
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARGBENCH: A LEAN BASED BENCHMARK FOR AUTO-
MATED THEOREM PROVERS ON GENERAL-PURPOSE
REASONING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in reinforcement learning–based large-model theorem provers
have demonstrated remarkable progress in formal mathematical proof. However,
their capabilities in broader formal reasoning tasks remain unclear. To address this
gap, we introduce ArgBench, a benchmark dataset grounded in formal argumenta-
tion theory, designed to systematically evaluate large models on key abilities such
as novel concept understanding and counterexample construction.
Our main contributions are as follows. First of all, we select formal argumen-
tation theory—a relatively underexplored domain in logic with many open prob-
lems—which substantially reduces the risk of pretraining data leakage or contam-
ination and enables a more faithful assessment of models’ capacity to adapt to new
definitions and rules. Secondly, we propose a type-theoretic automatic generation
method that constructs large-scale datasets at minimal human cost. Thirdly, the
generation algorithm is decoupled from any specific domain, allowing straightfor-
ward transfer to other formal reasoning settings.
Evaluation on ArgBench reveals that mainstream large-model provers perform
poorly overall, with Goedel Prover achieving only a 5.7% success rate. Further
analysis highlights a particular weakness in counterexample construction. Based
on these findings, we suggest a promising direction: using ArgBench as a train-
ing environment to enhance counterexample construction through reinforcement
learning, thereby advancing toward more general-purpose formal reasoning.

1 INTRODUCTION

LLMs combined with proof assistants (e.g., Lean/Isabelle) have rapidly advanced machine-
checkable reasoning, aided by autoformalization, reinforcement learning (RL), and agentic orches-
tration (Polu & Sutskever, 2020; Zheng et al., 2021; Lin et al., 2025; Wang et al., 2025; Ren et al.,
2025; Zhou et al., 2025; Chen et al., 2025). State-of-the-art systems attain strong scaling on miniF2F
and related suites, either by step-level interaction with search or by whole-proof generation aug-
mented with long reasoning traces and verifier feedback. While this progress is notable, most
evaluations remain in-distribution: models operate within well-known libraries and fixed logical
infrastructure, raising the question of how well they generalize to new formal rules and definitions
introduced only at test time.

We address this gap with ArgBench, which frames evaluation in the niche but expressive setting of
formal argumentation. In Dung-style argumentation frameworks (AFs), nodes are arguments and
directed edges encode attacks; semantics (e.g., grounded, preferred, stable) specify which sets of ar-
guments are acceptable under conflict and defense (Dung, 1995). This domain is appealing for three
reasons: (i) it is comparatively niche, reducing pretraining contamination; (ii) solving tasks requires
semantic uptake—the model must internalize freshly provided definitions (attack, conflict-freeness,
defense) and apply a specified semantics; and (iii) the reasoning patterns abstract to transferable
procedures (e.g., fixpoint computations on graphs) that recur across formal systems (verification,
modal/temporal logics). In spirit, ArgBench complements recent FTP pipelines that scale via ver-
ifiable signals, curriculum/subgoal decomposition, and domain-aware orchestration (Wang et al.,
2025; Ren et al., 2025; Lin et al., 2025; Zhou et al., 2025; Chen et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Contributions. This work introduces ArgBench, a benchmark for automated theorem proving
(ATP) in abstract argumentation, a specific logic for AI, and advances the field along three axes:

Type-theoretic generation algorithm We cast instance synthesis and verification in a lightweight,
curried type-theoretic framework (Pierce, 2002; Harper, 2016; Church, 1940; Curry & Feys, 1958).
This design yields seed-data independence (instances arise whenever some object has tail type
Prop) (Coquand & Huet, 1988; Luo, 1990; Howard, 1980; Girard et al., 1989; Martin-Löf, 1984). ,
a purely algorithmic and scalable pipeline with difficulty tunable via Cn×Dm, substantial instance
diversity despite simple construction rules, and calibrated correctness through an LEM pairing that
fixes the valid/invalid balance at 50%.

Abstract argumentation as the seed domain. We deliberately adopt abstract argumentation to
mitigate data contamination—most generated queries are open-form without canonical published
solutions likely memorized during pretraining—and to catalyze progress in an underexplored logical
area, where large-scale AI triage can surface difficult subcases and focus expert attention.

Empirical evaluation and diagnostic. We evaluate three state-of-the-art provers on ArgBench
and identify a central failure mode: insufficient robustness in counterexample construction; this
suggests incorporating targeted counterexample signals into future reinforcement learning or fine-
tuning pipelines to strengthen semantics-conditioned generalization.

2 RELATED WORK

LLMs for Formal Theorem Proving (FTP). Early neural provers demonstrated that large LMs
can emit tactic sequences or whole Lean scripts but struggled on Olympiad-level math (Polu &
Sutskever, 2020; Zheng et al., 2021). Rapid progress in 2024–2025 came from two directions:
(i) whole-proof generation with RL or curriculum, and (ii) agentic orchestration with verifier-in-
the-loop. On the RL side, Wang et al. (2025) train a 72B “formal reasoning pattern” achieving
strong scaling and state-of-the-art miniF2F scores; Ren et al. (2025) unify informal decomposition
with subgoal curriculum, reporting top results on miniF2F and a new ProverBench. Data-centric
scaling also matters: Lin et al. (2025) autoformalize and bootstrap massive Lean corpora to train
Goedel-Prover, substantially improving pass rates on miniF2F and PutnamBench (Tsoukalas et al.,
2024). On the agentic side, Zhou et al. (2025) show that a general-purpose LLM inside a reflective,
decomposition-and-repair loop can rival bespoke provers; Chen et al. (2025) adopt lemma-style
whole-proof reasoning and a specialized geometry backend to nearly saturate miniF2F while tack-
ling IMO-grade problems. Tooling such as LeanDojo streamlines retrieval-augmented proving and
programmatic access to Lean kernels (Yang et al., 2023). These advances echo broader trends in
scaling and representation learning (Bengio & LeCun, 2007; Hinton et al., 2006; Goodfellow et al.,
2016).

Benchmarks for Formal Reasoning and Generalization. MiniF2F (Zheng et al., 2021) remains
a central Lean benchmark; ProofNet (Azerbayev et al., 2023) couples informal/formal pairs to eval-
uate autoformalization; PutnamBench (Tsoukalas et al., 2024) expands contest coverage. General
reasoning suites (e.g., BIG-bench and GPQA) emphasize difficult, contamination-resistant ques-
tions (Srivastava et al., 2022; Rein et al., 2023), and dynamic testbeds like LiveBench refresh tasks
to mitigate leakage (White et al., 2025). Still, as provers approach saturation on familiar distribu-
tions, evaluating generalization to new definitions and rules becomes crucial—precisely the gap our
argumentation-based benchmark targets.

Autoformalization and Informal–Formal Bridging. LM-powered autoformalization has im-
proved steadily, from code-model pipelines to retrieval- and checker-in-the-loop refinement (Wu
et al., 2022; Azerbayev et al., 2023). Natural-language proof datasets and reasoners (e.g., Natural-
Proofs, ProofWriter) probe the capacity to structure arguments without a proof assistant (Welleck
et al., 2021; Tafjord et al., 2021). Recent FTP systems increasingly incorporate such bridges (e.g.,
informal decomposition guiding formal subgoals (Ren et al., 2025)), suggesting a convergent path
where informal reasoning scaffolds formal synthesis.

Agentic Orchestration, Tools, and ATP Hybrids. From early RL-in-the-assistant environments
(HOList/DeepHOL, CoqGym) (Bansal et al., 2019; Yang & Deng, 2019) to modern SWE-style

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: An overview of our framework

agent frameworks, test-time tool use improves sample efficiency and robustness. Verifier feedback,
retrieval, and domain backends (e.g., geometry engines) are increasingly standard in frontier provers
(Chen et al., 2025). More generally, scaling laws for reasoning benefit from structure-inducing
supervision (e.g., chain-of-thought prompting (Wei et al., 2022)) and verifiable signals, while strong
base models (e.g., GPT-4) exhibit “sparks” of advanced reasoning yet still rely on orchestration for
reliability (Bubeck et al., 2023; OpenAI, 2023). Foundational infrastructures (Lean 4; Isabelle/HOL)
anchor this progress with fast kernels and mature libraries (de Moura & Ullrich, 2021; Nipkow et al.,
2002).

3 METHODOLOGY

Principle-based methodology. Principle-based methodologyYu et al. (2021) is a prominent line
of inquiry in argumentation theoryAlfano et al. (2024); Amgoud & Vesic (2011). It examines the sat-
isfiability of different principles across classes of argumentation frameworksFazzinga et al. (2022);
Bonzon et al. (2016). More generally, given n classes of frameworks and m target conclusions, one
considers an n × m table that records, for each pair, whether the conclusion is satisfiable within
that class. The entry in row i, column j indicates the satisfiability of the j-th conclusion for the
i-th framework class. Each cell takes one of two values: fully satisfiable or not fully satisfiable.
The former means the conclusion holds uniformly across all frameworks in that class (i.e., for every
instance of class i, the j-th conclusion is true); the latter means there exists at least one framework
in class i that violates the j-th conclusion.

Our approach. Our dataset-generation procedure is inspired by, and extends, this principle-based
perspective. At core, an argumentation framework is a specialized graph endowed with framework-
level properties; distinctions between framework classes reduce to differences in data structure and
in these properties. Because data and constraints are coupled, we cannot, as in propositional logic,
freely permute premises to synthesize new instances. To enable flexible instance construction, we
first decouple logic from data. Concretely, we generate the logic first and instantiate the data
second: we (i) construct, without restrictions, proposition-forming constructors whose tail type is
Prop as candidate constraints, (ii) supply the free variables required by these constructors, and (iii)
convert those free variables into constrained (bound) variables, thereby closing the instance.

3.1 PRELIMINARIES

3.1.1 TAIL TYPE

We work in the simply typed λ-calculus (STLC) with curried arrow types, where arrows associate
to the right.

Type layer (STLC). Types are generated by the grammar

τ ::= α | τ → τ,

where α ranges over base types (e.g., Bool, Nat, or a structured type AF). By convention, A →
B → C ≡ A→ (B → C).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 1 (Tail type) For any type τ , define its tail type tail(τ) inductively by

tail(α) ≜ α, tail(σ → ρ) ≜ tail(ρ).

Equivalently, view τ as a binary tree whose internal nodes are “→” and whose leaves are (base
or non-arrow) types; then tail(τ) is the rightmost leaf of this tree. In particular, tail(A1 → · · · →
An → R) = R.

Term layer. Suppose Γ ⊢ t : τ with τ ≡ A1 → · · · → An → R. For any arguments Γ ⊢ ai : Ai,
consider the full application

t a1 · · · an
β∗

−−→ v,

where v is in β-normal form. By subject reduction and progress,

Γ ⊢ t a1 · · · an : R and Γ ⊢ v : R,

hence R = tail(τ). In words: the result type of a fully applied term, after β-reduction to normal
form, coincides with the tail type of its original type.

Example 1 If τ = A → (B → C), then tail(τ) = C. If Γ ⊢ t : τ , Γ ⊢ a : A, and Γ ⊢ b : B, then

t a b
β∗

−→ v with Γ ⊢ v : C.

Intuitively, the tail type is the residual codomain after stripping all left-hand arrow binders (formal
parameters) from a curried type; equivalently, it is the result type obtained by fully applying any
term of that type and reducing to β-normal form.

A Remark. We define the tail type tail(τ) at the type level as the rightmost codomain of a (right-
associated) curried arrow type; at the term level we prove that the β-normal result of a fully applied
term of type τ has type tail(τ); for dependent products we write tailΠ (with explicit argument
indices) to denote the argument-dependent rightmost codomain—this is a notational refinement of
the same type-level notion, not a separate concept.

Our dataset-generation pipeline consists of five sequential stages:proposition constructor genera-
tion, constraint selection, conclusion construction, quantificational closure of free variables, and
law-of-excluded-middle (LEM) strengthening. We’ll go over each stage in detail below.

3.2 PROPOSITION CONSTRUCTOR GENERATION

The aim of this stage is to identify all candidate proposition constructors, namely terms whose tail
type is Prop. A proposition constructor is any term c : τ with tail(τ) = Prop. For example,

λ(x : N). x = 0 : N → Prop

is a proposition constructor: given a natural number, it yields the proposition asserting that the input
equals 0.

Accordingly, we scan the available primitive objects (constants and closed terms) and perform a
tail-type check. Via a simple structural recursion on types, we collect into a set S all objects whose
tail type is Prop; these constitute the pool of candidate proposition constructors.

3.3 CONSTRAINT SELECTION

In this step, we choose a subset C ⊆ S of the candidate proposition constructors to serve as as-
sumptions (constraints). By logical monotonicity, for any C1, C2 ⊆ S, if C1 ⊆ C2 and a conclusion
is derivable from C1, then it is also derivable from C2. Hence, using more assumptions weakly
simplifies derivability.

Assume S contains n proposition constructors. Let

Cn := {C ⊆ S | |C| = n }

denote the family of size-n subsets of S. In the experiments reported in this paper, we set n = 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.4 CONCLUSION CONSTRUCTION

In general, we regard a conclusion as a compound proposition built from atomic propositions using
logical connectives. Any compound proposition can be put into conjunctive normal form (CNF),
i.e., as a conjunction of disjunctive clauses. Moreover, implication distributes over conjunction on
the right,

A→ (B ∧ C) ⇐⇒ (A→ B) ∧ (A→ C),

so proving a disjunction as a whole under the same antecedent is equivalent to proving each conjunct
separately. Consequently, it suffices to consider conclusions that are (conjunctive) clauses.

Conceptually, premises and conclusions are both just propositions; they differ only in their roles
within an instance. We therefore construct conclusions from the same candidate pool used for con-
straints. Let Cn be the family of size-n subsets of S. We define the candidate conclusion set

Bm :=

{ ∨
ai∈B

ai

∣∣∣∣∣ B ∈ Cn

}
, where ai ∈ {ai,¬ai}.

In the experiments reported in this paper, to control the total number of conclusions, we fix ai = ai
(i.e., we do not introduce negations).

3.5 QUANTIFICATIONAL CLOSURE OF FREE VARIABLES

In the final step, we select an element (a, b) ∈ An×Bm to form a (premise, conclusion) constructor
pair (C,D), and we discard trivial cases in which the conclusion syntactically contains one of the
premises. At this stage, both the conclusion and the premises are still constructor states targeting
Prop; therefore, we need to supply constrained variables and obtain propositions via β-reduction.
To this end, we first extract the free variables (i.e., curried parameter types) of a constructor:

Free(S) =

{
∅ if S : Prop,

{A} ∪ Free(B) if S : A→ B.

Given the set of premises C and the conclusion D, define

F :=

(⋃
c∈C

Free(c)

)
∪ Free(D).

For each A ∈ F , introduce a fresh constrained variable xA:A and write f(A) = xA for the envi-
ronment. We instantiate constructors by feeding these variables and performing β-reduction via the
following recursive replacement:

Rf (S) =

{
S if S : Prop,

Rf
(
S xA

)
if S : A→ B and A ∈ F.

This yields instantiated premises and conclusion

C∗ := {Rf (c) | c ∈ C }, D∗ := Rf (D),

and the unclosed implication

Φ :=

 ∧
ψ∈C∗

ψ

 → D∗.

Next, we close all constrained variables with quantifiers. Let Σ := {σ : F → {∀, ∃}} and Π := S|F |
be the full permutation group. Since the presence of existential quantifiers breaks commutativity of
quantifier prefixes, we enumerate permutations only when necessary:

Q(F) :=
{
Quant(π, σ)

∣∣∣ σ ∈ Σ, π ∈

{
{id} if ∀A ∈ F, σ(A) = ∀,
Π otherwise

}
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where the action of a quantifier prefix on a formula φ is (for a fixed ordering F = {A1, . . . , An})

Quant(π, σ)[φ] :=
(
σ(Aπ(1))xAπ(1)

:Aπ(1)
)
· · ·
(
σ(Aπ(n))xAπ(n)

:Aπ(n)
)
φ.

Therefore, the candidate set of closed formulas associated with (C,D) is

P(C,D) :=
{
Quant(π, σ)[Φ]

∣∣ Quant(π, σ) ∈ Q(F)
}
.

To remove trivialities, define a decision function Trivial(·): if there exists ψ ∈ C∗ such that, after
allowing α-renaming and restricted βη-equivalences, D∗ contains ψ as a syntactic subformula, then
the formula is labeled trivial. The final output is

Pnontriv(C,D) :=
{
φ ∈ P(C,D)

∣∣ ¬Trivial(φ)
}
.

Remark. In a dependent type setting, the relative order of quantifiers and parameters must respect
dependency; the above enumeration of Q(F) implicitly assumes a simple (non-dependent) type
discipline and should be adapted to dependency-aware permutations when needed. In our experi-
ments, we adopt a simple setting that only considers universal quantifiers. Under this assumption,
all quantifiers commute, so we keep a single canonical order (along the fixed ordering of F) and
write

Q(F) = ∀xA1
:A1 ∀xA2

:A2 · · · ∀xA|F | :A|F |,

each xAi
is the corresponding constrained variable.

We now encode the construction of a closed problem formula from a (conditions, conclusion) pair
as a function R. Let

Φ :=
(∧
c∈C

Rf (c)
)

→ Rf (D),

then, in the universal-quantifier setting,

R(C,D) := Q(F) [Φ] =
(
∀xA1

:A1 · · · ∀xA|F | :A|F |

)(∧
c∈C

Rf (c) → Rf (D)
)
,

.

Finally, we apply R to all pairs in An ×Bm and remove the trivial cases in which the conclusion
syntactically contains a condition, obtaining the set of formulas

P :=
{
R(C,D)

∣∣ (C,D) ∈ An ×Bm, ¬Trivial
(
R(C,D)

) }
.

If existential quantifiers are introduced in future settings, one must restore the enumeration over
quantifier assignments and (when necessary) over permutations of the quantifier prefix. In the
present universal-only setting, this enumeration is unnecessary.

3.6 LAW-OF-EXCLUDED-MIDDLE (LEM) STRENGTHENING

However, formulas constructed in this way may be false or even unprovable. In argumentative
settings, prior work suggests that known equivalences are a vanishingly small fraction of the enu-
merated search space; consequently, most of the formulas we generate are open, and we cannot tell
whether a failure to prove a formula is due to its falsity or to the prover’s limitations. To address this,
we adopt a simple augmentation based on the Law of Excluded Middle (LEM). For every problem
p ∈ P , we also include its negation, yielding the augmented set

P̄ = P ∪ { ¬p | p ∈ P }.

Under classical, sound, and complete reasoning, exactly one of p or ¬p is valid (and thus provable),
ensuring that precisely half of the instances in P̄ are correct/provable. This provides a reliable
denominator when computing proof success rates.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: The Structure of the Counter Example

4 EXPERIMENTS

We take structured abstract argumentation as the base domain and extract |S| = 17 formula con-
structors from our formal code base. Using the generation setting C2 × D1, we produce 858
condition–conclusion pairs, i.e., 1716 formulas in total (each pair yields a positive instance and
its negation via the LEM augmentation). Aggregating these 858 pairs gives the benchmark we refer
to as ArgBench.

We evaluate four state-of-the-art open-source automated theorem provers. The results are summa-
rized in Table 1. “PassNum” counts the number of pairs for which a (positive or negative) proof was
found, and “PassRate” is computed against the 858 pairs. “Positive Proof” and “Negative Proof”
report, respectively, how many positive instances and negated instances were proved.

Prover PassNum PassRate Params Samples Positive Negative
Goedel-Prover-V2 49 5.71% 8B 1 49 0
Kimina-Prover-RL 0 0.00% 1.7B 1 0 0
Kimina-Prover-Distill 0 0.00% 7B 1 0 0
DeepSeek-Prover-V2 70 8.16% 7B 1 70 0

Table 1: Results on ArgBench (858 pairs / 1716 formulas). “PassRate” is PassNum divided by 858.

We observe that two provers exhibit nontrivial transfer: although designed primarily for mathe-
matical problem solving, they can still prove a subset of our logical instances. However, none of
the systems successfully prove negative instances. In principle, refuting a false statement can be
straightforward—often a single counterexample suffices. Below we present a human-written refuta-
tion based on a concrete counterexample to illustrate the simplicity of such proofs for many negated
instances.

1 def SimpleAF2:AF (Fin 2):={att:=fun x y =>(x=0∧y=1)∨(x=1 ∧y=0)}
2 def S02 : Set (Fin 2) := {x | x = 0}
3 def S0 : Set (Fin 2) := ∅
4 theorem test:¬(∀(Arg:Type),∀ (S:Set Arg),∀ (G:AF Arg),
5 AF.stable G S → AF.complete G S → AF.grounded G S) := by
6 push_neg;use (Fin 2),S02,SimpleAF2;repeat constructor;
7 repeat simp[S02,SimpleAF2];
8 intros;omega;constructor;simp[S02,SimpleAF2];intro a b;by_contra ha
9 have ha:a=1:=by omega

10 rw [ha] at b;simp at b;by_contra h;have h1:= h.1
11 have h3: SimpleAF2.complete S0:= by
12 constructor;simp[SimpleAF2,S0];intro a h1;simp[S0]
13 by_cases h:a=0
14 rw [h] at h1;simp[SimpleAF2,S0] at h1;
15 have ha:a=1:= by omega
16 rw [ha] at h1;simp[SimpleAF2,S0] at h1
17 have h4:=(h.2 S0) h3;simp [S02,S0] at h4

Listing 1: Counterexample to Stable + Complete ⇒ Grounded

In this proof, we construct an exceptionally simple counterexample. We define the set S2 = {0}
and the set S0 = ∅. In the argumentation framework shown in Figure 2, S2 is a stable and complete
extension, but it is not a grounded extension, as the grounded extension is S0. While classical
automated theorem provers (ATPs), such as Nitpick, can find such counterexamples, current large
language models do not yet possess this constructive capability.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

An alternative route is to leverage Isabelle/HOL’s NITPICK tool to rapidly search for counterex-
amples and thereby validate refutations. One can use NITPICK to auto-generate (counter)model
witnesses for candidate formulas, then convert these witnesses into labeled instances to expand the
dataset and train proof models with richer negative supervision.

5 CONCLUSION

Grounded in the formal problem of abstract argumentation, we introduce ArgBench, a benchmark
for automated theorem proving, and evaluate it on three state-of-the-art (SOTA) models. The results
indicate that, despite its seemingly simple construction, the dataset remains challenging for current
systems.

This paper makes three primary contributions as follows:

5.1 A TYPE-THEORETIC METHOD FOR DATASET CONSTRUCTION

We propose a novel, type-theoretic approach to dataset construction and augmentation, with the
following advantages:

1. Seed-data independence. The procedure imposes no requirements on seed data: as long
as there exists an object whose tail type is Prop, instances can be synthesized. This con-
fers strong generality, especially for new, open domains, enabling AI to rapidly explore
unfamiliar territories and derive basic conclusions, thereby advancing AI4Science.

2. Purely algorithmic pipeline. No learned model is used for augmentation; the process is
driven entirely by enumeration. Consequently, we can synthesize arbitrarily large datasets
at very low cost and control difficulty by tuning the parameter Cn ×Dm. As model capa-
bilities improve, the same knobs can be adjusted accordingly.

3. Diversity of instances. Although the generation procedure may appear to yield limited
variety, experiments show that most synthesized conjectures are in fact unprovable. This
reflects the inherently “chaotic” nature of mathematics: small perturbations to the premises
can invalidate prior proofs and necessitate new ones.

4. Correctness guarantees. Our logical design yields reliable validity estimates. For in-
stance, early datasets such as MiniF2F include misformalized items that are, in princi-
ple, unprovable; auto-formalized corpora suffer similar issues. By employing a law-of-
excluded-middle (LEM) pairing technique, we guarantee that exactly 50% of our instances
are valid, enabling precise measurement of model ability.

5.2 ABSTRACT ARGUMENTATION AS THE SEED DOMAIN

As the seed problem, we deliberately adopt abstract argumentation, a comparatively niche area of
logic, for two reasons:

1. Mitigating data contamination. Most generated questions are open problems without
published solutions. In contrast to many standard mathematics problems with fixed an-
swers that may have been seen during pretraining, our instances more cleanly probe model
capability.

2. Stimulating underexplored fields. As automated proving improves, datasets constructed
via our method can help catalyze progress in such domains. Large-scale AI triage can
surface especially difficult subcases and efficiently direct expert attention.

5.3 EMPIRICAL ANALYSIS ON SOTA MODELS

Our experiments diagnose a central failure mode: poor performance largely stems from the lack
of robust counterexample construction. We recommend incorporating targeted training signals for
counterexample generation in future reinforcement learning or fine-tuning pipelines, so that models
can adapt to a broader range of situations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 FUTURE WORK

There are several directions for strengthening our framework:

1. Supporting multiple objects of the same type. At present, variables of the same type
collapse to a single representative. In principle, one can partition objects of a given type
into equivalence classes; our current setting corresponds to the special case with a single
class. Each class could then be constrained by distinct quantifiers.

2. Supporting nested constructor chaining. We currently instantiate only direct propo-
sitional constructors. More generally, heterogeneous objects can be composed via β-
reduction to yield new propositional constructors.

3. Supporting difficulty decomposition. Our theory suggests that enlarging the premise
set typically simplifies proofs. We can introduce a mechanism that, upon a proof failure,
automatically strengthens the premises to reduce difficulty. If adding a pair of mutually
exclusive conditions renders both branches provable, one effectively obtains a proof by case
analysis of the original statement. This differs from commonly used “subgoal guessing”
heuristics.

REFERENCES

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Irina Trubitsyna, et al. General epistemic
abstract argumentation framework: semantics and complexity. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, pp. 3206–3214, 2024.

Leila Amgoud and Srdjan Vesic. A new approach for preference-based argumentation frameworks.
Annals of Mathematics and Artificial Intelligence, 63(2):149–183, 2011.

Zhandos Azerbayev, Zoltán András Zombori, Yuhuai Wu, Stanislas Polu, Markus N. Rabe, Christian
Szegedy, et al. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023. URL https://arxiv.org/abs/2302.12433.

Kshitij Bansal, Sarah Loos, Markus N. Rabe, Christian Szegedy, Ian Wilcox, and Noam Zeilberger.
Holist: An environment for machine learning of higher order logic theorem proving. In ICML,
2019.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet. A comparative study
of ranking-based semantics for abstract argumentation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Kira Radinsky, Noam Simmons, and Yi Zhang. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving. arXiv preprint
arXiv:2507.23726, 2025. URL https://arxiv.org/abs/2507.23726.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):
56–68, 1940.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computation,
76(2–3):95–120, 1988.

Haskell B. Curry and Robert Feys. Combinatory Logic, Volume I. North-Holland, 1958.

9

https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2507.23726

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and its meta-programming
framework. In CADE, 2021.

Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence, 77(2-3):321–357, 1995.
doi: 10.1016/0004-3702(94)00041-X.

Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, et al. Abstract argumentation frameworks with
marginal probabilities. In IJCAI, pp. 2613–2619, 2022.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University Press,
1989.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, volume 1. MIT Press, 2016.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

William A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, 1980.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving. arXiv preprint arXiv:2502.07640, 2025. doi: 10.48550/arXiv.2502.
07640. URL https://arxiv.org/abs/2502.07640.

Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023.

Zhuozhao Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning
via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025.
URL https://arxiv.org/abs/2504.21801.

Aarohi Srivastava et al. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. arXiv preprint arXiv:2206.04615, 2022.

Øyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Findings of ACL, 2021.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. arXiv preprint arXiv:2407.11214, 2024. doi: 10.48550/arXiv.
2407.11214. URL https://arxiv.org/abs/2407.11214. NeurIPS 2024 Datasets &
Benchmarks Track.

10

https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2407.11214

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Haiming Wang, Kimina Team, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco
Dos Santos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover
preview: Towards large formal reasoning models with reinforcement learning. arXiv preprint
arXiv:2504.11354, 2025. URL https://arxiv.org/abs/2504.11354.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS, 2022.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
Cho. Naturalproofs: Mathematical theorem proving in natural language. In NeurIPS Datasets
and Benchmarks, 2021.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging, contamination-
limited llm benchmark. In International Conference on Learning Representations (ICLR), 2025.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Chris-
tian Szegedy. Autoformalization with large language models. In NeurIPS, 2022.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
ICML, 2019.

Kaiyu Yang, Aidan Swope, Jiaxuan Li, Sahil Choudhary, Chenyang Yuan, Zhaozhong Ni, Linyi
Yang, Aditya Kusupati, Alexander Wettig, Jian Ma, et al. Leandojo: Theorem proving with
retrieval-augmented language models. In NeurIPS Datasets and Benchmarks, 2023.

Liuwen Yu, Dongheng Chen, Lisha Qiao, Yiqi Shen, and Leendert van der Torre. A Principle-based
Analysis of Abstract Agent Argumentation Semantics. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning, pp. 629–639, 11 2021.
doi: 10.24963/kr.2021/60. URL https://doi.org/10.24963/kr.2021/60.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: A cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021. URL https:
//arxiv.org/abs/2109.00110.

Yutian Zhou et al. Solving formal math problems by decomposition and iterative repair (delta
prover). arXiv preprint arXiv:2507.15225, 2025. URL https://arxiv.org/abs/2507.
15225.

11

https://arxiv.org/abs/2504.11354
https://doi.org/10.24963/kr.2021/60
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2507.15225
https://arxiv.org/abs/2507.15225

	Introduction
	Related Work
	Methodology
	Preliminaries
	Tail type

	Proposition Constructor Generation
	Constraint Selection
	Conclusion Construction
	Quantificational Closure of Free Variables
	Law-of-excluded-middle (LEM) Strengthening

	Experiments
	Conclusion
	A Type-Theoretic Method for Dataset Construction
	Abstract Argumentation as the Seed Domain
	Empirical Analysis on SOTA Models

	Future Work

