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ABSTRACT

Multi-Task Learning (MTL) aims to minimize negative transfer within a shared
network. Common strategies involve separating task-generic and task-specific
representations and coordinating them to work together effectively within MTL
frameworks. However, the absence of a clear rule for determining task-specific
network components challenges the design of efficient MTL architectures. Our
method tackles negative transfer by employing token-based network expansion
and modulation without directly modifying predefined architectures, making it
adaptable to any transformer-based MTL architectures. To evaluate negative trans-
fer, we treat tokens as parameters, assessing gradient conflicts during backpropa-
gation. Conflicts between tasks are analyzed by examining the token’s range space
and null space. Based on conflict types, we expand the network following rules.
If task-specific gradients clash in the tokens’ range space, we modulate existing
tokens to align their task gradients. Conversely, if the gradients conflict in the null
space of tokens, we add new task-specific tokens, spanning a new feature space.
Our approach effectively boosts multi-task performance across various datasets by
being integrated into previous state-of-the-art multi-task architectures.

1 INTRODUCTION

Multi-task learning in computer vision is an essential technique for creating efficient and effective
deep learning models that can work with a unified architecture for multiple tasks (Caruana, 1997),
resulting in better generalization and faster convergence. Additionally, by combining related tasks
into one model, the need for expensive computing and storage resources is reduced, making it a
more viable option for a variety of applications.

MTL aims to minimize negative transfer (Crawshaw, 2020) across various tasks, as negative trans-
fer occurs when learning one task hinders the performance of others. This can lead to a trade-off
among tasks due to their distinct objectives. To address this, prior research on multi-task archi-
tectures predominantly concentrates on determining the type of information the architecture should
learn for accurate predictions. Ye & Xu (2022b) classifies this information into three dimensions:
task-generic representations, task-specific representations, and cross-task interactions. In previous
studies (Eigen & Fergus, 2015; Xu et al., 2018; Vandenhende et al., 2020; Zhang et al., 2019; Dai
et al., 2016; Ma et al., 2018; Simonyan & Zisserman, 2014; Zhang et al., 2014), a shared encoder
is employed to learn generic representations, while task-specific features are refined in the decoder
through cross-task interactions. Conversely, cross-talk architecture utilizes separate symmetrical
networks for each task, incorporating cross-task interactions (Gao et al., 2019; Xu et al., 2018).
Another approach (Maninis et al., 2019; Sun et al., 2021; Sinha et al., 2018; Fernando et al., 2017)
involves dividing task-generic and task-specific information using task-specific modules.

Lately, multi-task architectures based on transformers have not only shown impressive performance
across various tasks but have also excelled in the few-shot learning setting (Kim et al., 2023). These
advancements draw inspiration from the success observed in the NLP domain (Shazeer et al., 2017).
The two most prominent types of transformer-based multi-task paradigms are MoE (Riquelme et al.,
2021; Zhang et al., 2022; Fan et al., 2022; Mustafa et al., 2022; Chen et al., 2023) and Task Prompter
(Xu et al., 2023a;b; Ye & Xu, 2022b). MoE (Mixture of Experts) employs distinct specialized expert
modules to learn various aspects of tasks. It utilizes a gating mechanism to decide which combi-
nation of experts should contribute to the final output. Task Prompter guides the model to learn
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task-specific information by providing task-specific prompts. Previous research relies on manually
designed modules, leading to a lack of generality in distinguishing shared and task-specific repre-
sentations. MoE involves predefined number of expert modules into a backbone network. Similarly,
Task Prompter requires predefined task prompts and modules that support their interaction.

In this context, a pivotal question arises: can a pre-defined module efficiently handle parameters, or
is a pre-defined task space sufficient to encompass all task-specific information? From the analysis
of previous works in transfer learning (Dwivedi & Roig, 2019), we identify three reasons why a
predefined space cannot efficiently capture task-specific information. Firstly, the similarity between
tasks changes as we move through the network’s depth, implying that the extent of shared network el-
ements should differ based on the network’s depth. Secondly, the required task-specific space within
the network for a task is not consistently uniform across depth. For tasks such as semantic segmen-
tation, a substantial amount of space in deeper layers is required to leverage semantic information.
In contrast, low-level vision tasks like surface normal estimation might necessitate more space in
relatively shallower layers. Thirdly, these variations are dependent on the dataset being used. As a
result, current multi-task architectures face inefficiencies due to the predefined modules for learning
shared and task-specific information. In this study, we present a network expansion paradigm that
can be applied to any transformer-based multi-task architecture to mitigate this inefficiency.

In order to improve the adaptability of a multi-task architecture by dynamically partitioning task-
generic and task-specific representations, we focus on the concept of conflicting gradients (Yu et al.,
2020). Conflicting gradients are recognized as a cause of negative transfer that emerges when the
gradients of two tasks move in opposing directions. In contrast to previous approaches (Guangyuan
et al., 2022) that transform shared parameters into task-specific ones by duplicating them, we lever-
age tokens of the transformer in our method. This choice not only enhances parameter efficiency but
also extends applicability across various architectures. To expand the network based on tokens and
prevent negative transfer by guaranteeing adequate space for tasks, we start by defining the token
space as the output of each layer in the transformer block using singular value decomposition (SVD).
Subsequently, we categorize gradient conflicts into two types: conflicts in the range space and null
space of tokens. If task-specific gradients conflict within the token range space, we modulate tokens
in that layer to align the gradients of different tasks. Conversely, if conflicts arise within the null
space of tokens, we introduce new task-specific tokens to the network to learn new task-specific
features. Importantly, our methods can be applied concurrently to previous multi-task architectures
(Shazeer et al., 2017; Riquelme et al., 2021; Zhang et al., 2022; Fan et al., 2022; Mustafa et al., 2022;
Chen et al., 2023; Xu et al., 2023a;b; Ye & Xu, 2022b) or network expansion methods (Guangyuan
et al., 2022). In summary, our main contribution is three-fold:

• We introducea Dynamic Token Modulation and Expansion (DTME-MTL) approach for
transformer-based multi-task architectures, which effectively reduces negative transfer caused by
gradient conflicts. As far as we know, this is the first work dynamically expanding the network by
manipulating tokens for MTL.

• We analyze conflicts between tasks in both token range space and null space, proposing diverse
methodologies for token manipulation based on the nature of the conflict. If task-specific gradients
conflict within the token range space, we modulate existing tokens in that layer. On the other hand,
if conflicts arise within the null space, we introduce new task-specific tokens to the network. This
approach, involving distinct response strategies for each conflict type, leads to the creation of an
efficient network expansion system applicable to various existing multi-task architectures.

• DTME-MTL can be applied to existing state-of-the-art multi-task architectures in an off-the-shelf
manner to enhance multi-task performance. We compare it with other off-the-shelf multi-task
optimization methods to evaluate how effectively it mitigates negative transfer.

2 RELATED WORKS

Multi-Task Learning in Vision Transformers. Originally designed for NLP tasks, transformers
have outperformed existing CNN models in various computer vision tasks. Attempts have been
made to incorporate Vision Transformer (Dosovitskiy et al., 2020; Liu et al., 2021c; Wang et al.,
2021a; Yang et al., 2021; Xie et al., 2021; Wang et al., 2021b) in MTL. MTFormer (Xu et al., 2022)
employs a shared transformer encoder and decoder with a cross-task attention mechanism. MulT
(Bhattacharjee et al., 2022) utilizes a shared attention mechanism to model task dependencies based
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on the Swin transformer. InvPT (Ye & Xu, 2022a) focuses on global spatial position and multi-
task context for dense prediction tasks through multi-scale feature aggregation. Mixture of Experts
(MoE), inspired by the NLP domain, divides the model into predefined expert groups, adaptively
shared or devoted to specific tasks during the learning phase (Riquelme et al., 2021; Zhang et al.,
2022; Fan et al., 2022; Mustafa et al., 2022; Chen et al., 2023; Huang et al., 2024). Task prompter
(Xu et al., 2023a;b; Ye & Xu, 2022b) uses task-specific tokens to encapsulate task-specific infor-
mation and employs cross-task interactions to enhance multi-task performance. Prior studies need
either a manually designed module to divide shared and task-specific representations, leading to a
lack of generality. On the contrary, our methods can be applied to a diverse range of multi-task
architectures, including those mentioned earlier.

Multi-Task Optimization. Optimizing the MTL aims to address negative transfer by adjusting the
relative weighting of task losses or directly manipulating gradients. Task-dependent uncertainty
(Kendall et al., 2018) is utilized to weigh the loss of multiple tasks. Liu et al. (2019) considers
the rate of loss descent for achieving balance, while (Guo et al., 2018) prioritizes tasks based on
difficulty. Recently, Liu et al. (2024) proposed updating task weights based on the loss history. In
contrast, approaches like (Désidéri, 2012; Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021a;b;
Navon et al., 2022; Senushkin et al., 2023) directly modify task gradients to achieve the desired bal-
ance. PCGrad (Yu et al., 2020) analyzes negative transfer by identifying conflicting gradients in the
shared parameters of the network. Recon (Guangyuan et al., 2022) transforms shared parameters di-
rectly into task-specific ones to handle conflicting gradients. Normalized gradients are employed to
prevent spillover between tasks (Chen et al., 2018), whereas Chen et al. (2020) introduce stochastic-
ity to the network’s parameters based on the consistency in the sign of gradients. RotoGrad (Javaloy
& Valera, 2021) rotates the feature space of the network to narrow the gap between tasks.

3 PRELIMINARIES

In multi-task learning, the network learns a set of tasks {τi}Ki=1 jointly, where K is the number
of tasks. Each task τi has its own loss function Li. The network parameter Θ can be classified
into Θ = {Θs,Θ1, ...,ΘK} where Θs is shared parameter across all tasks and Θi is task-specific
parameters devoted to task τi. Then, the objective function of multi-task learning is to minimize
the weighted sum of all tasks’ losses: Θ∗ = argminΘ

∑K
i=1 wiLi(Θs,Θi) where wi represents the

scale of the task-specific loss Li. Negative transfer between tasks occurs when the gradients of each
objective point in different directions, a phenomenon called conflicting gradients (Yu et al., 2020).
Definition 1 (Conflicting gradients). Define gi as the gradient of task τi with respect to the shared
parameters Θs as gi = ∇Θs

Li(Θs,Θi). Let gi and gj represent the gradients for a pair of tasks τi
and τj where i ̸= j. If gi · gj ≤ 0, these two gradients are termed conflicting gradients.

The relationship between negative transfer and conflicting gradients is debated, with some studies
taking opposing views. Jiang et al. (2024) presents a counterexample challenging the positive link
between negative transfer and conflicting gradients in the context of auxiliary task learning. How-
ever, we adopt the conventional stance that conflicting gradients are widely seen as a key factor con-
tributing to negative transfer in multi-task learning optimization (Désidéri, 2012; Sener & Koltun,
2018; Yu et al., 2020; Liu et al., 2021a;b; Navon et al., 2022; Senushkin et al., 2023; Jeong & Yoon,
2024), where tasks are primarily learned jointly rather than serving as auxiliary tasks for others.
Existing methods that use pre-defined architectures for MTL have limitations in reducing negative
transfer since they cannot preemptively prevent the occurrence of conflicting gradients. Guangyuan
et al. (2022) involves transforming a shared layer into task-specific layers when conflicting gradi-
ents are detected in that layer. However, this method exhibits inefficiency in terms of the number of
parameters, as it duplicates layers by a factor of the number of tasks, K. In our approach, we adopt
a more efficient token-based network expansion system instead of merely increasing the number of
layers. Furthermore, we categorize gradient conflict into two types, presenting varied methodologies
based on the nature of the conflict.

4 METHOD

As discussed in Section 3, conflicts can arise among gradients from task-specific losses, leading
to negative transfer. In order to mitigate negative transfer by ensuring sufficient space for tasks, we
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Figure 1: Framework overview of the proposed Dynamic Token Modulation and Expansion for
MTL (DTME-MTL). (a) At each network layer, we compute the input token’s range space R(T̃ d

s )
and their task-specific gradients, determining principal vectors from the uncentered covariance of
Ts. (b) In cases where task-specific gradients conflict in the range space of T̃ d

s (e.g. gR,i ·gR,j ≤ 0),
modulation is applied to Ts by introducingMi andMj . (c) When task-specific gradients conflict
within the null space of T̃ d

s (e.g. gN ,i · gN ,j ≤ 0), task-specific tokens Ti and Tj are added.

adopt token-based network expansion. Initially, we define the token space as the output of each layer
in the transformer block through singular value decomposition (SVD). Subsequently, we categorize
conflicts in task-specific gradients into two types: conflicts in the range space of tokens and conflicts
in the null space of tokens. Finally, based on the type of conflict, we introduce efficient token
modulation and expansion techniques for transformer-based multi-task architectures.

4.1 DEFINING TOKEN SPACE USING SVD

In this section, we create a vector space consisting of shared tokens in a transformer, aiming to
classify the types of conflicting gradients. More specifically, we approximate the range space and
null space of the uncentered covariance of the tokens before applying our methods.

Let’s consider a dataset {Xl,Yl}nl=1, where Xl represents the input, Yl denotes the label, and n is
the number of samples. Denote input shared token for a layer d as T l,d

s = {T l,d
s,1 , T

l,d
s,2 , ..., T

l,d
s,N}

where N is the total number of shared tokens in that layer. Every token T l,d
s ∈ Rp represents the

output of the transformer layer d − 1 for the corresponding input data Xl, with p denoting the size
of T l,d

s . Let’s consider a total of D transformer layers. Next, the uncentered covariance of the token
in layer d (where 1 ≤ d ≤ D) is as follows:

T̃ d
s =

1

n

n∑
l=1

(T l,d
s )(T l,d

s )T (1)

To define the token space, we apply Singular Vector Decomposition to T̃ d
s . Following this, we can

divide vector space formed by T̃ d
s into its range space R(T̃s) and null space N (T̃s) depending on

the magnitude of eigenvalue Λ. The process is illustrated below:

SV D(T̃ d
s ) = U ,Λ,V where T̃ d

s = UΛVT , Λ =

[
ΛR 0
0 ΛN

]
(2)

In this context, given that T̃ d
s is a square matrix of dimensions p × p, it implies that both U and V

are square matrices as well, each with dimensions p× p, and they are equal (U = V). Additionally,
Λ is a diagonal matrix.
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Figure 2: The process approximates the range and null spaces of T̃ d
s based on the proportion of total

variance, r. In the SVD of T̃ d
s , the matrix Λ represents the diagonal matrix of eigenvalues. These

eigenvalues are arranged in descending order, satisfying λi ≥ λj if i < j. If r is greater than the
sum up to λm and smaller than the sum up to λm+1, then we select the set {λi}mi=1 as ΛR, and the
remaining set {λi}pi=m+1 as ΛN .

From eq. (2), we obtain a mathematical tool to define the range and null space of the covariance
of the token, T̃ d

s . To approximate the range space, we choose the eigenvalues ΛR along with their
corresponding eigenvectors from UR. On the other hand, when approximating the null space, we
should select the eigenvalues ΛN and their corresponding eigenvectors from UN . Ideally, we should
choose eigenvalues that are exactly zero to form the null space. However, in practice, Λ can not
be precisely zero. Therefore, it’s essential to establish a criterion for selecting the eigenvalue to
distinguish between these two spaces. Instead of introducing a new manually designed rule for
approximating each range and null space of T̃ d

s , we opt to directly employ the evaluation tool for the
SVD process (Jollife & Cadima, 2016) as criteria for determining the range and null space of tokens.
In assessing the accuracy of the SVD approximation, the proportion of total variance, denoted as r,
has been employed as follows:

r =

∑
λ∈diagΛN

λ∑
λ∈diagΛR

λ
(3)

where each ΛR and ΛN represent submatrices of Λ containing the eigenvalues of the range space and
null space, respectively. The diag function serves as an inverse matrix-to-vector operator, returning
a vector containing the diagonal entries of the input matrix. In our approach, we employ eq. (3) to
directly divide the range and null space of T̃ d

s . As depicted in Figure 2, the diagonal elements of the
matrix Λ, obtained through the Singular Value Decomposition of T̃ d

s , are arranged in descending
order based on their magnitudes. We can select the index of the eigenvalue m such that the sum of
eigenvalues up to order m is smaller than r, and the sum up to m+ 1 is larger than r. This selected
index serves as a boundary to divide the range space and null space of T̃ d

s .

4.2 TYPES OF GRADIENT CONFLICTS

In Section 4.1, we create a p-dimensional vector space using the uncentered covariance of the shared
token Ts, linked to the input data set {X}nl=1. This vector space is divided into the range and null
space, with each space spanned by eigenvectors corresponding to singular values selected based on
a specified ratio r. In the upcoming sections, we pinpoint the types of gradient conflict within the
vector space we’ve constructed. We then address these conflicts adaptively by introducing token
modulation and expansion techniques.

Using eq. (2) and eq. (3), we can partition the eigenvectors of the p-dimensional vector space into its
range and null space, denoted as U = [UR,UN ]. Now, let’s consider the shared tokens T l,d

s (where
l represents the input index and d signifies the depth of the layer) as network parameters, for which
we can compute gradients during the backpropagation process. For each task-specific loss Li, the
task-specific gradient for T l,d

s is denoted as gi = ∇T l,d
s
Li. Consequently, we obtain task-specific

gradients {gi}Ki=1 corresponding to a set of losses {Li}Ki=1 for T l,d
s as illustrated in fig. 1-(a).

Each task-specific gradient gi can be decomposed into two components, gR,i and gN ,i, through
projection onto the range and null space of T̃ d

s , respectively. This breakdown is expressed as follows:

gR,i = (URUT
R)∇T l,d

s
Li gN ,i = (UNUT

N )∇T l,d
s
Li (4)

5
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Figure 3: The figure illustrates the impact of token modulation and expansion on the token vector
space. (a) Token modulation aligns task-specific gradients in the range space by adjusting the mag-
nitude of shared tokens. (b) Token expansion broadens the range space by incorporating gradients in
the null space, achieved through the addition of task-specific tokens. (c) Together, token modulation
(TM) and expansion (TE) align task-specific loss to reduce multi-task loss.

UR and UN are orthogonal matrices that consist of eigenvectors of the range space and null space,
respectively, with each column representing one eigenvector. Then, the matrices (URUT

R) and
(UNUT

N ) function as projection operators onto the range and null spaces, respectively.

Building upon the concept of conflicting gradients outlined in Definition 1, we classify conflicts into
two types based on the space in which they occur: range space conflicts and null space conflicts.
Specifically, conflicts in the range space of tokens occur when gR,i · gR,j ≤ 0 for any pair of i and
j where i ̸= j. Likewise, conflicts in the null space of tokens emerge when gN ,i · gN ,j ≤ 0.

4.3 TOKEN MODULATION AND EXPANSION

From the types of gradient conflicts we defined in section 4.2, we present effective methods for token
modulation and expansion in multi-task architectures based on transformers. For each transformer
block with a depth of d, we can compute task-specific gradients {gi}Ki=1 for the shared token Ts. By
utilizing eq. (4), we identify the specific types of conflicts that arise in a transformer block for a given
input data Xi. The extent of conflict is assessed by counting the occurrences of gradient conflicts
across all data {Xi,Yi}ni=1. To identify the layers with the most severe competition between tasks,
we select the most conflicting layers to relieve negative transfer. The number of layers is a tunable
hyperparameter controlled through network expansion.

Token Modulation. In situations where task-specific gradients conflict within the range space of
T̃ d
s , such as gR,i · gR,j ≤ 0, modulatorsMi andMj are added after the shared token T d

s as shown
in fig. 1-(b). The token modulatorM is a straightforward affine transformation that modulates the
shared token Ts along the channel dimension. To elaborate, considering the embedding dimension of
the transformer as dmodel (distinct from the layer depth d) and assuming the number of shared tokens
is N , we can arrange Ts in the form [Ts,1, . . . , Ts,N ]. This arrangement turns Ts into a dmodel ×N
matrix. The modulatorM then performs the transformation W [Ts,1, . . . , Ts,N ] + b using weight W
and bias b, both of which have dimensions 1× dmodel.

The intuition behind token modulation is to align task-specific gradients {gi}Ki=1 by directly influ-
encing the range space spanned by tokens, as shown in fig. 3-(a). During the learning process, the
task-specific modulators {M}Ki=1 learn to adjust this token space to align with task-specific gradi-
ents. This simple affine transformation is highly parameter-efficient in dealing with negative transfer
resulting from conflicts in the range space of gradients.

Token Expansion. Similarly, in cases where task-specific gradients conflict within the null space
of T̃ d

s , such as gN ,i · gN ,j ≤ 0, task-specific tokens Ti and Tj are added alongside shared tokens Ts

6
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Algorithm 1: Dynamic Token Modulation and Expansion for MTL

Data: Task {τi}Ki=1, Loss function {Li}Ki=1, Dataset {Xl,Yl}nl=1,
Shared tokens T l,d

s = {T l,d
s,i }Ni=1, Depth of the Network D

1 for each layer of the network (d← 1 to D) do
2 Get tokens {T l,d

s }nl=1 for the layer d corresponding to input {Xl}nl=1

T̃ d
s = 1

n

∑n
l=1(T l,d

s )(T l,d
s )T // Calculate uncentered covariance

3 SV D(T̃ d
s ) = U ,Λ,V // Singular value decomposition

4 U = [UR,UN ] // Divide range and null space
5 {gR,i}Ki=1 = {(URUT

R)∇T l,d
s
Li}Ki=1 // Projection to range space

6 {gN ,i}Ki=1 = {(UNUT
N )∇T l,d

s
Li}Ki=1 // Projection to null space

7 if gR,i · gR,j ≤ 0 then
8 Insert token modulatorsMi andMj prior to layer d
9 if gN ,i · gN ,j ≤ 0 then

10 Insert task-specific tokens Ti and Tj prior to layer d

as shown in fig. 1-(c). The task-specific tokens {Ti}Ki=1 are concatenated with shared tokens before
entering the transformer block. Consequently, each task-specific token acquires task-specific infor-
mation within that layer. Specifically, in a standard transformer block, self-attention is performed
for each pair of tokens in the form of [Ts,1, . . . , Ts,N ] × [Ts,1, . . . , Ts,N ]. With token expansion,
attention is extended to include [Ts,1, . . . , Ts,N ]× [T1, . . . , TK] on the output.

The rationale behind the token expansion is to widen the token space to incorporate task-specific
gradients, as depicted in Figure 3-(b). Suppose we decompose task-specific gradients to extract the
null space component of the token, and they indicate opposing directions, such as gN ,i · gN ,j ≤ 0.
This suggests that the vector space spanned by the column vectors of UR cannot be updated to
parameters where task-specific gradients point, as it exists outside of the token space. Expanding
the token space by introducing task-specific tokens into the transformer layer, where conflicts in
the null space arise, allows us to broaden the token spaces for different tasks. This enables each
task-specific token space to include the task-specific gradients within the null space.

Token modulation and expansion work together to align the losses of various tasks, leading to im-
proved multi-task performance, as shown in fig. 3-(c). While the proposed token modulation and
expansion methods are intuitive, we also offer a theoretical analysis to support them. Theorem 1
demonstrates how applying token modulation to address gradient conflicts in the row space of T̃s
can reduce these conflicts and result in a lower multi-task loss.
Theorem 1. Optimizing the token modulators {Mi}Ki=1 reduces gradient conflicts in the row space
of T̃s and leads to a reduction in the multi-task loss.

Similarly, in Theorem 2, we explain how expanding the token space to address gradient conflicts in
the null space of T̃s leads to a reduction in multi-task loss. All proofs can be found in Appendix A.
Theorem 2. Token expansion using {Ti}Ki=1 alleviates the increase in multi-task loss caused by
gradient conflicts in the null space of T̃s.

The complete procedure for the proposed DTME-MTL is outlined in Algorithm 1.

5 EXPERIMENTS

We conduct comprehensive experiments to show the effectiveness of the proposed Dynamic Token
Modulation and Expansion for Multi-Task Learning (DTME-MTL).

Datasets and Evaluation Our method is evaluated on multi-task datasets: NYUD-v2 (Silberman
et al., 2012), PASCAL-Context (Mottaghi et al., 2014) and Taskonomy (Zamir et al., 2018). Each of
them with 4, 5, 11 tasks. To evaluate the performance of tasks, we employed widely used metrics.
To evaluate the multi-task performance, we utilize the metric proposed by Maninis et al. (2019).
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Table 1: We conducte an ablation study on dynamic token modulation and expansion, evaluating
the multi-task performance of our method on NYUD-v2 and PASCAL-Context. The results of
Token Extension (TE), Token Modulation (TM), and their combination (TE+TM) are presented.
We employ a shared encoder and multiple decoders, using ViT-T (Dosovitskiy et al., 2020) as the
backbone network. The gains are compared against single-task (ST) and multi-task (MT) scenarios.

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

Baseline (ST) 39.35 0.6611 22.14 59.68 67.96 58.90 83.76 15.65 47.70
Baseline (MT) 34.13 0.6732 22.51 55.30 54.47 51.48 82.04 16.22 41.28
TM 37.85 0.6490 21.75 56.92 64.28 55.10 83.02 15.40 45.80
TE 37.25 0.6553 21.87 57.00 60.51 54.00 82.85 15.55 44.98
TM+TE 38.27 0.6370 21.64 57.90 66.18 56.29 83.41 15.26 47.00
Gain (vs. MT) △4.14 △0.0362 △0.87 △2.60 △11.71 △4.81 △1.37 △0.96 △5.72
△m ↑ 0.044 -1.289
#Param ↑ (%) 0.24 0.30

Figure 4: Task performance varies based on when we expand the network. To determine the optimal
timing, we assess expansions at the beginning of training and at the end of each quarter iteration,
monitoring the corresponding changes in performance.

It measures the per-task performance by averaging it with respect to the single-task baseline b, as
shown in△m = (1/T )

∑T
i=1(−1)li(Mm,i −Mb,i)/Mb,i where li = 1 if a lower value of measure

Mi means better performance for task i, and 0 otherwise.

Implementation Details. For experiments, we adopt ViT (Dosovitskiy et al., 2020) pre-trained on
ImageNet-22K (Deng et al., 2009) as the transformer encoder. The models are trained for 60,000 it-
erations on both NYUD (Silberman et al., 2012) and PASCAL (Everingham & Winn, 2012) datasets
with batch size 6. We use Adam optimizer with learning rate 2×10−5 and 1×10−6 of a weight
decay with a polynomial learning rate schedule. Following the previous works (Ye & Xu, 2022a;b),
we used the same loss and loss scale for each task. The cross-entropy loss was used for semantic
segmentation, human parts estimation, and saliency, edge detection. Surface normal prediction and
depth estimation used L1 loss.

Baselines and Model Variants. For a comprehensive analysis of the proposed DTME-MTL frame-
work, we adopt a typical experimental setup for MTL in our experiments. In Table 1, ”Baseline
(MT)” refers to a simple multi-task architecture consisting of a shared transformer backbone and
basic task-specific decoders. Each decoder comprises one 3 × 3 Conv-BN-ReLU block. ”Baseline
(ST)” has the same structure as ”Baseline (MT)” but is trained with only a single task. We assess the
proposed DTME-MTL framework by expanding the network from ”Baseline (MT)” and measure
the performance gains achieved by the proposed methods. ”TM” (Token Modulation) signifies the
addition of the proposed token modulator to ”baseline (MT),” while ”TE” (Token Expansion) indi-
cates the incorporation of task-specific tokens onto ”Baseline (MT).” Finally, ”TM+TE” combines
both proposed methods. To show how effectively our approach reduces negative transfer, we also
compare it with previous multi-task optimization techniques, though our methods can be used along-
side them. We include simple gradient descent (GD), gradient manipulation methods like GradDrop
(Chen et al., 2020), MGDA (Sener & Koltun, 2018), PCGrad (Yu et al., 2020), CAGrad (Liu et al.,
2021a), IMTL (Liu et al., 2021b), Nash-MTL (Navon et al., 2022), and Aligned-MTL (Senushkin
et al., 2023), as well as loss balancing methods such as UW (Kendall et al., 2018), DWA (Liu et al.,
2019), and FAMO (Liu et al., 2024). We also compare our results with Recon (Guangyuan et al.,
2022) in Appendix D.

Effectiveness of Token Modulation and Expansion. We assess the effectiveness of the proposed
methods on the NYUD-v2 and PASCAL-Context datasets, with results detailed in Table 1. In the
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Table 2: We contrast our methods (TM+TE) with selecting layers based on the degree of conflicts in
reversed order (Reversed) and randomly selected layers (Random).

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TM+TE 38.27 0.6370 21.64 57.90 66.18 56.29 83.21 15.26 47.00
TM+TE (Random) 36.88 0.6567 22.27 56.30 62.12 54.43 82.95 15.55 45.80
TM+TE (Reverse) 34.71 0.6898 22.59 55.80 57.84 52.82 82.75 15.74 43.20

(a) NYUD-v2 (b) PASCAL-Context

Figure 5: We evaluate the distribution of gradient conflicts by measuring the cosine similarity be-
tween task-specific gradients across all shared parameters throughout the optimization process. This
is represented as cosϕij in (a) for NYUD-v2 and in (b) for PASCAL-Context.

last three rows of the table, we depict the performance gains compared to the two baselines and the
increased number of parameters in ”#Param ↑ (%)”. Compared to the Baseline (MT), our meth-
ods demonstrate significant performance improvements across all tasks in both datasets. Particularly
noteworthy is the substantial increase in multi-task performance achieved with just a 0.2% to 0.3%
increase in the total network parameters. Additionally, our approach exhibits nearly identical per-
formance to Baseline (ST) in a multi-task scenario. This implies that reducing negative transfer
between tasks can be effectively accomplished by merely integrating introduced token modulators
and task-specific tokens, without the need for intricately designed modules.

Analysis of the Timing of Network Expansion. In Figure 4, we analyze the performance of each
task according to the timing of network expansion using the proposed DTME-MTL. Specifically,
the timing for expansion refers to the point at which token modulation and expansion are performed
based on calculations of the token space using Singular Value Decomposition and measurement of
gradient conflicts. The figure illustrates the performance results when network expansion is con-
ducted at the beginning of training (0th) and after each quarter of the entire training process (ith
25% Iter). To ensure fair comparisons, we trained the network using the same number of iterations
after the expansion. According to the experimental results, the optimal expansion timing may not
align perfectly depending on the task, but overall, it can be observed that performing expansion in
the early stages of network training yields better performance.

Analysis of Gradient Conflicts in Network Parameters. When using the suggested token mod-
ulation and expansion method, unique token spaces emerge for each task, making direct conflict
measurement in token space unfeasible. Instead, to evaluate the reduction of conflicts between
tasks, we analyze the extent of task-specific gradient interference in the network parameters during
the training process. In Figure 5, we divide the angles between task-specific gradients of network
parameters into ranges and represent the frequency occurring during the training process. When ap-
plying each method to the baseline model, both Token Modulation (TM) and Token Expansion (TM)
show a decrease in the ranges where the cosine of the angle between parameter gradients (cosϕij) is
less than 0, while also showing an increase in the ranges where it is greater than or equal to 0. This
indicates that the proposed methods effectively reduce conflicts between tasks and align gradients in
the same direction. As a result of reducing conflicts in parameters, it can be observed in Figure 3-(c)
that applying both ”TM+TE” leads to achieving the lowest multi-task loss.

Comparing Performance based on Layer Selection Criteria. In Table 2, we applied token mod-
ulation and expansion (TM+TE) to layers with the highest gradient conflicts between tasks. Results
are also shown for randomly chosen layers (Random) or layers with the lowest gradient conflicts
(Reverse). The network expansion system, using conflict detection, outperforms random selection
across all tasks. Particularly, applying TM+TE to layers with severe conflict levels consistently
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Table 3: Comparison of multi-task optimization methods on Taskonomy across 11 tasks. Non-
converged results are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0199 0.0195 0.1085 0.1714 0.1633 0.0872 0.2715 0.7586 0.1503 0.1742 0.1504 0.00

GD 0.0187 0.0188 0.1301 0.1757 0.1733 0.0942 0.3076 0.7991 0.1826 0.1902 0.1652 - 7.83
GradDrop 0.0315 0.0242 0.1390 0.1776 0.1778 0.0976 0.4564 0.8644 0.2088 0.1995 0.1752 - 26.11
MGDA - - - - - - - - - - - -
UW 0.0190 0.0190 0.1308 0.1758 0.1734 0.0945 0.3109 0.8009 0.1840 0.1906 0.1657 - 8.43
DWA 0.0186 0.0187 0.1294 0.1759 0.1735 0.0938 0.2788 0.7943 0.1805 0.1902 0.1640 - 6.45
PCGrad 0.0217 0.0192 0.1298 0.1775 0.1714 0.0939 0.2856 0.7985 0.1817 0.1927 0.1595 - 8.29
CAGrad 0.0219 0.0203 0.1314 0.1800 0.1665 0.0932 0.3039 0.8121 0.1874 0.1953 0.1673 - 10.57
IMTL 0.0210 0.0192 0.1282 0.1772 0.1719 0.0936 0.2468 0.7784 0.1734 0.1943 0.1647 - 6.17
Align-MTL 0.0189 0.0193 0.1254 0.1728 0.1664 0.0914 0.3524 0.8640 0.1938 0.1889 0.1582 - 9.41
Nash-MTL 0.0201 0.0184 0.1248 0.1764 0.1701 0.0921 0.2658 0.7793 0.1706 0.1914 0.1624 - 5.01
FAMO 0.0188 0.0188 0.1300 0.1758 0.1733 0.0942 0.3058 0.7986 0.1826 0.1904 0.1654 - 7.87
DTME-MTL 0.0150 0.0154 0.1193 0.1733 0.1668 0.0891 0.2038 0.7373 0.1567 0.1773 0.1517 + 4.67

Table 4: Adaptation of DTME-MTL to other MTL methods: We evaluate performance on NYUD-v2
(left) and PASCAL-Context (right). Existing studies are divided into CNN-based and transformer-
based models. The best results are shown in bold, and the second-best are underlined.

Task Semseg Depth Normal Edge
Metric mIoU ↑ RMSE ↓ mErr ↓ odsF ↑
Cross-Stitch 36.34 0.6290 20.88 76.38
PAP 36.72 0.6178 20.82 76.42
PSD 36.69 0.6246 20.87 76.42
PAD-Net 36.61 0.6270 20.85 76.38
MTI-Net 45.97 0.5365 20.27 77.86
ATRC 46.33 0.5363 20.18 77.94
MTformer 50.04 0.490 - -
InvPT 53.56 0.5183 18.81 78.10
+ DTME-MTL 54.38 0.5020 18.51 78.20
Taskprompter 55.30 0.5152 18.47 78.20
+ DTME-MTL 56.36 0.5122 18.38 78.40

Task Semseg Parsing Saliency Normal Edge
Metric mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑
ASTMT 68.00 61.10 65.70 14.70 72.40
PAD-Net 53.60 59.60 65.80 15.30 72.50
MTI-Net 61.70 60.18 84.78 14.23 70.80
ATRC 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP 63.60 60.23 83.91 14.30 70.86
ATRC-BMTAS 67.67 62.93 82.29 14.24 72.42
MTformer 73.51 64.26 67.24 - -
InvPT 79.03 67.61 84.81 14.15 73.00
+ DTME-MTL 81.91 71.13 84.96 13.73 73.80
Taskprompter 80.89 68.89 84.83 13.72 73.50
+ DTME-MTL 81.01 69.08 84.75 13.65 73.60

outperforms its application in layers with lower conflict levels, validating the effectiveness of the
proposed expansion strategy.

Comparison with Multi-Task Optimization. In Table 3, we compare DTME-MTL with previous
multi-task optimization approaches to demonstrate its effectiveness in reducing negative transfer
between tasks on the Taskonomy benchmark using ViT-B. DTME-MTL achieves the best multi-
task performance, improving each task by an average of 4.67% with only a 0.118% increase in the
number of parameters. Although DTME-MTL introduces additional parameters to address negative
transfer, making direct comparisons with optimization methods less straightforward, it consistently
improves multi-task performance. However, using more task-specific parameters does not always
yield better results, as Recon (Guangyuan et al., 2022) shows poor performance with the vision
transformer on NYUD-v2 (Table 10).

Adapting to Multi-Task Architectures. In Table 4, we compare DTME-MTL with leading multi-
task architectures on the NYUD-v2 and PASCAL-Context datasets. We evaluate its multi-task per-
formance against CNN-based methods such as Cross-Stitch (Misra et al., 2016), ASTMT (Maninis
et al., 2019), PAP (Zhang et al., 2019), PSD (Zhou et al., 2020), PAD-Net (Xu et al., 2018), MTI-Net
(Vandenhende et al., 2020), ATRC (Brüggemann et al., 2021), and transformer-based approaches
like MTformer (Xu et al., 2022), InvPT (Ye & Xu, 2022a), and TaskPrompter (Ye & Xu, 2022b).
Our method is compatible with any transformer-based multi-task architecture, enabling us to assess
its effectiveness by integrating it into two leading models: InvPT and TaskPrompter. DTME-MTL
seamlessly enhances these architectures, significantly boosting performance with only a minimal
increase in parameters — just 0.048% for InvPT and 0.046% for TaskPrompter.

6 CONCLUSION

This paper presents Dynamic Token Modulation and Expansion for Multi-Task Learning (DTME-
MTL), a novel approach aimed at improving transformer-based multi-task architectures by address-
ing gradient conflicts among tasks. We categorize conflicts between tasks based on whether they
occur within token range space or null space. Using this categorization, we adaptively apply token
modulation and expansion to mitigate these conflicts. The proposed system effectively reduces task
conflicts, leading to enhanced multi-task performance. Our method can be easily integrated into dif-
ferent transformer-based multi-task architectures with only a small number of additional parameters,
achieving superior performance on various multi-task benchmarks.
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Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent compo-
nent alignment for multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 20083–20093, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 746–760.
Springer, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ayan Sinha, Zhao Chen, Vijay Badrinarayanan, and Andrew Rabinovich. Gradient adversarial train-
ing of neural networks. 2018.

Guolei Sun, Thomas Probst, Danda Pani Paudel, Nikola Popović, Menelaos Kanakis, Jagruti Patel,
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A THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 1

Theorem 1. Optimizing the token modulators {Mi}Ki=1 reduces gradient conflicts in the row space
of T̃s and leads to a reduction in the multi-task loss.

Proof. Let the loss function Li be a function of the shared parameters Θs, the token modulatorMi,
and the input data X t. Since transformers convert input data into tokens, we consider the loss to be
a function of the input token Tin rather than X t. In cases where the input token T t

in spans the row
space of T̃s, this can be expressed as follows:

UNUT
N∇Tin

Li(Θ
t
s,Mt

i, T t
in) ≃ 0 (5)

Since the row space and null space are perpendicular to each other, with their dimensions summing
to the entire space, the following holds according to eq. (5):

K∑
i=1

∇T t
in
Li =

K∑
i=1

(URUT
R + UNUT

N )∇T t
in
Li ≃

K∑
i=1

(URUT
R)∇T t

in
Li (6)

Let the token modulatorMi be a d× d matrix that manipulates the input token Tin.
K∑
i=1

∇T t
in
Li =

K∑
i=1

(URMt
i)(URMt

i)
T · ∇Mt

i
Li · ∇T t

in
Mt

i (7)

The total multi-task loss can be represented using a Taylor expansion. Assuming η ≪ 1, we can
ignore the second-order terms of η:

K∑
i=1

Li(Θ
t+1
s ,Mt+1

i , T t
s ) =

K∑
i=1

Li(Θ
t
s,Mt

i, T t
s ) +

K∑
i=1

∇Θt
s
Li(Θ

t
s,Mt

i, T t
s )(Θ

t+1
s −Θt

s) (8)

+

K∑
i=1

∇Mt
i
Li(Θ

t
s,Mt

i, T t
s )(Mt+1

i −Mt
i) (9)

=

K∑
i=1

Li(Θ
t
s,Mt

i, T t
s )− η|

K∑
i=1

∇Θt
s
Li(Θ

t
s,Mt

i, T t
s )|2 (10)

−η
K∑
i=1

|∇Mt
i
Li(Θ

t
s,Mt

i, T t
s )|2 (11)

By optimizing the modulator Mt
i so that |∇Mt

i
Li(Θ

t
s,Mt

i, T t
in)| approaches zero for each task

i = 1, 2, . . . ,K, we can alleviate gradient conflicts in the row space of T̃s (as eq. (7) also approaches
zero) and reduce the overall multi-task loss, since eq. (11) is always greater than or equal to zero.

A.2 PROOF OF THEOREM 2

Theorem 2. Token expansion using {Ti}Ki=1 alleviates the increase in multi-task loss caused by
gradient conflicts in the null space of T̃s.

Proof. Let the loss function Li be a function of the shared parameters Θt
s, the task-specific token

T t
i , and the input data X t. Similarly, since transformers convert input data into tokens, we consider

the loss as a function of the input token T t
in rather than X t. In the case where the input token T t

in

spans the null space of T̃s, this can be expressed as follows:
K∑
i=1

URUT
R∇T t

in
Li(Θ

t
s, T t

in, T t
i ) ≃ 0 (12)
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The derivative of the task-specific loss Li with respect to the expanded token, including the input
token T t

in and the learnable task-specific tokens T t
i , is given as follows:

K∑
i=1

∇{T t
in,T t

i }Li (13)

=

K∑
i=1

([
UR 0d×K
0K×d UR,i

] [
UR 0d×K
0K×d UR,i

]T
+

[
UN 0d×K
0K×d 0K×K

] [
UN 0d×K
0K×d 0K×K

]T )[∇T t
in
Li

∇T t
i
Li

]
(14)

=

K∑
i=1

[
URUT

R + UNUT
N 0d×K

0K×d UR,iUT
R,i

] [
∇T t

in
Li

∇T t
i
Li

]
(15)

≃
K∑
i=1

[
UNUT

N 0d×K
0K×d UR,iUT

R,i

] [
∇T t

in
Li

∇T t
i
Li

]
(16)

=

K∑
i=1

[
(UNUT

N )∇T t
in
Li

(UR,iUT
R,i)∇T t

i
Li

]
(17)

The total multi-task loss can be expressed as follows:

Li(Θ
t+1
s , T t+1

in , T t+1
i ) = Li(Θ

t
in, T t

s , T t
i ) +∇Θt

s
Li(Θ

t
s, T t

s , T t
i )(Θ

t+1
s −Θt

s) (18)

+∇T t
in
Li(Θ

t
s, T t

s , T t
i )(T t+1

in − T t
in) (19)

+∇T t
i
Li(Θ

t
s, T t

s , T t
i )(T t+1

i − T t
i ) (20)

= Li(Θ
t
s, T t

in, T t
i )− η∇Θt

s
Li(Θ

t
s, T t

s , T t
i ) ·

K∑
i=1

∇Θt
s
Li(Θ

t
s, T t

in, T t
i ) (21)

−η(UNUT
N )∇T t

in
Li(Θ

t
s, T t

in, T t
i ) ·

K∑
i=1

(UNUT
N )∇T t

in
Li(Θ

t
s, T t

in, T t
i ) (22)

−η(UR,iUT
R,i)∇T t

i
Li(Θ

t
s, T t

in, T t
i ) · (UR,iUT

R,i)∇T t
i
Li(Θ

t
s, T t

in, T t
i ) (23)

The increase in multi-task loss caused by gradient conflicts in the null space (as described in eq. (22))
cannot be reduced since the shared token T t

in is not a learnable parameter. Instead, task-specific
tokens T t

i can be added to mitigate the increase in multi-task loss due to null space gradient conflicts
by optimizing the learnable parameters {Ti}Ki=1 as described in eq. (23).

B ADDITIONAL RELATED WORKS

Multi-Task Architectures. Various multi-task architectures can be categorized based on how the
parameters or features of the sharing network are distributed among tasks. The widely used shared
trunk structure comprises a common encoder shared by multiple tasks and a dedicated decoder for
each task (Dai et al., 2016; Ma et al., 2018; Simonyan & Zisserman, 2014; Zhang et al., 2014). A
tree-like architecture, with multiple division points for each task group, offers a more generalized
structure (Lu et al., 2017; Vandenhende et al., 2019; Bruggemann et al., 2020; Guo et al., 2020).
The cross-talk architecture employs separate symmetrical networks for each task, utilizing feature
exchange between layers at the same depth for information sharing between tasks (Gao et al., 2019;
Xu et al., 2018). The prediction distillation model (Eigen & Fergus, 2015; Xu et al., 2018; Vanden-
hende et al., 2020; Zhang et al., 2019) incorporates cross-task interactions at the end of the shared
encoder, while the task switching network (Sun et al., 2021; Sinha et al., 2018; Fernando et al., 2017;
Maninis et al., 2019) changes network parameters depending on the task.
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C EXPERIMENTAL SETTINGS

Datasets: These datasets contain different kinds of vision tasks. NYUD-v2 contains 4 vision tasks:
Our evaluation is based on depth estimation, semantic segmentation, surface normal prediction, and
edge detection. PASCAL-Context contains 5 tasks: We evaluate semantic segmentation, human
parts estimation, saliency estimation, surface normal prediction, and edge detection. We used 11
tasks for Taskonomy: We evaluate Depth Euclidean (DE), Depth Zbuffer (DZ), Edge Texture (ET),
Keypoints 2D (Key2D), Keypoints 3D (Key3D), Normal (N), Principal Curvature (PC), Reshading
(R), Segment Unsup 2d (S2D), and Segment Unsup 2.5D (S25D).

Evaluation. For semantic segmentation, we utilized mean Intersection over Union (mIoU). Sur-
face normal prediction’s performance was measured by calculating the mean angle distances be-
tween the predicted output and ground truth. To evaluate the depth estimation task, we used Root
Mean Squared Error (RMSE). For saliency estimation and human part segmentation, we employed
mean Intersection over Union (mIoU). For edge detection, we used optimal-dataset-scale-F-measure
(odsF). For Taskonomy, we adopt

D ADDITIONAL EXPERIMENTS

Comparison with Multi-Task Optimization. In Tables 5 to 7, we further evaluate the proposed
DTME-MTL against previous multi-task optimization approaches using different backbone sizes.
Our method demonstrates significant improvements in multi-task performance with minimal in-
creases in parameters. Specifically, DTME-MTL results in a parameter increase of 0.089% for
ViT-L, 0.23% for ViT-S, and 0.46% for ViT-T.

Table 5: Comparison with multi-task optimization approaches on Taskonomy across 11 different
tasks with ViT-L. Non-converged results are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0141 0.0146 0.0992 0.1716 0.1631 0.0801 0.2133 0.7134 0.1342 0.1688 0.1419 0.00

GD 0.0153 0.0156 0.1196 0.1757 0.1729 0.0896 0.2215 0.7451 0.1576 0.1826 0.1537 -8.92
GradDrop 0.0170 0.0195 0.1235 0.1757 0.1753 0.0909 0.2818 0.7679 0.1663 0.1916 0.1543 -17.07
MGDA - - - - - - - - - - - -
UW 0.0152 0.0155 0.1195 0.1755 0.1728 0.0897 0.2356 0.7436 0.1569 0.1830 0.1538 -9.36
DWA 0.0153 0.0156 0.1197 0.1757 0.1730 0.0897 0.2214 0.7441 0.1576 0.1827 0.1537 -8.96
PCGrad 0.0152 0.0156 0.1192 0.1749 0.1699 0.0893 0.2310 0.7475 0.1577 0.1825 0.1480 -8.63
CAGrad 0.0155 0.0156 0.1175 0.1756 0.1649 0.0860 0.2421 0.7544 0.1591 0.1854 0.1554 -9.32
IMTL 0.0151 0.0156 0.1194 0.1755 0.1726 0.0895 0.2199 0.7432 0.1569 0.1824 0.1533 -8.57
Align-MTL 0.0150 0.0155 0.1136 0.1733 0.1633 0.0862 0.2512 0.8029 0.1643 0.1803 0.1445 -8.78
Nash-MTL 0.0151 0.0154 0.1138 0.1732 0.1644 0.0863 0.2507 0.7656 0.1544 0.1833 0.1452 -7.95
FAMO 0.0153 0.0157 0.1196 0.1757 0.1730 0.0897 0.2221 0.7444 0.1575 0.1830 0.1534 -8.99

DTME-MTL 0.0127 0.0130 0.1088 0.1731 0.1665 0.0852 0.1654 0.6890 0.1389 0.1661 0.1404 +2.41
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Table 6: Comparison with multi-task optimization approaches on Taskonomy across 11 different
tasks with ViT-S. Non-converged results are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0255 0.0255 0.1285 0.1727 0.1653 0.0918 0.3973 0.8562 0.1864 0.1824 0.1647 0.00

GD 0.0244 0.0243 0.1501 0.1778 0.1844 0.1009 0.4105 0.9087 0.2325 0.2032 0.1822 -8.04
GradDrop 0.0253 0.0253 0.1533 0.1785 0.1865 0.1021 0.4399 0.9246 0.2408 0.2063 0.1791 -10.42
MGDA - - - - - - - - - - - -
UW 0.0242 0.0242 0.1498 0.1778 0.1847 0.1007 0.4064 0.9079 0.2312 0.2033 0.1822 -7.74
DWA 0.0242 0.0242 0.1500 0.1778 0.1844 0.1008 0.4097 0.9071 0.2316 0.2032 0.1822 -7.84
PCGrad 0.0248 0.0248 0.1501 0.1755 0.1761 0.1001 0.4306 0.9181 0.2371 0.2023 0.1772 -8.12
CAGrad 0.0254 0.0255 0.1516 0.1738 0.1698 0.0983 0.4535 0.9282 0.2442 0.2068 0.1849 -9.74
IMTL 0.0236 0.0237 0.1456 0.1756 0.1760 0.0988 0.4151 0.9055 0.2222 0.2010 0.1794 -5.74
Align-MTL 0.0266 0.0264 0.1499 0.1736 0.1700 0.0986 0.4659 0.9868 0.2604 0.2030 0.1780 -11.51
Nash-MTL 0.0235 0.0235 0.1432 0.1745 0.1718 0.0975 0.4230 0.9225 0.2268 0.1985 0.1775 -5.41
FAMO 0.0243 0.0243 0.1499 0.1778 0.1846 0.1008 0.3841 0.9080 0.2321 0.2027 0.1816 -7.31
DTME-MTL 0.0196 0.0200 0.1372 0.1754 0.1712 0.0958 0.3129 0.8333 0.1955 0.1907 0.1698 +3.62

Table 7: Comparison with multi-task optimization approaches on Taskonomy across 11 different
tasks with ViT-T. Non-converged results are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0250 0.0256 0.1388 0.1755 0.1670 0.0958 0.3856 0.9066 0.2132 0.1878 0.1722 0.00

GD 0.0266 0.0278 0.1593 0.1794 0.1865 0.1047 0.4752 0.9467 0.2568 0.2081 0.1897 -11.10
GradDrop 0.0276 0.0284 0.1624 0.1807 0.1884 0.1064 0.4741 0.9611 0.2658 0.2108 0.1860 -12.67
MGDA - - - - - - - - - - - -
UW 0.0266 0.0277 0.1593 0.1795 0.1865 0.1045 0.4757 0.9466 0.2567 0.2080 0.1896 -11.07
DWA 0.0266 0.0274 0.1593 0.1794 0.1866 0.1045 0.4743 0.9465 0.2567 0.2080 0.1897 -10.95
PCGrad 0.0273 0.0285 0.1596 0.1768 0.1807 0.1043 0.4785 0.9689 0.2644 0.2080 0.1854 -11.55
CAGrad 0.0290 0.0305 0.1641 0.1747 0.1731 0.1051 0.4884 0.9870 0.2828 0.2136 0.1945 -14.64
IMTL 0.0263 0.0272 0.1558 0.1772 0.1810 0.1025 0.4730 0.9525 0.2458 0.2065 0.1868 -9.24
Align-MTL - - - - - - - - - - - -
Nash-MTL 0.0261 0.0270 0.1536 0.1762 0.1766 0.1017 0.4590 0.9649 0.2496 0.2039 0.1846 -8.28
FAMO 0.0266 0.0275 0.1592 0.1795 0.1865 0.1047 0.4746 0.9466 0.2566 0.2080 0.1898 -10.97
DTME-MTL 0.0236 0.0241 0.1494 0.1765 0.1790 0.0998 0.4138 0.8921 0.2290 0.1959 0.1824 -2.88

Analysis on the Modulator Configuration. In Table 8, we show the performance difference based
on the configuration of the token modulators. Specifically, we compared the outcomes obtained
when employing affine transformation and batch normalization, which could be considered as the
most common and straightforward approaches. Through experiments, we find that affine transfor-
mations consistently exhibit better performance across all tasks compared to batch normalization
layers used as modulators for both datasets.

Table 8: We compare task performance based on the configuration of the modulator. Specifically,
we compare the performance of tasks using an affine transformation against those using a batch
normalization layer as configurations for the modulator.

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TM+TE (Affine) 38.27 0.6370 21.64 57.90 66.18 56.29 83.21 15.26 47.00
TM+TE (Batch Norm) 37.42 0.6550 23.16 56.10 60.80 53.29 82.59 15.73 44.90

Analyzing Performance Differences with Backbone Network Freezing. In Table 9, we examine
the performance variation based on whether we freeze the existing backbone network components
when training the expanded network after implementing the proposed dynamic token modulation
and expansion. The results indicate that training networks without freezing the existing backbone
network components leads to significantly better performance compared to training networks with
freezing. We guess that allowing modifications to the learned token space after expansion helps the
network to dynamically partition the token space for each task.

Influence of r on SVD Approximation. In Figure 6, we illustrate how the proportion of total
variance r impacts the approximation of a token’s range and null space. We assess the performance
of tasks across five values of r (1, 10, 100, 500, 1000). Our results suggest that the value of r has
minimal impact on task performance, implying that there is less need for extensive tuning of the r
parameter to optimize performance. In our other experiments, we chose r as 100 for training.

The Impact of the Number of Layers Expanded by DTME-MTL. DTME-MTL enables the
expansion of a specified number of layers and selects those with the highest degree of gradient
conflicts. In Figure 7, we illustrate how the performance of tasks is influenced by the number of
expanded layers. Specifically, we use the ratio of expanded layers to the total number of layers as the
x-axis in the graphs. The findings suggest that ratios between roughly 0.25 and 0.5 show improved
performance trends across various tasks, while still maintaining adequate parameter efficiency.
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Table 9: We assess task performance by comparing scenarios where we freeze the backbone network
after expansion (w/ Freeze) and where we don’t (w/o Freeze).

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TM+TE (w/ Freeze) 34.80 0.6730 22.48 56.00 58.34 52.96 82.86 15.63 43.20
TM+TE (w/o Freeze) 38.27 0.6370 21.64 57.90 66.18 56.29 83.21 15.26 47.00

(a) Results on NYUD-v2.

(b) Results on PASCAL-Context.

Figure 6: We assess the performance of tasks based on the proportion of total variance r. The results
are displayed for both (a) NYUD-v2 and (b) PASCAL-Context.

(a) Results on NYUD-v2.

(b) Results on PASCAL-Context.
Figure 7: The performance of tasks based on the ratio of the number of expanded layers to the total
number of layers. The results are displayed for both (a) NYUD-v2 and (b) PASCAL-Context.

Table 10: Comparison with Recon on NYUD
Semseg Depth Normal Edge #Param ↑ (%)Method mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

Joint 34.13 0.673 22.51 56.38 0.0
Recon 31.92 0.693 23.35 52.80 23.34
Ours 38.27 0.6370 21.64 57.90 0.24
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