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ABSTRACT

In real-world decision-making problems, risk management is critical. Among var-
ious risk management approaches, the mean-variance criterion is one of the most
widely used in practice. In this paper, we suggest expected quadratic utility max-
imization (EQUM) as a new framework for policy gradient style reinforcement
learning (RL) algorithms with mean-variance control. The quadratic utility func-
tion is a common objective of risk management in finance and economics. The
proposed EQUM has several interpretations, such as reward-constrained variance
minimization and regularization, as well as agent utility maximization. In addi-
tion, the computation of the EQUM is easier than that of existing mean-variance
RL methods, which require double sampling. In experiments, we demonstrate the
effectiveness of the EQUM in benchmark setting of RL and financial data.

1 INTRODUCTION

Reinforcement learning (RL) with Markov decision processes (MDPs) is one type of dynamic
decision-making problem (Puterman, 1994; Sutton & Barto, 1998). While the typical objec-
tive is the expected cumulative reward maximization, risk-aware decision-making has attracted
great attention in real-world applications, such as finance and robotics (Geibel & Wysotzki, 2005;
García & Fernández, 2015). The notion of risk is related to the fact that even an optimal pol-
icy may perform poorly owing to the stochastic nature of the problem. To capture the risk, vari-
ous criteria have been proposed, such as Value at Risk (Luenberger, 1998; Chow & Ghavamzadeh,
2014; Chow et al., 2017) and variance (Markowitz, 1952; Markowitz et al., 2000; Tamar et al., 2012;
Prashanth & Ghavamzadeh, 2013). Among them, we focus on the mean-variance trade-off.

Typical mean-variance RL (MVRL) methods attempt to maximize the expected cumulative reward
while maintaining the variance threshold (Tamar et al., 2012; Prashanth & Ghavamzadeh, 2013;
2016; Xie et al., 2018; Bisi et al., 2020; Zhang et al., 2020). However, most existing MVRL meth-
ods suffer from high computational costs owing to the double sampling issue when approximating
the gradient of the variance term (Tamar et al., 2012; Prashanth & Ghavamzadeh, 2013; 2016). To
avoid the double sampling issue, Xie et al. (2018) proposed a method based on the Legendre-Fenchel
duality (Boyd & Vandenberghe, 2004). Although the method does not suffer from the double sam-
pling issue, we cannot apply a standard policy gradient method and must use a coordinate descent
algorithm. In addition, the method cannot control risk at a certain desirable level.

From an economics perspective, the difference in the RL objectives arises from the forms of utility
functions. When the objective of an agent is expected cumulative reward maximization, the utility
function is risk-neutral; when an agent attempts to control the risk based on an expected reward,
the utility function is risk-averse (Mas-Colell et al., 1995). In economics, there have been several
risk-averse utility functions proposed. The quadratic utility function is one such functions and is
frequently used in financial economics (Luenberger, 1998). Under the quadratic utility function,
the mean-variance portfolio maximizes the utility of the investor. In addition, other various finan-
cial theories are also based on the quadratic utility maximization (Markowitz, 1952; Sharpe, 1964;
Lintner, 1965; Mossin, 1966). For more details, see Appendix A. In this study, as one of the MVRL
approaches, we consider the expected quadratic utility maximization (EQUM) based on the policy
gradient method (Williams, 1988; 1992; Sutton et al., 1999; Baxter & Bartlett, 2001).
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The EQUM has the following advantages: (i) low computational cost; (ii) numerous interpretations,
and (iii) direct connections to real-world applications. In this study, as interpretations of EQUM, we
propose the minimization of the variance under the constraint of the expected cumulative reward,
reward-targeting optimization, and regularization. Thus, this study contributes to the context of risk-
averse RL and MVRL. In the following sections, we first formulate the problem setting in Section 2
and review the existing methods in Section 3. Then, we propose the main algorithms in Section 4.
Finally, we investigate the empirical effectiveness of the EQUM in Section 5.

2 PROBLEM SETTING

We consider the standard RL framework, where a learning agent interacts with an unfamiliar, dy-
namic, and stochastic environment modeled by a Markov decision process (MDP) in discrete time.
We define the MDP as the tuple (S,A, r, P, P0), where S is a set of states, A is a set of actions,
r : S × A → R is a reward function, P : S × S × A → [0, 1] is the transition kernel, and
P0 : S → [0, 1] is an initial state distribution. The initial state S1 is sampled from P0. Let
πθ : A × S → [0, 1] be a parameterized stochastic policy mapping states to actions, where θ is
the tunable parameter. At time step t, an agent chooses an actionAt according to a policy πθ(· | St).
We assume that the policy πθ is a differentiable function with respect to θ; that is, ∂πθ(a,s)

∂θ exists.

There are several performance measures for a policy πθ. One popular measure is the expected cu-
mulative reward from time step t to u defined as Eπθ

[Rt:u], where Rt:u =
∑u
i=0 γ

ir(St+i, At+i),
γ ∈ (0, 1) is a discount factor and Eπθ

denotes the expectation operator over a policy πθ, and S1

is generated from P0. When γ = 1, to ensure the cumulative reward well defined, it is usually
assumed that all policies are proper (Bertsekas & Tsitsiklis, 1996); that is, for any policy πθ, the
agent goes to a recurrent state S∗ with probability 1. After the agent passes the recurrent state S∗ at
a time τ , the rewards are always 0. Such a finite horizon case is called episodic MDPs (Puterman,
1994). For brevity, we denote Rt:u as R when the meaning is obvious. Under these criteria, the
agent may attempt to obtain a higher cumulative reward while taking higher risks. In real-world
applications, such as portfolio management in finance (Markowitz, 1952; Markowitz et al., 2000),
such risky decision-making is not always desired, and we, therefore, consider the trade-off between
the expected cumulative reward and the variance. Thus, while the goal of the risk-neutral MDP
problem is to find the parameter θ that maximizes the total reward, we consider the mean-variance
trade-off between the cumulative expected reward and the variance of the cumulative reward R in
the MVRL problem. Note that even when the reward r is deterministic, the cumulative reward is a
random variable owing to the stochastic policy, and there exists the mean-variance trade-off. In ad-
dition, even if the optimal policy is deterministic, the proposed method empirically has the potential
to improves the stability of the training from the observations in the experiments of Section 5.3.

3 EXISTING MVRL METHODS

In this section, we introduce existing studies of MVRL.

3.1 CONSTRAINED TRAJECTORY-VARIANCE PROBLEM

Tamar et al. (2012), Prashanth & Ghavamzadeh (2013), and Xie et al. (2018) formulated MVRL
by a constrained optimization problem defined as maxθ∈Θ Eπθ

[R] s.t. Varπθ
(R) ≤ η.

In their formulation, the goal is to maximize the expected cumulative reward with control-
ling the trajectory-variance at a certain level. To solve this problem, Tamar et al. (2012),
Prashanth & Ghavamzadeh (2013), and Xie et al. (2018) consider a penalized method defined as
maxθ∈Θ Eπθ

[R] − δg
(
Varπθ

(R) − η
)
, where δ > 0 is a constant and g : R → R is a penalty

function, such as g(x) = x or g(x) = x2.

3.1.1 DOUBLE SAMPLING ISSUE

Tamar et al. (2012), Prashanth & Ghavamzadeh (2013), and Xie et al. (2018) report the double sam-
pling issue in MVRL, which requires sampling from two different trajectories for estimating the
policy gradient. For instance, in an episodic MDP with the discount factor γ = 1 and the stop-
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ping time τ = min{t | St = S∗}, the gradients of Eπθ
[R], Eπθ

[
R2

]
, and

(
Eπθ

[R]
)2

are given
as ∇θEπθ

[R] = Eπθ
[R

∑τ
t=1 ∇θ log πθ(St, At)], ∇θEπθ

[
R2

]
= E

[
R2

∑τ
t=1 ∇θ log πθ(St, At)

]
,

and ∇θ

(
Eπθ

[R]
)2

= 2Eπθ
[R]∇θEπθ

[R] (Tamar et al., 2012). Besides, the gradient of the vari-
ance is given as Eπθ

[
R2

∑τ
t=1 ∇θ log πθ(St, At)

]
− 2Eπθ

[R]∇θEπθ
[R]. Because optimizing

the policy πθ using the gradients directly is computationally intractable, we replace them with
their unbiased estimators. Suppose that there is a simulator generating a trajectory k with
{(Skt , Akt , r(Skt , Akt ))}τ

k

t=1, where τk is the stopping time of the trajectory. Then, we can naively
construct unbiased estimators of Eπθ

[R] and Eπθ

[
R2

]
as ∇̂θEπθ

[R] = R̂k
∑τk

t=1 ∇θ log πθ(S
k
t , A

k
t )

and ∇̂θEπθ

[
R2

]
=

(
R̂k

)2 ∑τk

t=1 ∇θ log πθ(S
k
t , A

k
t ), where R̂k is a sample approximation

of Eπθ
[R] at the episode k. However, obtaining an unbiased estimator of ∇θ

(
Eπθ

[R]
)2

=
2Eπθ

[R]∇θEπθ
[R] is difficult because it requires sampling from two different trajectories for ap-

proximating Eπθ
[R] and ∇θEπθ

[R]. This issue makes the optimization problem difficult.

3.1.2 EXISTING SOLUTIONS TO DOUBLE SAMPLING ISSUE

For the double sampling issue, Tamar et al. (2012), Prashanth & Ghavamzadeh (2013), and Xie et al.
(2018) presented the following solutions.

Multi-time-scale stochastic optimization: The proposed methods of Tamar et al. (2012) and
Prashanth & Ghavamzadeh (2013) are based on stochastic approximation to find an equilibrium
point of an ordinary differential equation and saddle point of the objective, respectively.

Coordinate descent optimization: Xie et al. (2018) proposed using the Legendre-Fenchel dual
transformation with coordinate descent algorithm. First, based on Lagrangian relaxation, Xie et al.
(2018) set an objective function as maxθ∈Θ Eπθ

[R] − δ (Varπθ
(R)− η). Then, Xie et al. (2018)

transformed the objective function as maxθ∈Θ,y∈R 2y
(
Eπθ

[R] + 1
2δ

)
−y2−Eπθ

[
R2

]
and estimated

a parameter by solving the optimization problem via a coordinate descent algorithm.

Weakness of existing approaches: The multi-time-scale approaches by Tamar et al. (2012) and
Prashanth & Ghavamzadeh (2013) are known to be sensitive to the choice of the step-size schedules,
which are not easy to be controlled (Xie et al., 2018). The method by Xie et al. (2018) does not
reflect the constraint condition η as shown above; that is, in the objective function of Xie et al.
(2018), there exits penalty coefficient δ, but does not exist the constraint condition η. Note that
the problem of Xie et al. (2018) is owing to their objective function based on the penalty function
g(x) = x: Eπθ

[R]− δ (Varπθ
(R)− η), in which the first derivative does not include η. In addition,

when using quadratic function as g(x) = x2 to consider η, we cannot remove E[R2] even with
Legendre-Fenchel dual; that is, the method also suffers the double sampling issue.

3.2 CONSTRAINED PER-STEP VARIANCE PROBLEM

Bisi et al. (2020) and Zhang et al. (2020) proposed solving a constrained per-step variance prob-
lem for MVRL. Bisi et al. (2020) showed that the per-step variance Varπθ

(R) ≤ Varπθ
(r(St,At))

(1−γ)2 ,
which implies that the minimization of the per-step variance Var(r(St, At)) also minimizes
trajectory-variance Varπθ

(R). Therefore, they train a policy πθ by maximizing Eπθ
[r(St, At)] −

κVarπθ
(r(St, At)), where κ > 0 is a parameter of the penalty function. The methods of Bisi et al.

(2020) and Zhang et al. (2020) are based on the trust region policy optimization (Schulman et al.,
2015) and coordinate descent with Legendre-Fenchel duality (Xie et al., 2018), respectively.

3.3 CONSTRAINED CUMULATIVE EXPECTED REWARD PROBLEM

While existing MVRL studies mainly focus on a constrained trajectory-variance problem, a con-
strained cumulative expected reward optimization is also frequently used in practical situations,
such as finance (Markowitz, 1952; Markowitz et al., 2000). In the constrained cumulative expected
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reward problem, we solve the following problem:

min
θ∈Θ

Varπθ
(R) s.t. Eπθ

[R] = ξ. (1)

Our proposed EQUM framework is based on this motivation; that is, variance minimization. As
shown in the following section, from a computational perspective, there is a critical difference be-
tween the constrained cumulative expected reward and trajectory-variance problems.

4 EQUM FRAMEWORK

In this paper, as a novel approach for MVRL, we propose a Expected Quadratic Utility maximization
RL (EQUM). In economic model, by using two parameters α > 0 and β > 0, the quadratic utility
function for the cumulative return R is defined as U(R;α, β) = αR − 1

2βR
2 for α > 0, β ≥ 0

(Luenberger, 1998). The quadratic utility function captures the preference of a risk-averse agent
over the cumulative return R. Let us consider the expected quadratic utility function defined as

Eπθ
[U(R;α, β)] = αEπθ

[R]− 1

2
βEπθ

[
R2

]
= αEπθ

[R]− 1

2
β
(
Eπθ

[R]
)2 − 1

2
βEπθ

[(
Eπθ

[R]−R
)2]

. (2)

In the EQUM framework, we train a policy by maximizing the expected quadratic utility function.

4.1 INTERPRETATIONS

Here, we introduce four interpretations of EQUM. We can interpret the EQUM as an approach for
(i) an expected utility maximization, (ii) a targeting optimization problem to achieve an expected cu-
mulative reward ζ, (iii) a constrained trajectory-reward problem with a quadratic penalized function,
and (iv) an expected cumulative reward maximization with regularization.

First, we discuss the connection with respect to training an agent to achieve a predefined return
(Berger, 1985). Let ζ be a target return that the algorithm aims to achieve. Then, we consider the
mean squared error (MSE) minimization between the expected deviation of the return and ζ:

argmin
θ∈Θ

J(θ; ζ) = argmin
θ∈Θ

Eπθ

[(
ζ −R

)2]
(3)

We can decompose the MSE into the bias and variance as follows:

Eπθ

[(
ζ −R

)2]
=

(
ζ − Eπθ

[R]
)2︸ ︷︷ ︸

Bias

+2Eπθ

[(
ζ − Eπθ

[R]
)(
Eπθ

[R]−R
)]

︸ ︷︷ ︸
0

+Eπθ

[(
Eπθ

[R]−R
)2]︸ ︷︷ ︸

Variance

= ζ2 − 2ζEπθ
[R] +

(
Eπθ

[R]
)2

+ Eπθ

[(
Eπθ

[R]−R
)2]

.

Thus, the minimization problem (3) trains the policy πθ to consider the trade-off between the bias(
ζ − Eπθ

[R]
)2

and variance Eπθ

[(
Eπθ

[R]−R
)2]

(Section 9.5 of Luenberger (1998)). Moreover,
we find that the EQUM is equivalent to the reward-targeting optimization when ζ = α

β ; that is,

argmin
θ∈Θ

J

(
θ;
α

β

)
= argmin

θ∈Θ

(
α

β

)2

− 2
α

β
Eπθ

[R] +
(
Eπθ

[R]
)2

+ Eπθ

[(
Eπθ

[R]−R
)2]

= argmax
θ∈Θ

Eπθ
[U(R;α, β)] .

Second, the bias-variance trade-off heuristically provides a solution to a constraint optimization
problem (1) with the constraint ξ = ζ = α

β by solving the following penalized problem:

min
θ∈Θ

Varπθ
(R) +

(
Eπθ

[R]− ξ
)2
. (4)
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Third, we can regard the quadratic utility function as an expected cumulative reward maximization
with a regularization term defined as E

[
R2

]
; that is, minimization of the risk R(πθ):

R(θ) = −Eπθ
[R]︸ ︷︷ ︸

Risk of expected cumulative reward maximization

+ ψEπθ

[
R2

]︸ ︷︷ ︸
Regularization term

(5)

where ψ > 0 is a regulation parameter and ψ = β
2α = 1

2ζ . As ζ → ∞, R(πθ) → −Eπθ
[R].

4.2 MERITS OF THE EQUM FRAMEWORK

In this section, we present two advantages of the EQUM framework. The first advantage is in com-
putation. The EQUM framework is an MVRL method. However, compared with existing MVRL
methods, which involve the double sampling issue, the computation of the EQUM framework is
much simpler because we transform the MVRL problem (4) into the optimization problem without
the term (Eπθ

[R])
2 (see (2) and (5)). The second advantage is that it provides a variety of interpre-

tations. Because the EQUM framework can interpret economic theory, it is applicable for modeling
economic dynamics. In addition, as one of the MVRL methods, it is suitable for various real-world
applications, such as finance (Deng et al., 2016) and playing games. By regarding the proposed
EQUM as a regularization framework, we can combine it with existing RL methods.

4.3 IMPLEMENTATIONS OF THE EQUM FRAMEWORK

Here, we discuss the implementations of the EQUM framework.

Simplest policy gradient with EQUM With the EQUM framework, we introduce a main algo-
rithm with simplest policy gradient (SPG) algorithm (Brockman et al., 2016), which is also called
the REINFORCE algorithm (Williams, 1992). For an episode k with length n, the method replaces
the expectations Eπθ

[
R
]

and Eπθ

[
R2

]
with the sample approximations

∑n
t=1 γ

t−1r(St, At) and(∑n
t=1 γ

t−1r(St, At)
)2

, respectively (Brockman et al., 2016). Then, the unbiased gradients are

∇̂θEπθ
[R] = R̂k

n∑
t=1

∇θ log πθ(S
k
t , A

k
t ) and ∇̂θEπθ

[
R2

]
=

(
R̂k

)2 n∑
t=1

∇θ log πθ(S
k
t , A

k
t ).

Therefore, for a sample approximation R̂k of Eπθ

[
R2

]
at the episode k, we optimize the policy with

ascending the following gradient:
(
αR̂k − 1

2β
(
R̂k

)2
)∑n

t=1 ∇θ log πθ(S
k
t , A

k
t ).

Actor-critic with EQUM: For another combination with the EQUM framework, we apply an
actor-critic (AC) based algorithms, which is also refereed to as the advantage actor-critic (A2C)
algorithm (Williams & Peng, 1991; Mnih et al., 2016). Extending the AC algorithm, for an episode
k with the length n, we train the policy by a gradient defined as

∇θ log πθ(S
k
t , A

k
t )

{(
αR̃kt:t+n−1 −

1

2
βR̃k,2t:t+n−1

)
−

(
αM

(1)

ω̂
(1)
k

(Skt )−
1

2
βM

(2)

ω̂
(2)
k

(Skt )

)}
,

where R̃kt:t+n−1 = R̂kt:t+n−1+γ
nM

(1)

ω̂
(1)
k

(Skt+n), and R̃k,2t:t+n−1 =

(
R̂kt:t+n−1 + γnM

(1)

ω̂
(1)
k

(Skt+n)

)2

,

and M (1)

ω̂
(1)
k

(Skt ) and M (2)

ω̂
(2)
k

(Skt ) are value functions approximating E[Rt+1:∞] and E[R2
t+1:∞] with

parameters ω̂(1)
k and ω̂(2)

k , respectively.

For other RL algorithms, we can heuristically extend our proposed framework EQUM to accept the
other RL algorithms by adding E[R2] as regularization term.

Determining α and β: Next, we discuss the parameter tuning of α and β, which are equiva-
lent to ζ, ξ, and ψ). As explained, the parameter ψ has several meanings based on the inter-
pretations of the EQUM, such as the quadratic utility function, targeting optimization, and con-
strained optimization. In addition, from the regularization perspective, we can adjust the parameter
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Figure 1: The ARs and SDs in the training process of the experiment using the synthetic dataset.

to maximize the expected cumulative reward in the validation data. Thus, we propose the follow-
ing four directions for the parameter tuning. First, in economic applications, such as finance, we
choose β

2α = ψ based on the theoretical economic assumptions and economic empirical studies
(Ziemba et al., 1974; Kallberg & Ziemba, 1983) (Appendix A). For instance, Capital Asset Pricing
Model (CAPM), which is one of the most popular economic models, is also base on the quadratic
utility function (Sharpe, 1964; Lintner, 1965; Mossin, 1966). Second, we set ζ = 1

2ψ as the targeted
reward to achieve. Third, we regard the parameter ψ as the constrained problem (1). Fourth, through
cross-validation, we optimize the regularization parameter ψ.

5 EXPERIMENTS

This section investigates the empirical performance of the proposed EQUM with synthetic and real-
world financial datasets. The goal of these experiments is to construct a portfolio with a well-
controlled mean and variance through algorithms. In addition, we also show experimental results
using CartPole and Atari games. Note that the per-step rewards of portfolio selection are stochastic
variables and those of CartPole and Atari games are deterministic variables. However, even when
the reward is deterministic, the cumulative reward has randomness owing to the stochastic policy.

5.1 EXPERIMENTS WITH SYNTHETIC PORTFOLIO SELECTION DATASETS

Following Tamar et al. (2012) and Xie et al. (2018), we artificially generate a portfolio dataset. Let
us consider a portfolio composed of two types of assets: a liquid asset, which has a fixed interest
rate rl = 1.001, and a non-liquid asset, which has a time-dependent interest rate rnl(t) ∈ {1.1, 2}.
While we can sell the liquid asset at every time step t = 1, 2, . . . , T , we can sell the non-liquid asset
only after a maturity period of N steps; that is, when holding 1 liquid asset, we obtain 1.001 per
period; when holding 1 non-liquid asset at the t-th period, we obtain 1.1 or 2 at the t+N -th periods.
In addition, the non-liquid asset has some risk of not being paid with a probability prisk; that is, if the
non-liquid asset defaulted during the N periods, we cannot obtain any profits by having the asset. In
this setup, a typical investment strategy is to construct a portfolio using both liquid and non-liquid
assets to control the mean and variance. In our model, the investor may change his portfolio by
investing a fixed fraction α = 0.2 to the non-liquid asset at each time step. As a performance metric
of the portfolio, we focus on the mean and variance of the cumulative reward when having the cash
1 at the first period and investing the cash for 50 periods following an algorithm.

Figure 2: Higher AR and lower Var
methods are Pareto efficient.

In particular, we aim to investigate the sensitivity of the
EQUM against the parameter ψ = 2/ζ and compare the
EQUM with the standard SPG and AC algorithms. We ap-
ply the SPG algorithm with the EQUM (Section 4.3) to the
synthetic datasets. For ζ, we use ζ = 1, 2, 3, 4, 5, 6. Note
that from the regularization perspective with a parameter ψ,
EQUM with ψ = 0.1 is equal to minimize the MSE between
the cumulative reward and ζ = 5 = 1/(2 × 0.1). We train
the model with 500 episodes. In Figure 1, we calculate the
average reward and standard deviation at each episode of the
training process over 1, 000 trials. In Table 1, using the trained
model for the test environment, we show the average reward
(AR) and standard deviation (SD) by conducting 1, 000 trials.
For each trial, we compute the AR and SD over 100 trial and compute the average of each AR and
SD over 1, 000 trials. From Figure 1 and Table 1, we can clearly confirm that the EQUM framework
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Table 1: The experimental results of the synthetic dataset with the ARs and SDs over 1, 000 trials.
Standard SPG SPG with EQUM

ζ = 0 ζ = 1 ζ = 2 ζ = 3 ζ = 4 ζ = 5 ζ = 6
AR 6.767 -0.774 2.028 4.779 5.952 6.253 6.412
SD 5.324 1.977 3.971 4.832 5.037 5.089 5.080

Table 2: The experimental results of the synthetic dataset with the MSEs for ζ over 1000 trials.
Standard SPG SPG with EQUM

Target Value ζ = 0 ζ = 1 ζ = 2 ζ = 3 ζ = 4 ζ = 5 ζ = 6
MSE from ζ = 1 41.054 5.465 7.564 22.961 33.400 36.479 38.569

ζ = 2 30.519 10.014 6.509 16.404 24.496 26.973 28.745
ζ = 3 21.984 16.562 7.454 11.846 17.593 19.466 20.921
ζ = 4 15.450 25.111 10.399 9.289 12.689 13.960 15.096
ζ = 5 10.915 35.659 15.343 8.732 9.785 10.454 11.272
ζ = 6 8.381 48.208 22.288 10.174 8.882 8.948 9.448

realize the control of the mean-variance trade-off. As shown in the results, we can reduce the vari-
ance by increasing ζ. The MSE from target ζ is shown in Table 2. In Figure 2, for the EQUM with
various ζ and the method of Tamar et al. (2012) (Tamar) with various variance constraints (var), we
plot the AR and variance (Var) computed on the train environment over 1, 000 trials. We show the
Var instead of the SD because the Tamar controls the variance. Compared with Tamar, the EQUM
returns Pareto efficient portfolios; that is, higher AR and lower Var. We consider unlike the di-
rect optimization of the EQUM, the Tamar suffers from the complicated optimization mechanism.
Figure 3 in Appendix B.1 corresponds to the test environment version of Figure 2.

In Appendix B.2, we also show experimental results using another synthetic dataset of American-
style option following Tamar et al. (2014) and Xie et al. (2018).

5.2 EXPERIMENTS WITH REAL-WORLD DATASET

We use well-known benchmarks called Fama & French (1992) (FF) datasets to ensure the repro-
ducibility of the experiment. We use the FF25, FF48 and FF100 datasets. The FF25 and FF 100
dataset includes 25 and 100 portfolios formed based on size and book-to-market ratio; the FF48
dataset contains 48 portfolios representing different industrial sectors. We formulate the problem
by an episodic MDP. We use all datasets covering monthly data from July 1980 to June 2020. The
state is past 12 months returns of each asset and the action is defined as portfolio weight; that is, the
number of actions is equal to that of assets. The reward is obtained as the portfolio return. Here, the
portfolio return at time 1 ≤ t ≤ T is defined as yt =

∑m
j=1 yj,twj,t−1, where yj,t is the return of

j asset at time t, wj,t−1 is the weight of j asset in the portfolio at time t − 1, and m is the number
of assets. The length of the episode is 1 years (12 months). For the stochastic policy, we adopt
a three-layer feed-forward neural network with the ReLU activation function where the number of
units in each respective layer is equal to the number of assets, 100, 50, and the number of actions.
We use the softmax function for the output layer.

Portfolio models: We use the following portfolio models. An equally-weighted portfolio (EW)
weights the financial assets equally (DeMiguel et al., 2007). A mean-variance portfolio (MV) com-
putes the optimal variance under a mean constraint (Markowitz, 1952). For computing the mean
vector and covariance matrix, we use the latest 10 years (120 months) data. An Kelly growth opti-
mal portfolio with ensemble learning (EGO) is proposed by Shen et al. (2019). We set the number
of resamples as m1 = 50, the size of each resample m2 = 5τ , the number of periods of return data
τ = 60, the number of resampled subsetsm3 = 50, and the size of each subsetm4 = n0.7, wherem
is number of assets; that is, m = 25 in FF25, m = 48 in FF48 and m = 100 in FF100. A portfolio
blending via Thompson sampling (BLD) is proposed by Shen & Wang (2016). We use the latest 10
years (120 months) data to compute for the sample covariance matrix and blending parameters. A
policy gradients with variance related risk criteria (Tamar) is proposed by Tamar et al. (2012). We
set the target variance terms η as 250,500,1000. A block coordinate ascent algorithm proposed by
Xie et al. (2018), which is referred to as Mean-Variance Portfolio (MVP). We set the regularization
parameters δ as 10,100,1000. Then, let us denote the SPG with the EQUM framework as EQUM.
The parameter ψ is chosen from 1/3, 2/3, and 1. For optimizing Tamar, MVP and EQUM, we set
the Adam optimizer with learning rate 0.01 and weight decay parameter 0.1. We train the neural
networks for 10 episodes. Each portfolio is updated by sliding one-month-ahead.

Performance metrics: The following measures widely used in finance to evaluate portfolio strate-
gies (Brandt, 2010) are chosen. The cumulative return (CR), annualized risk as the standard de-
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Table 3: The performance of each portfolio models during out-of-sample period (from July 2000 to
June 2020) for FF25 dataset (upper table) , FF48 (middle table) and FF100 (lower table). For each
dataset, the best performance is highlighted in bold.

Method EW MV EGO BLD Tamar MVP EQUM
η = 250 η = 500 η = 1000 δ = 10 δ = 100 δ = 1000 ψ = 1/3 ψ = 2/3 ψ = 1

FF25
CR↑ 191.35 25.62 209.76 134.21 231.02 286.34 286.89 215.95 215.95 243.88 300.18 194.12 243.93

RISK↓ 18.53 25.36 19.17 12.00 24.22 20.21 20.20 19.28 19.28 13.96 13.42 12.19 14.95
RR↑ 0.52 0.05 0.55 0.56 0.48 0.71 0.71 0.56 0.56 0.87 1.12 0.80 0.82

MaxDD↓ 0.54 0.75 0.57 0.37 0.64 0.58 0.58 0.57 0.57 0.30 0.31 0.30 0.36
FF48

CR↑ 194.73 34.81 249.14 124.45 120.96 188.10 150.65 344.72 333.66 210.99 226.39 246.61 236.43
RISK↓ 16.58 30.38 19.56 10.76 13.20 14.96 14.73 23.98 21.87 20.25 19.81 15.38 11.75
RR↑ 0.59 0.06 0.64 0.58 0.46 0.63 0.51 0.72 0.76 0.52 0.57 0.80 1.01

MaxDD↓ 0.53 0.84 0.53 0.38 0.58 0.54 0.45 0.56 0.52 0.65 0.45 0.45 0.29
FF100

CR↑ 193.91 34.26 207.37 127.92 314.77 238.27 272.11 294.07 228.53 318.90 262.54 227.04 327.16
RISK↓ 18.77 26.36 19.72 11.89 19.80 14.35 20.09 22.89 31.36 22.89 13.33 13.64 15.51
RR↑ 0.52 0.06 0.53 0.54 0.79 0.83 0.68 0.64 0.36 0.70 0.98 0.83 1.05

MaxDD↓ 0.55 0.72 0.58 0.36 0.39 0.49 0.38 0.52 0.65 0.46 0.24 0.31 0.39

viation of return (RISK) and risk-adjusted return (R/R) are defined as follows: CR =
∑T
t=1 yt,

RISK =
√

12
T−1

∑T
t=1(yt − CR/T )2, and R/R = 12

T ×CR/RISK. R/R is the most important mea-
sure for a portfolio strategy. We also evaluate the maximum draw-down (MaxDD), which is another
widely used risk measure Magdon-Ismail & Atiya (2004) for the portfolio strategy. In particular,
MaxDD is the largest drop from a peak defined as MaxDD = mint∈[1,T ]

(
0, Wt

maxτ∈[1,t]Wτ
− 1

)
,

where Wk is the cumulative return of the portfolio until time k; that is, Wt =
∏t
t′=1(1 + yt′).

Table 3 reports the performances of the portfolios. In almost all cases, the EQUM portfolio achieves
the highest R/R and the lowest MaxDD. Therefore, we can confirm that the EQUM portfolio has a
high R/R, and avoids a large drawdown. The real objective (minimizing variance with a penalty on
return targeting) for Tamar, MVP, and EQUM is shown in Appendix B.3. Except for FF48’s MVP,
the objective itself is smaller than EQUM’s. Since the values of the objective is the same as the RR,
we can empirically confirm that the better optimization, the better performance.

5.3 EXPERIMENTS WITH CARTPOLE AND ATARI GAMES

We also conduct experiments using CartPole and Atari games, where the reward is given as deter-
ministic, and the randomness of the cumulative reward depends only on the stochastic policy. We
investigate the sensitivity of ψ = 1/(2ζ) with CartPole and the compared the performance of the
EQUM framework with that of Tamar et al. (2012) and Xie et al. (2018). The results are shown in
Appendix B.4. In many experimental results, contrary to our expectations, we observed that the
EQUM also improves the expected cumulative reward, not only the variance. We hypothesize that
this is because there is often a limit on the cumulative rewards achieved by the standard expected
cumulative reward maximizing algorithms. For instance, when the reward at each period is 1, and
the discount factor is 0.99, the infinite sum is 100. In such a case, instead of naive reward maxi-
mization, MSE minimization against the target reward 100 may result in a more stable performance
empirically. We also hypothesize that even if an optimal policy is deterministic, the EQUM can
improve the stability of the training process by reducing the variance. This observation is an open
problem related to exploration and exploitation trade-off. Therefore, unless we could increase the
cumulative reward infinitely, the proposed EQUM framework can stabilize the performance. From
this aspect, we can confirm that the EQUM provides a regularization effect.

6 CONCLUSION

In this paper, we proposed an EQUM framework as a variant of MVRL. Compared with existing
MVRL methods, the EQUM framework is computationally friendly. The proposed EQUM frame-
work also includes various interpretations, such as targeting optimization and regularization and
is suitable for many real-world applications, such as finance and playing games. We investigated
the effectiveness of the EQUM framework compared with the standard RL and existing MVRL
methods through the experiments. In the results, the proposed method successfully controls the
mean-variance trade-off. As an open problem, we also observed that even when an optimal policy
is deterministic, the proposed method improves performance. We hypothesize that the proposed
method affects the stabilization of the training process.
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A ECONOMIC THEORY AND QUADRATIC UTILITY FUNCTION

Considering the mean-variance trade-off in a portfolio and economic activity is an essential task in
economics as Tamar et al. (2012) and Xie et al. (2018) pointed out. The mean-variance trade-off is
justified by assuming either quadratic utility function to the economic agent or multivariate normal
distribution to the financial assets. By assuming the quadratic utility function or the normal distri-
bution, we can assume that the expected utility function of the agent is maximized by maximizing
the expected reward and minimizing the variance. Based on this observation, Markowitz (1952)
proposed the following steps for providing a portfolio to an economic agent (Also see Markowitz
(1959), page 288, and Luenberger (1998)):

• Constructing portfolios minimizing the variance under several reward constraint;

• Among the portfolios constructed in the first step, the economic agent chooses a portfolio
maximizing the utility function.

Therefore, the goal of Markowitz’s portfolio is not only to construct the portfolio itself but also
to maximize the expected utility function of the agent. In traditional economics, this two-step is
adopted because directly predicting the reward and variance to maximize the expected utility func-
tion is difficult; therefore, first gathering information based on analyses of an economist, then we
construct the portfolio using the information and provide the set of the portfolios to an economic
agent. However, owing to the recent development of machine learning, we can directly represent the
complicated economic dynamics using flexible models, such as deep neural networks. In addition,
as Tamar et al. (2012) and Xie et al. (2018) reported, when constructing the mean-variance portfolio
in RL, we suffer the double sampling issue. Therefore, in this paper, we aim to achieve the original
goal of the mean-variance approach; that is, the expected utility maximization. Note that this idea is
not restricted to financial applications but can be applied to applications where the agent utility can
be represented only by the mean and variance. In the following subsection, we review the existing
studies of finance and quadratic utility function.

A.1 MARKOWITZ’S PORTFOLIO AND CAPITAL ASSET PRICING MODEL

Markowitz’s portfolio is known as the mean-variance portfolio (Markowitz, 1952; Markowitz et al.,
2000). Constructing the mean-variance portfolio is motivated by the agent’s expected utility maxi-
mization. When the utility function is given as the quadratic utility function, or the financial asset
follows the multivariate normal distribution, a portfolio maximizing the agent’s expected utility
function is given as a portfolio with minimum variance under a certain standard expected reward.

The Capital Asset Pricing Model (CAPM) theory is a concept which is closely related to
Markowitz’s portfolio (Sharpe, 1964; Mossin, 1966; Lintner, 1965). This theory theoretically ex-
plains the expected return of investors when the investor invests in a financial asset; that is, it derives
the optimal price of the financial asset. To derive this theory, as well as Markowitz’s portfolio, we
assume the quadratic utility function to the investors or the multivariate normal distribution to the
financial assets.

Merton (1969) extended the static portfolio selection problem to a dynamic case. Fishburn & Porter
(1976) studied the sensitivity of the portfolio proportion when the safe and risky asset distribu-
tions change under the quadratic utility function. Thus, there are various studies investigating rela-
tionship between the utility function and risk-averse optimization (Tobin, 1958; Kroll et al., 1984;
Bulmuş & Özekici, 2014; Bodnar et al., 2015).

A.2 EMPIRICAL STUDIES ON THE UTILITY FUNCTIONS

The standard financial theory is built on the assumption that the economic agent has the quadratic
utility function. For supporting this theory, there are several empirical studies to estimate the param-
eters of the quadratic utility function. Ziemba et al. (1974) investigated the change of the portfolio
proportion when the parameter of the quadratic utility function changes using the Canadian financial
dataset. Recently, Bodnar et al. (2018) investigate the risk parameter (α and β in our formulation
of the quadratic utility function) using the markets indexes in the world. They found that the utility
function parameter depends on the market data model.
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Figure 3: The AR and Var on the test environment. Higher AR and lower Var methods are Pareto
efficient.

A.3 CRITICISM

For the simple form of the quadratic utility function, the financial models based on the utility are
widely accepted in practice. However, there is also criticism that the simple form cannot capture the
real-world complicated utility function. For instance, Kallberg & Ziemba (1983) criticized the use of
the quadratic utility function and proposed using a utility function, including higher moments. This
study also provided empirical studies using U.S. financial dataset for investigating the properties of
the alternative utility functions. However, to the best of our knowledge, financial practitioners still
use financial models based on the quadratic utility function. We consider this is because the simple
form gains the interpretability of the financial models.

B DETAILS OF EXPERIMENTS

In this section, we show the additional experiments and describe the details of the experiments. To
implement SPG and AC algorithms, we mainly follow the Pytorch example1.

B.1 PARETO EFFICIENCY ON THE TEST ENVIRONMENT OF THE SYNTHETIC PORTFOLIO
SELECTION DATASET

For investigating the Pareto efficiency, we show the AR and Var of the train environment in Figure 2
of Section 5.1. Here, we also show the AR and Var of the test environment in Figure 3.

B.2 EXPERIMENTS USING THE SYNTHETIC AMERICAN-STYLE OPTION DATASET

Among various options in finance, an American-style option refers to a contract that we can execute
an option right at any time before the maturity time τ ; that is, a buyer who bought a call option has
a right to buy the asset with the call option strike price Wcall at any time; a buyer who bought a put
option has a right to sell the with the call option strike price Wput at any time.

In the setting of Tamar et al. (2014) and Xie et al. (2018), the buyer simultaneously buy call and put
options, which have the strike price Wcall = and Wput =, respectively. The maturity time is set as
τ =. If the buyer executes the option at time t, the buyer obtains a reward rt = max(0,Wput −
xt)+max(0, xt−Wcall), where xt is an asset price. We set x0 = 1 and define the stochastic process
as follows: xt = xt−1fu with probability 1 and xt = xt−1fd with probability 1, where fu and fd.
These parameters follows Xie et al. (2018). Under this setting, we investigate the performance of
our EQUM. For the EQUM, we use ζ = 0.1, 0.3, 0.5, 0.7, 1, 1.3. For the other settings, we follow
the previous experiment for portfolio management.

1https://github.com/pytorch/examples/tree/master/reinforcement_learning
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Figure 4: The ARs and SDs in the training process of the experiment using the synthetic dataset.

Table 4: The experimental results of the synthetic dataset with the ARs and SDs over 1000 trials.

Standard EQUM
ζ = 0 ζ = 0.1 ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 1.0 ζ = 1.3

AR 0.367 0.301 0.321 0.356 0.372 0.377 0.377
SD 0.307 0.275 0.285 0.306 0.317 0.318 0.320

Table 5: The experimental results of the synthetic dataset with the MSEs for ζ over 1000 trials.

Standard EQUM
Target Value ζ = 0 ζ = 0.1 ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 1.0 ζ = 1.3

SPG

MSE from ζ = 0.1 0.072 0.041 0.050 0.067 0.076 0.078 0.078
ζ = 0.3 0.006 0.001 0.002 0.005 0.007 0.007 0.007
ζ = 0.5 0.019 0.040 0.033 0.022 0.018 0.017 0.017
ζ = 0.7 0.112 0.160 0.145 0.120 0.109 0.106 0.106
ζ = 1.0 0.402 0.489 0.462 0.416 0.395 0.390 0.390
ζ = 1.3 0.872 0.999 0.960 0.893 0.862 0.854 0.853

In Figure 4, we calculate the average reward and standard deviation at each episode of the training
process by conducting 1, 000 trials. In Table 4, using the trained model for the test environment, we
show the average reward (AR) and standard deviation (SD) by conducting 1, 000 trials. We show the
MSE between the realized reward and the target reward ζ in Table 5, where the lowest MSE method
is highlighted in bold. As well as the experimental results with the synthetic portfolio dataset,
we can confirm that the EQUM can control the risk well. In addition, as well as the experiments
with CartPole and Atari games, we can observe that the EQUM also increases the expected reward
contrary to our expectation.

B.3 DETAILS OF EXPERIMENTS OF PORTFOLIO OPTIMIZATION

The real objective (minimizing variance with a penalty on return targeting) for Tamar, MVP and
EQUM is shown in Table 6. Except for FF48’s MVP, the objective itself is smaller than EQUM’s.
Since the values of objective is the same as the RR, we can empirically confirm that the better
optimization, the better performance.

We also divide the performance period into two for robustness checks. Table 7 shows the first-half
results from July 2000 to June 2010 and the second-half results from July 2010 to June 2020. In
almost all cases, the EQUM portfolio achieves the highest R/R.

Table 6: The real objective (minimizing variance with a penalty on return targeting) for Tamar, MVP
and EQUM for FF25 dataset (upper panel) , FF48 (middle panel) and FF100 (lower panel). Among
the comparisons of the various portfolios, the best performance within each dataset is highlighted in
bold.

Tamar MVP EQUM
250 500 1000 10 100 1000 1/3 2/3 1

FF25 -5,359 -7,346 -7,444 -6,206 -6,206 -7,496 -8,857 -7,521 -7,620
FF48 -5,265 -7,252 -7,345 -6,384 -9,616 -7,369 -7,514 -8,343 -8,772
FF100 -6,600 -7,158 -6,042 -6,148 -5,327 -6,913 -8,269 -7,270 -9,650
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Table 7: The performance of each portfolio during first half out-of-sample period (from July 2000
to June 2010) and second half out-of-sample period (from July 2010 to June 2020) for FF25 dataset
(upper panel) , FF48 (middle panel) and FF100 (lower panel). Among the comparisons of the various
portfolios, the best performance within each dataset is highlighted in bold.

FF25 EW MV EGO BLD Tamar MVP EQUM
250 500 1000 10 100 1000 1/3 2/3 1

First-Half Period (from July 2000 to June 2010)
CR↑ 69.36 -50.09 86.53 49.76 79.06 159.61 159.56 132.79 132.79 146.45 186.21 141.17 158.23

RISK↓ 19.35 28.85 19.99 12.25 21.32 15.95 15.95 13.91 13.91 14.33 11.58 11.61 11.69
RR↑ 0.36 -0.17 0.43 0.41 0.37 1.00 1.00 0.95 0.95 1.02 1.61 1.22 1.35

MaxDD↓ 0.54 0.75 0.57 0.37 0.33 0.31 0.31 0.22 0.22 0.21 0.13 0.14 0.18
Second-Half Period (from July 2000 to June 2010)

CR↑ 121.99 75.71 123.23 84.45 151.96 126.73 127.33 83.16 83.16 97.43 113.97 52.96 85.70
RISK↓ 17.64 21.14 18.30 11.73 26.76 23.71 23.70 23.43 23.43 13.56 14.97 12.62 17.56
RR↑ 0.69 0.36 0.67 0.72 0.57 0.53 0.54 0.35 0.35 0.72 0.76 0.42 0.49

MaxDD↓ 0.31 0.50 0.31 0.22 0.64 0.58 0.58 0.57 0.57 0.30 0.31 0.30 0.36

FF48 EW MV EGO BLD Tamar MVP EQUM
250 500 1000 10 100 1000 1/3 2/3 1

First-Half Period (from July 2000 to June 2010)
CR↑ 72.02 49.11 89.90 41.26 119.64 64.99 78.38 209.60 185.42 195.13 118.40 127.62 163.23

RISK↓ 17.61 26.27 21.72 11.48 8.48 9.03 6.61 19.73 17.21 18.11 21.49 8.83 8.96
RR↑ 0.41 0.19 0.41 0.36 1.41 0.72 1.19 1.06 1.08 1.08 0.55 1.45 1.82

MaxDD↓ 0.53 0.58 0.53 0.38 0.05 0.15 0.04 0.25 0.24 0.21 0.45 0.15 0.05
Second-Half Period (from July 2000 to June 2010)

CR↑ 122.71 -14.30 159.25 83.19 1.32 123.11 72.27 135.12 148.24 15.86 107.99 118.99 73.20
RISK↓ 15.45 33.97 17.06 9.96 16.46 19.10 19.75 27.53 25.70 21.88 17.97 19.88 13.87
RR↑ 0.79 -0.04 0.93 0.84 0.01 0.64 0.37 0.49 0.58 0.07 0.60 0.60 0.53

MaxDD↓ 0.26 0.84 0.28 0.17 0.58 0.54 0.45 0.56 0.52 0.65 0.32 0.45 0.29

FF100 EW MV EGO BLD Tamar MVP EQUM
250 500 1000 10 100 1000 1/3 2/3 1

First-Half Period (from July 2000 to June 2010)
CR↑ 73.25 -44.84 87.78 48.85 143.26 146.59 166.74 218.62 55.87 170.36 215.59 142.66 199.92

RISK↓ 19.60 30.86 20.53 12.21 16.99 11.21 18.45 20.52 31.72 22.13 13.03 12.69 13.11
RR↑ 0.37 -0.15 0.43 0.40 0.84 1.31 0.90 1.07 0.18 0.77 1.65 1.12 1.52

MaxDD↓ 0.55 0.72 0.58 0.36 0.39 0.18 0.27 0.46 0.46 0.31 0.11 0.15 0.16
Second-Half Period (from July 2000 to June 2010)

CR↑ 120.66 79.10 119.59 79.07 171.50 91.69 105.37 75.45 172.66 148.55 46.95 84.39 127.25
RISK↓ 17.87 20.76 18.86 11.55 22.25 16.88 21.56 24.87 30.91 23.62 13.18 14.47 17.52
RR↑ 0.68 0.38 0.63 0.68 0.77 0.54 0.49 0.30 0.56 0.63 0.36 0.58 0.73

MaxDD↓ 0.32 0.35 0.31 0.22 0.38 0.49 0.38 0.50 0.65 0.46 0.24 0.31 0.39

B.4 DETAILS OF EXPERIMENTS WITH CARPOLE AND ATARI GAMES

In this section, we report the experimental performances of the proposed EQUM framework with
well-known benchmarks. We investigate how the behaviors of existing RL methods are changed
by adding the additional E[R2] term. We use a simple two-layer perceptron for modeling the
policy following the Pytorch example (Paszke et al., 2019). For the SPG-based algorithms, we
define the cumulative reward as finite sum with γ = 1 following (Tamar et al., 2012). For the
AC-based algorithms, we define the cumulative reward as infinite sum with γ = 0.99 following
(Prashanth & Ghavamzadeh, 2013). For the SPG-based algorithms, we define the cumulative re-
ward as finite sum with γ = 1 following (Tamar et al., 2012). For the AC-based algorithms, we
define the cumulative reward as infinite sum with γ = 0.99 following (Prashanth & Ghavamzadeh,
2013).

B.4.1 SENSITIVITY ANALYSIS ON ψ

First, we investigate the sensitivity of the EQUM framework to the parameter ψ using the Cart-
Pole. We apply the SPG and AC methods (Section 4.3) with the EQUM framework to the Cartpole
problem, which is a classic control problem. We use ψ = 0.001, 0.002, 0.003, 0.005, 0.01, 0.1 and
compare the results with the standard SPG and AC methods. For instance, from the targeting opti-
mization perspective, EQUM with ψ = 0.001 is equal to minimize the MSE between the cumulative
reward and ζ = 500 = 1/(2 ∗ 0.001). We train the model by 300 episodes. We calculate the av-
erage reward and standard deviation at each period by conducting 300 trials. The results are shown

15



Under review as a conference paper at ICLR 2021

Figure 5: Sensitivity analysis regarding ψ. The upper two graphs are the results using the SPG-based
method and the lower two graphs are the results using the AC-based algorithms. The average reward
of the SPG result with ψ = 0.1 is lower than 80, and we do not show the result here.

in Figure 5. In the SPG results, we can confirm the mean-variance trade-off. In contrast, in the
SPG with ψ = 0.001 and all AC results, the EQUM framework improves the expected cumulative
reward. These results are contrary to our expectations because MVRL methods typically decrease
the expected cumulative return to decrease the variance. We discuss this topic in more detail in
Section 5.3.

B.4.2 EXPERIMENTS OF ATARI GAMES

When playing games, we often consider risk-control while maintaining a certain level of reward. Un-
der this motivation, we benchmark the proposed EQUM framework on four Atari game tasks from
the OpenAI gym (Brockman et al., 2016). Among the games, we choose BeamRider, Seaquest,
Qbert, and SpaceInvaders in which SPG and AC methods work well. We use simplified environ-
ments in which the observations are the RAM of the Atari machine, consisting of only 128 bytes.
We compare our methods with the standard SPG, and MVLR methods of Tamar et al. (2012) and
Xie et al. (2018). We calculate the average reward (AR) at the last episode over 5 trials and the stan-
dard deviation (SD). In Table 8, we show the results of the SPG algorithm with the standard setting
and EQUM framework, where ψ is chosen from 0.001, 0.003, 0.005, 0.01, 0.03, and 0.3. Note that
when using ψ = 0.005, it is equal to minimize the MSE between the expected cumulative reward
and the target 100. In almost all cases, the EQUM framework shows the better AR than the standard
methods. As well as the previous sensitivity experiment, this result is contrary to our expectation.
Among the games, we choose simplified BeamRider, Seaquest, Qbert, and SpaceInvaders in which
the SPG algorithm work well, and the observations are the RAM of the Atari machine, consisting
of only 128 bytes. We compare our methods with the standard SPG algorithms, and MVRL meth-
ods of Tamar et al. (2012) and Xie et al. (2018). We denote the SPG-based methods proposed by
Tamar et al. (2012) and Xie et al. (2018) as Tamar and MVP, respectively. We calculate the average
reward (AR) at the last episode over 5 trials and the standard deviation (SD). We choose the pa-
rameter of Tamar from 200 and 2000, which is denoted as b in Tamar et al. (2012). We choose the
parameter of MVP from 1 and 10, which is denoted as λ in Tamar et al. (2012). The parameters are
denoted as param in Table 8.
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Table 8: The results on Atari games with SPG-based methods.. The highest ARs and lowest SDs are
highlighted in bold.

Method SPG EQUM with SPG Tamar MVP
ψ = 0.001 ψ = 0.003 ψ = 0.005 ψ = 0.01 ψ = 0.03 ψ = 0.3 param: 2000 param: 20000 param: 1 param: 10

Game AR SD AR SD AR SD AR SD AR SD AR SD AR SD AR SD AR SD AR SD AR SD
BeamRider 99.6 315.0 165.6 358.0 136.8 288.6 265.2 436.7 397.2 436.3 165.6 358.0 136.8 288.6 189.6 400.4 99.6 315.0 4.4 13.9 180.0 379.5
Seaquest 26.0 59.7 26.0 59.7 26.0 59.7 34.0 61.1 50.0 60.6 16.0 33.7 26.0 42.2 32.0 41.3 26.0 59.7 42.0 61.4 42.0 61.4
Qbert 40.0 64.8 15.0 47.4 55.0 71.5 40.0 64.8 27.5 58.3 15.0 47.4 0.0 0.0 40.0 64.8 15.0 47.4 50.0 64.5 50.0 64.5
SpaceInvaders 169.5 146.0 168.0 144.7 171.0 147.2 109.5 141.4 139.5 147.1 165.0 142.1 139.5 147.1 169.5 146.0 169.5 146.0 169.5 146.0 169.5 146.0
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