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Abstract

Discount regularization, using a shorter planning
horizon when calculating the optimal policy, is
a popular choice to restrict planning to a less
complex set of policies when estimating an MDP
from sparse or noisy data (Jiang et al., 2015). It
is commonly understood that discount regular-
ization functions by de-emphasizing or ignoring
delayed effects. In this paper, we reveal an alter-
nate view of discount regularization that exposes
unintended consequences. We demonstrate that
planning under a lower discount factor produces
an identical optimal policy to planning using any
prior on the transition matrix that has the same dis-
tribution for all states and actions. In fact, it func-
tions like a prior with stronger regularization on
state-action pairs with more transition data. This
leads to poor performance when the transition
matrix is estimated from data sets with uneven
amounts of data across state-action pairs. Our
equivalence theorem leads to an explicit formula
to set regularization parameters locally for indi-
vidual state-action pairs rather than globally. We
demonstrate the failures of discount regularization
and how we remedy them using our state-action-
specific method across simple empirical examples
as well as a medical cancer simulator.

1. Introduction

In reinforcement learning (RL), planning under a shorter
horizon is a common form of regularization. In the most
extreme case, a discount factor of zero results in a contextual
bandit setting. Using a reduced or zero discount factor
for planning is common in real-world applications such
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as mobile health (Liao et al. (2020), Trella et al. (2022)),
medicine (Oh et al. (2022), Awasthi et al. (2022), Durand
et al. (2018)), and education (Cai et al. (2021), Qi et al.
(2018)).

In this paper, we analyze discount regularization in the con-
text of certainty equivalence RL. This means that the agent
takes the estimated model as true when calculating the opti-
mal policy (Goodwin & Sin, 1984). While planning using a
reduced discount factor leads to better-performing policies
in many cases (Jiang et al., 2015; Amit et al., 2020), our
main contribution is to present a deeper conception of this
method that reveals limitations. We do so by first proving
that discount regularization produces the same optimal pol-
icy as averaging the transition matrix for each action with a
transition matrix in which all rows are the same. This can
also be viewed in terms of a prior on the transition matrix.

As further contributions, we utilize our reframing to expose
unintended consequences. One such consequence is that the
magnitude of the prior implied by discount regularization
is higher for state-action pairs with more transition obser-
vations in the data and vice versa. This is generally not
desirable as we want stronger regularization on states that
we have observed less, and want to rely on the data in states
where we have more. Another negative aspect we expose
is the assumption of equal transition distributions for all
state-action pairs, which is inappropriate in many contexts.

We also offer solutions to the problems exposed above in or-
der to tailor regularization to the task at hand— both the data
set and the environment. To mitigate the issue of inconsis-
tent prior magnitudes in data sets with uneven exploration,
we derive a state-action specific formula for the regular-
ization parameter. Furthermore, the method by which we
derive this parameter can be adapted to other priors to match
the transition dynamics of the environment.

Finally, we demonstrate our results empirically on tabular
examples and on a medical cancer dynamics simulator. First,
we empirically confirm that discount regularization and a
uniform prior on the transition matrix yield identical opti-
mal policies. We then demonstrate that a uniform prior with
fixed magnitude across state-action pairs outperforms dis-
count regularization across environments. We also show that
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our state-action-specific regularization parameter reduces
loss without parameter tuning.

2. Related Works

Jiang et al. (2015) demonstrate that planning under a shorter
horizon often yields policies that outperform ones learned
using the true discount factor, even when both are evaluated
in the true environment. They prove that using a lower plan-
ning discount factor restricts the planning to a less complex
set of policies, thereby avoiding overfitting. They further
demonstrate that the benefit of a lower discount factor is
increasingly pronounced in cases where the model is esti-
mated from a smaller data set. Amit et al. (2020) refer to
this concept as “discount regularization,” a term which we
use here. Unlike these works, we provide means to connect
discount regularization with placing a prior on the transition
matrix.

While a Bayesian prior encodes expert knowledge, infor-
mation from previous studies, or other outside information,
we can also view a prior as a form of regularization since it
forces the model not to overfit when data is limited (Poggio
& Girosi, 1990; Ghavamzadeh et al., 2015). This is a flexi-
ble tool that allows us to regularize in a way that matches
our prior knowledge and beliefs about the environment. In
model-based Bayesian RL, the problem is often framed
as a Bayes-Adaptive MDP (BAMDP), an MDP where the
states are replaced by “hyperstates” that reflect the original
state space combined with the posterior parameters of the
transition function (Duff, 2002). In general, Bayesian RL al-
gorithms do not explicitly address planner overfitting; rather
they incorporate the probability distribution over models,
causing the planner not to overfit to an uncertain model. For
example, model-based Bayesian RL methods draw sample
models from the posterior (Asmuth et al., 2012), sample
hyperstates (Poupart et al., 2006), or apply an exploration
bonus based on the amount of data (Kolter & Ng, 2009) or
based on the variance of the parameters (Sorg et al., 2012).
The BAMDP framework can also be extended to the case
of partial observability (Ross et al., 2007; 2011). In this
paper, we consider planning using the posterior mean of
the transition matrix under a Dirichlet prior as a regularized
form of the transition matrix, which is a common choice in
model-based RL, e.g. Vlassis et al. (2012); O’Donoghue
et al. (2020).

Previous works also discuss the limitations of a fixed dis-
count factor and present approaches for more flexible dis-
counting, for example state-dependent (Wei & Guo, 2011;
Yoshida et al., 2013), state-action-dependent (Pitis, 2019),
and transition-based discounting (White, 2017). We add
to this work by demonstrating that discount regularization
carries implicit assumptions of equal transition distributions
for all state-action pairs and stronger regularization on those

with more transition data.

Finally, in Arumugam et al. (2018), planning is conducted
over the set of epsilon-greedy policies rather than determin-
istic policies. The additional stochasticity during planning
prevents tailoring the policy too closely to the model. We
show how the work by which we connect discount regular-
ization to a Dirichlet prior by using a weighted average form
of the transition matrix applies to epsilon-greedy regulariza-
tion as well. This connection allows us to directly compare
the methods in terms of transition matrix MSE to identify
the right method for the environment. Like with Dirichlet
prior, it also allows us to compute a state-action-specific
parameter to control the amount of regularization.

3. Background and Notation

Markov Decision Process We consider a finite, discrete
Markov Decision Process (MDP). An MDP M is charac-
terized by < S, A, R, T,~ >, defined as follows. S: State
space of size N. A: Action space. R(s,a): Reward, as a
function of state s and action a. T'(s, a): Transition function,
mapping each state-action pair to a probability distribution
over successor states. We assume T is unknown and esti-
mated from the data. «: Discount factor, 0 < v < 1.

Certainty Equivalence Certainty equivalence is a use-
ful approach to offline model-based RL. The agent takes
the estimated model as accurate when finding the optimal
policy. It separates the estimation of the model from the
policy optimization (Goodwin & Sin, 1984). The maximum
likelihood estimate (MLE) is a natural choice for the model
estimate, however maximum likelihood solutions can over-
fit, particularly in the case of small data sets (Murphy, 2012).
Often, a better policy is obtained by regularizing the MDP
before learning the certainty equivalence policy.

4. A Common Form: Regularization as a
Weighted Average Transition Matrix

The analyses that follow stem from framing each method in
a common form: a weighted average transition matrix. We
demonstrate that discount regularization and the posterior
mean of the transition matrix under a Dirichlet prior can
both be expressed as a weighted average between the MLE
transition matrix and a regularization matrix.

Dirichlet Prior on T As discussed in Sec. 2, a Dirichlet
prior on the transition matrix 7" functions as a flexible form
of regularization. Given a prior on 7' for state-action pair
(Sn, ak), Tprior(5n7 ak) ~ DiI‘iChlet(aka, ey Oén,k’,N)’ the
posterior mean functions as a regularized form. Though
simple, this generates several important insights that deepen
our understanding and facilitate better regularization.
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Let (¢p k.1, ..., Cn k,N) De the transition count data observed
from state s,, to states 1 through N under action ay. It can
be easily shown that posterior mean of the transition matrix
Toos is equal to a weighted average of the MLE transition

mean

matrix and the mean of the prior:

Tposl (sn,ak) = (1 — G)TI\/[LE(Sn,ak) + eTpri?r (sn,ak)

mean 0

SN an ki 12
where ¢ = i=1 o .
N kit N an ki

Discount Regularization Next we show that discount
regularization is mathematically equivalent to replacing the
transition matrix with the weighted average between that
transition matrix and a matrix of zeros. Although this form
is unusual as it is not a true transition matrix, we will show
that it has utility in relating the amounts of regularization
between methods.

To cast discount regularization in certainty-equivalence RL
as a weighted average transition matrix, consider the Bell-
man equation for the value of each state under policy T,
V™ = Ry +~T, V7™, where the vector V'™ is the value of
each state, R is the vector of rewards, and T, is the transi-
tion matrix, all under policy 7. Let v, < y be the planning
discount factor, the lower discount factor used for regular-
ization when calculating the certainty-equivalence policy.
Then we have the Bellman equation V™ = R + v, T, V™.
We rewrite the product v, T from the Bellman equation as
the product of true discount factor v and a weighted average
matrix: v,Tx = Y[(1 — €)Tr + €T yeros), Where Tyeros is an

appropriately sized matrix of zeros and € = %

Using this insight, when estimating the transition matrix
from data, we can use the following weighted average tran-
sition matrix and the true discount factor  for planning
in place of the MLE transition matrix and lower discount
factor .

Tdisc (S7 O,) = (1 — €)TMLE($, a) + eTzeros (2)

reg

where € = %

Eq. 2 also provides another way to view discounting as
“partial termination” (Sutton & Barto, 2018). According to
this classic interpretation, the sum of discounted rewards
can be viewed as the sum of undiscounted rewards partially
terminating with degree 1 minus the discount factor at each
step. Similarly, Eq. 2 with v = 1 represents the agent
terminating with probability e = 1 — -, at each step.

In the following sections, we prove that discount regulariza-
tion and averaging the transition matrix for each action with

'Please see Appendix A.2 for derivation.
ZState-action pair index on e, , omitted for readability.

a transition matrix in which all rows are the same produce
the same optimal policy for the same value of €. Equating
our two expressions for € from Eqgs. 1 and 2 generates a
formula for the magnitude of an empirical Bayes prior on
T(s,a) implied by any reduced discount factor ,.

5. Equivalent Policy for Discount
Regularization and Dirichlet Prior

5.1. Equivalence Theorem and Proof

The simplicity of Egs. 1 and 2 allows for direct comparison
between the two regularization methods. In fact, discount
regularization produces the same optimal policy as averag-
ing the transition matrix with a regularization matrix that is
the same for all states and actions when both methods use
the same value of €. This result is stated more precisely in
Thm. 1 and illustrated in Fig. 1.

Theorem 1. Let My and M, be finite-state, infinite horizon
MDPs with identical state space, action space, and reward
function and same discount rate v < 1. Let 0 < € < 1, and
let T (s, a) be any matrix used for regularization that is
the same for all (s,a) (i.e. identical rows).

If My has transition function T and uses discount rate (1 —
€)7y in planning and Mo has transition function (1 — €)T +
€Tycg, and uses discount rate vy in planning, then M, and

My have the same optimal policy.
-~ Il
.'l

Lower L)
Discount = Value
1 2 3 4 5 6

State

Weighted
Avg. T « - - -

Figure 1: River Swim MDP described in Sec 7.1. Planning
with lower discount rate or weighted average 7" yield differ-
ent values (colors), but the same optimal policy (arrows).

Proof. The proof is structured as follows. (1) The optimal
policy for all MDPs whose Bellman optimality equations
differ only by added constant c are the same. (2) The Bell-
man optimality equation for an MDP in which the transition
matrix is regularized by taking its weighted average with
a matrix T can be written in terms of a lower discount
factor and an added constant. (3) Setting the constant from
the previous step to 0, the optimal policy of the resulting
MDP is the same as that of the original MDP. (4) The result-
ing Bellman equation is that of an MDP with the original
unregularized transition matrix and reduced discount factor

(I—e).

(1) Consider Bellman’s optimality equation for any arbitrary
state s and action a for an MDP in which constant ¢ is added
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to every reward (s, a):

Q*(s,a) = r(s,a)+c+y Z T(s,a,s Ymax, (s',a )Q* (s, a)

s’

It is a known result that the optimal policy of an MDP is not
affected by adding the same constant ¢ to all rewards (s, a).
(See, for example, Ng et al. (1999): “constant offets of the
reward do not affect the optimal policy when v < 17.)

It follows that the optimal policy mop(s) =
argmax,(QQ*(s,a) is the same for all values of c¢. So
for all values of constant ¢, the MDP with the Bellman
optimality equation above has the same optimal policy.

(2) Let Tyc4(s, @) be a transition matrix that is the same for
all (s, a). We show that Bellman’s optimality equation for a
transition matrix regularized by taking its weighted average
with the 7)., can be written in terms of a scaled discount
factor and added constant.

Q"(s,a) = r(s,a) +7 ) _[(1 = )T(s,a,5)

+ €Teg(s, a,s"))max, Q*(s', a')]

=r(s,a)+v(1—¢) Z T(s,a, s Ymax, Q*(s',a)

S

+ ve Z Treg(s,a,s )max, Q*(s',a")

Letting c(s,a) = 7yeY. . Treq(s,a, s )maxy Q*(s',a),
Bellman’s optimality equation is:

Q*(s,a) =1(s,a) + c(s,a)

+ (1 —¢) Z T(s,a, s Ymax, Q*(s',a’)

S

By the assumptions of Thm. 1, T,¢4(s,a,s’) is the same
for all (s,a) and is therefore a function of s’ only.
max, Q*(s’,a’) is also a function of s’ only. Therefore
¢(s, a) is actually a constant number, which we can call c.

c= e Z Treg(s,a,s") max, Q*(s',a’) = constant

func. of s’ only func. of s’ only

(3) By (1), replacing ¢ with 0, the resulting new MDP with
Bellman optimality equation

Q*(s,a) =r(s,a)+vy(1—¢) Z T(s,a,s )max, Q*(s',a")
has the same optimal policy.

(4) This resulting Bellman equation in (3) is that of the MDP
with the original, unregularized transition matrix 7'(s, a, s’)
and discount factor (1 — €). Therefore, the MDP with

discount rate v and transition matrix (1 — €)7'(s,a,s’) +
€Tyeq(s, a,s") and the MDP with discount rate (1 — €) and
transition matrix 7'(s, a, s’) have identical optimal policies.

O

Thm. 1 provides a deeper understanding of how discount reg-
ularization functions. At maximum regularization, v, = 0
or equivalently ¢ = 1, it unites two views of the relation-
ship between bandits and MDPs. One common view of a
contextual bandit is an MDP with v = 0 (Agarwal et al.,
2019). Alternatively, a contextual bandit is an MDP in
which “the transition probability is identical... for all states
and actions” (Zanette & Brunskill, 2018). Our proof extends
this equivalence beyond the bandit setting to all amounts of
regularization.

Thm. 1 also reveals the limitations of discount regularization.
First, the regularization matrix is the same regardless of the
state and action, so it will be biased in environments where
transition probabilities vary greatly based on the state and/or
the action. Furthermore, as we demonstrate in the next sec-
tion, this theorem leads to the result that discount regular-
ization provides stronger regularization on state-action pairs
with more data.

5.2. Dirichlet Prior Implied by Discount Regularization

We showed that discount regularization produces the same
optimal policy as averaging the transition matrix with any
matrix that is the same for all states and actions. Recall
from Sec. 4 that a Dirichlet prior on T'(s, a) also results in
a weighted average transition matrix form. In this section,
we further expand on this relationship and will see that
using state-action visitation rates from the data allows us to
produce an empirical Bayes prior on T'(s, a) that results in
the same optimal policy as discount regularization.

Using the equivalence in Thm. 1, we derive the prior magni-
tude that produces the same optimal policy for any planning
discount rate. Since discount regularization employs the
same planning discount rate and consequently the same
value of ¢ for every state-action pair, the prior that produces
an equivalent policy also has the same value of € at every
state-action pair. Using this equivalence and the two sep-
arate formulas for € in Eqs. 1 and 2 yields a formula for
the magnitude of prior implied by any value of planning
discount factor v,. Setting the two formulas for € equal
and solving for Zivzl Quy k,i» We see that a lower planning
discount factor implies a prior whose magnitude depends
on the number of transitions from (s,,, a,) in the data. 3

N . N
Zan,k,i = (w) ch,k,j (3)
i=1 Tp =1

3Please see Appendix A.2.1 for details.
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In the case of a uniform prior, which we take as the example
prior in our simulations, the magnitude simplifies to

N
Qn ki = (7_%> L) ko
n,k,i —
Tp N

The relationship between uniform prior magnitude a, 1 ;
and planning discount factor +y, for an individual state-action
pair is illustrated in Fig. 2. Furthermore, Eq. 3 shows us
that, for any planning discount factor -, the magnitude of
the corresponding Dirichlet prior is higher for state-action
pairs with more data. In other words, those (s, a) with more
observations in the data are regularized more. Especially
for data sets with uneven distribution of transition data, it
may be better to use a more flexible regularization method.
In Sec. 6, we use our framework to introduce state-action-
specific regularization to mitigate this issue. Note also that
the special case of v, = 0, the contextual bandit setting,
presents an exception as the implied priors for all (s, a) are
of infinite magnitude. This case is fundamentally different
as the future is not just discounted but rather completely
ignored.

Regularization Strength
vs Planning Discount Factor

S o oo

Implied Prior Magnitude a
N

o

0.2 0.4 0.6 0.8 1.0
Planning Discount Factor y,

Figure 2: Magnitude of uniform Dirichlet prior implied
by planning discount factor 7, for MDP with 10 states, 20
transition observations per state, and v = 0.99.

6. State-Action-Specific Regularization
without Parameter Tuning

We exposed in Eq. 3 that discount regularization functions
like a prior on the transition matrix with a potentially un-
desirable magnitude. To avoid this behavior, we return to
the weighted average form introduced in Sec. 4 to derive a
formula for state-action-specific regularization. Using this
form, we calculate the MSE of the estimated transition ma-
trix and identify the value of regularization paramter e that
minimizes the transition matrix MSE. While we recognize
that a good transition matrix estimate does not guarantee a
good policy, it is a reasonable step towards that goal.

We derive the closed-form expression of the MSE for the
case of a uniform Dirichlet prior. We take MSE(7'(s, a)) to
be the sum of the MSE of the individual elements. We pro-
vide the derivation using the bias-variance decomposition
of MSE in Appendix B and the resulting form below. Let
Tunif be the posterior mean of 7" under a uniform Dirichlet
prior. Then,

MSE[Tunif(Sna ak)] =
N

1
Z (1 —€)2——T(sn,an,5:)(1 — T(sp,ar,s;))
. Cn.k
=1 ’

variance (4)
1 2

+€ (N — T(sn,ahsi))

bias

where c¢,, ;; is the number of transition observations starting
at state s,, under action a;. Let €* to be the value of the
regularization parameter e calculated by minimizing the
MSE equation. Then,

K(sn,ar)
* n» = 5
€ ($n, ar) —K(Sn,ak)JrCn,k (5)
N
Z T(sn,ak,8:)(1=T(sn,ax,5:))

i=1

where K (s, a) =

N
> (& =T (sn,an,5:))?
i=1

The first term of Eq. 4 is the contribution of the MLE’s
variance to the error, in this case the only source of vari-
ance. The second term represents the bias introduced by
regularization. The strength of regularization e controls the
trade-off between the bias and variance. The variance is
driven by the amount of data c¢,, . both through its role in set-
ting the amount of regularization ¢* and as a factor inversely
impacting the variance term. Both bias and variance are
impacted by the true transition distribution T'(s, a). A de-
terministic T'(s, a) maximizes bias for a given ¢, but results
in e* = 0 (since T'(s,a,s")(1 —T(s,a,s")) = 0 for all s’).
At the other extreme, a T'(s,a) with uniform distribution
maximizes the variance for a given € but has no bias, so
we default to €* = 1. Intermediate values of ¢ trade off
between bias and variance. Of course in practice, the true
transition matrix 7" is generally not known.

A uniform prior on 7'(s, a) with state-action-specific param-
eter €* improves upon discount regularization by setting the
parameters locally for each state-action pair rather than forc-
ing one global regularization parameter. Furthermore, there
is no parameter tuning required, simply a plugin estimate
for T' (e.g. the MLE). In practice, we may worry that in
the low data regimes in which regularization is required,
the estimate of 7" will not be good enough to estimate €*.
Nonetheless, our empirical examples in Sec. 7 demonstrate
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that our formula for €* leads to a reduction in loss over a
single global regularization parameter.

Note that the state-action-specific parameter €* combined
with regularization matrix 7.., does not map directly to
a state-action-specific discount factor. The expression for
¢(s, a) in the proof of Thm 1 must be constant for the two
methods to produce the same optimal policy and the state-
action-specific discount factor breaks this equivalence.

7. Simulation Results

We have demonstrated that planning under a reduced dis-
count factor functions as a prior on the transition matrix with
higher magnitude for state-action pairs with more transition
observations. We then proposed a better way to regular-
ize by deriving an explicit formula for a uniform prior that
minimizes that transition matrix MSE locally for each state-
action pair. Next we confirm our results empirically.

First we demonstrate that the equality in Thm. 1 holds. We
then compare the performance of (1) discount regulariza-
tion, (2) a uniform prior on 7" with equal magnitude for
all state-action pairs, and (3) our state-action-specific regu-
larization on three simple tabular examples and a medical
cancer simulator.

7.1. Tabular Environments

We demonstrate our results on three common environments
from the RL literature. The first comes from the initial
work proposing discount regularization. We choose this
environment to demonstrate the limitations of discount reg-
ularization even in an environment where it is known to
be beneficial. We choose the other two because of their
differences in structure, connectivity, and rewards to ensure
that our results hold in diverse environments.

10-State Random Chain The first environment is a dis-
tribution over MDPs and we sample one before generating
each data set in the examples that follow. Jiang et al. (2015)
empirically demonstrated the benefits of discount regular-
ization on this randomly generated 10-state, 2-action MDP.
For each state-action pair, 5 successor states are chosen
at random to have nonzero transition probability. These
probabilities are drawn independently from Uniform[0,1]
and normalized to sum to one. The rewards are sampled
independently from Uniform[0,1].

River Swim This common tabular environment described
in Osband et al. (2013) consists of six states and two actions,
as illustrated in Figure 3. The agent can attempt to swim
right “against the current” towards the larger reward, or
swim left with probability 1 towards the smaller reward.

Figure 3: River Swim. Image from Osband et al. (2013).

Loop The “Loop” environment from Strens (2000) con-
sists of nine states forming two loops, joined by a single
state. Two actions “a” and “b” traverse the loops as indi-
cated in Figure 4. A reward of 0, 1 or 2 is received at each
time step, as indicated in Fig. 4. To add stochasticity to
the transitions, we assume that at each time step the agent
acts according to the desired action with probability .5 and
chooses random between the actions with probability .5.

Figure 4: Loop Environment. Image from Strens (2000).

7.2. Procedure

To assess performance in each environment, we follow the
procedure in Jiang et al. (2015). We repeatedly sample data
sets from the true MDP. (A new MDP is sampled every time
in the case of the 10-State Random Chain.) For each, we
estimate the transition matrix from the data and assume the
reward function is known. Then for a range of regulariza-
tion strengths (e or ) we regularize the transition matrix
separately using (1) discount regularization or (2) a uniform
prior with constant magnitude across state-action pairs. We
also regularize by (3) a uniform prior with state-action spe-
cific parameter. We then calculate the optimal policy. We
compute the loss as the difference between the value of the
true optimal policy in the true MDP and the value of the
policy found in the estimated, regularized MDP, evaluated
in the true MDP. The state-action-specific uniform prior is
not dependent on a regularization parameter so we plot the
single loss value horizontally.

7.3. Discount Regularization and Uniform Prior on
Transition Matrix Yield Identical Optimal Policies

First, we empirically confirm our result from Thm. 1. When
the implied value of ¢ is the same for all state-action pairs,
a uniform prior on 7" will yield the same optimal policy as
a planning discount factor of v(1 — €). As per Eq. 3, we
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enforce equal € across state-action pairs by sampling data
sets with equal numbers of transition observations across
state-action pairs. As demonstrated for the 10-State Ran-
dom Chain environment in Fig. 5, loss is identical for both
methods, as is expected for identical policies.

2401
\ Uniform Prior
A Y . . .
2.361 \ Discount Regularization
A
A
0 2.321 AN S
%) \ 4
o \ Y,
- \ y,
N\
2.281 \ /
N\ ' 4
N ' 4
0. ‘¢
2.241 N\  d
e B -
0.00 0.25 0.50 0.75 1.00
Epsilon

Figure 5: Discount regularization and a uniform prior on the
transition matrix result in identical policies when transition
count data are equal for all state-action pairs.

In the examples that follow, we relax the requirement of
equal data across state-action pairs to compare methods
under a more realistic data distribution.

7.4. Exposing Problems with Discount Regularization

Discount Regularization performs poorly on data sets
with uneven coverage across state-action pairs. In real-
world conditions, it is unlikely that a data set will have equal
numbers of transition observations across state-action pairs.
In this case, recall that discount regularization functions as
a prior with higher magnitude for state-action pairs with
more data (Eq. 3). We compare this with a uniform prior
on the transition matrix with equal magnitude for all state-
action pairs. Fig. 6 shows the loss for each method across a
range of values of e (regularization strengths) for the three
tabular environments. In these examples, the transition data
is generated as tuples (s,a,r,s’) with starting state and
action chosen uniformly at random, but not enforced to be
equal across state-action pairs. Even with transition data
that is not heavily skewed away from uniform, the uniform
prior with fixed magnitude generates policies that perform
better (lower loss) in the true environment across a range of
regularization strengths.

Discount regularization performs poorly when the tran-
sition distribution differs greatly across states and/or
actions. In addition to poor performance in skewed data
sets, discount regularization does not perform well in cases
where the implied prior, equal for all (s, a), does not match
the ground truth. For example, a domain expert may have
knowledge that some state transitions are likely or others

are impossible. Consider the case of River Swim. If a
domain expert knows that Action 1 generally causes the
agent to go left and Action 2 generally causes the agent to
go right, we may choose a different prior on each action,
where the prior on Action 1 determistically moves the agent
left and the prior on Action 2 deterministically moves the
agent right. Fig. 7 compares the loss for this deterministic
“left/right prior” with the other methods. Unsurprisingly, this
hand-chosen prior results in lower loss than the methods
which assume equal transition distributions for all states and
actions.

7.5. Simple and Flexible Parameter Tuning

Performance depends not only on choosing an appropriate
regularizer for the data set and environment but also on
setting the parameters correctly. We now show how the
weighted average transition matrix view of regularization
gives a straightforward way to set the regularization level,
€, in a state-action-specific way that is easily implemented
without cross-validation.

Our method avoids parameter tuning. Minimizing the
transition matrix MSE equation with respect to regulariza-
tion parameter € yields an explicit formula for the parameter
€*, Eq. 5. This expression for ¢* depends inversely on the
number of transition observations in the data, which allows
for reduction in regularization with increased data. The
only quantity we lack is an estimate for 7', which can be
approximated by the MLE. Alternatively, we can model T'
from the data then sample from the posterior, choosing € to
minimize the MSE (Eq. 4) across the sampled estimates of
T'. This is preferable to cross validation not only because it
provides a simple, analytic form, but also because the situa-
tions in which regularization is beneficial generally involve
few transition observations per state-action pair, resulting
in insufficient amounts of data to divide into training and
validation sets.

Our method remedies the issue of stronger regulariza-
tion for state-action pairs with more data. Because the
formula for €* is state-action-specific, it allows the flexi-
bility to adjust the regularization amount separately across
state-action pairs with different amounts of data and differ-
ent transition distributions. This is particularly important
as most real-world data sets have uneven distributions and
requiring equal regularization across state-action pairs in
that case impedes performance.

Returning to Fig. 6, we demonstrate that our state-action-
specific regularization reduces loss without parameter tun-
ing. The horizontal line for “State-action-specific €” rep-
resents the loss when regularization parameter e is set sep-
arately for each state-action pair. A state-action-specific
regularization parameter yields loss that outperforms dis-
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Figure 6: A uniform prior on the transition matrix outperforms discount regularization in all three environments. A
state-action-specific uniform prior performs close to or better than a uniform prior with global regularization parameter e.
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Figure 7: When a uniform prior is not appropriate, a prior
chosen based on expert knowledge of the environment can
perform better.

count regularization and is close to or outperforms a uniform
prior of constant magnitude as well.

In conclusion, we replace cross-validation approaches to pa-
rameter tuning with a simple analytical formula that requires
only a plug-in estimate of 7T'. The regularization parameter
is calculated for an individual state-action pair, which allows
flexible regularization for uneven data distributions.

7.6. Cancer Simulation

We confirm our analysis in a larger, more realistic setting,
using a cancer simulator developed by Ribba et al. (2012),
as implemented by Gottesman et al. (2020). The simula-
tor is based on data from patients with a type of tumor
called low-grade gliomas (LGG). We use the version for
chemotherapy drug TMZ. The structure of the model is
based on 21 patients and parameters for the TMZ version
are fit using data from 24 patients, with the remaining 96
held out for validation.

The state space consists of four dimensions: measurements

for three different tumor tissue types and the drug concen-
tration. We discretize the states by dividing each dimension
into quartiles. The two actions represent whether or not to
administer the chemotherapy drug TMZ at each time step,
which represents one month. The reward at each time step is
the reduction in total tumor size from the previous time step,
minus a penalty for administering treatment at that time step.
In the batch data, treatment at each time step is determined
by a draw from the binomial distribution with treatment
probability p. We compare regularization methods across
a range of parameter choices: amount of stochasticity in
the transition between states, magnitude of penalty to the
reward for administering chemotherapy, noise in the starting
state, and probability p of treatment in the batch data.

As in the previous examples, we compare the loss of the
policies generated by discount regularization, a uniform
prior on 7T, and state-specific uniform prior. Across varia-
tions in parameters, the two methods with global parameters
performed similarly. A risk of both global methods in this
case is that if € is set incorrectly, the loss can be significantly
higher. This makes state-action specific regularization par-
ticularly compelling, achieving loss near the minimum of
all methods with the parameters set globally, but without
tuning.

8. Discussion

Extension to Epsilon-Greedy Regularization One issue
we address is that discount regularization’s implicit prior
does not match the ground truth of many environments. As
discussed in the example of the “left/right prior” for River
Swim, a uniform prior is not always appropriate. In cases
like this, we can extend weighted average form to calculate
the MSE and state-action-specific regularization parameter
for other methods. One example is epsilon-greedy regu-
larization, described in Sec. 2. For this method, the agent
treats actions as epsilon-greedy during planning, transition-
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Figure 8: Cancer Simulator: State-action-specific regular-
ization achieves near-minimum loss while avoiding the high
loss resulting from incorrectly-set parameters.

ing according to the transition matrix for the greedy action
with probability (1 — €) otherwise choosing uniformly at
random between the transition matrices for all actions. Ex-
pressing epsilon-greedy regularization as a weighted aver-
age transition matrix allows us to calculate the MSE and
state-action-specific parameter, which we do in Appendix
D.2. The common form also facilitates comparison between
regularization methods. We can easily compare methods by
comparing the regularization matrix that is averaged with
the MLE in each case, and choose the regularizer that best
matches the environment.

Extension to Model-Free RL.  While we discussed Thm. 1
in the context of model-based algorithms, the proof applies
to model-free methods as well. To extend our method, we
can incorporate a weighted average transition matrix into a
model-free method such as Q-learning by drawing random
transitions from T, with probability €*(s,a) calculated
from Eq. 5 and updating the () function with the random
transitions. A sample algorithm and results are presented
in Appendix D.4. The algorithm achieves higher rewards
compared to standard Q-learning in many environments.

Limitations As stated in Section 6, our method is based
on learning a transition model with low MSE, which does
not guarantee a good policy. In other words, it is possi-
ble to learn a good policy from a “bad” transition model
and vice versa, in particular because certain errors in the
model may affect the policy more than others. For exam-
ple, the value equivalence literature demonstrates improved
performance by learning a model that minimizes “value-
equivalence loss”— a loss metric based on the Bellman op-
erators induced by the model- rather than loss based on
maximum likelihood estimation of the model (Grimm et al.,
2020; 2021; 2022). We also note that our results are limited
to a discrete state space as Thm. 1 applies only to the dis-
crete case so we cannot make guarantees of similar results in

a continuous state space. Naively discretizing by quantiles
poses issues and can be improved upon by methods such as
tile coding (Stone & Sutton, 2001). Extending our method
to the continuous case is a topic of continuing work.

9. Conclusion

Discount regularization is a commonly used technique for
dealing with noisy and sparse data. Although practitioners
believe that they are simply ignoring delayed effects, we
revealed through a simple reframing of discount regulariza-
tion as a weighted average transition matrix that it implicitly
assumes a prior on the transition matrix that has the same
distribution for all states and actions. Problematically, the
magnitude of the prior is higher for state-action pairs with
more data. To remedy the issue, we used the weighted aver-
age form to derive an explicit formula for the regularization
parameter that is calculated locally for each state-action pair
rather than globally. Future work will explore the extension
of our algorithm to model-free and continuous state space
methodologies.
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A. Common Form Derivations
A.1. Discount Regularization

Consider the matrix form of the Bellman equation, using 7y, the lower value of the discount factor used during planning for
regularization: V' = R + 7, T'V. By the steps below, we write the product +,T" from the Bellman equation as the product of
true discount factor « and a weighted average matrix.

W == =T (Add and subtract )

('Y — ’YP) )T
Y

I =~(1— (Pull out a factor of ~v.)

Let T';0s be an appropriately sized matrix of zeros. Adding 7 s to the right hand side does not change the equality.

_u)

’YPT = ’Y[(]‘ T + Tzeros]

Y7

Multiply the Tos term inside the parentheses by 5

2. Theros 18 all zeros so a multiplier does not affect the equality.

Wl =7[(1-1=22)

T+ (L 22) ]
Y
Lete = 1222,

’YpT = 7[(1 - e)TtT'ue + 6zjzeros}

We have replaced the product of the planning discount factor and the true transition matrix with the product of the true
discount factor and a weighted average of the transition matrix and a matrix of zeros. To put this in our framework, consider
regularizing the MLE transition matrix for state-action pair (s, a) via discount regularization, using planning discount factor
vp. Using the proof in this section, our regularized estimated transition matrix T (s,a),is:

T(Sa a) = (1 - 6)T‘]\/[LE(Sa a) + 6T‘zeros

where € = %

A.2. Dirichlet Prior Derivation

Assume prior Pyior(T'(8n, ax)) = Dirichlet({am k.1, ..., nk,v)) On transition matrix T'(sy, ax) and let (¢, k1, -, Cn b, N)
be the transition count data observed from state s,, to states 1 through N under action ay,. The posterior estimate of T'(s,, aj)

12
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follows a Dirichlet distribution with parameter <Cn,k,1 + Q15 oees Crk, N+ Qi ~) and the posterior mean is:

Cn,k,1 T Qn k1 Cn,k,N T Qn kN
Tpes (s 1) = (G 7 —
Z Cn,k,i + Z QA ki Z Cn,k,i + Z Qnp ki
i=1 =1 =1 =1

_ < Cn,k,1 Cn,k,N

Qn k1 Qn kN >
T VN N VTN N
Z Cn,k,i + Z QA ki Z Cn,k,i + Z Qnp ki
1=1 1=1 1=1 1=1

> + < N N PR} N N
D Cnkyit D Qi D Cnki T D Qngky
1=1 =1 =1 =1

N
Cn,k,i
o z; " L< Cn,k,1 Cn,k,N >
- N N N 2N N
Z Cn.k,i Z Cn.k,i + Z QAn, ki Z Cn.k,i + Z Qn, ki
i=1 i=1 i=1 i=1 i=1
N
« ki
+ z; " Z< Qn k.1 Qn kN >
N N N PN N
Z Qn ki Z Cn,k,i + Z Qnp ki Z Cn,k,i + Z Qp ki
i=1 i=1 i=1 i=1 i=1
N N
Cn,k,i Qn,kyi
z; e Cn,k,1 Cn,k,N z; it Qn k1 O kN
- N N <N N >+ N N <N YUUYN >
Z Cn,k,i + Z Qn, ki Z Cn,k,i Z Cn.k,i Z Cn,k,i + Z Qn, ki Z On ki Z On ki
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1
Let Tyvie(sn, ax) be the MLE of T'(sp, ay). Then, Tyie(sn, ap) = (bl CmbN ) et T (s,,az) be the
‘21 Cn,k,i ~Z:1 Cn,k,i mean
transition matrix implied by the prior for state s,, and action ag, i.e. Tpior (Sp, ag) = (it . b))
mean _21 Qn ki ‘21 Qn ki

Using Tvmie(Sn, ar) and Tior (Sp,, ag ), we can write T'pos (s, ag) as follows.
mean mean

N N
Z Cn,k,i Z Qn ki
i=1 A i=1
T (n,a8) = ~ Tmie(sn, ar) + — ~ Ty (5 ar)
> Cnkyit D Ok D Cnkit D Ok
i=1 i=1 i=1 n=1
N
2 Qnyki
Lete = —=1— . Then we have:
S Cnkit D Onki
i=1 i=1

Tmpg::] (Sn7 ak) = (1 — G)TMLE(Sn, ak) + €T prior (Sn, ak)

mean

A.2.1. DIRICHLET PRIOR IMPLIED BY DISCOUNT REGULARIZATION

The equivalence proof above demonstrates that, for a given value of €, averaging the transition matrix with either a matrix of
the discrete uniform distribution or with the matrix of zeros yields the same policy. Since discount regularization applies the
same € to every state-action pair, the two methods are only exactly equivalent when the posterior transition matrix under
g: AUn, ki
—= is the same for all
igl an,k,i"riz Cnkyi

a uniform prior has the same implied value of € for all state-action pairs, i.e. € =

1
state-action pairs, where c,, 1 ; and o, i ; are the transition count and prior from state n to state ¢ under action k.
We can use the equivalence of the two methods for the same value of € to solve for the magnitude of prior that is implied by a

given discount factor in discount regularization. This is particularly interesting when > ¢, x ; is unequal across state-action
i=1
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pairs (s, ax). In this case, we can use the equivalence of discount regularization and the uniform prior to compute the
different priors implied by discount regularization across state-action pairs.

We will refer to E Cn ki a8 Y c; and Z Qi as y_ «; for brevity. Since we know both methods produce the same

optimal policy for equal values of €, we set the formulas for € under each method equal to one another. We then solve for a;
to get the magnitude of prior that is implied by a given planning discount factor .

YA Y=
Y+ gl

I ai=0 i+ > ey —7)
LTI SUTNE IRRUS SR 9%
'szai :Zci(V_'Vp)
o C.’Y_’Yp
I S

For the uniform distribution, all «; for a given state are the same, so substitute > «; = N ;.

NO[Z': Ci')’*')/p
Tp

_ Zci’Y_'Vp

So discount regularization functions like the Dirichlet prior:

. 2GY =W GV~
Thiior(Sn, a) ~ Dirichlet 6
pnor( n k) ( N Yo PRIET) N Yo ) ( )
where again ) ¢; is the total number of transitions observed in the data starting at state s,, under action ay,.
B. Uniform Prior MSE Calcuation
N
Let )" ¢y ,; be number of observations for state-action pair (s, ax) in the data. We drop the index and write as ) ¢;
j=1

below for readability. Let T'(s,,, a) be the transition probability distribution under action ay, starting at state s,,. N is the
number of states in the MDP.

Mz

MSE( Sn, QL)) (Varlance sn,ak,sz))—&—BiasQ(T(sn,ak,si)))

i=1

14



The Unintended Consequences of Discount Regularization

N A 1
Variance(Tyi(Sn, ax, $;)) = Variance ((1 — &) TvLe(Sn, ak, Si) + €N>

N 1
= Variance ((1 — €)TvmLe(Sn, ak, sl)) + Variance <€N>
= (1 — €)Variance(Tyg(sn, ak, Si))

(1 —6)2 T(Sn,ak75i)(1 _T(Sn’ak’si))

1
2.6

Bias(Tinir(5n, ak, 51)) = E [Tunit(5ms ax, 50)| = Tsn, an,s:)

N 1
E {(1 — e)TmLe(Sn, K, S;) + EN:| —T(8n,ak, si)

1
=1 —-€e)T(sn,ar,s)+ GN —T(Sp,ak, s;)

1
=€ ( - T(Sn,ak,si)>

N
N 2
MSE(Tyi(s,01)) = 3 ((1 P T80 = Tl s) + € = Tlomanes) )

J

To solve for the optimal value of e, set the first derivative equal to O.
N
OMSE 1
= —2(1 —¢)
€ c Z Cj

=1

1 2
T(Sn7 ag, Sz)(l - T(Sna af, 31)) + 2¢ <N — T(Sn7 ag, 52))

al 2
—2—=—T(sn,ar, i) (L = T(spn,ak,s;)) + 26 =—T(Spn, ak, $;) (1 — T (S, ar, s;)) + 2¢ ( —T(sp,an, 31)> =0

; 226 2.6 N

N 1 . )

26 chT(Syuak;,Si)(l _T(S’ruakasi)) + (N _T(Sn,ak,si)>

i=1

N
= Z o T(sp,ak,5:)(1 = T(sn, ax, 5))

i=1

Zlcj T(sn7 A, Sl)(]- - T(Sn, ag, S’L))

M=

=1

2
Zlcj T(Sn7 A, SZ)(l - T(S’I’La ag, S’L)) + (% - T(Sn) ag, S’L))

M=

1

<.
Il

N
T(S’ru ag, Si)(l - T(Sna ag, 37,))
=1

3

2
T(sp,ak,si)(1 —T(sn,ak, ;) +>.¢; (% — T(8n, ax, sl))

M=

1

N N
Z [T(sm g, SZ)(l - T(Snv A, sl))]/ Zz:l[(% - T(sm A, Si))Q]

i=1

[T(8n, ar, 5:)(1 = T(sn, ax, Si))]/Z_JZ_Vfl[(}V = T(sn, ar,5:))% + 326

.
Il

s

1

K2
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C. Empirical Example Details
C.1. Regularization Loss by ¢

The following pseudocode summarizes the empirical example depicted in Figures 5 through 8 to compare the resulting loss
for the the optimal policies found using each regularization method, for a range of values of e.

Algorithm 1 Regularization Loss Pseudocode

Input: MDP, list of € values, regularization method
for : = 1 to [number of data sets] do
Generate data set of n transition tuples
Estimate TMLE from data
for € in list do
Regularize transition matrices by amount e
Calculate optimal policy 7 of regularized MDP
Calculate loss comparing value of 7 vs. value of true optimal policy in true MDP
end for
end for
Average loss by € value across all data sets

Additional Details Tuples in batch data are collected with uniform probability across state-action pairs. Loss is calculated
as the average difference in value across states for the policy found by value iteration in the estimated, regularized MDP as
compared to the optimal policy, both evaluated in the true environment.

C.2. State-Specific Regularization Loss

The pseudocode below describes the procedure for the empirical demonstration of state-specific regularization depicted in
Figure 6.

Algorithm 2 State-Specific Regularization Loss Pseudocode

Input: MDP, list of € values, regularization method
for ; = 1 to [number of data sets] do
Generate data set of n transition tuples
Estimate TMLE from data
for each state-action pair (s, a) do
Calculate €*(s, a) that minimizes MSE using equations in Sec. 6
Regularize transition matrix by taking the weighted average of Tt £(s, a) and the appropriate regularization matrix,
using weight €*(s, a)
end for
Calculate optimal policy 7 of regularized MDP
Calculate loss comparing value of 7 vs. value of true optimal policy in true MDP
end for
Average loss by € value across all data sets

Additional Details In the step where we calculate ¢* using the Equation 4, two possibilities are to use Twmig as a plug-in
estimator for 7" or model the distribution of 7" from using the batch data and sample from the posterior. To generate the plot
in Figure 6, we did the latter. We calculated the posterior Dirichlet(ayq, ...an) from the batch data, then sample repeatedly
from that distribution, calculating the MSE for each sample across values of e. We then choose for €* the value of € that had
the lowest average loss across samples.
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D. Extension to Epsilon-Greedy Regularization
D.1. Weighted-Average Transition Matrix Form

With the reward expressed as a function of state only (rather than state and action) is straightforward to write epsilon-greedy
regularization in the weighted-average form.

Under epsilon-greedy action selection, the probability of next state s’ given state s,, and greedy action ay, is:

P s (8'|sn,ar) = P(ag)P(s'|sn,ar) + P(random action) P(s’|s,,, random action)

greedy

Pgep:1 (8'|sn,ar) = (1 — €)P(s'|sn, ar) + €P(s'|sy, random action)
reedy

The probability for each action in the last term is equal and their probability distributions are independent, so we can rewrite
the term as a sum.
P s (8'|sn,ar) = (1 —€)P(s'|sn, ar) + TAT EA P(s'|sp,a’)

a

greedy
By definition, P(s’|s,, ax) is defined by transition matrix 7.

T e (sn,ak,s") = (1= €)T(sn,ak,s") + 17 22 Tlsn,a’,s)
greedy a’GA
In this setting, we are estimating T by the MLE, so we replace 1" with TyiLe. This relationship holds for all next states, so
we can extend the form above to the vector of next states, T e (s,a).
greedy

T o (sp, ak) = (1 - G)TMLE(Sm ak) + ﬁ Z TMLE(Sna a’)

greedy
a’€A

D.2. Epsilon-Greedy Transition Matrix MSE

N

Again, we decompose MSE into bias and variance and calculate each separately. As in the previous section, let ) ¢, 1 ; be
j=1

number of observations for state-action pair (s, ax) in the data. Let T'(s,,, a) be the transition probability distribution

under action ay, starting at state s,,. N is the number of states in the MDP.

17
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|A]
Varlance(T L (sn,ak,si)) = Variance | (1 — e)TMLE(sn,ak, Si) |A| Z T (S Qs Si)

— Variance (1 — e+ ﬁ)TMLE(Sny ag, SZ |A| Z Sn, Ay, Sz
m#k
e \? . e \? .
= <1 — e+ |A|> Variance(TvLg(Sn, ak, S;) + <|A|) Z Variance(T (8, am, Si))
m#k
e \? 1
<1 —e+ |A|> NiT(sn, ak, $;)(1 — T(sn, ak, Si))
_Z Cnk.j

( ) Z N T (Sn, A, i)(1 — T (s, am, 5i))

m#k Z Cn,m,j
j=1
S 1
BlaS(Tg;iily (8n7 ag, S’L)) = GW ;c (T(Sn, Qs 81) - T(Snv ag, Sl))

N 2
. 1
MSE(T o (sn,a1)) = ) (1 e+ A|) ~—T(5ns ar, 5:)(1 = T(s0, ax, 5:))
=1 > Cnk.
j=1

N € 2 1
23 () X T ) = Tlsnan )

N 2
Z €
+ P <|A> Z T(Sn, Am, Si) - T(S"’ ak, Sl)

m#k
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To solve for the value of e that minimizes the MSE, set the first derivative equal to O:

N
OMSE :Z 1 1 éT(sn,ak,si)(l—T(sn,ak7si))
|A\ |A| N
=1 > Cnk,j
i=1

Z N Snaamasi)(l *T(Snaamwsi))

m#k Z Cn,m,j
=

2
|A|2 Z (8ns @m, 8i) — T(8n, ax, 5))
m#k

1 S|

= 6[ — —1 7T(8n7ak, )(1 - T(snuak78i))
() i .

Z T(s,am,8i)(1 —T(sp, am, i)

m#k Z Cn,m,j
=

Z Snaamasl *T(Snaakvsi))Q]

m#k

1 1
(1) om0 = Tlsmean,s0)

| 2

IAI2

N

> Cnk

(1 - T}}\) N ! T(snvakv 51)(1 - T(SH’ Qg 37))
1 ;1 Cn,k,j

o8

3

N

Z(I% _1)2 N L T(8n7a'k78i)(1_T(s’rha/k:asi))_'_ ‘Al|2 Z N 1 T(Sn)amysi)(l_T(Snaamasi))

i Zlcn.k',j m#k Elcnnn,k

/ilZ Z (T(Sn, ag, S’L) - T(Sna A, S’i))2
m#k

To demonstrate dependence on the number of data observations, we put this in the form ﬁ, similar to the above.
? J

To do so, assuming equal observations C' across all state-action pairs the above is equal to:

N
22 (1= )T (sn, ar, $0)(1 = T(sn, ax, 1))

£ [A]
i=1
T N 1 1
;(ﬁ - 1)2T(S’n7 A, sl)(l - T(STL) ag, S’L)) + ‘A|2 Z?ék T(sn7 Ay S’L)(]- - T(8n7am7 sl))
+ C|A|2 S (T(8pyak,85) — T(Sn, am, 55))?
m#k

N
210 = )T (ms ate5i) (1= Tlons ans s/ I 2 (T (5w, @k 51) = Toms am, 51))°)
= > T(sn,am,8:i)(1=T(5n,0m,5:))
( —1)2T(sn,ak,8:)(1—T(Sn,ak,si))
2 \A\ mzk
Y A Tmans)—Temams)® T = TGnar ) Tlman s +C

m#k
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D.3. Empirical Results for Epsilon-Greedy Regularization

D.3.1. TABULAR EXAMPLES FROM SECTION 7

Epsilon-Greedy
==f==Uniform Prior
== Discount Regularization
=f4= State-Action Specfic €

2.70

Loss

2.55

2.40

0.50
Epsilon

0.75

(a) 10-State Random Chain

0.50
Epsilon

(b) River Swim

0.50
Epsilon

(c) Loop

0.75

Figure 9: Comparison of epsilon-greedy regularization to uniform prior and discount regularization in our three tabular

environments.

D.3.2. CONTROLLED ENVIRONMENT

Random Uniform « How random is the 'Leave' action? - More Deterministic

2 131 . 13.5
3 Epsilon-Greedy

12 === Uniform Prior 12.0
1
C
S % 111 10.5
] o
O -
© 10
-m 1 9.04
C
2
= 91 7.51
2 000 025 050 075 1.00 000 025 050 075 1.00
)
o
£ 7.00]
S 7.8
©
G
2 L 761 6.75
= 2
o) g ]
© —'7.4< 1 6.50
o)
o)
—
o 7.2 6.25 1
l
< 000 025 050 0.75 1.00 000 025 050 075 1.00
()]
I £ £

Figure 10: Additional empirical results comparing epsilon-greedy regularization to uniform prior on the environment
described in this section. The method whose regularization matrix best aligns with the true environment generates lowest

loss.

The second set of results come from a loop MDP with 10 states, v = .99, and two actions which cause the agent to either
stay in or leave the current state, described further below. We define the reward function to be a high reward region in the
three adjacent states and zero elsewhere. We vary the transition dynamics along the following two axes to demonstrate the
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relative performance of different regularizers across environments.

>

Transition Stochasticity, «. In our experiments, we utilize a mixture of two transition matrices. The first is the “leave’
transiton matrix. We vary the transition dynamics of “leaving” the current state, from deterministic (transition from state s
to the adjacent state s + 1 with probability 1) to uniform (transition with uniform probability across states). The second
transition matrix is the “stay” transition matrix. The “stay” transition matrix causes the agent to remain in the current state
with probability 0.75, and otherwise transition to a random state.

leave = k * deterministic + (1 — ) * uniform

stay = 0.75 * identity + 0.25 * uniform

Action Similarity, . The agent’s two actions are generated by mixing the “stay” and “leave” matrices together in the
following way to control the action similarity.

Action 1 (“probably stay”) = (1 — A) * stay + X * leave
Action 2 (“probably leave”) = (1 — \) x leave + X x stay

A varies from O (distinct actions) to 0.5 (identical actions).

D.4. Extensions to Model-Free RL

D.4.1. SAMPLE ALGORITHM

Algorithm 3 Q-learning with State-Action-Specific Regularization

Parameters: step size o € (0, 1], regularization matrix T}..4(s, a)
Initialize Q(s,a) = 0Y(s, a)
for e = 1 to [number of episodes] do
Choose initial state s randomly.
while step_counter < [steps per episode] do
Choose action a from policy based on Q(s, a) (e.g. epsilon-greedy based on current Q)
Calculate ¢* from Eq. 5
Draw © ~ Bernoulli(e*)
if x = 1 then
Draw simulated next step s.;,, from T.c4(s, a)
Update Q-function using s, :
Q(s,a) « Q(s,a) + alr(s,a) + ymaz,Q(ss;m, A) — Q(s,a)]
else if x = 0 then
Agent takes action a, observes next state s’
Q(s,a) + Q(s,a) + afr(s,a) + ymaz,Q(s', A) — Q(s,a)]
step_counter += 1
s+ s
end if
end while
end for
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D.4.2. RESULTS

—— Standard Q-learning
30| — Q-learning with prob .25 random update
—— Q-learning with prob .5 random update

Q-learning with prob .75 random update
—— Q-learning random updates with prob epsilon* (T-MLE)

|

IS
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®

— Standard Q-leaming
—— Q-learning with prob .25 random update
—— Q-learning with prob .5 random update
Q-learning with prob .75 random update
—— Q-learning random updates with prob epsilon* (T-MLE)

>

—— Standard Q-learning

—— Q-leaning with prob .25 random update

—— Q-leaming with prob .5 random update
Q-learning with prob .75 random update

Avg. Sum of Rewards During Episode
Avg. Sum of Rewards During Episode
Avg. Sum of Rewards During Episode

0.0 165 ~—— Q-learning random updates with prob epsilon* (T-MLE)
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Figure 11: Comparison of epsilon-greedy regularization to standard Q-learning in our three tabular environments. We also
include as a baseline our algorithm with €* replaced by a constant probability.

Our simple modified Q-learning algorithm outperforms standard Q-learning on River Swim and Loop environments, but not
on the random chain environment. Understanding where it performs best, why, and improving the extensions to model-free
algorithms is a topic of ongoing research.
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