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ABSTRACT

In causal inference, it is common to adjust for confounding variables in the
treatment effect estimation. Due to the absence of prior knowledge, a common
but brute-force approach for practitioners is to include every observed covariate
for adjustment. Nevertheless, aside from the confounders, the collected covari-
ates in practical applications often contain extra variables partially correlating to
the treatment (treatment-only variables, e.g., instrumental variables) or the out-
come (outcome-only variables, e.g., precision variables). Meanwhile, previous
literature shows that adjusting treatment-only covariates hurts the treatment ef-
fect estimation, while adjusting outcome-only covariates partially correlating to
the outcome brings benefits. Consequently, it is meaningful to find an optimal
adjustment set rather than the brute-force approach for more efficient treatment
effect estimation. To this end, we establish a metric named OAF, which is com-
putationally tractable, to measure the optimality of the adjustment set. From the
non-parametric viewpoint, we theoretically show that our metric can be seen as a
functional of the adjustment set, which is minimized if and only if the adjustment
features contain the confounders and the outcome-only covariates. As optimizing
the OAF metric is a combinational optimization problem, we incorporate the Rein-
forcement Learning (RL) to search for the corresponding optimal adjustment set.
More specifically, we adopt the encoder-decoder model as the actor to generate the
binary feature mask on the original covariates, which serves as the differentiable
policy. Meanwhile, the proposed OAF metric serves as the reward to guide the pol-
icy update. Empirical results on both synthetic and real-world datasets demonstrate
that (a) our method successfully searches the optimal adjustment features and (b)
the searched adjustment features achieve more precise estimation of the treatment
effect.

1 INTRODUCTION

Causal inference Imbens & Rubin (2015); Pearl et al. (2000), which refers to infer the variation of po-
tential outcomes by intervening treatments, is a fundamental research area in decision-making Zhang
et al. (2021); Zou et al. (2022); Fernández-Loría & Provost (2022) and interpretable artificial in-
telligence Zhuang et al. (2020); Karimi et al. (2020). In this paper, we perform analysis under
the potential outcome framework Imbens & Rubin (2015), and aim to estimate the average effect
of intervening the (binary) treatment T on the outcome Y given a set of covariates, as shown in
Figure 1(c). For example, a researcher attempt to assess the average treatment effect (ATE) of a
drug (T) on patients’ recovery (Y) from population data given some patients’ characteristics. One
fundamental problem of causal inference is the non-random treatment assignment between the control
and treated groups, where the treatment is assigned with some explicit/implicit assignment policy
manifested as correlations with some predictive covariates called confounders (X in Figure 1(c)) Wu
& Fukumizu (2021); Zou et al. (2022). As a consequence, vanilla learning methods will introduce
systematic bias without considering diverse treatment assignments across different groups Imbens
& Rubin (2015). To overcome this issue, the randomized control trial (RCT) provides the golden
standard Booth & Tannock (2014), while the ethical problems or the expensive practical cost become
the obstacle to performing RCT in realistic cases. Fortunately, observational studies provide the
possible alternative to infer the treatment effect from the Imbens & Rubin (2015); Zou et al. (2022).

1



Under review as a conference paper at ICLR 2023

(a) Brute-force. (b) Separation. (c) Ours.

Figure 1: The distinction among the settings, where arrows and dashed lines refer to the the causal
relationship and the correlation, respectively. (a) Setting of brute-force adjustment, where each
covariate is considered as the confounder for adjustment. (b) Setting of the previous separation
approach, which only allows I and Z to be pre-treatment and pre-outcome variables. (c) Setting of
our approach, which I and Z to be pre-treatment/post-treatment and pre-outcome/post-outcome or
both. Meanwhile, the correlations between I,Z and X are allowed as well.

Although remarkable progress has been achieved for average treatment effect estimation, an important
but easily overlooked problem often confuses the practitioner in realistic applications: the collected
covariates usually contain extra variables aside from the confounders X, which profoundly affects the
treatment effect estimationKuang et al. (2020); Hassanpour & Greiner (2019) (as shown Figure 1(b)
and 1(c)). Recalling the drug-recovery example, the drug analyzer often collects the covariates U to
be as abundant as enough such that all the confounders X (e.g., gender or age) are observed (X ⊆U).
At the same time, extra variables are introduced aside from X, where can be divided (U/X) into
two types: (a) the treatment-only variables I, denoting the extra variables partially correlating
to the treatment T (e.g., income); (b) the outcome-only variables Z, denoting the extra variables
partially correlating to the outcome Y (e.g., living environment). Notably, we consider a more general
setting as shown in Figure 1(c), where we allow (a) I and Z to be pre-treatment/post-treatment and
pre-outcome/post-outcome variables or both, (b) the existence of correlations between {Z,I} and X.
According to previous literature in parametric/non-parametric settings Rotnitzky & Smucler (2020);
Hahn (1998); Cochran (1968), adjusting I will decrease the precision, while adjusting Z will benefit
the estimation. Therefore, even though the estimation is unbiased (X belongs to the adjustment
set), the choice of different adjustment features selected from the covariates still plays a vital role in
determining the performance of ATE estimation.

However, due to the lack of prior guidance, the most common approach for the practitioner is to
include each covariate into the adjustment feature set Shalit et al. (2017); Shi et al. (2019), which we
call the brute-force approach. Due to the (potential) large asymptotic variance, such a brute-force
approach is inefficient with poor performance in some real-world cases Hassanpour & Greiner (2019).
To overcome this issue, previous approaches Kuang et al. (2020); Hassanpour & Greiner (2019) have
attempted to separate the confounders from the precision variables (pre-outcome variables, a special
case of Z) or instrumental variables (pre-treatment variables, a special case of I). However, two
drawbacks prevent these strategies to be applied in realistic scenes. To be first, their problem settings
only consider the instrumental variables and the precision variables (as shown in Figure 1(b)), which
is a narrow branch of our setting. By contrast, we allow a more general setting in this paper (as
shown in Figure 1(c)). Second, such heuristic approaches cannot clarify what adjustment features are
expected by their methods and how the selected adjustment features affect the estimation, while our
approach is well supported by semi-parametric inference theory.

In this paper, we focus on separating the treatment-only variables I from the confounders X and
outcome-only variables Z for more efficient ATE estimation. Motivated by the related advances
of semi-parametric inference Van der Laan et al. (2011); Karimi et al. (2020), we establish a
computational tractable metric, named Optimal Adjustment Features (OAF), to empirically describe
the asymptotic variance of the ATE estimation. Meanwhile, in the non-parametric regime, we
theoretically show that the asymptotic variance decreases within the supplementation of Z or the
deletion of I into the adjustment set. Therefore, the proposed OAF metric can be considered as a
function of the adjustment features, and the minimization of the variance metric implies that the
optimal adjustment features ({Z,X}) is selected. As our OAF varies discretely within the change
of adjustment features, we treat the minimization of OAF as a combinational optimization problem.
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Regarding the optimization efficiency, we introduce the reinforcement learning (RL) and propose
a policy gradient based optimization framework named OAFP. More specifically, we construct the
actor with an encoder-decoder model Bello et al. (2016) to generate the binary feature mask on the
original covariates, where the feature mask serves as the differentiable policy. On the other hand, the
OAF metric plays the role of the reward function to guide the policy gradient (e.g., the update of the
feature mask). In summary, our contributions are highlighted as follows:

i We propose a computational tractable metric, named OAF, to measure the optimality of
the adjustment features for treatment effect estimation with non-parametric theoretical
guarantee;

ii We design a reinforcement learning framework,named OAFP, to optimize the proposed
metric and generate the corresponding feature mask for selecting adjustment features;

iii Extensive results on both synthetic and real-world datasets verify that: (a) our method can
efficiently search the optimal adjustment features, (b) the searched adjustment features
significantly improves the precision of treatment effect estimation.

2 RELATED WORK

2.1 CONFOUNDER BALANCING

To estimate ATE/CATE, statistical methods focus on balancing the confounder across different groups
via diverse strategies, including reweighting Kuang et al. (2020), matching Stuart (2010) or covariate
alignment Athey et al. (2018). To overcome the model misspecification for the high-dimensional
data, a bunch of machine learning methods is further combined to capture the non-linear relationships
among variables Van der Laan et al. (2011); Zou et al. (2022); Lim (2018); Qian et al. (2021); Yao
et al. (2018); Shalit et al. (2017); Wager & Athey (2018). In detail, the representative non-parametric
approach is to discretely fit the potential outcome using a regression tree or random forest (e.g.,
CF tree or CF forest) Wager & Athey (2018). The typical semi-parametric approaches includes
TMLE Van der Laan et al. (2011), doubly-robust methods Karimi et al. (2020) and DragonNet Shi
et al. (2019), which is asymptotically unbiased and efficient. The mainstream of deep methods
models the confounder balancing as the domain adaptation problem, which learns the group invariant
representation by minimizing the distribution divergence across different treatment arms Shalit et al.
(2017); Yao et al. (2018). Besides, some methods also use sample-wise reweighting to make treatment
and confounder independent in the representation space Qian et al. (2021).

2.2 COVARIATE SEPARATION

Recent methods have already noticed the problem of separating confounder from the instrumen-
tal/precision variables Kuang et al. (2020); Hassanpour & Greiner (2019). For instance, Kuang et al.
(2020) proposed a data-driven variance reduction approach Kuang et al. (2020) named DVD to sepa-
rate the confounders from the precision variables, while DVD does not consider the treatment-only
variables. To overcome this gap, Hassanpour & Greiner (2019) introduces the instrumental variables
with non-linear deep networks to achieve disentanglement in the representation space. However,
our paper contrasts the above-mentioned methods from three aspects: (a) they only consider the
instrumental variables and precision variables, while we allow a much broader setting for I and Z
in Figure 1(c), (b) they are lack of theoretical understanding on how their methods achieve variable
separation for better ATE estimation, while our method is well supported by the semi-parametric
inference theory; (c) Hassanpour & Greiner (2019) achieves disentanglement in the representation
space; while our methods directly separate I from {Z,X} among the original covariates.

3 ESTABLISHING THE VARIANCE METRIC

3.1 SEMI-PARAMETRIC INFERENCE FOR ATE ESTIMATION

Setup. For concreteness, we consider the estimation of the average effect of a binary treatment.
Suppose the data we own is generated independently and identically: {Yi, Ui, Ti}ni=1 ∼ P , where P ,n
and U refer to the underlying joint distribution density, the sample size and the collected covariates,
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respectively. Following notations in Imbens & Rubin (2015), we define the potential outcome under
the treatment arm T = t as Y(t) (We use upper-case (e.g. T) to denote random variables, and
lower-case (e.g. t) for realizations.). Then the average treatment effect (ATE) equals to the expected
difference between the treated (T = 1) and the control (T = 0) groups: γ(P ) = E[Y(T = 1)−Y(T =
0)], where we refer ATE as γ(P ) for the convenience of later analysis. Given the collected covariates
U = {Z,X, I}, one has to select V ⊆U as the adjustment feature set for ATE estimation. To guarantee
the validity of V, three prior assumptions should be satisfied: [a] Stable Unit Treatment Value: Yi(t)
for sample i is independent of the treatment assignments on sample j ≠ i; [b] Unconfoundedness:
Y (t) á T ∣V; [c] Overlap: For arbitrary V ∈ V , p(t ∣V) for t ∈ {0,1}, where V is the domain of
V. When the above-mentioned assumptions are mentioned, the selected V supports the unbiased
estimation of ATE via diverse methods. For instance, the outcome regression (stratification) estimate
γ(P ) = mT=1

V (Y) −mT=0
V (Y), where mT=t

V (Y) = E[Y ∣ T = t,V] refers to the conditional
outcome. Alternatives include using the propensity score πT(V) = P (T = t ∣ V) for inverse-
reweighting. The adjustment set V satisfying the above three principles is valid, and invalid otherwise.

Semi-parametric Inference for ATE Estimation. Beyond estimating the whole underlying dis-
tribution P , previous literature in semi-parametric inference Van der Laan et al. (2011) concerns
estimating the ATE parameter γ as a functional of the underlying density P . Moreover, we denote the
estimated density from {Yi, Ui, Ti}ni=1 as P̂ (via diverse machine learning methods) and the empirical
distribution of P as Pn. In the case that γ is pathwise differentiable to P (this holds for ATE) and the
underlying statistical model is convex, the following convergence result is obtained through Central
Limit Theorem (CLT) once one of πT(V) and mT

V is consistent:

√
n (γ (P̂ ) − γ(P )) dÐ→ N(0,Var[Deff(V)]), (1)

where
dÐ→ refers to the convergence in distribution. The function Deff(V) of V denotes the efficient

influence curve Van der Laan et al. (2011), which has an unique expression Hines et al. (2022):

Deff(V) = I(T = 1) − I(T = 0)
πT(V) (Y(t) −mT

V(Y)) +mT=1
V (Y) −mT=0

V (Y) − γ(P ). (2)

Optimality of Adjustment Features. The above conclusion reflects two critical intuitions: (a)
the Cauchy–Schwarz inequality and Cramer-Rao bound Van der Laan et al. (2011) guarantees that
Deff(V) achieves the efficient estimation (with optimal asymptotic variance as Var[Deff(V)]) of γ
with respect to each V; (b) different V determines different Var[Deff(V)], which further determines
the ATE estimation. Notably, previous theoretical researches have already established the connection
between the optimality of the adjustment features V and the minimization of asymptotic variance:
Var[Deff(V)] is minimized if and only if V = {X,Z} Rotnitzky & Smucler (2020); Hahn (1998).
However, two drawbacks restrict the practicality of their methods: (a) they require prior causal graphs
to guide the choice of adjustment sets; (b) they utilize the original expression of efficient influence
curve, namely Deff, to derive the asymptotic variance, which is not computationally tractable.

3.2 THEORETICAL PROPERTIES OF OUR PROPOSED METRIC

Different from Rotnitzky & Smucler (2020), we adopt the decomposed version (in Chapter 6.2 in Van
Der Laan & Rubin (2006)) of the efficient influence curve (2) as Deff

d (V), which is computational
tractable and also satisfies the linear asymptotic results in (1):

Deff
d (V) =

I(T = 1) − I(T = 0)
πT(V) (Y(T) −mT

V(Y)), (3)

where the validity of such decomposition is supported in the following lemma:

Lemma 3.1 (Validity of Deff
d (V)). Similar to Deff, γ̂(P ) is asymptotically linear with Deff

d , and
√
n (γ (P̂ ) − γ(P )) dÐ→ N(0,Var[Deff

d (V)]).

Moreover, we strengthen the viewpoint that the asymptotic variance is critical for the precision of
estimating ATE in the case of finite samples using the following proposition:
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Lemma 3.2. Suppose that the cumulative distribution function Fn of γ (P̂) − γ (P ) is continuous
within the sample size n increasing, then for any α ≥ 0 and n,

P (∣γ (P̂ ) − γ (P ) ∣ ≥ α) ≤ δn + 1 − F
⎛
⎜
⎝

√
nα√

Var[Deff
d (V)]

⎞
⎟
⎠
, (4)

where F refers to the cumulative distribution function of the normal distribution N(0,1) and
δn = sup ∣Fn − F ∣ describes the point-wise convergence of {Fn} to F with increasing n. According to
the above lemma, we conclude that smaller Var[Deff

d (V)] implies the smaller right-side in equation 4,
which further results in more precise γ (P̂ ). Therefore, choosing different adjustment features V
from the covariate set U determines different asymptotic variance Var[Deff

d (V)], which further
affects the precision of ATE estimation. Naturally, we propose our metric named Optimal Adjustment
Features (OAF), as a functional of the adjustment features V ↦ R+: ROAF(V) = Var[Deff

d (V)].
Nevertheless, one might be still confused about howROAF varies within V changing. We provide
theoretical insights to answer this problem using the following theorem:
Theorem 3.3 (Connections betweenROAF and V). We denote the selected features for adjustment
as V ⊆ {X ∪ I ∪Z}. Meanwhile, we denote the optimal adjustment set as V0 = {X ∪Z}. Then the
optimality of our reward is stated from the following three sub-theorems:

(a) If V is a valid adjustment set, then ROAF(V′) ≤ ROAF(V) holds for V′ = V ∪Z′, where
Z′ ⊆ Z.

(b) If V is a valid adjustment set, thenROAF(V) ≤ ROAF(V′) holds for any V′ =V∪I′, where
I′ ⊆ I.

(c) We assume that the {X∪ I∪Z} contains all the parents of Y, which implies that Z contains
all the outcome-precision variables of Y. ThenROAF(V0) ≤ ROAF(V′) holds for any V′

which is not a valid adjustment set.

Remark. Overall, our theorem reflects that ROAF(V) = Var[Deff
d (V)] achieves the minimum if

V = {X ∪ Z}. Meanwhile, we argue that if ROAF(V) = Var[Deff
d (V)] then V = {X ∪ Z} is the

optimal adjustment features. To be specific, V must equal to {X,Z} whenROAF(V) achieves the
minimum in the case that all the inequalities in Theorem 3.3 strictly hold (otherwiseROAF({X,Z}) <
ROAF(V) contradicts the assumption). The case that some equalities hold is meaningless, since
Lemma 4 implies that any valid adjustment features achieve the minimal asymptotic variance is
optimal for ATE estimation. Finally, we claim that the proposedROAF(V) achieves the minimum if
and only if V = {X,Z} are the optimal adjustment features.

3.3 EMPIRICAL ESTIMATION FOR COMPUTATION

Recalling the empirical data {Yi, Ui, Ti}ni=1, it is necessary to find an unbiased estimation of
ROAF(V) = Var[Deff

d (V)] in the case of finite samples. Fortunately, the M-estimation theory Ste-
fanski & Boos (2002) provides the empirical sandwich estimator as an unbiased solution. Although
the influence curve approach is more general than the M-estimator approach, they are equivalent
in the case of ATE estimation Stefanski & Boos (2002). More specifically, supposing that π̂T(V)
and ̂mT=1

V (Y) represents the estimated propensity score and the conditional outcome, respectively,
the corresponding empirical M-estimator can be written as ϕ̂(γ) = I(T=1)−I(T=0)

π̂T(V)
(Y(t) − π̂T(V)),

where the “sandwitch” terms can be further calculated as Â(γ) = I (I is identity matrix) and
B̂(γ) = 1

n ∑
n
i=1 ϕ̂i=1(γ)

2
. Finally, the empirical estimation of our metric, namely R̂OAF(V), is

derived as follows 1:

R̂OAF(V) = Â(γ)B̂(γ)Â(γ)T = 1

n

n

∑
i=1

(I(T = 1) − I(T = 0)
π̂T(V)

(Y(T) − π̂T(V)))
2

. (5)

1In fact, the term is similar to the additional term of doubly-robust methods (e.g., AIPW) or the iteration
term in TMLE, as both TMLE and AIPW tunes the estimator or estimated distributions to compensate for the
term PnD

eff
d (V) Hines et al. (2022) such that the error term convergences to a zero-mean Gaussian distribution.
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( , , )

Figure 2: The framework of our reinforcement learning method.

4 REINFORCEMENT LEARNING FOR OPTIMIZATION

As mentioned above, the empirical variance metric R̂OAF(V,T,Y) in equation 5 varies discretely
with different adjustment features V, where we rewrite R̂OAF(V,T,Y) here to strengthen the point
that the calculation of R̂ depends on T,Y as well. Hence, it is difficult to optimize R̂OAF(V,T,Y) in
a differentiable approach. As an alternative, we consider the minimization of R̂OAF as a combinational
optimization problem. Motivated by the recent advances in neural combinational search area Zhu
et al. (2019); Bello et al. (2016), we use the reinforcement learning (RL) to efficiently search V. To
this end, we define the binary feature mask M on the original covariates U = {Z,X, I} such that the
ultimate goal is to find M corresponding to the optimal adjustment features {Z,X}. We suppose
the policy for mask generation is qΦ(⋅ ∣ {T,Y,U}), where Φ is the network parameter. Then the
expected reward is defined to be our training objective as follows:

J(ψ ∣ s) = EM∼qΦ(⋅∣{T,Y,U}) −ROAF(U⊙M,T,Y), (6)

where we use the notation ⊙ to denote the selection of V from U by M. In detail, we adopt the policy
gradient method with variance reduction (reinforcement) to optimize the objective in equation 6.
Previous work for combinational optimization adopts the parametric approach by building a critic
network to estimate the reward and reduce the variance Zhu et al. (2019); Bello et al. (2016). However,
the critic can estimate the reward accurately only when the reward design is relatively simple (e.g.,
the traveling salesman problem Bello et al. (2016)). By contrast, the R̂OAF(V,T,Y) in our problem
is more complex, which is calculated upon two estimators π̂T(V) and m̂T

V(Y). Therefore, we
alternatively use the non-parametric approach as reinforcement Williams (1992) to calculate the
gradient of J(ψ ∣ s) with respect to ψ. Moreover. we also add an entropy regularization term to
encourage the exploration of the actor during the search process Zhu et al. (2019).

Regarding the implementations, we follow previous paradigms Bello et al. (2016) and build the actor
network in the encoder-decoder architecture, as shown in Figure 2. The encoder is a multi-block
transformer and the decoder is a Multi-layer-perception (MLP) perception. We leave the detailed
settings of the actor network in the appendix. To improve the efficiency during the optimization, we
sample K arrays {B1,B2, . . . ,BK} as a batch, where Bi = {ti,ui,yi}nb

i=1 with nb as the sample
size for each array. As such operation implies the computation of R̂OAF(V,T,Y)i for each Bi,
calculating the reward becomes more time-consuming than updating the actor network, especially in
the case that π̂T(V) and m̂T

V(Y) are non-linear estimators. To alleviate this problem, we training
π̂T(V) and m̂T

V(Y) in parallel with multiples processes.

5 EXPERIMENTS

5.1 BENCHMARKS AND BASELINES

To evaluate the effectiveness of the proposed method, we conduct experiments on three datasets
including the synthetic data, the semi-synthetic IHDP dataset Hill (2011) and the real-world Twins
dataset Almond et al. (2005), respectively. Details are present in the appendix for saving space.

Synthetic. Our synthetic datasets are generated according to the following process, which takes
as input the total sample size N , the feature dimension d of the covariate U . In general, we
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first generate the pre-treatment part of Z, the confounders X with the post-treatment part of I.
Then Y and T are generated, where the post-treatment part of I and the post-outcome part of Z
are further generated. To be specific, we first generate X with feature size dx, the pre-treatment
Ie with size dIe and the pre-outcome Ze with size dZe: X1,⋯,Xdx ,Z

e
1,⋯,Ze

dze
, Ie1,⋯, IedIe

iid∼
N(0,1). The treatment T is then sampled from the logistic transformation of Ie and X as T ∼
Bernoulli (1/ (1 + exp (−(ITX + IT Ie) ⋅ r))), where r = dx+dIe

20
is the scaling factor. Meanwhile,

following previous protocols Kuang et al. (2020), the outcome Y is generated under both the linear
and non-linear setting. More specifically, the linear generation of Y is Y =Xβxy + zeβzy +T + σY ,
where the non-linear generation is Y =Xβxy+∑dze

i=1 z
e
iz

e
i+1 ⋅β

zy
i +T+σY (the term i+1 is modulated

by dze). Furthermore, the post-treatment variables Io and the post-outcome variables Zo are generated
as Io = βIoT + σIo and Zo = βZoY + σZo. Overall, the ATE for the synthetic dataset is 1 and the
covariate is U = {X,Ze,Zo, Ie, Io}. To increase the challenging of separating I from {Z,X}, we set
dIo = 0.3d, dIe = 0.2d, dX = 0.3d, dZo = 0.1d and dZe = 0.1d by enlarging the ratio of I. Besides,
the sample size N is set to 2000.

IHDP. Based on the original RCT data, the selection bias is introduced by Hill (2011) via removing
a non-random subset of the treated population. The resulting dataset contains 747 instances (608
control, 139 treated) with 25 covariates collected from the real-world Shi et al. (2019). We first
choose the 5 continuous covariates as the confounders X. Then we randomly choose half of the
discrete covariates as I, where the rest discrete covariates are set as Z. The generation of Y further
follows the surface B setting in Hill (2011).

Twins. The original Twins dataset is derived from the all twins born in the USA between the year
of 1989 and 1991 Almond et al. (2005). Following previous protocol Shi et al. (2019), we consider
28 variables related to parents, pregnancy, and birth, where the outcome is the children’s mortality
after one year. To develop I, we construct 5 pre-treatment variables and 5 post-treatment variables to
generate the 38-dimension U. The treatment T is then generated via the logistic function.

Baselines. The baselines we compared in this paper can be summarized into three classes: (a)
Statistical methods, which include the direct difference method Kuang et al. (2020), the inverse
propensity score reweighting (IPW) Austin & Stuart (2015), Augmented IPW (AIPW) Van Der Laan
& Rubin (2006) and the TMLE method Van Der Laan & Rubin (2006); (b) Machine Learning
methods including the DragonNet Shi et al. (2019), Generative adversarial Network (GANITE) Yoon
et al. (2018), the Bayesian regression Tree (BART) Hill (2011) and the orthogonal regularized
network (DNOUT) Hatt & Feuerriegel (2021); (c) previous covariate disentanglement/separation
methods including the LASSO regularized AIPW (AIPW-L), the DVD method in Kuang et al. (2020),
the DR-CFR method in Hassanpour & Greiner (2019) and the multi-environment invariant method
NICE Shi et al. (2021).

Implementations of our method. Roughly speaking, we implement both the linear and the non-
linear versions of our method, respectively. For the linear implementation, we implement the
π̂T(V) as the logistic regression and m̂T

V(Y) as the linear regression to search the adjustment
features. The downstream estimator for ATE estimation is the doubly-robust AIPW. For the non-
linear implementation, we build a two-layer MLP as π̂T(V) with a four-layer MLP as m̂T

V(Y)for
searching features, with the DragonNet as the downstream estimator for estimating ATE. To ease the
notation, we name our method OAFP_L implemented for the linear case, and OAFP_N implemented
for the non-linear case. Our implementation in Python will be released in public once accepted.

Metric. We mainly focus on two metrics: the bias of ATE and the accuracy of feature selection. The
former metric is quantified by ϵATE = ∣ATE − ÂTE∣, where ATE = 1

N ∑
N
i=1 Y

1
i − 1

N ∑
N
j=1 Y

0
j is the

underlying truth. Notably, as the underlying ATE for Twins is close to zero (0.025), we report the
relative error as ϵATE = ∣ATE−ÂTE∣

ATE
for Twins dataset. For the latter metric, we use Acc = ∣M̂−M0∣1

d
to

measure the feature accuracy, where M̂ refers to the optimized feature mask and M0 refers to the
ground truth feature mask with M0

i = 0 when Ui ∈ I and M0
i = 1 otherwise.

5.2 RESULTS AND ANALYSIS

In this section, we first propose three questions on the evaluation of the proposed OAFP method: (a)
Whether OAFP searches the adjustment features accurately; (b) Whether the adjustment features
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(a) Reward (b) Accuracy

Figure 3: Reward and feature accuracy curves in the setting
of non-linear synthetic data with d = 20.

Dataset Fs_Acc R_err
S-20-l 95.0% 0.02
S-40-l 92.5% 0.04
S-80-l 90.0% 0.11
S-20-n 95.0% 0.06
S-40-n 95.0% 0.10
S-80-n 90.0% 0.13
IHDP 92.0% 0.11
Twins 94.7% 0.13

Table 1: Results on feature search,
where S-20-l refers to the synthetic
data with 20 features in the linear
setting (n refers to non-linear).

Table 2: Non-Linear simulation results. The metrics are Mean±STD over 10 repeated experiments.
The best performance is marked bold.

Settings In_sample Prediction Out_of_sample Prediction
Feature Dimension 20 40 80 20 40 80

Statistical

Direct 4.69±0.62 7.09±0.68 8.92±0.76 5.23±0.41 6.28±1.41 9.28±1.32
IPW 0.99±4.50 1.27±3.13 4.36±2.37 1.33±1.92 2.22±5.39 4.51±3.33

AIPW 1.32±1.95 0.99±0.27 2.35±0.83 0.21±1.19 0.55±0.47 3.88±1.23
TMLE 0.42±0.11 0.59±0.07 0.62±0.02 0.50±0.12 0.66±0.18 0.81±0.20

Machine

DragonNet 0.19±0.19 0.20±0.14 0.57±0.38 0.99±0.16 0.84±0.70 0.87±1.02
GANITE 0.80±0.01 0.87±0.01 0.99±0.01 0.99±0.01 1.08±0.01 1.10±0.01
DNOUT 0.47±0.01 0.62±0.04 0.92±0.09 0.50±0.02 0.61±0.05 0.95±0.09
BART 0.92±0.20 2.03±0.27 2.89±0.98 0.92±0.20 2.25±0.16 2.98±1.10

Decomposed

AIPW_L 0.59±0.10 0.66±0.05 0.89±0.10 0.54±0.29 0.74±0.13 0.96±0.22
DVD 0.95±0.03 0.83±0.01 0.76±0.01 1.06±0.08 0.64±0.01 1.05±0.73

DR-CFR 0.88±0.08 1.18±0.16 2.08±0.69 1.28±0.08 1.69±0.73 1.52±0.51
NICE 1.08±0.32 1.24±0.60 1.81±0.22 1.10±0.37 1.23±0.41 1.93±0.35

Ours OAFP_L 0.03±0.13 0.12±0.10 0.23±0.13 0.24±0.22 0.20±0.13 0.32±0.34
OAFP_N 0.01±0.10 0.09±0.07 0.13±0.11 0.15±0.09 0.16±0.07 0.14±0.08

searched by our OAFP achieve better ATE estimation compared to baselines; (c) Whether the search
process of OAFP is efficient on the time cost.

Results on searching features. To answer the first question, we report results on Results on feature
search (Fs_Acc) with the relative error (R_err) in Table 1, where R_err = ∣R(V̂)−R(V)∣

R(V)
measure

the relative distance between the optimal variance metric as R(V) and the metric for our searched
features V̂ as R(V̂). Notably, we search non-linear synthetic data, IHDP, and twins using the non-
linear OAFP-N, while the linear synthetic dataset is searched using OAFP-L. The feature accuracy in
Table 1 reflects that our method OAFP_L and OAFP_N successfully search the optimal adjustment
features {Z,X} in linear and non-linear cases, respectively. Meanwhile, the relative error of the
variance metric R_err in Table 1 also reflects that our searched adjustment features achieve the
empirical asymptotic variance close to the optimal one achieved by {Z,X}. Moreover, we provide an
intuitive illustration of how the reward R̂ and the feature accuracy vary in the training process during
the search process in Figure 3(a) and Figure 3(b), respectively. As shown in 3(a), the average reward
converges stably under the threshold at around 4000 steps, where the corresponding feature accuracy
also achieves 95% after 3000 steps. Besides, the reasons behind that the feature accuracy cannot
achieve 100% can be attributed to (a) error between the empirical R̂in equation 5 and R; (b) the
effect of some covariates are too small in the underlying structural equation such that their existence
or not is less important.

Results on ATE estimation. We then report the downstream results on ATE estimation in Table 2,
Table 3 (results on linear simulation is present in appendix), respectively. For results on non-linear
simulation, our method, OAFP_L and OAFP_N, achieve significant improvement in the estimation
performance compared to other baselines. Results on the semi-synthetic IHDP and the real-world
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Table 3: Results on IHDP and Twins datasets. The metrics are Mean±STD over 10 repeated
experiments. The best performance is marked bold.

Benchmark IHDP Twins
Settings In_sample Out_of_sample In_sample Out_of_sample

Statistical

Direct 3.36±3.70 3.70±3.36 1.50±0.03 4.34±0.14
IPW 3.48±5.92 3.48±5.91 1.79±0.05 9.29±0.39

AIPW 1.82±2.99 1.82±2.99 1.79±0.05 9.29±0.39
TMLE 2.71±1.80 2.52±1.07 1.76±0.02 4.01±0.02

Machine

DragonNet 1.19±1.04 1.37±0.95 1.05±0.01 1.03±0.01
GANITE 5.40±0.04 5.60±0.01 15.60±0.08 19.6±0.19
DOUT 3.16±1.41 3.08±1.26 2.04±0.02 2.20±0.02
BART 3.12±2.42 3.28±2.60 0.95±0.03 0.97±0.03

Decomposed

AIPW_L 1.85±2.64 1.85±2.64 1.03±0.03 3.35±0.12
DVD 2.79±0.82 0.73±0.03 1.42±0.01 7.78±0.05

DR-CFR 2.45±1.05 1.74±1.00 3.64±0.03 6.00±0.01
NICE 2.75±3.91 2.68±2.25 42.92±0.02 53.12±1.84

Ours OAFP_L 1.14±0.47 1.24±0.33 0.65±0.02 1.98±0.06
OAFP_N 0.28±0.07 0.29±0.09 0.30±0.01 0.43±0.01

Twins further verify the superiority of our method. Meanwhile, the poor performance for methods
without covariate separation also strengthens our view that the existence of treatment-only variables I
will hurt the ATE performance in finite-sample cases. Notably, our linear implementation OAFP_L
performs less accurately than some deep methods (e.g., DragonNet) due to the model misspecification
problem for the IHDP dataset.

Results on the efficiency of our method. To verify how our RL framework improves the searching
efficiency, we compare the search process of our OAFP to that of the brute-force approach (traversing
the powerset of U and find the minimalR) in Table 4. Obviously, it is meaningful for us to design
the RL framework as it significantly reduces the time cost for searching the optimal adjustment
features. (The brute-force approach is even impossible when the feature dimension is larger than 20.)
Besides, we also provide ablation studies on the effect of varying sample size and X-I-Z ratio on
searching the features and the ATE estimation in our appendix.

Table 4: Comparison on the time cost (hours) of searching for features, where Syn_20_l refers to
synthetic data with 20 covariates generated under the linear setting. For the brute-force approach, we
calculate its time cost as the multiplication of the average training time by 2n.

Method Syn_20_l Syn_40_l Syn_20_n Syn_40_n
Ours 0.22 0.27 28.055 41.94

Brute-force 11.65 1.83⋅107 2.94⋅103 4.61⋅109

6 FUTURE WORKS AND CONCLUSION

In this paper, we study the problem of estimating average treatment effect (ATE) from observational
studies when the collected covariates (U) contain the treatment-only variables (I) and the outcome-
only variables (Z) aside from the confounder X . Based on the semi-parametric inference, we show
that separating I from {Z,X} brings benefits for ATE estimation. To this end, we establish a variance
metric to measure the optimality of any adjustment features, and design an RL-based framework
to efficiently optimize the proposed metric. Extensive experimental results also verified that the
proposed method successfully identifies the optimal features with precise ATE estimation.

However, two problems still remain for further efforts. (a) The existence of selection bias. Aside
from the confounding bias, the selection bias Bareinboim & Pearl (2012) hurts the ATE estimation
when we adjust the common effects of both the treatment and the outcome. One possible solution
is to treat the inverse propensity score of the treatment (IPT) as the target parameter and derive the
corresponding efficient influence curve. (b) Estimating the individualized treatment effect (ITE). As a
closed form of efficient influence curve on ITE estimation is difficult to derive, it remains an open but
interesting problem.
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A APPENDIX

A.1 THEORETICAL PROOF

Lemma A.1 (Properties of decomposed efficient influence curve). To facilitate following analysis,
we present several properties of the decomposed efficient influence curve Deff

d =
I(T=1)−I(T=0)

πT(V)
(Y −

mT
V(Y)) in the condition that V is a valid adjustment set:

a. E[Deff
d (V)] = 0

b. Var[Deff
d (V)] = E[(D

eff
d (V))2]

Proof. a.

E[Deff
d (V)] = E [

I(T = 1) − I(T = 0)
πT(V) (Y −mT

V(Y))]

= E [I(T = 1)
πT(V) (Y −m

T
V(Y))] −E [

I(T = 0)
πT(V) (Y −m

T
V(Y))] ,

where we calculate the expectation here with respect to the joint density P . We then expand
the first term as follows:

E [I(T = 1)
πT(V) (Y −m

T
V(Y))] = E [

I(T = 1)
πT=1(V)(Y(1) −m

T=1
V (Y))]

= EVE [I(T = 1)
πT=1(V)(Y(1) −m

T=1
V (Y)) ∣V]

= EV {E [
I(T = 1)
πT=1(V) ∣V]E

[(Y(1) −mT=1
V (Y)) ∣V]}

= 0,
where the first equality is due to the consistency of Y, the second equality is due to
the tower property of expectation. Meanwhile, the third equality is due to the fact that
Y(t) á πT(V) ∣V. Finally, E [(Y(1) −mT=1

V (Y)) ∣V] = 0 derives the last equality.

b.
Var[Deff

d (V)] = E[(Deff
d (V))2] − (E[Deff

d (V)])2 = E[(Deff
d (V))2].

Lemma A.2 (Validity of Deff
d (V)). Similar to Deff, γ̂(P ) is asymptotically linear with Deff

d , and
√
n (γ (P̂ ) − γ(P )) dÐ→ N(0,Var[Deff

d (V)]).

Proof. First, we present the original derivation of Deff as follows for convenience:

Deff(V) = I(T = 1) − I(T = 0)
πT(V) (Y(t) −mT

V(Y)) +mT=1
V (Y) −mT=0

V (Y) − γ(P ). (7)

Then a previous proved conclusion is provided such that the estimator γ̂(P ) is asymptotically linear
with influence curve as Deff Van Der Laan & Rubin (2006):

γ (P̂ ) − γ(P ) = 1

n

n

∑
i=1

Deff
i (V) +O(

1√
n
). (8)

Moreover, the decomposition of Deff is also proposed in Van Der Laan & Rubin (2006):
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Deff
d =Deff1 = I(T = 1) − I(T = 0)

πT(V) (Y(t) −mT
V(Y))

Deff2 =mT=1
V (Y) −mT=0

V (Y) − γ(P ),
(9)

12



Under review as a conference paper at ICLR 2023

where the second term equals to zero under the integral of the empirical distribution Pn: PnD
eff2 =

0 Van der Laan et al. (2011). Thus we conclude that γ̂(P ) is asymptotically linear with influence
curve as Deff2: 1

n ∑
n
i=1D

eff
i (V) = 1

n ∑
n
i=1D

eff2
i (V) + O(1). Meanwhile, combined with previous

conclusion in Lemma equation A.1 that E[Deff
d (V)] = 0, we have the following derivation:

lim
n→+ inf

√
n (γ (P̂ ) − γ(P )) = lim

n→+ inf
{ 1√

n

n

∑
i=1

(Deff1
i (V) +Deff2

i (V)) +
√
nO( 1√

n
)}

= lim
n→+ inf

{ 1√
n

n

∑
i=1

Deff1
i (V)} ,

(10)

where the CLT further implies that
√
n (γ (P̂ ) − γ(P )) dÐ→ N(0,Var[Deff

d (V)]).

Lemma A.3. Suppose that the cumulative distribution function (CDF) Fn of γ (P̂ ) − γ (P ) is
continuous within the sample size n increasing, then for any α ≥ 0 and n,

P (∣γ (P̂ ) − γ (P ) ∣ ≥ α) ≤ δn + 1 − F
⎛
⎜
⎝

√
nα√

Var[Deff
d (V)]

⎞
⎟
⎠
, (11)

Proof. We first claim that although we suppose the continuity of the CDF, the similar conclusion
can be extended to CDFs with non-left-continuous points as well. As the term δn controls the
convergence of the series {Fi}ni=1 to F , results in Lemma A.2 imply that for any α in the support of
P , the following inequality holds:

∣F (α) − Fn(α)∣ ≤ δn Ô⇒ 1 − Fn(α) ≤ 1 − F (α) + δn. (12)

where F is the CDF of the normal distribution N(0,Var[Deff
d (V)]). Meanwhile, we observe that

N(0,Var[Deff
d (V)])

d= Z ∗
√

Var[Deff
d (V)], where d= refers to the in-distribution equality and

Z ∼ N(0,1). Therefore, the above inequality can be derived as follows:

P (X ≥ α) ≤ δn + 1 − P (X ≥ α)

≤ δn + 1 − P (Z ∗
√

Var[Deff
d (V)] ≥ α),

(13)

where the final conclusion is obtained when we further let X = √n∣γ (P̂ ) − γ (P ) ∣ and α0 =√
nα.

Theorem A.4 (Connections betweenROAF and V). We denote the selected features for adjustment
as V ⊆ {X ∪ I ∪Z}. Meanwhile, we denote the optimal adjustment set as V0 = {X ∪Z}. Then the
optimality of our reward is stated from the following three sub-theorems:

(a) If V is a valid adjustment set, then ROAF(V′) ≤ ROAF(V) holds for any V′ = V ∪ Z′,
where Z′ ⊆ Z.

(b) If V is a valid adjustment set, thenROAF(V) ≤ ROAF(V′) holds for any V′ =V∪I′, where
I′ ⊆ I.

(c) We assume that the {X∪ I∪Z} contains all the parents of Y, which implies that Z contains
all the outcome-precision variables of Y. ThenROAF(V0) ≤ ROAF(V′) holds for any V′

which is not a valid adjustment set.

Overall, the above reflects two things (1) the deletion of I from V or the supplementation of Z into V
result in the decrease ofROAF(V) for valid V; (2) when V′ is invalid,ROAF(V′) is larger than that
of any valid adjustment set containing Z. There is another intuitive explanation for conclusion (2)
such that the residual term in equation 3 will become extremely large since V′ loses some of the
predictors in X.

Proof. Some of the techniques in our proof here are inspired by Karimi et al. (2020).
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(a) First, V′ =V ∪Z′ implies that Z′ á T ∣V. Then πT(V) = πT(V′) holds, which further
derives the following equation:

Deff
d (V) =Deff

d (V′) +
I(T = 1) − I(T = 0)

πT(V) (mT
V′(Y) −mT

V(Y))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

DM

.

Then we obtain the fact that E[DMD
eff
d (V′)] = 0:

E[DMD
eff
d (V′)] = EV′E[DMD

eff
d (V′) ∣V′]

= EV′

⎡⎢⎢⎢⎢⎣
∑

t∈{0,1}

(2t − 1)(mT
V′(Y) −mT

V(Y))E[Yt −mT
V′(Y) ∣V′]E[

(I(T = t))2
(πT(V′))2 ∣V

′]
⎤⎥⎥⎥⎥⎦

= 0,
where the first equality is due to the tower property, the second equality is due to the fact
that both V and V′ are valid adjustment sets, and the third equality is due to the fact that
E[Y(t) −mT

V′(Y) ∣ V′] = 0. Meanwhile, we derive the expectation of the term DM as
follows:

E[DM ] = E [
I(T = 1) − I(T = 0)

πT(V) (mT
V′(Y) −mT

V(Y))]

= E [I(T = 1)
πT(V) (m

T
V′(Y) −mT

V(Y))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D1
M

−E [I(T = 0)
πT(V) (m

T
V′(Y) −mT

V(Y))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D2
M

,

where the term D1
M is then simplified as follows:

D1
M = E [

I(T = 1)
πT=1(V)(m

T=1
V′ (Y) −mT=1

V (Y))]

= EVE [I(T = 1)
πT=1(V)(m

T=1
V′ (Y) −mT=1

V (Y)) ∣V]

= EV [E [(mT=1
V′ (Y) −mT=1

V (Y)) ∣V]E [ I(T = 1)
πT=1(V′) ∣V]] ,

where the term E [(mT=1
V′ (Y) −mT=1

V (Y)) ∣V] = 0 due to the fact that E[mT=1
V′ (Y) ∣

V] =mT=1
V (Y). The simplification of D2

M is similar to that of D1
M . Thus we derive that

E[DM ] = 0. Finally, we derive the formulation of Var(Deff
d (V)) as follows:

Var(Deff
d (V)) = Var(Deff

d (V′)) +Var(DM)
= Var(Deff

d (V′)) +E [D2
M ]

= Var(Deff
d (V′)) +E

⎡⎢⎢⎢⎢⎣
(I(T = 1) − I(T = 0)

πT(V) (mT
V′(Y) −mT

V(Y)))
2⎤⎥⎥⎥⎥⎦

= Var(Deff
d (V′)) +EV

⎡⎢⎢⎢⎢⎣
E
⎡⎢⎢⎢⎢⎣
(I(T = 1) − I(T = 0)

πT(V) )
2

∣V
⎤⎥⎥⎥⎥⎦
E [(mT

V′(Y) −mT
V(Y))

2 ∣V]
⎤⎥⎥⎥⎥⎦

= Var(Deff
d (V′)) +EV [Var(mT

V(Y) ∣V)(
1

p(T = 1 ∣V) +
1

p(T = 0 ∣V))] ,

where the last equality is due to the fact that E[mT
V′(Y) ∣V] =mT

V(Y) with some algebra

on the term E [(I(T=1)−I(T=0)
πT(V)

)
2
∣V].

(b) First, V′ =V ∪ I′ and I′ áY ∣V,T imply that mT
V(Y) =mT

V′(Y) holds. Then we derive
the following decomposition of Var(Deff

d (V′)):
Var(Deff

d (V′)) = Var(E [Deff
d (V′) ∣ T,V,Y]) +E [Var (Deff

d (V′) ∣ T,V,Y)] , (14)
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where the term E [Deff
d (V′) ∣ T,V,Y] is simplified as follows:

E [Deff
d (V′) ∣ T,V,Y] = E [

I(T = 1) − I(T = 0)
πT(V′) (Y −mT

V′(Y)) ∣ T,V,Y]

= E [I(T = 1) − I(T = 0)
πT(V′) (Y −mT

V(Y)) ∣ T,V,Y]

= ∑
t∈{0,1}

(2t − 1)I(T = t)(Y −mt
V(Y))E [

1

πT(V′) ∣ T,V]

= ∑
t∈{0,1}

(2t − 1)I(T = t)(Y −mt
V(Y))

1

πT(V)

=Deff
d (V).

Then, we apply the results in equation 14 and simplify the expression of Var(Deff
d (V′)) as

follows:

Var(Deff
d (V′)) = Var(Deff

d (V)) +E [Var (Deff
d (V′) ∣ T,V,Y)]

= Var(Deff
d (V)) +E [Var(I(T = 1) − I(T = 0)

πT(V′) (Y −mT
V′(Y)) ∣ T,V,Y)]

= Var(Deff
d (V)) +E

⎡⎢⎢⎢⎢⎣
∑

t∈{0,1}

I(T = t) (Y −mT
V′(Y))

2
Var( 1

πT(V′) ∣ T,V,Y)
⎤⎥⎥⎥⎥⎦
.

(c) Once the variable set Z contains all the parents of Y, we can write the structural equation of
Y as Y = fY(T,X,Z). Then the proposed OAF metric of V0 can be derived as follows:

Var(Deff
d (V0)) = E

⎡⎢⎢⎢⎢⎣
( I(T = 1)
πT=1(V0)

(Y −mT=1
V0
(Y)))

2⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K1

+E
⎡⎢⎢⎢⎢⎣
( I(T = 0)
πT=0(V0)

(Y −mT=0
V0
(Y)))

2⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K2

,

where we further expand K1 as follows:

K1 = EV0

⎡⎢⎢⎢⎢⎣
E
⎡⎢⎢⎢⎢⎣
( I(T = 1)
πT=1(V0)

)
2

∣V0

⎤⎥⎥⎥⎥⎦
E [(Y(t = 1) −mT

V0
(Y))2 ∣V0]

⎤⎥⎥⎥⎥⎦

= EV0

⎡⎢⎢⎢⎢⎣
E
⎡⎢⎢⎢⎢⎣
( I(T = 1)
πT=1(V0)

)
2

∣V0

⎤⎥⎥⎥⎥⎦
E [(Y(t = 1) − fY(T,X,Z))2 ∣V0]

⎤⎥⎥⎥⎥⎦
= 0,

where the second equality holds due to the fact that Z contains all the parents of Y. Similar to
above derivation, we obtain that K2 = 0. Furthermore, we conclude that Var(Deff

d (V0)) = 0,
which indicates that Var(Deff

d (V0)) ≤ Var(Deff
d (V′)).

B EXPERIMENTAL DETAILS

B.1 DETAILS ON DATASETS

Synthetic In detail, we set the coefficient βxy = 4 and βzy = −2 for more significant difference
between the effects of X and Ze on Y. Meanwhile, we sample βIo, βZo from U(0,1), together with
σY , σIo and σZo sampled from N(0,2).
IHDP We follow the classical surface-B setting in Hill (2011) to generate the IHDP dataset with
the real-world 25 covariates. In detail, we set 5 continuous covariates (as all) as the confounders X.
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Table 5: Linear simulation results. The metrics are Mean±STD over 10 repeated experiments. The
best performance is marked bold.

Linear Simulation
Settings In_sample Prediction Out_of_sample Prediction

Feature Dimension 20 40 80 20 40 80

Statistical

Direct 5.33±0.53 6.88±0.69 8.66±0.85 5.54±1.41 7.36±1.26 6.25±1.84
IPW 0.68±2.20 0.93±2.90 1.11±2.59 0.87±2.33 1.51±3.11 2.28±3.87

AIPW 0.30±0.64 0.93±2.90 1.11±2.59 0.27±2.00 0.76±1.96 1.39±1.41
TMLE 0.25±0.07 0.58±0.11 0.61±0.05 0.48±0.10 0.60±0.13 0.65±0.11

Machine

DragonNet 0.05±0.48 0.29±0.15 0.49±0.37 0.93±0.42 0.90±0.37 1.05±0.86
GANITE 0.86±0.00 0.97±0.00 1.01±0.00 0.99±0.00 1.00±0.00 1.01±0.00
DNOUT 0.46±0.03 0.51±0.03 0.64±0.14 0.40±0.02 0.49±0.04 0.62±0.11
BART 1.02±0.12 2.13±0.15 2.56±0.61 1.51±1.00 1.99±0.28 2.87±0.57

Decomposed

AIPW_L 0.50±0.41 0.57±0.49 0.64±0.35 0.60±0.34 0.67±0.38 0.91±0.52
DVD 1.02±0.15 0.74±0.46 0.84±0.14 1.06±0.04 0.70±0.00 0.91±0.00

DR-CFR 0.66±0.26 0.44±0.18 0.30±0.13 0.69±0.12 0.68±0.08 0.46±0.06
NICE 1.02±0.09 1.05±0.11 1.34±1.08 0.90±0.18 0.96±0.13 1.18±0.84

Ours OAFP_L 0.03±0.01 0.01±0.01 0.08±0.02 0.14±0.03 0.15±0.07 0.12±0.08
OAFP_N 0.01±0.02 0.02±0.01 0.01±0.01 0.06±0.08 0.03±0.05 0.02±0.03

Meanwhile, we randomly select half of the rest 20 discrete variables as I, with the rest as Z. To this
end, we select Z or I from the Bernouli distribution B(0.5) for each discrete variable. The effect
coefficients of X and Z on Y, namely βxy and βzy , is generated in the same protocol in Hill (2011).
The effect coefficients of I and X on T, namely βit and βxt, are generated from U(−2,2) as the
uniform distributions. Furthermore, the Y1, Y0 and T are generated as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y1 = βT
xyX + βT

zyZ − ω +N(0,1),
Y0 = exp(βT

xyX + βT
zyZ) +N(0,1),

T ∼ Bernoulli (1/ (1 + exp (−(βT
xtX + βT

itI))))
, (15)

where ω refers to the term to keep the Average Treatment Effect on the Treated (ATT) close to 4 Hill
(2011). Here due to the reason that the covariates X are fixed, we do not distinguish pre-outcome and
post-outcome variables in IHDP.

Twins The original Twins dataset is derived from the all twins born in the USA between the year
of 1989 and 1991 Almond et al. (2005). The original treatment equaling to 1 indicates the heavier
one in the twins, and vice versa. Following previous protocols Louizos et al. (2017), we select 28
variables related to parents, pregnancy, and birth, with the outcome recording the children’s mortality
after one year. Moreover, we pro-pressing the dataset by filtering out entries with the same-sex twins
weighing less than 2000g or with missing features. Finally, we obtain 5271 samples for experiments.
As the original treatment T is assigned randomly, the typical approach for observational studies is
to re-simulating the treatment. To this end, we introduce 5 pre-treatment Ie and 5 post-treatment Io
by adding them to covariates, resulting the 38-dimension covariates. In detail, we sample Ie from
N(0,1). Then T is sampled from the Bernouli-logistic approach as follows:

T ∼ Bernoulli (1/ (1 + exp (−(βT
xtX + βT

itI
e) +N(0,0.5)))) , (16)

with βit and βxt sampled from U(−2,2). Moreover, Io is generated as Io = βIoT + σIo, with
βIo ∼ U(−2,2) and σIo ∼ N(0,0.5).

B.2 DETAILS ON IMPLEMENTATION

Details on baselines For baselines we have compared in this paper, we exactly follow the optimal
hyper-parameters with the original network architectures in their open-source implementations.
Notably, the NICE Shi et al. (2021) method requires the multiple environments to support the
identification of optimal adjustment features, where different environment is generated using distinct
causal graph. For our problem, to adapt NICE method, we randomly split the training data into three
environments to simulate the heterogeneous training domains.
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(a) Feature Accuracy (b) ATE Estimation

Figure 4: Results with different variable ratio.

Details on estimating π̂T(V) and m̂T
V(Y) For the linear implementation OAFP_L, we build

π̂T(V) and m̂T
V(Y) using the linear regression and logistic regression without any regularization

tricks. Meanwhile, our implementation on the downstream estimator, namely the AIPW estimator,
follows the Zepid package Masoumi & Shahraz (2022). For the non-linear implementation OAFP_N,
we build π̂T(V) and m̂T

V(Y) with two deep networks. The regression network for π̂T(V) consists
of four MLP layers with the activation function as ELU , and the score network consists of three
MLP layers with ELU as the activation function for the first two layers and Sigmoid for the last
layer. The optimizer we choose for π̂T(V) and m̂T

V(Y) is the Adam optimizer , where the learning
rate is 0.001 and 0.0005, respectively. Notably, we split an extra validation set from the training data
such that π̂T(V) and m̂T

V(Y) are evaluated on the validation part. Besides, we implement OAFP_L
on a single Tesla V100 gpu. For OAFP_N, we compute R̂ on a 8-gpu Tesla V100 cluster, where each
batch array Bi is trained in a single process in parallel.

Details on our RL framework Our implementation follows the previous neural combinational
search Bello et al. (2016); Zhu et al. (2019), where the encoder is a Transformer and the decoder
is a multi-layer MLP. As shown in Figure 2, the Transformer takes the covariates U as input, with
the total input size as RK×d×nb (K is the batch size, d is the dimension of U and nb is the sample
number for each array Bi in a batch). Under the alternative feed-forward by multi-layer MLPs and
multi-head attention module in each block, the representation (the output of the encoder) owns the
same shape asRK×d×nb . Meanwhile, we concentrate T and Y with the representation of U learned
from the Transformer, and then feed them into the MLP decoder. Finally, the MLP decoder sample
the binary feature mask with the sigmoid functions. We set nb = 512 and K = 64 throughout our
experiments. To be specific, our Transformer encoder has two blocks. The MLP decoder has two
linear layers with the Relu activation function. Moreover, we adopt the reinforce approach Williams
(1992) to non-parametrically reduce the variance of actor. To achieve this, we take the exponential
average of the past reward as the baseline term and the scaling factor is set to 0.99. Meanwhile, the
hyper-parameter for controlling the entropy term is set to 1.

Details on the downstream estimators AIPW and DragonNet For two downstream estimators,
namely the AIPW and DragonNet, we implement AIPW using the zepid package, where DragonNet is
reproduced with the original open-source implementation. In detail, AIPW uses the linear regression
and logistic regression to estimate the outcome regression and the propensity score, respectively. The
two estimators are then combined in the form of semi-parametric approaches Hines et al. (2022). As
the deep version of AIPW, DragonNet ensembles the optimization of score prediction and outcome
prediction into an end-to-end network with target regularization to satisfy the estimation equation Shi
et al. (2019). The architecture of DragonNet consists of the 4-layer representation MLD layers
activated by the ELU function, where the following three heads contains a single-layer MLP with
sigmoid as the score head, two three-layer with ELU as the outcome heads. The optimizer of
DragonNet is Adam optimizer with the initial learning rate as 0.001.
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(a) Feature Accuracy (b) ATE Estimation

Figure 5: Results with different sample size.

B.3 EXTRA EXPERIMENTAL RESULTS

First, we report the results of ATE estimation in the linear case in Table 5 here. The reported ATE
estimation results also reflect that, the deletion of treatment-only variables plays a vital role to
improve performance. Moreover, we perform some ablation studies on the data simulation to check
whether the proposed method is affected by (a) the variation on the ratio of I; (b) the variation in
the sample size. We choose the non-linear synthetic data with the total dimension d = 20 for our
ablation study. As the original ratio of I:X:Z is 5:3:2, we simulate the other 5 cases as 5 ∶ 2 ∶ 3,
3 ∶ 2 ∶ 5,3 ∶ 5 ∶ 2,2 ∶ 3 ∶ 5 and 2 ∶ 5 ∶ 3 by tuning the ratio of I. Related results are further presented in
Figure 4, where our method substantially achieves the selection of the optimal adjustment set with
accurate ATE estimation. Notably, an interesting phenomenon is that the performance gap between
the original DragonNet and our OAFP_N decreases when the ratio of I decreases, which strengthens
our viewpoint that including I is harmful for ATE estimation. To perform the ablation study on the
variation of the sample size N , we choose the ratio of the variables as 5 ∶ 3 ∶ 2 as in our paper and
vary N from 1000 to 10000. The corresponding results are present in Figure 5. Obviously, our
method is not sensitive to the variation of sample size, and the baseline does not achieve significant
improvement within sample size increases. Besides, such results reflect that the harm brought by I
cannot be alleviated by increasing the sample size.
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