We use polr function in the R package MASS
for ordinal regression which appears to scale linearly in
n,m, and L, empirically.

6 EXPERIMENTS

We evaluate the proposed and state-of-the-art alternative
causal discovery methods with synthetic as well as three
sets of real data. The real data are not categorical and there-
fore allow us to extend our comparison to causal models
designed for continuous data.

6.1 SYNTHETIC ORDINAL DATA

We simulate low-dimensional, higher-dimensional, and bi-
variate (with confounders) synthetic ordinal data.

6.1.1 Low-Dimensional Multivariate Ordinal Data

We consider synthetic ordinal data (n = 500, q = 10).
To mimic survey data with 5-point Likert-scale question-
naires, we simulate data from the proposed OCD model
with Lj = L = 5,∀j. The true BN is generated randomly
(Figure 2(a)), which has one v-structure (i.e., subgraph
j → k ← i). Its Markov equivalence class, represented
by a completed partially directed acyclic graph (CPDAG),
can be obtained by removing the directionality of the red
dashed edges in Figure 2(a). We consider 6 scenarios with
different levels of signal strength by generating simula-
tion true βjkℓ’s and αj’s independently from N(0, σ2) with
σ = 0.25, 0.5, 0.75, 1, 1.25, 1.5. Parameters γjℓ’s are cho-
sen to have balanced class size for each variable.

Implementations. Standard causal discovery methods for
categorical data are multinomial BNs with BIC or BDe
score, which discard the ordinal information and therefore
only estimate the Markov equivalence classes. They are im-
plemented using model averaging with 500 bootstrapped

samples (page 145, Scutari and Denis 2014). We compare
them with the proposed OCD, all implemented using greedy
search. In addition, we also consider a two-step procedure
[Friedman and Koller, 2003] and a recent ordinal structural
equation model [Luo et al., 2021, OSEM]. The two-step
procedure first learns a causal ordering and then estimates
the causal multinomial BN given the ordering based on
BIC (called "BIC+" hereafter). This procedure outputs an
estimated BN. The OSEM introduces latent Gaussian vari-
ables, on which a structural equation model is imposed. Like
multinomial BNs with BIC or BDe score, OSEM identifies
the Markov equivalence classes. The tuning parameter of
OSEM is set to 1.

Metrics. We compute the structural hamming distance
(SHD) and the structural intervention distance (SID) with
R package SID. The SHD between two graphs is the num-
ber of edge additions, deletions, or reversals required to
transform one graph to the other. The SID measures "close-
ness" between two causal graphs in terms of their implied
intervention distributions (see Peters and Bühlmann 2015
for the formal definition). Note that since multinomial BNs
with BIC and BDe, and OSEM can only identify CPDAG,
the smallest SHD that they can achieve is 5 (the number of
undirected edges in the true CPDAG).

Results. The SHD and SID averaged over 5 repeat simu-
lations are shown in Figure 2(b)-(c) as functions of signal
strength σ. Since multinomial BNs with BDe and BIC, and
OSEM only estimate CPDAGs, we report the lower bounds
of their SID. There are several conclusions that can be drawn.
First, OCD is empirically identifiable because both SHD
and SID quickly approach 0 as signal becomes stronger. Sec-
ond, OCD uniformly outperforms the alternative methods in
both SHD and SID across all signal levels, which suggests
that exploiting the ordinal nature of ordinal categorical data
is crucial for causal discovery. Third, BIC+ is better than
BIC and BDe in SHD but not necessarily in SID, suggesting
the estimated causal ordering from BIC+ is biased. Fourth,
although OSEM also accounts for ordinal data, it is not iden-
tifiable and may be sensitive to the tuning parameter, which
is hard to be objectively tuned. Therefore, we drop OSEM
in the subsequent simulations.

Different Number of Categories. In the Supplementary
Materials, we present additional simulation scenarios with
a different number L = 3 of categories. Similarly to the
scenarios with L = 5, OCD significantly outperforms the
competing methods.

6.1.2 Higher-Dimensional Multivariate Ordinal Data

We fix the sample size n = 500 and the number of categories
L = 5 but vary the number of nodes q = 10, 20, . . . , 100
and the signal strength σ = 0.25, 0.5, 0.75, 1. The graphs
are kept at the same sparsity as in Section 6.1.1 across q
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Figure 2: Synthetic ordinal data. The dashed lines in (c) are the lower bounds of SID of BDe, BIC, and OSEM, which output
CPDAGs instead of BNs. Lower SHD and SID are better.

(denser graphs will be considered later). The SHD is shown
in Figure 3 whereas the SID is provided in the Supplemen-
tary Materials. The proposed OCD uniformly outperforms
the competing methods BDe, BIC, and BIC+ across q and
σ. In general, OCD is quite stable as q increases when the
signal strength is moderate to moderately large σ ≥ 0.5
whereas the competing methods quickly deteriorate with q
regardless of the signal strength.

Scalability. We investigate the scalability of the pro-
posed OCD with respect to n,L, and q. We vary n =
500, 750, · · · , 2750 (keeping q = 10 and L = 5), L =
5, . . . , 14 (keeping n = 500 and q = 10), and q =
10, 20, . . . , 100 (keeping n = 500 and L = 5). The to-
tal CPU times in seconds on a 2.9 GHz 6-Core Intel Core
i9 laptop are provided in the Supplementary Materials. The
greedy search appears to scale linearly in n and L, and
quadratically in q, which agrees with the complexity analy-
sis in Section 5. It is moderately scalable: e.g., for q = 100,
the search completes in about 3 hours.

Denser Graphs. In the Supplementary Materials, we
present additional simulation scenarios with denser graphs
for q = 50 nodes and more v-structures, which lead to sim-
ilar conclusions, i.e., OCD significantly outperforms the
competing methods in SHD and SID.

6.1.3 Bivariate Ordinal Data with Unmeasured
Confounders

While our identifiability theory assumes no unmeasured
confounders, we now empirically test the sensitivity of OCD
to unmeasured confounders for bivariate ordinal data. We
generate trivariate ordinal data (X1, X2, X3) with L = 5
from the following true causal graph,

X1 X2

X3

We hide X3 as a confounder and apply OCD to (X1, X2). In
the simulation truth, we assume βjkℓ, for each ℓ = 1, . . . , L,
to be the same for all j ̸= k, i.e., the confounding effect
is the same as the causal effect, which is simulated from
N(0, σ2). We consider different levels of signal strength
σ = 0.25, 0.5, 0.75, 1, 1.25, 1.5 and different sample sizes
n = 100, 200, . . . , 1000. Under each combination of (σ, n),
we repeat the experiment 100 times, and report the average
accuracy (ACC) for forced decisions. The forced decision
forces methods to choose between X1 → X2 and X2 →
X1. The same metric has been used in similar bivariate
causal discovery problems [Mooij et al., 2016, Tagasovska
et al., 2020]. OCD is relatively robust to confounders (Figure
4(a)): it is able to correctly identify the causal direction given
a large enough sample size or when the signal is sufficiently
strong. For comparison, we apply a recent causal discovery
method for bivariate nominal categorical data, HCR [Cai
et al., 2018]. Its average ACC is shown in Figure 4(b). We
find the ACC of HCR is uniformly lower than that of OCD
although we note that HCR is not specifically designed for
this task.

6.2 SACHS’S SINGLE-CELL FLOW CYTOMETRY
DATA

We evaluate the proposed OCD on the well-known single-
cell flow cytometry dataset [Sachs et al., 2005], which con-
tains measurements of q = 11 phosphorylated proteins un-
der different experimental conditions. Sachs et al. 2005 pro-
vided a consensus causal network of these proteins, which
could be used to gauge the performance of causal discovery
algorithms. As in Tagasovska et al. 2020, we consider the
cd3cd28 dataset with 853 cells subject to the same experi-
mental condition.

Implementations. Since the raw measurements are highly
skewed and heavy-tailed, Sachs et al. 2005 discretized the
data into L = 3 levels ("low", "average", and "high") and
fit a multinomial BN based on the BDe score. As we will
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(c) SHD in q (σ = 0.75)
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Figure 3: SHD (lower is better) for OCD, BDe, BIC, and BIC+ as functions of q in the synthetic ordinal data with the sample
size fixed at n = 500 and different signal strength σ ∈ {0.25, 0.5, 0.75, 1}.
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Figure 4: Synthetic ordinal data with confounders. Average ACC (higher is better) of (a) OCD and (b) HCR under different
sample sizes and levels of signal strength.

see, this approach throws away the ordinal information in-
herent in the raw measurements and hence significantly
underperforms OCD (with greedy search). For compari-
son, we also apply ANM [Hoyer et al., 2009], LiNGAM
[Shimizu et al., 2006], RESIT with the Gaussian process
implementation [Peters et al., 2014], bivariate causal dis-
covery methods (HCR, bQCD [Tagasovska et al., 2020],
GR-AN [Hernandez-Lobato et al., 2016], IGCI with uni-
form measure [Janzing et al., 2012], SLOPE [Marx and
Vreeken, 2017]), and methods inferring Markov equivalence
classes (PC [Spirtes et al., 2000], CPC [Ramsey et al., 2012],
GES [Chickering, 2002], IAMB [Tsamardinos et al., 2003],
multinomial BNs with BIC and BDe), and the mixed data
approach MXM [Tsagris et al., 2018] to the raw continuous
data. For bivariate causal discovery methods, we follow a
similar ad hoc procedure in Tagasovska et al. 2020: first run
CAM [Bühlmann et al., 2014] and then orient the estimated
edges by the bivariate methods. HCR is the closest competi-
tor as it is also designed for categorical data although with
a very different scope (only applicable to bivariate nomi-
nal categorical data and assuming the existence of hidden
compact representations). We still compare the proposed

OCD with OSEM. To address the tuning parameter issue
of OSEM, we tune it in an oracle way on an evenly-spaced
12-grid from 0.5 to 6.0.

Metrics. We use the same SHD and SID metrics as in Sec-
tion 6.1. For methods that output CPDAGs instead of BNs,
we report the lower and upper bounds of SID.

Results. In Table 1, we summarize the SHD and SID. OCD
shows very strong performance comparing to state-of-the-
art alternatives. It has the lowest SHD and the second lowest
SID, which shows benefit of discretization for highly noisy
data. The substantial improvement of OCD from multino-
mial BN with BDe (SHD 14 vs 21) highlights the impor-
tance of exploiting the ordinal information of discrete data
for causal discovery. While there is strong motivation (e.g.,
biological interpretation) to use L = 3 for this dataset, we
test OCD with L up to 10. OCD stays very competitive
within this range: the SID remains 62 for all L whereas
the SHD slightly increases as L increases possibly due to
relatively small sample size, e.g., SHD = 16 for L = 10,
which is still quite competitive (second to SHD = 15 for
bQCD and IGCI). The smallest SHD that OSEM achieves



over the range of tuning parameter is 18.

Table 1: Sachs’s data. Methods (marked by *) that are
only applicable to bivariate data are combined with CAM.
PC, CPC, GES, IAMB, BIC, BDe, and MXM only learn
CPDAGs; we provide the lower and upper bounds of SID.
Lower SHD and SID are better.

OCD bQCD* IGCI* GR-AN*
SHD 14 15 15 16
SID 62 69 82 80

HCR* SLOPE* ANM LiNGAM
SHD 16 17 17 17
SID 76 86 78 86

PC CPC GES IAMB
SHD 18 18 18 20
SID 50-83 50-80 50-80 79-70

BIC BDe MXM RESIT
SHD 20 21 21 40
SID 53-77 49-104 49-104 45

6.3 CAUSEEFFECTPAIRS (CEP) BENCHMARK
DATA

We consider the CauseEffectPairs (CEP) benchmark data
[Mooij et al., 2016] (version: 12/20/2017), which contain
108 datasets from 37 domains (e.g., biology, economy, engi-
neering, and meteorology). Each dataset contains a pair of
variables (X,Y ) for which the causal relationship is clear
from the context, e.g., older "age" causes higher "glucose".
We retain the same 99 pairs as in Tagasovska et al. 2020 that
have univariate non-binary cause and effect variables.

Implementations. We compare OCD with HCR, bQCD,
IGCI, CAM, SLOPE, LiNGAM, and RESIT. To apply OCD
and HCR, we discretize each variable at L − 1 quantiles
for L ∈ {10, . . . , 20}. All other methods are applied to the
(standardized) continuous data without discretization.

Metrics. We compute the ACC for forced decisions as in
Section 6.1.3 and, additionally, the area under the receiver
operating curve (AUC) for ranked decision. The ranked
decision ranks the confidence of the causal direction [Mooij
et al., 2016, Tagasovska et al., 2020]. The simple heuristic
confidence [Mooij et al., 2016] is adopted here. For instance,
for the proposed OCD, we define the confidence of X → Y
to be CX→Y = BIC(Y → X|x)− BIC(X → Y |x).

Results. In Table 2, we summarize the ACC, AUC, and
CPU times. For OCD and HCR, the average metrics over
L = 10, . . . , 20 as well as their standard errors are reported.
The proposed OCD is highly competitive in all metrics.
OCD has the second highest ACC and AUC, and is fast; it
completes the analysis of 99 datasets in 36 seconds. Only
IGCI, CAM, and LiNGAM are faster but they have worse
ACC and AUC than OCD. SLOPE has slightly higher ACC
and AUC than OCD. However, SLOPE is about 1 or 2 or-

ders of magnitude slower than OCD and relatively sensitive
to small added noise (see the additional experiments that
investigate the "Sensitivity to Small Added Noise" in the
Supplementary Materials). Finally, the small standard er-
rors of the performance metrics of OCD indicate its relative
robustness with respect to the number L of levels of dis-
cretization for the considered datasets and range.

Table 2: CEP data. Metrics of OCD and HCR are averaged
over different values of L = 10, . . . , 20 with standard errors
given within the parentheses. Higher ACC and AUC are
better.

OCD HCR bQCD CAM
ACC 0.73 (0.01) 0.44 (0.02) 0.70 0.58
AUC 0.76 (0.00) 0.56 (0.02) 0.72 0.58
CPU 36s (1.7s) 12m (2.2m) 7m 11s

IGCI SLOPE LiNGAM RESIT
ACC 0.66 0.76 0.42 0.53
AUC 0.51 0.84 0.59 0.56
CPU 1s 24m 3s 12h

6.4 SINGLE-CELL RNA-SEQUENCING DATA

We further validate the proposed OCD with a publicly avail-
able single-cell RNA-sequencing (scRNA-seq) dataset of
2, 717 murine embryonic stem cells [Klein et al., 2015]. We
obtain a list of literature-curated pairs of transcription factor
(X) and its target (Y ) from the TRRUST database [Han
et al., 2018], which provides biological ground truth of the
casual relationships, namely X → Y . We then extract the
corresponding genes from the scRNA-seq dataset. Remov-
ing genes with more than 90% zeros (these genes have very
low statistical variability), we retain 6701 pairs for causal
validation, which still have 62% zeros. The zeros in scRNA-
seq data are either (a) true biological zero counts or (b) small
counts that are too low to detect. In either case, they can be
regarded as "low expression". We compare OCD with the
best performing methods in Section 6.3, bQCD and SLOPE,
as well as the closest competitor HCR. We are not able
to generate results (runtime errors) from CAM, LiNGAM,
and RESIT possibly because of the large percentages of
zeros. To apply OCD and HCR, we trichotomize the data
at 0 and the median of the non-zero expression (i.e., "low",
"average", and "high" expression). ACC and CPU time are
reported in Table 3. OCD is the best and is the only method
that is better than random guess (p-value = 10−75, binomial
test with H0 : p = 0.5 vs Ha : p > 0.5) for this dataset pos-
sibly because of its highly non-standard distribution due to
zero-inflation. Therefore, although discretizing continuous
or count data may lose information, it often improves the ro-
bustness by not having to impose a particular distributional
assumption on the raw data.



Table 3: Single-cell RNA-seq data. Higher ACC is better.

OCD HCR bQCD SLOPE
ACC 0.61 0.36 0.45 0.50
CPU 19m 22m 3.4h 2h

7 CONCLUSION

There are several limitations of the current work, which we
plan to address in our future work. First, the current score-
and-search algorithm outputs a point estimate of the causal
graph with no uncertainty quantification and no global con-
vergence guarantee. We plan to develop a fully Bayesian ap-
proach by assigning sparse priors (i.e., spike-and-slab priors
on β’s) and carrying out posterior inference via the Markov
chain Monte Carlo. Second, we have empirically assessed
the identifiability of the proposed OCD for multivariate data
and for bivariate data with unmeasured confounders. The
identifiability theory for multivariate categorical data or bi-
variate categorical data with unmeasured confounders is in
general lacking in the causal discovery literature. Third, we
have not explicitly addressed the problem of choosing the
number L of categories in data discretization. We picked
L = 3 for genomic data by convention and assessed its
robustness up to L = 10. For non-genomic data, there is no
obvious/universal choice of L. Instead of picking a specific
L, we have tested the proposed OCD in a range of values.
In the future, we plan to propose data-driven ways (e.g., via
BIC) to objectively choose L.
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