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Abstract

For a long time, the authorship of the Federalist Papers had been a subject of inquiry and
debate, not only by linguists and historians but also by statisticians. In what was arguably the
first Bayesian case study, Mosteller and Wallace (1963) provided the first statistical evidence
for attributing all disputed papers to Madison. Our paper revisits this historical dataset but
from a lens of modern language models, both small and large. We review some of the more
popular Large Language Model (LLM) tools and examine them from a statistical point of
view in the context of text classification. We investigate whether, without any attempt to
fine-tune, the general embedding constructs can be useful for stylometry and attribution. We
explain differences between various word/phrase embeddings and discuss how to aggregate
them in a document. Contrary to our expectations, we exemplify that dimension expansion
with word embeddings may not always be beneficial for attribution relative to dimension re-
duction with topic embeddings. Our experiments demonstrate that default LLM embeddings
(even after manual fine-tuning) may not consistently improve authorship attribution accuracy.
Instead, Bayesian analysis with topic embeddings trained on “function words” yields supe-
rior out-of-sample classification performance. This suggests that traditional (small) statistical
language models, with their interpretability and solid theoretical foundation, can offer signif-
icant advantages in authorship attribution tasks. The code used in this analysis is available
at github.com/sowonjeong/slm-to-llm.
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1 Introduction

The rise of generative AI marked a pivotal shift in how society approaches knowledge acquisition
and task automation. Today, text-generating systems have become one of the most recognizable
representations of AI. These systems are built on Large Language Models (LLMs) which are trained
on a vast corpus of text data. In order to obtain more tailored answers, LLMs can be fine-
tuned using specialized datasets. Unlike traditional statistical models defined through a likelihood,
LLMs are an example of a black-box simulation-based model defined implicitly through a mapping
(transformer) that transforms prompts into a text output. While LLMs are not probabilistic models
per-se, these massive architectures do rely on several tools from probability theory, statistics and
machine learning (latent embeddings, next token prediction through conditional distributions, deep
learning etc). The purpose of this paper is to review aspects of language models (both small and
large) from the point of view of an applied statistician.

Several large-scale language models, such as BERT (Devlin et al., 2019; Liu et al., 2019), GPT
(Brown et al., 2020) and LlaMa (Touvron et al., 2023), have shown unprecedented humanlike
performance in various natural language processing tasks (read/write skills, sentiment analysis
or question answering). However, these models are also prone to hallucinations and can provide
contradictory answers to similar queries. As the AI technology proliferates, so do concerns about
the accuracy of information provided by these tools and how reliable they might be. Our analysis
focuses on statistical performance of word/phrase embeddings as features for stylometric analysis
and text classification. We investigate whether general-purpose embeddings generated by these
LLMs can be used effectively in authorship attribution without fine-tuning. Authorship attribution
is closely related stylometry in linguistics, which consists of identifying subtle syntactic or lexical
patterns unique to individual authors, and has been tackled with numerous statistical approaches
(Yule, 1939; Williams, 1975; Holmes and Forsyth, 1995; Seroussi et al., 2014; Sari et al., 2018).
Research has demonstrated that unsupervised embeddings from models like BERT can capture
deep semantic relationships between words (Reimers and Gurevych, 2019). Our comparison focuses
on determining whether embeddings from LLMs can distinguish authors’ styles as effectively as
(or better than) traditional small language models. By a small language model, we understand a
traditional likelihood-based model that aims at dimension reduction (either through latent variables
or variable selection).

There are not many benchmark text datasets that have received more attention than the Fed-
eralist Papers. With the emergence of LLMs, our paper has aimed at shedding some new light
onto this classic dataset, either confirmatory or contradictory. We deploy general-purpose (and
fine-tuned) embeddings from BERT, GPT and LlaMa, alongside with traditional latent variable
models such as Latent Dirichlet Allocation (LDA) and Principal Component Analysis (PCA), in-
side statistical classification techniques such as LASSO (Tibshirani, 1996) and Bayesian Additive
Regression Trees (BART) (Chipman et al., 2010). We also explain the differences between various
word/phrase embeddings and discuss how to aggregate them in a document. The results from
the Federalist Papers analysis are mixed. Our findings suggest that dimension expansion (with
generic embeddings through LLMs) may not always result in better out-of-sample performance
for authorship attribution. While LLMs are known to excel at capturing semantic similarity and
next token prediction, they may overlook key syntactic or stylistic features that are crucial for
authorship detection. These results are consistent with recent research (Fabien et al., 2020) that
highlights the importance of specialized task-specific fine-tuning for LLMs. On the other hand,
dimension reduction techniques (such as LDA) provide tailored low-dimensional embeddings that
lead to more robust results and that seem to capture topics and stylistic patterns. Contrary to the
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assumption that larger models always outperform traditional approaches, our results suggest that
dimension reduction through latent topics remains a valuable strategy for text analysis. The clear
winner in our out-of-sample comparisons was a small language model built with topic embeddings
by Bayesian tree classifier. This model points at Madison being the author of the disputed papers,
adding to the evidence obtained by Mosteller and Wallace (1963).

Due to its ability to synthesize information from various sources, it is tempting to use text-
generating systems for information acquisition. For example, a user might like to seek a diagnosis
for a medical condition based on self-reported symptoms (Kim et al., 2024). However, many users
may not consider the possibility of asking the same question multiple times and seeing how much
the answer varies. A statistician would typically want to understand underlying variation in the
answers to be able to determine how reliable the answer is. We show an anecdotal example in the
context the Federalist No. 52, asking ChatGPT4 for its authorship where we see contradictory
evidence, human-like confusion and even humility admitting a contradictory answer. See the
snapshot of the conversation in Figure 7 in the Supplement. Depending on the quality of the input
query, the output of a text-generating system can be a predictable paraphrase, or a unique creation
not replicable after repeated prompting. There is inherent uncertainty inside the generative model
extent to which depends heavily on the type of question asked.

One of the fundamental goals of Statistics is to disentangle and quantify such uncertainty. In
the simplified context of authorship attribution, statistical models can provide not only answers
but also surrounding uncertainty. Our classification model emits an estimate of the probability
that Madison (as opposed to Hamilton) wrote each disputed paper based on extracted language
features. Attribution can then be based on the relative location of this estimate compared to
the densities of estimated probabilities of Hamilton versus Madison based on the labeled papers.
The gap between the two density estimates signifies the discriminative ability of the features. As
shown in Figure 1, the probability distributions obtained from training data reveal differences
across embeddings. Specifically, the densities generated by the LDA embeddings for Madison
and Hamilton are entirely separated, whereas the GPT embeddings display substantial overlap.
This suggests that with LDA, we are able to better separate the labeled papers and attribute all
disputed papers to Madison without too much hesitation. In contrast, although GPT embeddings
also predict Madison for Nos. 49, 51, 63, as the estimated probabilities fall within the overlapping
regions, the uncertainty for the prediction is much higher. We assess the quality of various classifiers
using various features (embeddings) with leave-one-out classification.

We hope that our paper will educate practitioners curious about deploying generic embeddings
from LLMs in their everyday statistical text analyses.

The paper is structured as follows. Section 2 introduces the disputes on authorship of the
Federalist Papers and classical statistical approaches to addressing the problem. In Section 3,
we present a comprehensive overview of traditional statistical language models and modern Large
Language Models (LLMs), drawing connections between them. Section 4 introduces our approach,
which integrates statistical models with LLMs for addressing the Federalist authorship problem.
Section 5 analyzes the application of various language models to authorship prediction, word selec-
tion, and interpretability. Based on our case study, Section 6 offers practical recommendations for
using vanilla LLMs and improve their usage by statistical models. Finally, Section 7 summarizes
our findings and key insights from the case study.
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Figure 1: BART classification probability based on document embeddings. The red density is the
kernel density estimate of predicted probabilities of BART for papers authored by Hamilton, and
the blue density is the kernel density estimate of the ones by Madison. The predicted probabilities
of disputed papers are denoted as green vertical lines. For LDA, the results are based on the
word counts of “functions words” as an input. The well-separated densities between Hamilton and
Madison indicate less uncertainty for the prediction on the disputed papers.

2 Statisticians Tackling Disputed Federalist Papers

The authorship distribution of the Federalist Papers, a collection of 85 essays advocating for the
ratification of the United States Constitution, has been a subject of historical inquiry and debate.
Published between 1787 and 1788 under the pseudonym “Publius”, the papers were instrumental in
shaping public opinion and garnering support for the proposed Constitution. While the authorship
of the Federalist Papers has traditionally been attributed to Alexander Hamilton, James Madison,
and John Jay, the exact division of labor among these three founding fathers remains a topic of
scholarly discussion (Adair, 1944).

According to Douglass Adair, Alexander Hamilton wanted to keep the authorship of “The
Federalist Papers” secret due to the politically sensitive nature of the essays and the potential
repercussions for openly claiming authorship. The day before his deadly duel with Aaron Burr in
1804, Hamilton handed the list of authorship to his lawyer, Egbert Benson. This list attributed 63
out of the 85 papers to Hamilton himself. In 1818, James Madison contradicted Hamilton’s claim
of authorship through Jacob Gideon’s edition, asserting that he had written 29 essays instead of
the 14 essays listed in Benson’s account (See Table 1 for detailed division of labor). Other lists,
such as those by Kent and Washington, also exist. This discrepancy has fueled scholarly debate
and analysis.

Historians generally agree on the primary authors: Hamilton wrote the majority of the papers,
Madison contributed significantly, and Jay authored a few. Despite these general attributions,
determining the precise authorship of each paper has proven challenging due to the conflicted
evidence and the secretive nature of the project. For example, simple statistics like average sentence
length cannot distinguish the style of Hamilton from that of Madison. This necessitated more
sophisticated approach to resolve the authorship question.
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Number Benson Gideon Mosteller & Wallace

1 Hamilton Hamilton Hamilton
2–5 Jay Jay Jay
6–9 Hamilton Hamilton Hamilton
10 Madison Madison Madison

11–13 Hamilton Hamilton Hamilton
14 Madison Madison Madison

15–17 Hamilton Hamilton Hamilton
18–20 Madison & Hamilton Madison Madison & Hamilton
21–36 Hamilton Hamilton Hamilton
37–48 Madison Madison Madison
49–53 Hamilton Madison Madison
54 Jay Madison Madison

55–58 Hamilton Madison Madison
59–61 Hamilton Hamilton Hamilton
62–63 Hamilton Madison Madison
64 Hamilton Jay Jay

65–85 Hamilton Hamilton Hamilton

Table 1: Summary of authorship for 85 Federalist papers (Adair, 1944). Hamilton left a note to
Egbert Benson before his death about the authorship of the papers in 1804. Madison claimed the
authorship of each paper through Jacob Geideon’s edition, published in 1818.

The first rigorous statistical attempt to address the authorship of the disputed Federalist Papers
was undertaken by Mosteller and Wallace (1963). Their approach applied Bayesian inference to
the frequency of function words – articles, prepositions, and conjunctions – on the grounds that
these words are stylistically neutral and less topic-dependent. The function words, which act as
linguistic markers, were used to differentiate the authors based on patterns that remain stable
across different contexts. Their analysis concluded that Madison authored all 12 disputed papers.
Although the log odds strongly supported Madison’s authorship for most of the papers, Nos. 55
and 56 presented somewhat weaker evidence due to the limited presence of marker words in these
essays. The jointly authored papers – Nos. 18, 19, and 20 – also showed strong support for
Madison’s primary authorship, although No. 20 provided less definitive evidence, likely due to the
shorter length of the text (see Appendix A for a detailed review).

Building on the work of Mosteller and Wallace (1963), subsequent researchers have employed
different statistical techniques to address the authorship problem. Holmes and Forsyth (1995)
used vocabulary richness measures and a genetic rule-finder algorithm to analyze high-frequency
words. Tweedie et al. (1996) applied a two-layer neural network trained on the rate of occurrence
of 11 key words, a subset derived from the function words used by Mosteller and Wallace (1963).
Other approaches include Bosch and Smith (1998), who used a separating hyperplane based on
linear classifiers to distinguish between authors. This method relied on the 70 preselected function
words identified in the original Bayesian analysis, creating a decision boundary to separate texts
by authorship. Diederich et al. (2003) introduced Support Vector Machines (SVM) for authorship
attribution, while Popescu and Dinu (2007)) explored kernel-based methods for text classification.
Collins et al. (2004) expanded the scope of analysis by examining collaborative patterns in rhetorical
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style and syntactic structure, aiming to capture unique stylistic features of each author. This
research emphasized the potential for more nuanced modeling of joint authorship beyond simple
binary classification. For a detailed discussion on joint authorship and the selection of significant
words, see Section 5.4.

A more recent contribution by Kipnis (2022) approached the problem from a multiple hypothesis
testing framework. Their method identifies sparse signals in large frequency tables, constructed
from word counts for each author. This approach automatically selects significant discriminators
through a Higher Criticism (HC) threshold and successfully attributes all 12 disputed papers to
Madison. Additionally, their joint authorship analysis aligns with the findings of Mosteller and
Wallace (1963), indicating that Madison was the primary author of Nos. 18 and 19. However, the
contribution levels for No. 20 remain ambiguous due to the paper’s brevity. A limitation of the
HC measure is that it lacks a formal mechanism for quantifying the uncertainty associated with
the decision rule (see Appendix A.0.2 for further discussion).

3 Small and Large Language Models

This section provides a roadmap for language models ranging from small (such as Latent Dirichlet
Allocation (LDA)) to large (such as GPT or LlaMa). Our distinction between small versus Large
Language Models is based on underlying statistical features. We regard a language model small
when it is trained on smaller available datasets without relying on pre-trained features from data
that is not available to the user. Small language models aim at dimension reduction (as opposed to
dimension expansion as we will explain later in Section 3.3) and focus on simplification and insight
through probabilistic modeling.

In contrast, Large Language Models are trained on extensive, non-task-specific datasets, often
with high embedding dimensions (termed “dimension expansion”) –for example, GPT 3 has a
maximum embedding dimension of 2048, while LlaMa reaches 4096. Many widely recognized Large
Language Models (LLMs) rely on the transformer architecture (Vaswani et al., 2017), although this
architecture does not define their core purpose of modeling the joint probability of word sequences.
The definition of LLMs remains a subject of debate, which we provide further literature review in
Appendix E.

We regard text as unstructured data W = (W1,W2, . . . ,WT )
′ with layered information (e.g.

semantic and syntactic) made up of tokens wj chosen from a vocabulary set W of size N = |W|,
where j denotes the position in the sequence of length T . Token refers to a single unit of text,
which could either be a word, or a word stem.

3.1 Probabilistic Language Models

The fundamental objective of language models is characterizing the probabilistic mechanism for W
that captures how often tokens (in a particular order) occur in the language. This can be captured
with a likelihood function

P (W = w|θ) = πθ(w) for w ∈ WT , (1)

which explains how likely w is under different values of the model parameters θ. In LLMs, θ is
entirely uninterpretable and has massive dimensionality, parametrizing layers and layers of encoders
and decoders. In small language models, θ has moderate dimensionality and serves to provide
insight into the language structure. Training a language model on real data D involves estimating

6



a parameter θ̂ for which the likelihood of observing aspects (sequences) of D is the largest. For
LLMs, the training data D is a vast corpus of text (inaccessible to the user) while for small language
models, D is a collection of observed text documents (such as our Federalist Papers). Training the
language model (1) can be facilitated by making some simplifying structural assumptions about
πθ(w). We will roughly group language models according to the assumption made.

Bag-of-words Models utilize the simplifying assumption that the order of the words in the
sequence W does not matter. In statistics, this corresponds to the notion of exchangeability
where πθ(w) = πθ(wσ(1,...,T )) for any permutation σ(1, . . . , T ). Such language models very often
operate on a specific summary statistic (word counts) as opposed to raw data (word sequences). For
example, our analysis of the Federalist Papers involves training data documents D = {Di}ni=1 where
Di = {wij}Ti

j=1. The word count matrix X = {xij} ∈ Rn×N can be then constructed by counting the

occurrence of each word in each document xij =
∑n

i=1

∑N
j=1 I{wj ∈ Di}, where N = |W| denotes

the size of the vocabulary. We talk about bag-of-words models later in Section 3.2.1 in the context
of Latent Dirichlet Allocation and Latent Semantic Analysis.

Autoregressive models characterize the joint distribution using the chain rule of probability as
follows:

P (W = w|θ) = P (W1 = w1|θ)
T∏

j=2

P (Wj = wj|W[1:j−1] = w[1:j−1], θ) (2)

where W[1:j] = (W1, . . . ,Wj)
′. This factorization leverages an assumption that each word is gen-

erated sequentially, depending only on the words that came before. One prominent example of
an autoregressive statistical language model is the n-gram model, which is based on the Markov
assumption that the occurrence of a word depends only on k preceding words through a transition
kernel P (Wj = wj|W[1:j−1] = w[1:j−1], θ) = Mθ(Wj−1 = wj−1, . . . ,Wj−k = wj−k). Having learned
this kernel, one immediately obtains a naive text generator by sliding this kernel left to right and
generating the next word from this conditional distribution. As an example, the maximum entropy
language model assumes P (Wj = wj|W[1:j−1] = w[1:j−1], θ) ∝ exp

{
θ′f(w[1:j])

}
, where f(w[1:j]) is

a “feature vector”, a.k.a embedding. Hidden Markov Models (HMMs) (Rabiner, 1989) in another
extension of this framework by introducing latent variables that represent underlying structures
or states in the data. In an HMM, the sequence of latent states (S = (S1, . . . , ST ) evolves ac-
cording to a first-order Markov process, and each word is generated based on the current latent
state, P (W = w,S = s) = P (S1 = s1)

∏T
t=2 P (St = st|St−1 = st−1)

∏T
t=1 P (Wt = wt|St = st).

HMMs allow for richer modeling of sequence dependencies compared to simple n-gram models by
incorporating latent structures, but they still rely on simplifying independence assumptions and
struggle with long-range dependencies.

The autoregressive structure prevalent in the decoder-only transformer models (discussed later
in Section 3.3) consist of a stack of transformer decoder layers that predict the next word in a
sequence based on the previous context. These models are designed primarily for tasks that involve
generating text. The GPT (Radford, 2018; Radford et al., 2019; Brown et al., 2020) and LlaMA
(Touvron et al., 2023) series are both based on autoregressive architectures, but they take distinct
approaches: GPT models scale all dimensions simultaneously, while LLaMA optimizes architectural
efficiency. Both seek to better approximate the true probability distribution of language sequence,
but through different statistical trade-offs.

Encoder-based models like BERT (Devlin et al., 2019) employ a different strategy. These models
do not assume a strict left-to-right (or right-to-left) dependence but instead use a bidirectional
mechanism. In this approach, each word wi is conditioned on both past and future words, allowing
the model to capture context from the entire sequence. Formally, this can be viewed as estimating
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Figure 2: Stylized representation of the relationships among language models. Each model learns
a function f : W[1:T ] → Rp, mapping a word sequence to a latent representation. LDA (red) is a
probabilistic model, while LSA and NMF (orange, yellow) use numerical methods like matrix fac-
torization. Word2Vec and GloVe (green) introduce shallow neural networks, followed by recurrent
models (RNN, LSTM) and transformer-based models (green), which capture long-range depen-
dencies. Modern deep learning methods (blue) rely on large neural networks with autoencoding
and autoregressive objectives. This spectrum illustrates the shift from probabilistic and numerical
methods to neural architectures.

conditional probabilities

P (Wj = wj|θ,Wi = wi i ̸= j) for 1 ≤ j ≤ T. (3)

Unlike in the autoregressive case, where the conditionals uniquely define the joint distribution, it is
possible that no joint probability function P (W = w|θ) exists that is compatible with all the given
conditionals (3) (Besag, 1974; Arnold and Press, 1989). Language models that focusing purely on
modeling conditionals (3) thus deviate from purely statistical approaches that would start with
P (W = w|θ) and derive the conditionals from it.

3.2 Small Language Models: From Counting to Learning

We provide an historical overview of small language models, distinguishing between statistical and
neural approaches. Statistical language models are small models rooted directly in probabilistic
assumptions for both model structure and parameter estimation. Neural language models, though
still grounded in probabilistic principles, differ by estimating parameters θ through training neural
networks. Neural language models are a precursor to the Large Language Models departing from
purely statistical model.

3.2.1 Statistical Language Models

Latent Semantic Analysis (LSA) (Deerwester et al., 1990) and Probabilistic Latent Semantic Anal-
ysis (pLSA) (Hofmann, 1999) aim to uncover semantic relationships across terms and documents.
LSA leverages Singular Value Decomposition (SVD) on the term-document matrix X ∈ Rn×N ,
where n is the number of documents and N is the vocabulary size, to reduce dimensionality and
reveal underlying semantic structure. This reduced representation yields a compact, p-dimensional
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form with p ≤ n ∧ N , either on term space or document space. This method, however, is not
explicitly probabilistic, which limits its capacity to incorporate uncertainty.

In response to the limitations of LSA, Probabilistic Latent Semantic Analysis (pLSA) (Hofmann,
1999) provides a probabilistic interpretation of LSA by modeling documents as mixtures of latent
variables (e.g topics). For each document D, we have a distribution over topics, denoted P (Z =
z|D), where z ∈ {1, ..., K} (with K being the number of topics). For each word wij in a document
Di, pLSA models the probability of a word sequence in a document as

P (Wi· = wi·) =
N∏
j=1

K∑
z=1

P (Wij = wij|Z = z)p(Z = z|Di).

The objective of pLSA was shown to be compatible (Ding et al., 2006) with the one of Nonnegative
Matrix Factorization (NMF) (Lee and Seung, 1999). However, pLSA lacks a full generative process
for the corpus, meaning it cannot provide a unified probabilistic model across all documents or
explicitly capture uncertainty at the corpus level. This limitation spurred the development of
Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which employs Dirichlet priors to define
document-topic and topic-word distributions.

LDA, a fully probabilistic model, assumes that documents are mixtures of latent topics and
generates words by sampling from these topics. Each document Di consists of up to K topics and
the proportion of topics covered can be represented by a vector φi ∈ [0, 1]K where

∑K
k=1 φik = 1

which is assumed to be drawn from a Dirichlet distribution, Dir(α). Within each topic k, a word
w·j is sampled with probability ηkj, where

∑N
j=1 ηkj = 1 and ηk are drawn from another Dirichlet

distribution Dir(β). Then, for each document Di, a topic zij is drawn from φi and subsequently
the word wij is generated from the corresponding word-topic distribution parametrized by ηzij .
The likelihood is given as

P (W = w,Z = z,φ,η|α, β) = P (η|β)P (φ|α)
n∏

i=1

N∏
j=1

P (Zij | φi)P (wij|ηZij
)

where zij is the latent topic assignment for the word j in the document i, and wij is the corre-
sponding observed word count.

The development of statistical language models began with a focus on language’s sequential
nature, seen in n-grams and HMMs, and then shifted toward modeling semantic relationships and
thematic clustering, as with pLSA and LDA. However, the latter models rely heavily on summary
statistics, such as word counts, rather than fully leveraging the sequential and contextual richness
of language. This evolution highlights a trade-off: models tend to emphasize either sequence or
semantics, but not both, leaving limitations in generating nuanced representations of language.
This gap laid the groundwork for models that integrate both sequential and semantic aspects,
leading to the development of more sophisticated language embeddings, discussed in Section 3.3.

3.2.2 Neural Language Model

The transition from small language models to LLMs was significantly influenced by intermediary
models such as Word2Vec (Mikolov, 2013; Mikolov et al., 2013) and GloVe (Pennington et al.,
2014), which introduced more advanced methods for creating word embeddings. These models
marked a departure from the traditional statistical approach, like n-grams, by representing words
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as dense vectors in a continuous space introduced by Bengio et al. (2003). The model still retains
an explicit likelihood but uses a neural parameterization:

P (W = w|θ) = P (W1 = w1|θ)
T∏

j=2

softmax(fθ(w[1:j−1]))

where the autoregressive nature remains as in (2), fθ is a neural network to model P (Wj =
wj|W[1:j−1] = w[1:j−2]) and, for a vector x = [x1, x2, . . . , xn], the softmax function is defined as

softmax(x)i = exi/
( n∑

j=1

exj

)
, for i = 1, 2, . . . , n. (4)

The use of neural networks in this setting is motivated by the universal approximation theorem
(Cybenko, 1989), which implies that neural networks can model an extensive range of functional
forms, including complex relationships potentially embedded in language data. This flexibility
allows neural networks to approximate nuanced patterns in word co-occurrences and context, ex-
panding the family of structures that can be effectively captured.

Word2Vec (Mikolov, 2013; Mikolov et al., 2013) exemplifies the early neural approach. It
learns word embeddings based on the distributional hypothesis, where words that appear in similar
contexts share semantic meaning. Mathematically, Word2Vec leverages assumption that a word
(wi) only depends on the window of size t around it, simplifying (3). The algorithm typically
involves training a shallow neural network model by maximizing the conditional probabilities,
either using the Continuous Bag of Words (CBOW)

P (Wi = wi|W[i−t+1:i+t−1]\{i} = w[i−t+1:i+t−1]\{i})

or Skip-gram architecture,

P (W[i−t+1:i+t−1]\{i} = w[i−t+1:i+t−1]\{i}|Wi = wi)

to predict the surrounding words given a target word or vice versa.
To train Word2Vec efficiently, noise-contrastive estimation (NCE) (Gutmann and Hyvärinen,

2012; Mnih and Teh, 2012) is employed to approximate the full softmax (4) objective by reducing
it to a binary classification task. Instead of summing over the entire vocabulary, NCE introduces
a set of negative (noise) samples wnoise drawn from some noise distribution Q(w), and aims to
optimize the following objective (Skip-gram case):

log σ(fθ(wi,w[i−t+1:i+t−1]\{i})) +
k∑

j=1

Ewj∼Q(w)

[
log σ(−fθ(wj,w[i−t+1:i+t−1]\{i}))

]
,

where k is the number of negative samples, and σ(x) = 1/(1+e−x). Here, fθ assigns a high score to
true word-context pairs and a low score to noise-context pairs, teaching the model to differentiate
between real and random associations. This noise-contrastive setup can be viewed as a form of
statistical regularization as well as computational practicality. By introducing noise samples, the
model learns to distinguish meaningful word-context relationships from random noise, smoothing
the estimated distribution and avoiding overfitting to specific word pairs.

Both Noise-Contrastive Estimation (NCE) in Word2Vec and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) share a fundamental principle of contrastive learning, where
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the model learns by distinguishing between real and fake data. In Word2Vec, NCE simplifies the
task of predicting the entire vocabulary distribution by reformulating it as a binary classification
problem — determining whether a word-context pair is real or sampled from a noise distribution
Q(w), typically derived from unigram or smoothed unigram probabilities. In GANs, a generator
G(z) is trained to produce fake data x̃ = G(z) that fools a discriminator D(x), which aims to
distinguish real x ∼ Pdata(x) from generated x̃ ∼ PG(z). The GAN objective is:

min
G

max
D

Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))].

Unlike Word2Vec, where Q(w) remains static, GANs iteratively train G to improve synthetic data
quality, reflecting its dynamic contrastive learning framework.

Since the success of Word2Vec (Mikolov et al., 2013), the language model gears toward pre-
diction rather than co-occurence statistics. GloVe (Pennington et al., 2014) bridges classical and
neural network methods by directly connecting word co-occurrence statistics with neural embed-
dings by weighted regression problem. Unlike usual Bag-of-Words approach, they consider the
word co-occurence matrix {Cij}Ni,j=1, where Cij represents the number of occurrence of the word
wi in the context of wj of window size t. GloVe approaches the language model as a prediction
problem for Cij. The model minimizes a weighted least-squares objective function:

L(θ) =
N∑
i=1

N∑
j=1

α(Cij)
(
logCij − (z⊤i z̃j + bi + b̃j)

)2
,

where α(Cij) is a pre-defined weighting function, zi = fθ(wi) ∈ Rp is a p-dimensional word embed-
ding, f : W → Rp is an embedding function and bi is the bias term where both zi and bi terms are
learned by neural networks.

3.3 Large Language Model (LLMs)

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) and Long Short-Term Memory net-
works (LSTMs) (Hochreiter, 1997) were pioneering models in capturing sequential and seman-
tic relationships in data. However, their sequential processing nature posed significant computa-
tional bottlenecks, particularly when training on large datasets. The introduction of transformers
(Vaswani et al., 2017) marked a paradigm shift in sequence modeling. By leveraging attention
mechanisms, transformers replaced the need for sequential processing with a parallelized frame-
work, enabling them to model relationships among all elements in a sequence simultaneously. This
innovation, coupled with scaling to larger models and massive datasets, significantly advanced the
ability to model both semantic and sequential properties of data efficiently.

In the following sections, we will explore the main building blocks of modern large models: (1)
transformer architecture with an emphasis on attention mechanism (2) pre-training scheme and
(3) large model as well as massive training dataset.

3.3.1 The Transformer

Unlike previous sequence models (Rumelhart et al., 1986; Hochreiter, 1997), which processed input
data sequentially, transformers introduced by Vaswani et al. (2017) solely rely on attention mech-
anisms allowing to consider relationships among all words in a sequence simultaneously, regardless
of their position.
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Attention Mechanism The attention mechanism in the transformers can be understood as a
process of computing aweighted average of word representations in a sequence, where the weights
reflect the relevance of each word to the word being processed. For each word in the sequence, the
model computes a query vector Q, a key vector K, and a value vector V , all of which are linear
transformations of the word’s embedding. The attention score between two words is given by the
dot product of the query from one word and the key from the other. Specifically, the attention
scores for word wi with respect to any other words wj in the sequence are computed as:

score(wi, wj) =
QiK

⊤
j√

dk

where dk is the dimension of the key vectors, used to scale the scores and prevent the values from
growing too large. This score reflects the similarity or relevance between the two words based on
their query and key vectors.

The attention scores are then normalized using the softmax function (4) to produce a set of
weights that sum to 1:

αij = softmax(αi)j =
exp (score(wi, wj))∑T
k=1 exp (score(wi, wk))

Here, αij represents the weight or attention that word wi assigns to word wj. These weights are
then used to compute a weighted average of the value vectors V from all the words in the sequence,
producing the final output for word wi:

Attention(Q,K, V )i = zi =
T∑

j=1

αijVj.

This formulation enables transformers to capture sequential dependencies through learned mix-
ing weights, where the weights αij determine how much each word contributes to the representation
of the current word wi. It allows the model to focus on the most relevant words in the sequence
when computing a new representation for each word.

From a statistical perspective, the attention score computation, exp(score(wi, wj)), functions
as an adaptive kernel method, aligning closely with kernel regression (Nadaraya, 1964; Watson,
1964). In transformers, attention can be viewed as an adaptive kernel smoother, where the kernel
weights are dynamically determined by the trainable query (Q), and key (K) mechanism.

Multihead Attention The transformer model achieves superior performance by leveraging
multi-head attention, a mechanism that enables parallel computation across different “heads”
(Vaswani et al., 2017).

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O,

where headi = Attention(QWQ
i , KWK

i , V W V
i ), the projection matrices WQ

i ∈ Rdmodel×dk , WK
i ∈

Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel matches up back to the model dimension. For

example, in GPT-3, total 96 heads are used and each of the head has dimension 128, and the model
dimension (dmodel) is 12,288. It allows the model to focus on different parts of the sequence and
the design parallels ensemble methods (Breiman, 1996), where combining predictions from multiple
models (or here, multiple attention heads) trained on diverse views improves robustness and overall
performance. Furthermore, the benefits of multi-head attention stem from the diversity of each
attention head, much like the role of boosting in ensemble approaches (Freund and Schapire, 1997),
where multiple weak predictors are combined to enhance accuracy.
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Encoder Architecture In the encoder, input tokens are first converted into dense vectors using
an embedding layer (input embeddings). Since transformers do not inherently capture the order
of tokens, positional encodings are added to the embeddings to incorporate information about the
token positions within the sequence. These positional encodings are based on sinusoidal functions,
ensuring the model can differentiate between the positions of tokens.

At the heart of the encoder is the self-attention mechanism, which allows the model to focus
on different parts of the input sequence simultaneously. The model looks at relationships within a
single sequence, allowing each word to attend to all the other words in the same sequence. This
multi-head self-attention allows the model to capture relationships between all tokens in the input
sequence, improving its ability to understand context.

Each encoder layer also contains a feed-forward neural network (FFN), which is applied to
each token’s representation independently. This network consists of two linear transformations
with a ReLU activation function in between, expressed as FFN(x) = ReLU(xW1 + b1)W2 + b2,
where W1,W2 are weight matrices, and b1,b2 are bias vectors. All parameters are learnable.
The feed-forward layers allow for non-linear transformation of the input, further refining the token
representations.

Finally, the encoder outputs a sequence of dense representations of the same length as the input
(“embeddings”), capturing rich contextual information for each token. The original transformer
model consists of 6 encoder layers, with each layer having a model dimension (dmodel) of 512, divided
across 8 attention heads.

Decoder Architecture The decoder in the transformer architecture follows a similar struc-
ture to the encoders. The input to the decoder is the target sequence (shifted by one position)
combined with positional encodings. To facilitate next word generation, the decoder incorporates
two additional mechanisms. First, the masked self-attention mechanism prevents the model from
attending to future tokens during training, ensuring that each prediction is made based solely on
previously generated tokens and the input sequence. This is crucial for autoregressive tasks such as
text generation, where the model must generate tokens sequentially. Second, the encoder-decoder
attention mechanism enables the decoder to focus on relevant parts of the input sequence. In
this mechanism, the queries come from the decoder’s previous layer, while the keys and values are
derived from the encoder’s output, allowing the decoder to use contextual information from the
input sequence during generation.

After processing through these layers, the decoder outputs a sequence of logits, one for each
token position in the target sequence. These logits are then passed through a softmax (4) layer to
generate the probability distribution over the target vocabulary, enabling text prediction. Like the
encoder, the original transformer uses 6 decoder layers, with the same model dimension (dmodel =
512) and 8 attention heads.

3.3.2 Pretraining and Fine-Tuning

Modern language models typically follow a pretraining and fine-tuning routines, a framework that
aligns well with Bayesian statistical methodologies. This approach was popularized by models such
as the Generative Pretrained Transformer (GPT) (Radford, 2018) and has significantly advanced
the performance of language models. In this paradigm, the pre-trained model parameters, denoted
as θ, can be viewed as initialization learned from large-scale text corpora. This initial configuration
can be refined by adapting the architecture to specialized datasets.
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3.3.3 The Largeness

A large number of parameters as well as the massive training datasets are a defining feature of
modern “large” language model. For example, GPT-3 has 175 billion parameters and is trained on
approximately 300 billion tokens (570 GB of text), while LlaMA 3’s largest model has 70 billion
parameters and is trained on more than 15 trillion tokens. While traditional statistical learning
theory suggests that overly parameterized models are prone to overfitting, recent studies (Belkin
et al., 2019; Nakkiran et al., 2019; Power et al., 2022) show that such models, when combined
with massive training datasets and appropriate optimization techniques, often exhibit enhanced
generalization capabilities. This behavior aligns with the double descent phenomenon (Nakkiran
et al., 2019), where increasing model capacity beyond a critical threshold leads to a second phase
of performance improvement, contrary to classical expectations.

Dimension Expansion Dimension expansion in LLMs refers to the mapping of discrete input
tokens into a high-dimensional continuous embedding space, where the embedding dimension p,
(dmodel) far exceeds both the intrinsic dimension p∗ and input sequence length T (p ≫ min(p∗, T )).
Unlike traditional statistical language models, such as Latent Dirichlet Allocation (LDA) or Latent
Semantic Analysis (LSA), which reduce dimensionality (p ≪ min(p∗, T )), LLMs increase dimen-
sionality to capture fine-grained, context-specific details. In contrast to the traditional numerical
data settings where the dimensionality of the data is fixed by intrinsic properties (e.g., features
or variables), natural language does not have a clear starting dimensionality (p∗). For instance,
vocabulary size, while sometimes considered a proxy, is a discrete coding scheme and not a true
geometric space.

High-dimensional embeddings in LLMs enable rich representations by separating semantically
or syntactically distinct tokens. The computational complexity of the Transformer’s attention
mechanism, O(T 2p), allows efficient modeling of relationships between tokens, as opposed to the
O(Tp2) complexity of recurrent neural networks (RNNs) (Vaswani et al., 2017). For example, in
GPT-3, T = 2, 048 is much smaller than p = 12, 288, highlighting the reliance on high-dimensional
embeddings to model linguistic patterns. While this approach increases model capacity, it also
introduces a computational challenge due to the quadratic scaling of cost with T . Solutions such
as “context parallelism,” introduced by Meta (2024), extend sequence lengths up to T = 128, 000
while scaling p to 53,248. Other approaches, including linear-time sequence models (Gu and Dao,
2024) and efficient RNN-based methods (Feng et al., 2024), aim to reduce computational overhead
while preserving the benefits of dimensionality expansion.

Massive Training Data Large Language Models (LLMs) such as GPT (Radford, 2018; Radford
et al., 2019; Brown et al., 2020), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), BART
(Lewis et al., 2019), and LLaMA (Touvron et al., 2023) rely heavily on massive training datasets
sourced from diverse corpora, including BookCorpus, Wikipedia, Common Crawl, and other large-
scale textual collections (See Table 2 for details). Studies such as Hoffmann et al. (2022) emphasize
the importance of balancing model size Nparam and dataset size |Dpretrain|, encapsulated by the
computational cost formula C = Nparam×|Dpretrain|. For instance, Chinchilla demonstrates superior
efficiency compared to GPT-3 by reducing the parameter count to 70 billion while increasing the
training data to 1.4 trillion tokens.

Connection Under Double Decscent Paradigm The interplay between dimension expan-
sion, and massive training data is best understood under the frameworks of double descent
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Model Developer Architecture
Release
Date

Sequential
Input

Params T p Citation

Word2Vec Google Shallow Neural Network 2013 X - 5-10 300 Mikolov (2013)
GloVe Stanford Shallow Neural Network 2014 X - 5-10 300 Pennington et al. (2014)
BERT Google Transformer Encoder 2018-10 O 110M/340M 512 1024 Devlin et al. (2019)

RoBERTa Meta Transformer Encoder 2019-07 O 355M 512 1024 Liu et al. (2019)
GPT-3 OpenAI Transformer Decoder 2022-03 O 175B 2048 12288 Brown et al. (2020)
GPT-4 OpenAI Transformer Decoder 2023-03 O NA 8192 Unknown OpenAI (2023)

LLaMA-2 Meta Transformer Decoder 2023-07 O 7B/13B/70B 4096 8192 Touvron et al. (2023)
LLaMA-3 Meta Transformer Decoder 2024-04 O 8B/70B 128K 16384 Meta (2024)

Table 2: Comprehensive Language Model Comparison. All specifications are sourced from original
papers and official releases. Parameter counts (Params) show base/large versions where applicable.
Training data sizes are reported in the units used in original publications. The context length (T)
refers to maximum input sequence length during pre-training.

(Nakkiran et al., 2019) and grokking (Power et al., 2022). Double descent describes the modern
regime where the traditional bias-variance tradeoff cannot fully explain generalization, as gener-
alization error decreases again after the interpolation threshold. The grokking phenomenon com-
plements double descent by illustrating how models trained on limited data eventually transition
from memorization to generalization. While double descent is primarily driven by increasing model
capacity or dataset size, grokking highlights the role of prolonged optimization and regularization
in relatively small data regimes. Dimension expansion supports generalization by allowing high-
dimensional embeddings to allocate capacity for separating patterns in the data, a mechanism
that may contribute to phenomena like grokking. Meanwhile, massive datasets stabilize optimiza-
tion by providing broad coverage of the underlying distribution, making grokking less necessary in
large-scale training. Together, these frameworks explain the surprising generalization capabilities
of overparameterized models in the context of LLMs.

4 Proposed Approach

There are a few resources for digitized versions of the Federalist papers, and for our analysis, we
use R syllogi packages. The data is processed based on ProjectGutenberg so that each text
and metadata are encoded as the list element for each document. There are a total of 86 list
documents because there are two different versions of No. 70 offered in ProjectGutenberg, and we
use the first version of No. 70. Our proposed approach is to use the off-the-shelf language model
as an embedding generator, a function to transform non-euclidean text data into p-dimensional
vector representation and use statistical classifiers to make the decision capable of quantifying the
uncertainty.

4.1 Text Preprocessing

Text preprocessing is a crucial step in natural language processing (NLP) that transforms raw text
data into a structured format suitable for statistical and machine learning models. Key preprocess-
ing steps include tokenization, lowercasing, removing punctuation, stopword removal, stemming,
lemmatization, and converting text to numerical representations. More details on converting text
to numerical representations are provided in Sections 4.2 and 4.3.

Tokenization is the process of breaking down text into smaller units called tokens. Tokens
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can be words, subwords, or characters, depending on the chosen granularity. Tokenization is the
first step in text preprocessing and lays the foundation for subsequent steps. There are several
approaches to tokenization. For example, word tokenization splits text into individual words, as
in the Bag-of-Words approach (e.g.,“Tokenization is important.” becomes [“Tokenization”, “is”,
“important”, “.”]). The unit to be tokenized can be larger (e.g., sentence) or smaller than a word
(e.g., subword or character).

Once tokenization is complete, the input text can be further processed by converting all char-
acters to lowercase and removing punctuation. Stemming and lemmatization can also be applied;
these are both text normalization techniques that reduce words to their base or root form. Stem-
ming is an algorithmic process that involves removing suffixes from words to arrive at a base form,
often resulting in stems that may not be real words. For example, the words “running”, ”runner”,
and “runs” might all be reduced to “run”, while “better” might be reduced to “bet”. This method
is generally faster and less computationally intensive but can be crude, producing non-standard
word forms. In contrast, lemmatization uses a dictionary and morphological analysis to reduce
words to their base or dictionary form, known as the lemma. This process takes into account
the context and part of speech of the word, ensuring that the resulting lemma is a valid word.
For example, “running” would be reduced to “run”, and “better” would be reduced to “good”.
Therefore, while stemming is faster and simpler, it is less precise, whereas lemmatization is slower
but more accurate and produces meaningful root words. In our work, we perform lemmatization
using the lemmatize_strings function from the R textstem package.

It is common practice to remove stopwords, which may not contribute much to the meaning of
the text (e.g.,“and”,“the”, “is”), in many NLP applications. However, as Mosteller and Wallace
(1963) pointed out in their analysis, stopwords (referred to as function words in their paper) can
reflect the stylistic features of a specific author. For the purpose of authorship attribution, we test
three different sets of words: (1) the set of words without stopwords (5,834 words), (2) the set of
words with stopwords (5,936 words), and (3) the set of words selected in the previous study by
Mosteller and Wallace (1963) (145 words). Detailed specifications of the words used by Mosteller
and Wallace and the stopwords used to process the word count matrix are given in Appendix D.

4.2 Bag-of-Word Approach

Bag-of-Words (BoW) represents text as a vector of word counts or frequencies, where the order
of words is ignored. This representation serves as the foundation for various document embedding
methods based on matrix factorization. Given a corpus of n documents and a vocabulary of size
N, we define the BoW matrix as X ∈ Rn×N , where each row corresponds to a document and each
column represents a unique word in the vocabulary. The choice of words included in this matrix
significantly influences the resulting embeddings, affecting whether the model captures topical,
stylistic, or structural properties of the text.

To examine how different linguistic properties influence document representations, we construct
three variations of the term-document matrix. The first variation, referred to as Type 1, includes
all words from the corpus except for common stop words. This representation preserves both
stylistic and topical differences, allowing for a broad semantic analysis of document content. The
second variation, Type 2, retains contextual words as well as common stop words. By emphasizing
content words, this representation highlights thematic differences across documents while reducing
stylistic variation. The third variation, Type 3, is constructed using Mosteller and Wallace’s list
of function words, which include determiners, prepositions, conjunctions, and other non-content
words. Since function words are largely independent of document topics, this representation cap-

16



tures the structural and stylistic characteristics of the text rather than its meaning. The Type
3 representation is particularly relevant for authorship attribution, as prior studies have shown
that function words serve as reliable markers of individual writing styles. Notably, the similarity
between the topic distributions of Madison’s papers and the disputed papers when using Type 3
input suggests that these documents share common stylistic features, providing further evidence
in support of Madison’s authorship.

To obtain low-dimensional representations from the BoW matrix X, we seek a decomposition
of the form X = SH where S ∈ Rn×p and H ∈ Rp×N . There are three different methods that fall
into this category: (1) Latent Dirichlet Allocation (LDA), (2) Latent Semantic Analysis (LSA),
and (3) Nonnegative Matrix Factorization (NMF), or equivalently pLSA. The first method is based
on probabilistic generative modeling assumption, which is reviewed in detail in Section 3. LSA is
a direct application of Singular Value Decomposition (SVD) on X. NMF is a purely numerical
method for matrix decomposition.

Instead of trying to analyze the LDA result as is, we want to view this technique as dimen-
sionality reduction onto the document spaces as LSA does. With the lower dimensional represen-
tation of documents, given as document-topic distribution, we perform the classification analysis.
The same principle is applied to LSA and NMF. For LDA, we tested different numbers of topics
(p = 5, 10, 15, 20, 25), and we chose the model with 5 topics based on BIC. For LSA and NMF, we
use the embedding dimension to be 10.

4.3 Continuous Embedding Approach

The word embedding approach can be viewed as a continuous extension of Bag-of-Words. It con-
verts the text into a dense vector representation, preserving the semantic relationships. Word2Vec
(Mikolov et al., 2013; Mikolov, 2013) or GloVe (Pennington et al., 2014) is a direct extension of
the Bag-of-Words approach that does not consider the order of the word. On the other hand,
a recent Large Language Model like BERT (Devlin et al., 2019) takes the sequence of the text
as an input and outputs the embedding for the sequence. In this study, we consider 7 different
models to generate continuous embeddings. For LLMs, we consider BERT (Devlin et al., 2019),
sentence transformer (or sentence BERT) (Reimers and Gurevych, 2019), RoBERTa (Liu et al.,
2019), BART (Lewis et al., 2019), GPT (Brown et al., 2020) and the most recent Llama2, Llama3
(Touvron et al., 2023).

4.3.1 Aggregation of Embeddings

Different models generate embeddings based on various token units, requiring an aggregation
scheme to obtain document-level embeddings. All the continuous embedding models we consider
process chunks of text and generate embeddings for each token that the output embeddings for the
document are not matrix anymore, but a tensor. For example, BERT model outputs 768 dimension
embeddings of each token, ZBERT ∈ Rn×N×768. However, to analyze the text at the document level,
it becomes necessary to implement a scheme that aggregates these token-level tensor embeddings
into document-level representations. This aggregation can be done in various ways, ensuring that
the smaller units (tokens, sentences, or chunks) are effectively combined to capture the overall
meaning and structure of the document.

The simplest approach is to average token embeddings to represent a larger unit (sentence
or document), when using models like BERT, GPT, BART, or LlaMA. Averaging can provide a
rough approximation of sentence meaning, but it is not the most optimal approach. These models
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generate contextual embeddings, where each token’s representation is influenced by the surrounding
context. Averaging also implicitly assumes independence among smaller units, and treats them
as equally important, which may not hold for structured documents where the sequence or the
relationship among them matters. A model like Sentence BERT (Reimers and Gurevych, 2019)
can be a better alternative for getting sentence-level embeddings, as the model is designed to
capture sentence-level information by utilizing the output of a specific token in BERT.

Aggregation can be implemented at two stages: preprocessing (embedding aggregation) or
postprocessing (probability aggregation). For preprocessing, document representations can be
constructed by averaging token embeddings at the word, sentence, or chunk level. Word2Vec
specifically allows for frequency-weighted averaging: given a row-normalized bag-of-words ma-
trix X̃ ∈ R85×N and word embeddings ZW ∈ RN×300, document embeddings are computed as
ZD = X̃ZW ∈ R85×300. For postprocessing, document-level predictions can be obtained by aver-
aging token-level probabilities or through majority voting of individual predictions across different
granularities (word/sentence/chunk). The effectiveness of these aggregation schemes is demon-
strated in Figure 8 and Figure 9 in the supplement.

4.3.2 Tune or Not to Tune

Fine-tuning refers to the process of adapting a pre-trained model to a specific task by continuing its
training on a smaller, task-specific dataset. This allows the model to leverage the broad knowledge
learned from a large dataset (used during pre-training) and specialize in the nuances of the target
task. Yosinski et al. (2014) explored how features learned in pre-trained models are transferable
to new tasks, refining them through fine-tuning. Howard and Ruder (2018), with their work on
ULMFiT, demonstrated the effectiveness of fine-tuning in text classification, while Zhuang et al.
(2020) provided a comprehensive review of fine-tuning in transfer learning, emphasizing its benefits
and challenges. BERT (Devlin et al., 2019) shows pre-training and fine-tuning significantly improve
NLP tasks. GPT-3 (Brown et al., 2020) further demonstrates that even without fine-tuning, large-
scale pre-trained models can perform well on a wide variety of tasks with little task-specific data,
which highlights the power of large pre-trained models and the potential to fine-tune for even higher
performance.

Building on these insights, we apply fine-tuning to the Federalist Papers authorship attribution
task. First, we parse the 85 Federalist Papers into 5,738 sentences. Focusing only on the papers
authored by Hamilton or Madison, we obtain 4,523 sentences. These are randomly split into a
training set of 3,618 sentences and a test set of 905 sentences. Using this dataset, we update
the parameters of basic models with a classification task. Afterward, we generate embeddings for
each document, as before. The fine-tuning leads to overfitting to the training data (Figure 3).
That is, the predicted probabilities from BART, using the fine-tuned embeddings, provide a better
separation of the papers by known authorship; the fine-tuned embeddings are not as informative
as in unseen disputed papers.

4.4 Classification Methods

In the previous section (Section 4), we described the procedure to encode the text data into a
numeric vector (“embedding”). In this section, we will elaborate on the model we use to determine
the authorship based on these embeddings. We aim to focus on the effect of different types of
embeddings in the authorship prediction task, so we limit our choice of classifiers to rather classical
ones: the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) and BART
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(a) Vanilla embedding (Without fine-tuning)
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(b) Fine-tuned embedding through classification

Figure 3: The estimated density for Hamilton and Madison using BART with BERT embeddings
is shown. While the fine-tuned embeddings yield perfectly separated density estimates for the
training data, the unseen documents (indicated by green vertical lines) do not fall within the
estimated density regions but instead lie in the intermediate space. This suggests overfitting during
the fine-tuning process.

(Chipman et al., 2010). Note the BART (Chipman et al., 2010) here refers to the Bayesian Additive
Regression Tree, which has the same acronym as LLM BART (Bidirectional and Auto-Regressive
Transformers) (Lewis et al., 2019). Most of the context they will be distinguished without any
confusion as LLM will be used to extract the embeddings while the classifier BART will be used
for prediction.

LASSO The Lasso (Tibshirani, 1996) is a regression technique that imposes an ℓ1-norm penalty
on the model parameters, enabling both regularization and feature selection. In logistic regression,
Lasso introduces sparsity by shrinking some β coefficients to exactly zero. The objective function
becomes

β̂ = argmin
β

(
−

n∑
i=1

(
yi log(pi) + (1− yi) log(1− pi)

)
+ λ∥β∥1

)
,

where λ controls the strength of the regularization. This approach is particularly valuable in
high-dimensional settings, as it reduces model complexity and enhances generalization.

In the Bayesian framework, the Bayesian Lasso uses a Laplace (double-exponential) prior,
p(βj|λ) = (λ/2) exp(−λ|βj|), where λ corresponds to the classical Lasso’s regularization param-
eter, encouraging sparsity by shrinking small coefficients toward zero (Park and Casella, 2008).
The Spike-and-Slab Lasso (SSLASSO) (Ročková and George, 2018) extends this idea by using a
hierarchical prior,

p(βj|γ, λ0, λ1) = (1− γj) · Laplace(βj|λ0) + γj · Laplace(βj|λ1),
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where λ0 (spike) encourages coefficients to be exactly zero, and λ1 (slab) allows non-zero coefficients
with controlled shrinkage. The spike-and-slab structure enables adaptive sparsity, accounting for
dependencies among covariates and improving over standard Lasso.

In the authorship attribution context, without preselection of words, the LASSO model success-
fully identifies the set of words that were found to be significant in Mosteller and Wallace (1963).
For example, when training the binary lasso model using the 65 papers with known authorship,
‘whilst’ turns out to be the the word with the highest coefficient in absolute value (.57), among
10 words selected by the model. We used gamlr function from gamlr package for the lasso with
binary responses.

Bayesian Additive Regression Tree (BART) BART is a non-parametric regression technique
introduced by Chipman et al. (2010). It is an ensemble method that combines Bayesian inference
with decision trees, providing a tool for predictive modeling. Unlike traditional regression methods,
BART does not assume a specific functional form for the relationship between the predictors and
the response variable, making it adaptable to various data structures.

A binary classification with BART (Chipman et al., 2010), the probability of the binary outcome
Y ∈ {0, 1}, is modeled using a latent variable approach. The probability is linked to the predictor
variables through the probit function, which uses the cumulative distribution function (CDF) of
the standard normal distribution, denoted as Φ(·). The model is expressed as:

P (yi = 1 | x) = Φ

(
m∑
j=1

g(x, Tj,Mj)

)

where g(·, Tj,Mj) represents the j-th additive trees, Tj represents the tree structure (i.e., how the
predictor space is partitioned), and Mj denotes the set of terminal node parameters (i.e., the
predicted values in the leaves of the tree), and m is the number of trees in the ensemble, where
g(x;Tj,Mj). The use of the probit function Φ (·) implies a latent variable formulation where the
binary outcome depends on an underlying continuous latent variable that is normally distributed.

We used gbart function from BART package for the BART with binary responses.

4.5 Determining the Classification Threshold

For simplicity, we formulate the problem as a binary classification task, where the goal is to
determine whether the author of the disputed papers is Hamilton or Madison. Both models compute
the predicted probability of the given paper being authored by Madison, and the final binary
prediction is dependent on the choice of the threshold.

A natural way to classify documents is to use the kernel-smoothed densities of the estimated
probabilities of Madison for the Madison and Hamilton labeled samples. If the estimated densities
have a common support and the densities are close to unimodal (i.e. the densities overlap on
[0, 1] just like on Figure 1 (b)), the intersection point between the two densities could be a suitable
classification threshold. This would mean that the estimated density ratio for a predictive Madison
probability of a disputed paper would indicate evidence for (if greater than one) or against (if
smaller than one) Madison. However, when the densities do not overlap (just like on Figure 1 (a)),
the denominator of the density ratio approaches zero for one of the classes, making the classification
decision ill-posed. In such cases, an alternative method is needed to determine authorship.

A straightforward alternative is to use a simple thresholding approach, where we classify a
document as Madison’s if the mode”s predicted probability exceeds a fixed threshold, such as
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t = 0.5. However, this may not be optimal due to the class imbalance in the dataset. Out of 85
papers, 51 were written by Hamilton, 14 by Madison, 3 by Jay, and 12 remain disputed, while
the remaining 3 were jointly authored by Hamilton and Madison. Given that Hamilton’s papers
significantly outnumber Madison’s, a threshold of 0.5 may systematically favor Hamilton, leading
to biased classifications.

To address both the instability of the density ratio in non-overlapping regions and the subop-
timality of a naive threshold due to class imbalance, we employ thresholding strategies based on
the Receiver Operating Characteristic (ROC) curve and the F1 score. These methods do not di-
rectly rely on density estimation but instead optimize the classification threshold using performance
metrics.

In binary classification, given predicted and true labels, each outcome falls into one of four
categories: True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).

The ROC curve plots recall
(

TP
TP+FN

)
against specificity

(
TN

TN+FP

)
. We select the threshold that

maximizes Youden’s J statistic (Youden, 1950), defined as the sum of recall and specificity. This
method balances sensitivity and specificity, making it well-suited for cases where false positives
and false negatives have similar costs.

Alternatively, we consider the F1 score, which balances precision
(

TP
TP+FP

)
and recall

(
TP

TP+FN

)
by computing their harmonic mean. Unlike ROC-based selection, the F1 score is particularly
effective in imbalanced datasets, where overall accuracy can be misleading due to class dominance.
By emphasizing the minority (positive) class, the F1 score ensures that both false positives and
false negatives are controlled.

For each model, we determine the optimal threshold and compute the corresponding classifica-
tion error. In most cases, the selected thresholds are around 0.3, which is close to the empirical
class ratio, 14

51
≈ 0.27. The specific thresholds obtained using the ROC and F1 criteria for each

embedding and classifier are reported in Table 7 in the supplement.

5 Analysis of Results

In this section, we will present and analyze the authorship attribution task focusing on the effect
of different embeddings. Our framework generates different types of embeddings using various
techniques introduced in Section 3, then trains the classifiers introduced in Section 4.4. We analyze
the authorship attribution from various perspectives in terms of their topics, ℓ2 loss, classification
accuracy, and variable selections.

5.1 Topics

It is natural to suspect that different authors may have specialized in particular topics, potentially
dividing their work according to areas of expertise. In Section 3.2, we discussed Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) as a widely used probabilistic model for discovering latent
topic structures within a collection of texts. We apply LDA with different term-document matrix
constructions (Type 1, Type 2, Type 3 ) introduced in Section 4.2 to examine whether the inferred
topic distributions align with known authorship patterns and whether they provide additional
insight into the stylistic and thematic characteristics of the disputed papers.

We first consider a term-document matrix constructed using Mosteller and Wallace’s list of
function words (Type 3 input), as shown in Figure 4. Unlike the other two representations (Type
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Figure 4: Document-Topic distribution by LDA trained on 145 selected words (Type 3). The
similarity in topic distributions for Madison authored papers and the disputed papers implies the
shared stylometry among them.

1 or Type 2), this input excludes contextual words that convey meaning, focusing instead on the
structural and stylistic aspects of the text. Consequently, the extracted topics do not correspond
to semantic themes but instead capture latent stylistic structures. Notably, the topic distributions
of the papers authored by Madison and the disputed papers appear surprisingly similar, which is
consistent with prior stylometric analyses supporting Madison’s authorship of the disputed papers
(Mosteller and Wallace, 1963). The effect of dimensionality reduction is also apparent, as the
term-document matrix is constructed from a vocabulary of over 145 words, yet the inferred topic
space is compressed into a much lower-dimensional representation (p = 5).

A more interpretable document-topic distribution emerges when retaining contextual words in
the term-document matrices (Type 1 and Type 2 inputs), which we present in the supplement
(Figures 10 and 11). In these representations, certain topics align well with known themes in the
Federalist Papers. For example, Papers No. 2 to No. 5, authored by Jay and titled ‘Concerning
Dangers from Foreign Force and Influence’, primarily discuss foreign policy, a theme that is reflected
in the document-topic distributions. In Type 1, Topic 3 (green) appears to capture foreign policy,
while in Type 2, Topic 4 (purple) represents the same theme. Interestingly, Paper No. 64 (The
Powers of the Senate), which differs in content from Jay’s other papers, exhibits a distinct topic
distribution in both representations.

For papers authored by Hamilton and Madison, the topic distinctions are less pronounced. This
is particularly evident for the disputed and jointly authored papers, where topic assignments remain
ambiguous. In both Type 1 and Type 2 inputs, the disputed papers are primarily dominated by
Topic 1, while the jointly authored papers are mostly assigned to Topic 4. The lack of a clear
distinction suggests that topic-based clustering alone may not provide conclusive evidence for
authorship attribution.

Overall, the results highlight the contrast between content-based and style-based document
representations. The similarity in distributions for Madison and the disputed papers (Type 3)
aligns with the hypothesis that Madison authored the disputed papers, as function words are
stable markers of authorship. In contrast, the contextual-word representations (Types 1 and 2)
reveal meaningful thematic differences but still struggle to cleanly separate the writings of Hamilton
and Madison. The complete document-topic distributions for these alternative representations are
provided in the supplement.

5.2 Word Screening and Variable Selection

The findings from the topic modeling analysis suggest that different input representations capture
distinct linguistic characteristics. Function-word-based representations (Type 3) highlight stylistic
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Figure 5: Word cloud representation of significant words found by LASSO with different sets of
word count matrices. Type 1 includes contextual words only, Type 2 includes both contextual
words and stopwords, and Type 3 includes a curated set of words by Mosteller and Wallace (1963).
LASSO successfully recovers some of the words reported in the original study (Table 22). The
most discriminative words such as ‘whilst’ or ‘upon’ are consistently recovered in all three types of
inputs.

elements, whereas contextual-word-based representations (Type 1 and Type 2) emphasize semantic
themes. To further investigate how input selection influences authorship attribution, we perform
word screening to identify the most discriminative words.

Mosteller and Wallace (Mosteller and Wallace, 1963) demonstrated that function words serve
as stable indicators of authorship. The key idea is to test for the heterogeneity of word usage across
the documents. The usage of a word like ‘war’ varies across the documents by their topic, and it is
less likely to be attributed to the characteristics of certain authors. They ended up with 30 words
whose usage is homogeneous across the document given an author (Table 22). Using LASSO for
feature selection, we analyze whether different word sets yield meaningful patterns in authorship
prediction. Figure 5 presents the words selected by LASSO across different input types. The
function-word-based representation recovers many of the same words used in the original study,
reaffirming the importance of stylistic markers in authorship attribution. Table 3 shows that
restricting the input to curated function words (Type 3) significantly improves ℓ2 loss. Notably,
more complex methods like Word2Vec do not necessarily outperform simpler approaches; in fact,
they often underperform compared to the basic Bag-of-Words input.

Overall, the careful selection of words within each method significantly impacts the results. This
raises the natural question: how can we create a well-curated list of words? Inspired by the approach
in Kipnis (2022), where HC statistics are viewed as distance measures and the corresponding HC
threshold is used to identify the most discriminative words, we apply multiple-testing methods
such as Bonferroni and Benjamini-Hochberg procedures to refine our word selection. The results
are presented in Figure 13 and detailed in the supplement.

5.3 Authorship Prediction and Model Comparison

Building on the word screening analysis, we now evaluate how different embedding methods impact
authorship attribution in a binary classification setting. We frame the problem as a binary task,
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LASSO BART

BoW LDA LSA NMF Word2Vec BoW LDA LSA NMF Word2Vec

Type 1 0.1270 0.1745 0.1756 0.1626 0.1709 0.0935 0.1464 0.0962 0.1385 0.1414
Type 2 0.1134 0.1101 0.0222 0.0759 0.1668 0.1101 0.0735 0.0579 0.0892 0.1252
Type 3 0.0486 0.0022 0.0093 0.0094 0.0749 0.0475 0.0106 0.0664 0.0463 0.0884

Table 3: ℓ2 loss for Leave-One-Out Cross-Validation (LOOCV) on 65 training datasets. The
bold number indicates the lowest (best) value for a given method. Note that the error varies
by the choice of words for all four non-sequential methods. Among the methods and input types
compared, LDA demonstrates the best performance, even achieving an ℓ2 loss close to zero (0.0022)
when well-curated list of words (Type 3) are used as inputs.

BoW Embeddings Continuous Embeddings

BoW LDA SVD NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

LASSO 0.1134 0.1101 0.0222 0.0759 0.1668 0.1281 0.1198 0.1613 0.1735 0.1778 0.1742
BART 0.1101 0.0735 0.0579 0.0892 0.1252 0.1349 0.1441 0.1522 0.1540 0.1400 0.1559

Table 4: Leave-one-out cross-validation ℓ2 loss for 65 papers with known authorship. The lowest
(best) ℓ2 value is bolded. For the Bag-of-Words type of embeddings, the results out of the Type 2
term document matrix are included. Among LLMs, the encoder-based models (BERT, RoBERTa)
perform better than the decoder-based models (GPT, Llama).

where 1 indicates Madison as the author and 0 indicates Hamilton. The training dataset consists of
65 papers with known authorship, while the 12 disputed papers form the test set. We exclude five
papers authored by John Jay. For the three jointly authored papers (No. 18, 19, 20), a detailed
analysis is provided in Section 5.4.

To assess classifier performance, we conduct leave-one-out cross-validation (LOOCV) on the
training data and compute the ℓ2 loss for each embedding method. The results are summarized in
Table 4. Among Bag-of-Words (BoW) embeddings, LDA achieves the lowest ℓ2 loss, while LSA and
NMF also perform well with the LASSO classifier. Among the Bag-of-Words (BoW) embeddings,
LSA produced the best results, while LDA and NMF also performed well when using BART as the
classifier. For continuous embedding techniques, Word2Vec performed the best with the BART
classifier, and RoBERTa with the LASSO classifier. However, even the best continuous embeddings
(RoBERTa with LASSO) did not perform as well as the least effective BoW embeddings (BoW with
LASSO), highlighting the effectiveness of explicit word frequency representations in this context.

A key distinction emerges between BoW and continuous embeddings in terms of the estimated
probability distributions. As illustrated in Figure 6, BoW-based embeddings yield a more polar-
ized probability distribution, effectively separating Hamilton and Madison’s papers. In contrast,
continuous embeddings tend to concentrate the predicted probabilities within the overlap region,
leading to greater uncertainty in authorship attribution.

Despite their success in various NLP tasks, Large Language Models (LLMs) struggle with au-
thorship attribution in this context. Several factors contribute to this underperformance. First,
LLMs primarily capture semantic meaning rather than stylistic patterns. Authorship attribution
relies heavily on function words and subtle stylistic markers, which LLMs deprioritize in favor of
content-related word relationships. This is particularly evident in their inability to distinguish
Madison’s function-word usage from Hamilton’s, a key differentiator identified in previous stylo-
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Figure 6: The estimated densities from BART. The red density is the kernel density estimate of
predicted probabilities of BART for papers authored by Hamilton, and the blue density is the
kernel density estimate of the ones by Madison. The predicted probabilities of disputed papers are
denoted as green vertical lines. For BoW and LDA, the results are based on Type 2 input. For
continuous embeddings (c), the predicted probabilities for the disputed papers are not extreme in
their range compared with the one using BoW embeddings (b), and tend to be concentrated in the
overlap of two probability distributions.

metric studies (Mosteller and Wallace, 1963).
Second, continuous embeddings generated by LLMs tend to distribute documents in a high-

dimensional latent space, where stylistic differences become less pronounced compared to discrete
frequency-based representations. In contrast, BoW-based models maintain sharp stylistic distinc-
tions by preserving explicit word frequency distributions.

Finally, LLMs are trained on extensive and diverse corpora that introduce broad linguistic gen-
eralization, often diluting author-specific writing patterns. Even after fine-tuning the architecture
LLMs on a Federalist Papers-specific dataset, it may not necessarily improve the performance (see
Section C in the supplement). Table 4 and an additional table in the supplement (Table 15)) fur-
ther illustrate these findings, showing that LLMs yield higher ℓ2 loss and more ambiguous predicted
probabilities compared to simpler models.

5.4 Evidence for Joint Authorship

In previous sections, we mainly focused on the binary classification task as much other literature
does, both for simplicity and interpretability. However, there has been a longstanding debate
regarding the feasibility of joint authorship instead of individual authorship (Adair, 1944; Mosteller
and Wallace, 1963). Although not admitted by Adair (1944), No. 18, 19, 20 are mostly widely
recognized jointly authored papers by Hamilton and Madison. In Mosteller and Wallace (1963),
No. 18 and No.19 are shown to be mainly authored by Madison, although being jointly authored.
The amount of contribution by Hamilton and Madison for No.20 remains unclear. Adair (1944)
mentioned that according to Madison’s note on No.20, he borrowed much from Sir William Temple
or Felice, and thus less support toward Madison might not necessarily mean more contribution by
Hamilton for this exact case.

In the Bag-of-Words approach with different types of input (Table 16), the support for Madison
in Federalist No. 20 is relatively weak, particularly with Type 3 input, where all methods show
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BoW Embeddings Continuous Embeddings

BoW LDA SVD NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

No.18 0.6375 0.2489 0.6272 0.6360 0.3565 0.4844 0.3856 0.1702 0.2762 0.2129 0.3325
No.19 0.7328 0.1156 0.5497 0.5704 0.4185 0.3928 0.1336 0.4846 0.2377 0.1898 0.2777
No.20 0.5228 0.1549 0.5544 0.4602 0.3334 0.4748 0.1958 0.2121 0.2903 0.2473 0.2535

Table 5: Predicted probabilities from BART classifier for jointly authored papers (No. 18, 19, 20).
For BoW, the results based on Type 2 inputs are reported. The highest support toward Madison
authorship is bolded and the lowest support is underlined.

the weakest support. The predicted probabilities in Table 5 are rather inconsistent as the papers
with strongest evidence and weakest evidence toward Madison vary a lot by method. However, for
continuous embeddings, as we have observed earlier in Figure 6, the range of the support is small
compared with the BoW type of methods.

6 Suggestions for Practitioners: Insights from LLMs and

Case Studies

After reviewing the performance of Large Language Models (LLMs) without fine-tuning and ap-
plying them to a case study like the Federalist Papers, several key suggestions can be drawn for
practitioners:

1. Understand the Limits of General-Purpose Embeddings: Large Langage Model is
not the panacea. It requires delicate fine-tuning for good performance (Fabien et al., 2020),
and vanilla embedding’s performance is very much task-dependent. Practitioners should be
aware that while LLMs like GPT, BERT, and RoBERTa may not always perform optimally
for specialized tasks like authorship attribution without fine-tuning, although they are capable
of producing high-quality general-purpose embeddings. In cases like the Federalist Papers,
where subtle stylistic or linguistic features are critical, relying solely on general embeddings
may overlook important nuances.

2. Choose the Right LLM for Embedding: It is crucial to carefully consider the choice of
Large Language Models (LLMs) based on the specific task at hand. If the goal is to obtain
general-purpose embeddings that capture rich contextual information, encoder models like
BERT or RoBERTa are generally more effective. These models are specifically designed
for tasks that require deep understanding of input text, as they process the entire sequence
bidirectionally and generate embeddings that reflect both the preceding and following context.
In contrast, autoregressive models like GPT or LlaMA are better suited for tasks that involve
text generation rather than producing general-purpose embeddings.

3. Task-Specific Fine-Tuning for LLMs: General-purpose LLMs, though powerful, may
miss task-specific patterns unless fine-tuned. Fine-tune LLMs for highly specialized tasks like
authorship attribution, and explore traditional statistical models for complementary insights
(Fabien et al., 2020). See the experiment results in Appendix C.

4. Feed the Quality Input: In our experiments, well-curated set of words plays a key role
in boosting classification performances. The quality of input text plays a crucial role in
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obtaining meaningful embeddings from any model. This cannot be overly emphasized for
Large Language Models, because they do not rely on modeling assumptions but learn from
the data.

5. Leverage Traditional Methods for Fine-Grained Analysis: In tasks like authorship
attribution, where differences in writing style may be subtle and involve fine-grained linguis-
tic features, traditional statistical models often outperform general-purpose LLMs. Models
like LDA, which assume probabilistic structures, can capture topic-based distinctions that
LLM embeddings may miss without fine-tuning. Practitioners should not discard traditional
methods like LDA or PCA. Combining these methods with LLM embeddings can lead to a
more comprehensive analysis.

6. Consider Dimensionality Reduction Techniques: Increasing the dimensionality of em-
beddings through LLMs does not always lead to better performance for tasks like authorship
attribution. In some cases, reducing dimensionality (e.g., with PCA) can highlight stylistic
features more effectively by removing noise and focusing on the core attributes relevant to
the task.

We hope these observations are insightful and that the practitioners can strike a balance between
leveraging the power of LLMs and using traditional techniques, ensuring they get the most out of
both approaches for tasks like authorship attribution and other specialized text analyses.

7 Conclusion

Our study demonstrates that embeddings from larger models or neural network-based models
do not necessarily improve authorship attribution results. Instead, the predicted probabilities
generated by BART (Chipman et al., 2010), using LDA embeddings, provide the best classification
performance, yielding the lowest ℓ2 loss and classification error across different thresholds. We also
provide guidelines on how to combine Large Language Models (LLMs) with statistical models in
practical applications.

In contrast to many language classification tasks where semantic encodings play a critical role,
the primary discriminators in authorship attribution are function words. For the Federalist
Papers, words such as ‘upon’ vs. ’on’ and ‘while’ vs. ‘whilst’ were found to be significant markers
for distinguishing one author from another. This set of words was initially investigated by Mosteller
and Wallace (1963) and has been frequently used in successful authorship studies (Tweedie et al.,
1996; Bosch and Smith, 1998). However, in contextual embedding models, these function words are
encoded close to each other in the embedding space, as measured by cosine similarity. For example,
in the Word2Vec model, the cosine similarity between ‘upon’ and ‘on’ is 0.51, and between ‘while’
and ‘whilst’ is 0.58, close to the similarity between ‘king’ and ‘queen’ (0.65). This proximity reduces
the discriminative power of these function words in contextual models.

The scaling laws proposed by Kaplan et al. (2020) show that larger neural language models
improve predictably as model size, dataset size, and compute power increase. These laws have
driven the development of models like GPT-3 and GPT-4, with significant investments in scaling
up model parameters and datasets to improve performance on NLP tasks. However, statistical
language models (SLMs) can still outperform neural LLMs in specific scenarios. When data is
scarce or domain-specific, SLMs may perform better, especially when neural models are prone
to overfitting due to insufficient fine-tuning data. Additionally, statistical models offer greater
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transparency and interpretability, which is critical in areas like legal or healthcare applications
where explainability is crucial. While scaling laws favor the development of larger neural models,
SLMs remain advantageous in cases requiring efficiency, interpretability, or when dealing with
small, domain-specific datasets.

We hope this study improves the understanding of modern language model in statistical per-
spective and sheds light on the statistical language modeling still can have an edge on analysis
with more interpretability with theoretical grounds.

Acknowledgement

This paper includes text and revisions generated with the assistance of generative AI tools (e.g.,
ChatGPT). Final content was reviewed and edited by the authors.

28



References

Adair, D. (1944). The authorship of the disputed federalist papers. The William and Mary
Quarterly 1 (2), 98–122.

Arnold, B. C. and S. J. Press (1989). Compatible conditional distributions. Journal of the American
Statistical Association 84 (405), 152–156.

Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019, July). Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sci-
ences 116 (32), 15849–15854.

Bengio, Y., R. Ducharme, P. Vincent, and C. Janvin (2003, mar). A neural probabilistic language
model. J. Mach. Learn. Res. 3 (null), 1137–1155.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society: Series B (Methodological) 36 (2), 192–225.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003, mar). Latent dirichlet allocation. J. Mach. Learn.
Res. 3 (null), 993–1022.

Bommasani, R., D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji,
A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,
J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman,
S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee,
T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani,
E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles,
H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance,
C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré,
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Supplementary Material:

A Detailed Review of Mosteller and Wallace (1963)

The key component for determining the authorship in the paper (Mosteller and Wallace, 1963) is
the posterior log-odds. For each word count xw ∈ W ,

Posterior Odds(Hamilton to Madison) =
P (H|xw)

P (M |xw)
=

pH
pM︸︷︷︸

initial odds

ℓH(xw)

ℓM(xw)︸ ︷︷ ︸
likelihood ratio

where pH , pM denote the prior probability of observing a word w ∈ W for xw times per thousand
words and ℓH , ℓM denote the likelihood of xw in Hamilton’s and Madison’s document respectively.

The difficulties in computation come from two components (1) the choice of initial odds and (2)
the estimation of the unknown parameters in likelihood. The first problem is directly interpreted as
how to choose the prior, but with more and better choices of discriminators (words), the likelihood
term would overwhelm the influence of the initial odds, in either direction. As such, most of
the work in Mosteller and Wallace (1963) focused on the likelihood estimation part. Likelihood
estimation is not easy for many reasons; there exists uncertainty in distribution, and even though
we know the true distribution, parameter estimation is another problem. Lastly, the choice of
words to use matters. To deal with these issues, the paper tested two distributions that are widely
used to model the count of rare events: Poisson and negative binomial distribution. For parameter
estimation of each distribution, appropriate models for the prior are introduced. In this review, we
will only elaborate on the likelihood modeling for the negative binomial case.

A.0.1 Modeling the Likelihood

The occurrence of a word per thousands of words are almost always a rare event that the Poisson
distribution is a natural choice for model its distribution. However, for some words, like ‘may ’ or
‘his ’, the empirical distribution does not fit well by Poisson distribution (Mosteller, 1987). When
modeling the counts with Poisson distribution, the main constraint posed is the mean and the
variance should be equal. A negative binomial distribution can be an alternative to handle the
overdispersed case for count data. In the Equation-5, the mean is µ, and the variance is µ(1+µ/κ).
Note that as κ → ∞, the distribution converges to the Poisson distribution with rate µ. We will
call µ/κ as the measure of non-Poissonness. A negative binomial modeling can also be viewed
as the mixture of Poisson and Gamma distribution. To be more precise, an author uses words
following Poisson frequencies, but the rate changes from one document to another. If the rate
follows the gamma distribution, then the resulting word distribution follows a negative binomial.

In other words, x|µ ∼ pois(µ), θ ∼ Γ(κ, κ/λ), then x ∼ NB
(
κ, 1

1+µ/κ

)
. Thus, the non-Poissonness

parameter µ/κ can quantify how much word usage would change by documents and could further
be used to determine the context-dependent words.

X ∼ NB
(
κ,

1

1 + µ/κ

)
, π(x) =

Γ(x+ κ)

x!Γ(κ)

( µ/κ

1 + µ/κ

)x( 1

1 + µ/κ

)κ
(5)

As noted earlier, even with the right distributional assumption (in this case, the word count fol-
lows a negative binomial distribution), the estimation of the parameter is not an easy problem. To
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circumvent this issue, an appropriate prior structure is introduced. For this setup, four parameters
need to be estimated: the mean rate µ, σ = µH + µM , τ = µH

µH+µM
, the non-Poissonness parameter

δ = µ/κ, λ = log(1 + δ) and ξ = λM + λH , η = λH/ξ. The relationship between these parameters
are modeled through 5 underlying constants β = (β1, β2, β3, β4, β5), and we assume given β,

(A1) (σ, τ, ξ, η) are independent across words

(A2) (σ, τ), ξ, η are independent of each other for each word

(A3) σ has a distribution that can be adequately approximated by a constant density

(A4) τ |σ ∼ Beta(β1 + β2σ, β1 + β2σ)

(A5) η ∼ Beta(β3, β3)

(A6) ξ ∼ Γ(β5,
β5

β4
) with density f(ξ|β4, β5) =

(β5/β4)β5

Γ(β4)
ξβ5−1e

−β5
β4

ξ

With this assumption, the full posterior of our interest, given the count for a word as xH , xM ,
is

p(σ, τ, ξ, η|xH , xM) = C(X)p(σ, τ, ξ, η)p(xH , xM |σ, τ, ξ, η) (6)

= C(X)p(σ, τ)p(ξ)p(η)p(xH , xM |σ, τ, ξ, η) (7)

To avoid the infinite loop of putting prior over prior, the authors of the original work con-
strain the set of possible options for β, and chose (β1, β2, β3, β4, β5) = (10, 0, 12, 0.83, 1.2) as their
underlying constants for the final computation. An approximate method is applied to compute
the posterior mode for each parameter, which in turn gives the estimated rates(µ̂H , µ̂M) for each
author.

A.0.2 Higher Criticism for Authorship Attribution

The Higher Criticism (HC) statistic is designed to assess the overall deviation of a set of p-values
from their expected distribution under the null hypothesis Donoho and Jin (2004). Assume you
have a large set of test statistics T1, T2, ..., Tn corresponding to hypotheses H1, H2, ..., Hn. Under
the null hypothesis Hi (no signal), each test statistic Ti is transformed into a p-value pi. Given the
sorted the p-values p(1) ≤ p(2) ≤ ... ≤ p(n), the HC statistic is defined as:

HCn = max
1≤i≤n

∣∣∣∣∣ i/n− p(i)√
(i/n)(1− i/n)

∣∣∣∣∣
This formula compares the empirical distribution of the p-values to the uniform distribution, nor-
malized by the standard error. A high value of HCn indicates that there are more small p-values
than expected under the null hypothesis, suggesting the presence of a signal.

To solve the authorship attribution task in multiple testing perspectives, KipnisKipnis (2022)
redefine the authorship prediction task as detecting the difference between two large word frequency
tables. For the number of occurrences xw of each word w ∈ W , perform the binomial test to see if
there is a difference in frequency among the documents written by different authors. Consider the
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simplest case where there are only two documents. For a word w ∈ W , xw denotes the number of
occurrences of the word in a document D1 as N(w|D1).

H0 : N(xw|D1) ∼ Bin(m, q)

H1 : otherwise

where m = N(xw|D1) + N(xw|D2), q =
∑

w′∈W N(xw′ |D1)∑
w′∈W,w′ ̸=w N(xw′ |D1)+N(xw′ |D2)

. The p-value under the null

hypothesis is given as

π(xw|D1, D2) = P(|Bin(m, q)−mq| ≥ |N(xw|D1)−mq|). (8)

By applying the test to all w ∈ W , we have n = |W| number of p-values where we can apply HC
framework.

Their main insight is to view the HC statistics comparing two word-frequency tables as a
distance. Since the HC statistics being large implies the distribution of p-values deviates a lot from
a uniform distribution under the null, which further implies there is a discrepancy in the usage of
words between the two documents.

dHC(D1, D2) = HC† = max
1≤i≤γ0N,1/N≤π(i)

√
N

i/N − π(i)√
i
N
(1− i

N
)

(9)

With this distance, the decision rule for the authorship is if dHC(D,DMadison) < dHC(D,DHamilton),
then author of the document D is Madison.

Additionally, they utilize the HC threshold, which can be used to identify the set of words that
induce the large deviations. In the authorship attribution task, it can be used to identify the most
discriminative words between the authors.

tHC = π(i∗), i
∗ = argmax

1≤i≤γ0N,1/N≤π(i)

√
N

i/N − π(i)√
i
N
(1− i

N
)

They identify 378 words whose p-value falls below the HC threshold. The word ‘upon’ turns out
to be the most significant (with the smallest p-value), and so is the set of the most frequent words
(“B3B” group). On top of the words used in Mosteller and Wallace (1963), a new set of words is
revealed to be significant. ‘would’ is more likely to be found in Madison’s document; on the other
hand, words such as ‘power’, ‘department’, ‘congress’, confederation’ are more likely to be used in
Hamilton’s document. The prediction and the HC discrepency values are summarized in Table 6.
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Papers Type HC Decision

Hamilton Madison Diff

49 disputed 3.0210 2.6166 0.4044 Madison
50 disputed 3.8154 3.1456 0.6698 Madison
51 disputed 4.5327 2.6591 1.8737 Madison
52 disputed 4.0433 2.4977 1.5456 Madison
53 disputed 4.4087 4.0416 0.3672 Madison
54 disputed 4.7123 4.2628 0.4495 Madison
55 disputed 4.4918 3.6148 0.8770 Madison
56 disputed 4.6521 4.0536 0.5985 Madison
57 disputed 4.8585 4.2526 0.6059 Madison
58 disputed 2.6117 2.4343 0.1774 Madison
62 disputed 3.6237 1.5109 2.1128 Madison
63 disputed 4.7131 3.2023 1.5108 Madison
18 joint 4.5254 3.7611 0.7643 Madison
19 joint 5.0771 4.5206 0.5565 Madison
20 joint 3.2669 3.3846 -0.1177 Hamilton

Table 6: HC distance (9) to each of the author from Kipnis (2022). The “Diff” column represents
the difference between the distance to Hamilton and the distance to Madison. A positive value
indicates that the paper is assigned to Madison, as it is closer to his authorship profile. All the
disputed papers are attributed to Madison. A weak support for Madison’s authorship on jointly
authored No. 20 aligns with the original study by Mosteller and Wallace (1963).
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B Additional Figures and Tables

(a) (b)

(c) (d)

Figure 7: An example that GPT can provide a plausible answer, but they cannot convey the answer
with uncertainty. Their responses change from time to time even with the same prompt.
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Figure 8: BART classification probability based on Sentence Embeddings. The predicted probabil-
ity based on sentence embeddings (left). The predicted probability aggregated for each document
based on sentence embeddings (middle). The predicted probability based on the aggregated sen-
tence embeddings (right). Essentially, first two plots are based on sentence-wise embedding, but
the third figure is based on document embedding calculated from sentence-wise embeddings.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Probabilities of Madison

N = 619   Bandwidth = 0.02845

D
en

si
ty

Madison
Hamilton
Disputed

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Probabilities of Madison

N = 51   Bandwidth = 0.02397

D
en

si
ty

Madison
Hamilton
Disputed

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Probabilities of Madison

N = 51   Bandwidth = 0.04197

D
en

si
ty

Madison
Hamilton
Disputed

Figure 9: BART classification probability based on Chunk (size = 200) Embeddings. Same principle
as Figure 8 has been applied.
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Figure 10: Document-Topic distribution by LDA trained on contextual words after removing stop-
words (Type 1). Jay’s expertise on foreign policy is noticeable through the topic distribution;
however, the attribution of the disputed papers is less clear.
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Figure 11: Document-Topic distribution by LDA trained on contextual words without removing
stopwords (Type 2). The topic distributions across different authors are similar to the ones revealed
using only the contextual words (Figure 10).
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(a) Type 1
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(b) Type 2
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(c) Type 3

Figure 12: BART classification probability using LDA document embedding with different set of
words as input. Type 1 includes contextual words only, Type 2 includes both contextual words and
stopwords, and Type 3 includes a curated set of words by Mosteller and Wallace (1963). Note that
the results align with our findings on Topic distribution in Section 5.1. When using Type 3 inputs,
the distributions of Hamilton and Madison are completely separated. With Type 2 inputs, where
stopwords are added on top of the contextual words, the model consistently identifies all disputed
papers as being authored by Madison.
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Figure 13: Word cloud representation of significant words found by different screening procedures.
Kipnis (2022) view HC statistics as distance and use corresponding HC threshold to identify the
most discriminative words. We follow the binomial allocation model used in Kipnis (2022) (8).
With false-discovery rate set to 0.1, 117 words are found by Benjamini-Hochberg and 35 words are
found by Bonferroni correction. Note that 378 words fall below the HC threshold by Kipnis (2022).
We observe that the different procedures yield different sets of vocabularies. For all three testing
framework, ‘upon’, ‘on’ and ‘while’, ‘whilst’ are revealed.

LASSO BART

ROC F1 ROC F1

BoW 1 0.1915 0.2455 0.2364 0.2884
BoW 2 0.2002 0.2031 0.1573 0.2131
BoW 3 0.2448 0.2829 0.3312 0.3949
LDA 1 0.2067 0.1985 0.1427 0.1453
LDA 2 0.2200 0.2213 0.2433 0.3184
LDA 3 0.3768 0.6661 0.4125 0.5610
LSA 1 0.2040 0.0757 0.1877 0.3053
LSA 2 0.3936 0.5014 0.3876 0.3939
LSA 3 0.5899 0.6813 0.3350 0.3560
NMF 1 0.1968 0.1969 0.3076 0.3145
NMF 2 0.2483 0.3673 0.1885 0.3073
NMF 3 0.3768 0.4712 0.4296 0.4357

Word2Vec 1 0.2106 0.1838 0.2042 0.2055
Word2Vec 2 0.2007 0.2031 0.2857 0.2923
Word2Vec3 0.2859 0.3145 0.2783 0.2869

BERT 0.1783 0.2685 0.1722 0.5347
RoBERTa 0.1984 0.2940 0.1264 0.1277
BART 0.1850 0.1858 0.1636 0.1683
GPT4 0.2175 0.1943 0.2279 0.2284
Llama2 0.2121 0.0971 0.3229 0.3253
Llama3 0.2056 0.1603 0.2391 0.2402

Table 7: Classification thresholds computed by ROC and F1 rule. The number right next to the
non-sequential methods indicate the type of word inputs. BoW 1 is the threshold computed on the
word count matrix with Type 1 inputs.
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BoW Embeddings Continuous Embeddings

BoW LDA LSA NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

LASSO 0.1231 0.0923 0.0154 0.0769 0.3692 0.2923 0.2154 0.4154 0.6308 0.9077 0.8615
BART 0.1231 0.0923 0.0308 0.1231 0.1231 0.2769 0.3846 0.3538 0.2615 0.1385 0.3077

Table 8: Classification Error with a threshold chosen by ROC. The BoW results are based on the
Type 2 inputs. The lowest (best) values within each group are bolded.

LASSO BART

BoW LDA LSA NMF Word2Vec BoW LDA LSA NMF Word2Vec

Type 1 0.1538 0.9385 0.9077 0.4154 0.8000 0.1077 0.4000 0.1385 0.2154 0.2462
Type 2 0.1231 0.0923 0.0154 0.0769 0.3692 0.1231 0.0923 0.0308 0.1231 0.1231
Type 3 0.0308 0.0000 0.0000 0.0000 0.0769 0.0462 0.0000 0.0462 0.0000 0.0615

Table 9: Classification Error for BoW embeddings with different types of inputs. A threshold is
chosen by ROC.

BoW Embeddings Continuous Embeddings

BoW LDA LSA NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

LASSO 0.1231 0.0923 0.0154 0.0615 0.3692 0.1385 0.1077 0.4154 0.5692 0.7692 0.7692
BART 0.1077 0.0769 0.0308 0.0923 0.1231 0.1538 0.3846 0.3538 0.2615 0.1385 0.3077

Table 10: Classification Error with a threshold chosen by F1. The BoW results are based on the
Type 2 inputs. The lowest (best) values within each group are bolded.

LASSO BART

BoW LDA LSA NMF Word2Vec BoW LDA LSA NMF Word2Vec

Type 1 0.0769 0.7385 0.7846 0.4154 0.6615 0.0923 0.4000 0.0923 0.2154 0.2462
Type 2 0.1231 0.0923 0.0154 0.0615 0.3692 0.1077 0.0769 0.0308 0.0923 0.1231
Type 3 0.0308 0.0000 0.0000 0.0000 0.0769 0.0462 0.0000 0.0462 0.0000 0.0615

Table 11: Classification Error for BoW embeddings with different types of inputs. A threshold is
chosen by F1.

BoW Embeddings Continuous Embeddings

BoW LDA LSA NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

LASSO 0.1538 0.1077 0.0154 0.0923 0.2615 0.1692 0.1231 0.2308 0.2615 0.2308 0.2154
BART 0.1077 0.0923 0.0615 0.0923 0.1385 0.2769 0.3231 0.2308 0.2308 0.1692 0.2615

Table 12: Classification Error with a fixed threshold t = 0.3. The BoW results are based on the
Type 2 inputs. The lowest (best) values within each group are bolded.
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LASSO BART

BoW LDA LSA NMF Word2Vec BoW LDA LSA NMF Word2Vec

Type 1 0.1538 0.2308 0.2154 0.2000 0.2308 0.1077 0.2462 0.0923 0.2308 0.2308
Type 2 0.1538 0.1077 0.0154 0.0923 0.2615 0.1077 0.0923 0.0615 0.0923 0.1385
Type 3 0.0462 0.0000 0.0154 0.0000 0.0769 0.0462 0.0000 0.0615 0.0615 0.0923

Table 13: Classification Error for BoW embeddings with a fixed threshold t = 0.3

B.1 Prediction for Disputed Papers

BoW LDA LSA NMF Word2Vec

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

No.49 0.1372 0.5299 0.8024 0.4135 0.7453 0.7514 0.2123 0.6286 0.3384 0.5252 0.2977 0.5755 0.2239 0.2126 0.4920
No.50 0.1206 0.1430 0.5623 0.1647 0.7291 0.7767 0.0498 0.5649 0.4780 0.3992 0.3870 0.3060 0.2994 0.3700 0.4375
No.51 0.4171 0.7771 0.8292 0.2822 0.7188 0.9217 0.5139 0.8149 0.4257 0.8007 0.8365 0.5962 0.4109 0.5244 0.4215
No.52 0.0630 0.7024 0.8131 0.6648 0.8778 0.9394 0.1748 0.7267 0.3786 0.3739 0.6441 0.6102 0.3677 0.3745 0.5083
No.53 0.1866 0.0490 0.9060 0.6274 0.8532 0.7958 0.2885 0.5453 0.4959 0.3717 0.7334 0.6492 0.3737 0.4339 0.4329
No.54 0.0464 0.7244 0.2566 0.7368 0.7883 0.7886 0.2786 0.6839 0.2909 0.1695 0.5415 0.3981 0.2993 0.4885 0.6233
No.55 0.1663 0.0492 0.8330 0.5579 0.8262 0.7504 0.2273 0.3564 0.2418 0.1770 0.3948 0.2061 0.2751 0.3107 0.1634
No.56 0.0412 0.1446 0.8475 0.7009 0.7656 0.8525 0.2774 0.2501 0.3512 0.2342 0.5764 0.4232 0.3524 0.4723 0.3769
No.57 0.2210 0.6958 0.8856 0.6989 0.8914 0.9370 0.2421 0.7573 0.6410 0.2771 0.4970 0.6583 0.2934 0.3204 0.5278
No.58 0.0667 0.6717 0.8673 0.7260 0.7857 0.9381 0.4715 0.6958 0.4051 0.3039 0.4948 0.3936 0.2755 0.3668 0.4747
No.62 0.1297 0.6926 0.9161 0.4330 0.7441 0.9383 0.3482 0.3476 0.3864 0.2032 0.6492 0.2763 0.2603 0.2099 0.5159
No.63 0.2181 0.7834 0.9368 0.6829 0.8992 0.8490 0.3014 0.8828 0.7341 0.1281 0.6416 0.7564 0.3669 0.4134 0.5850

Table 14: Predicted probability by Bayesian Additive Regression Tree (BART) with different set
of words as input. For each method, the highest predicted probability among the disputed papers
is shown in bold, while the lowest is underlined and italicized. The probability being closer to 1
means that the paper is more likely to be authored by Madison.
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BoW Embeddings Continuous Embeddings

BoW LDA LSA NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

No.49 0.5299 0.7453 0.6286 0.2977 0.2126 0.1292 0.5051 0.3479 0.3767 0.3079 0.2070
No.50 0.1430 0.7291 0.5649 0.3870 0.3700 0.0918 0.5923 0.0872 0.3087 0.1839 0.1300
No.51 0.7771 0.7188 0.8149 0.8365 0.5244 0.5580 0.5928 0.6907 0.4241 0.5169 0.5193
No.52 0.7024 0.8778 0.7267 0.6441 0.3745 0.3190 0.6232 0.3520 0.1793 0.3421 0.2760
No.53 0.0490 0.8532 0.5453 0.7334 0.4339 0.1513 0.5353 0.2880 0.1977 0.1836 0.1710
No.54 0.7244 0.7883 0.6839 0.5415 0.4885 0.2854 0.5361 0.2827 0.0775 0.2910 0.2645
No.55 0.0492 0.8262 0.3564 0.3948 0.3107 0.1451 0.3976 0.2787 0.1926 0.3533 0.2741
No.56 0.1446 0.7656 0.2501 0.5764 0.4723 0.1735 0.5768 0.0848 0.1140 0.2515 0.1963
No.57 0.6958 0.8914 0.7573 0.4970 0.3204 0.1727 0.3424 0.5873 0.1256 0.2625 0.1847
No.58 0.6717 0.7857 0.6958 0.4948 0.3668 0.1567 0.6677 0.3238 0.0962 0.2053 0.2806
No.62 0.6926 0.7441 0.3476 0.6492 0.2099 0.3364 0.3732 0.4023 0.1248 0.3552 0.2660
No.63 0.7834 0.8992 0.8828 0.6416 0.4134 0.2775 0.2763 0.4156 0.4275 0.2653 0.1964

Table 15: Predicted probability by Bayesian Additive Regression Tree (BART). The outcome
being 1 means the paper is written by Madison. For each method, the highest support toward
the Madison is marked as a bold letter, and the lowest support is underlined. BoW, LDA, SVD
and GPT 4 give the strongest support to No.63 toward Madison; NMF, Word2Vec, BERT, BART,
Llama2 and Llama 3 show the strongest support to No.51 toward Madison. Recall that, in the
original study, No. 51 and No. 63 are the papers with the strongest support with the Bayesian
model. On the other hand, the papers with the weakest support are rather inconsistent. The
papers with the weakest support in the original study were No. 55 and No. 56. All the models
except LDA, relatively low support for Madison’s authorship is observed, though not the lowest.

BoW LDA LSA NMF Word2Vec

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

No.18 0.1821 0.6375 0.7495 0.0628 0.2489 0.6294 0.0395 0.6272 0.7722 0.3032 0.6360 0.8733 0.2578 0.3565 0.5335
No.19 0.1707 0.7328 0.9210 0.0322 0.1156 0.7698 0.0297 0.5497 0.6599 0.2854 0.5704 0.7796 0.3259 0.4185 0.4889
No.20 0.1345 0.5228 0.7046 0.0297 0.1549 0.5232 0.0570 0.5544 0.6049 0.2505 0.4602 0.5849 0.2824 0.3334 0.4368

Table 16: Predicted probabilities from BART classifier for jointly authored papers for BoW em-
beddings with different inputs.

BoW Embeddings Continuous Embeddings

BoW LDA LSA NMF Word2Vec BERT RoBERTa BART GPT4 Llama2 Llama3

LASSO 0.3712 0.0000 0.0874 0.1546 0.5669 0.1385 0.1077 0.4154 0.5692 0.7692 0.7692
BART 0.3376 0.0542 0.1925 0.2174 0.4001 0.1538 0.3846 0.3538 0.2615 0.1385 0.3077

Table 17: Assuming the attribution by Mosteller and Wallace (1963) as ground truth to compute
ℓ2 loss. Note that we use the same threshold computed by LOOCV result and the exact values
are presented in Table 7. For BoW methods, Type 2 inputs are used to compute the value. LDA
succeeds in attributing all the papers to Madison.
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C Experiments with Fine-Tuning
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Figure 14: Estimated density for Hamilton and Madison by BART using RoBERTa embeddings.
Again, as in Figure 3, the separation of densities on training dataset becomes more obvious;
however, it is not at all informative for the unseen dataset (green vertical lines).
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Figure 15: Estimated density for Hamilton and Madison using BART (Chipman et al., 2010) with
embeddings from BART (Lewis et al., 2019). The assignment of authorship in the test set differs
from that of BERT (Figure 3) and RoBERTa (Figure 14). Prior to tuning, only one disputed
paper is confidently assigned to Hamilton, with most falling in the overlap region. After tuning,
five papers are confidently assigned to Hamilton, but this assignment is likely incorrect, suggesting
a potential decline in prediction accuracy.

Vanilla Embedding Fine-Tune Embedding

BERT RoBERTa BART BERT RoBERTa BART

LASSO 0.5620 0.1172 0.5228 0.4154 0.3701 0.2491
BART 0.6038 0.2626 0.4566 0.3368 0.2784 0.4454

Table 18: ℓ2 loss computed for 12 disputed papers on vanilla and fine-tuned embeddings. The
loss value is inflated for RoBERTa with both classifiers. The loss values are slightly improved
(decreased) for BERT or BART, but the gain is not significant. Even after the fine-tuning, the
performance is as good as the one based on the pure word count matrix (Table 17).
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Vanilla Embedding Fine-Tune Embedding

BERT RoBERTa BART BERT RoBERTa BART

t = 0.3
LASSO 0.7500 0.1667 0.5833 0.5000 0.2500 0.0833
BART 0.7500 0.0833 0.4167 0.0833 0.0833 0.4167

ROC
LASSO 0.0833 0.0000 0.0833 0.8333 0.6667 0.1667
BART 0.4167 0.0000 0.1667 0.6667 0.6667 0.5000

F1
LASSO 0.5000 0.0833 0.0833 1.0000 1.0000 0.1667
BART 0.9167 0.0000 0.1667 1.0000 0.9167 0.5000

Table 20: Classification error for 12 disputed papers on vanilla and fine-tuned embeddings. The
performance for RoBERTa was descent before the fine-tuning, but the classification error even
becomes 1 (with LASSO and F1 threshold) after the fine-tuning. For BERT and BART, the
classification error decreases though the improvement is marginal.

LASSO BART

ROC F1 ROC F1

BERT 0.4965 0.9610 0.4681 0.7961
RoBERTa 0.4823 0.9154 0.5323 0.7390
BART 0.3851 0.3940 0.3577 0.3870

Table 19: Classification thresholds computed by ROC and F1 rule for fine-tuned embeddings.
Overall, the threshold values are inflated compared to the threshold computed from vanilla em-
beddings (Table 7).
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D List of Function/Stop Words used in the Analysis

i me my myself we our ours ourselves you
your yours yourself yourselves he him his himself she
her hers herself it its itself they them their

theirs themselves what which who whom this that these
those am is are was were be been being
have has had having do does did doing would
should could ought i’m you’re he’s she’s it’s we’re
they’re i’ve you’ve we’ve they’ve i’d you’d he’d she’d
we’d they’d i’ll you’ll he’ll she’ll we’ll they’ll isn’t
aren’t wasn’t weren’t hasn’t haven’t hadn’t doesn’t don’t didn’t
won’t wouldn’t shan’t shouldn’t can’t cannot couldn’t mustn’t let’s
that’s who’s what’s here’s there’s when’s where’s why’s how’s
a an the and but if or because as

until while of at by for with about against
between into through during before after above below to
from up down in out on off over under
again further then once here there when where why
how all any both each few more most other
some such no nor not only own same so
than too very

Table 21: Stop words in R ‘tm’ package

D.1 Selected Words by Mosteller(1963)

a as do has is no or than this
when all at down have it not our that
to which also be even her its now shall
the up who an been every his may of

should their upon will and but for if more
on so then was with any by from in

must one some there were would are can had
into my only such thing what your

Table 22: Function words
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affect city direction innovation perhaps vigor again commonly disgracing
join rapid violate although consequently either language same violence

among considerable enough most second voice another contribute nor
still where because defensive fortune offensive those whether between

destruction function often throughout while both did himself pass
under whilst about choice proper according common kind propriety

adversaries danger large provision after decide decides decided deciding
likely requisite aid degree matters matter substance always during

moreover they apt expence expences necessary though asserted expenses
expense necessity necessities truth truths before extent others us
being follows follow particularly usages usage better I principle
we care imagine edit editing probability work

Table 23: Additional Set of Words in Mosteller and Wallace (1963)

E Discussion: What Defines LLMs

The definition of Large Language Models (LLMs) is indeed a topic of divergence in the literature,
with different researchers focusing on various aspects of model architecture, parameter count, and
the scale of data used for training. For instance, as mentioned by Zhao et al. (2023), LLMs are
typically defined by three key components: (1) the use of Transformer architecture, (2) the presence
of hundreds of billions (or more) parameters, and (3) training on massive datasets. This definition
focuses on the scale and architecture of models like GPT-3, PaLM, and LlaMA, highlighting the
power of attention mechanisms and massive parameterization as core distinguishing features.

However, other works take a narrower or more focused view of what qualifies as an LLM. For
example, Lu et al. (2024) argue that encoder-only transformer models, like BERT, are not classi-
fied as LLMs under their framework, even though these models can be highly parameterized. This
exclusion is based on the idea that LLMs are primarily defined by their capacity for generating
human-like text, which models like BERT, trained for tasks like classification and sentence encod-
ing, do not directly perform. Thus, this definition limits LLMs to models designed primarily for
generative tasks, rather than those for representation learning or other specialized applications.

Other perspectives emphasize the role of scalability and generalization rather than just size.
For instance, Bommasani et al. (2022) note that LLMs are defined not only by their massive scale
in terms of data and parameters but also by their general-purpose capability across a wide range
of tasks, often with minimal fine-tuning. In this view, models like GPT-3 are LLMs not just
because they are large but because they exhibit emergent properties like few-shot learning and can
generalize across domains, whereas smaller models or task-specific models, even if large, may not
exhibit these behaviors.
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