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Abstract

Recent studies have confirmed that Pre-trained
Language Models (PLMs) have a tendency
to shortcut learning, thus producing a sharp
drop in performance under distribution shift.
However, most existing approaches focus only
on shortcut learning in fine-tuned lightweight
PLMs and cannot bridge the gap with Large
Language Models (LLMs). In addition, how
to evaluate LLMs dependence on shortcuts
and how to alleviate the dependence on short-
cuts still need extensive and in-depth research.
Therefore, motivated by the above challenges,
this paper proposes a benchmark containing
two common text classification tasks to ana-
lyze and quantify the impact of shortcuts on
LLMs in In-Context Learning (ICL). Then, we
explain the shortcut learning of LLMs from the
perspective of information flow: LLMs tend to
make one-sided inferences by using the asso-
ciation between repeated shortcuts and labels
in context. Finally, we evaluate several prompt-
based shortcut mitigation strategies that lead to
more robust predictions from the LLMs. Our
work establishes a set of LLMs’ shortcut re-
search processes from evaluation to analysis
to mitigation, and provides new insights into
LLMs shortcut learning'.

1 Introduction

Recent studies have demonstrated the impact of
shortcut learning on Pre-trained Language Mod-
els (PLMs), resulting in a decrease in the robust-
ness and generalization of PLMs when the distri-
bution of inputs changes (Utama et al., 2020; Du
et al., 2023). The model fine-tuning process has
been widely proven to tend to learn from simple
features, thereby introducing and even amplify-
ing biases in the datasets (Shah et al., 2020; Du
et al., 2023). Therefore, many methods are used
to alleviate shortcut learning from the perspective
of model training, including regularization (Moon
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et al., 2021; Stacey et al., 2022), contrastive learn-
ing (Choi et al., 2022), reweighting (Utama et al.,
2020), and causal inference (Eisenstein, 2022;
Bansal and Sharma, 2023).

However, most existing shortcut mitigation meth-
ods only work with PLMs that can be fine-tuned,
and can not bridge the gap with LLMs whose pa-
rameters are non-updatable. LLMs can effectively
learn from few-shot labeled samples constructed in
prompts and generalize to unlabeled downstream
tasks, known as In-Context Learning (ICL) (Brown
et al., 2020; Yang et al., 2023). Under the premise
of ICL learning paradigm, there have been some
explorations on shortcut learning in recent years.

Tang et al. (2023) create anti-short test sets for
different classification tasks by shortcut triggers
injection and reveal that LLMs are lazy learners.
Similarly, Si et al. (2022) investigate the behav-
ioral consistency between PLMs and LLMs by in-
jecting spurious features into the samples. Zhou
et al. (2023) focus on semantic spurious correla-
tions at the conceptual level and propose concept-
based augmentation methods to mitigate bias. How-
ever, existing studies only explore how shortcuts
negatively affect LLMs, and lack descriptions of
LLMs behavior when shortcuts are induced. Be-
sides, there is also a lack of analysis of the internal
mechanism of the impact of shortcuts, which makes
the cause of shortcut learning in ICL unclear.

To solve the above problems, this paper first es-
tablish a shortcut evaluation benchmark on two
common ICL text classification tasks. Different
from previous studies, we use possible shortcut
words as the core to induce LLMs to generate text
containing the shortcut, rather than sampling the
existing corpus by triggers, which makes the sam-
ples more balanced and rich. Second, we consider
adversarial shortcuts for harmful predictions and
inductive shortcuts for favorable predictions, and
evaluate the learning effect of the shortcuts on a va-
riety of different LLMs, and came to a conclusion



that as the number of samples in ICL increases,
LLMs can be easily induced by samples contain-
ing shortcuts to make judgments that favor labels
corresponding to shortcuts. Thirdly, we analyze
the internal mechanism of LLMs shortcut learning
from the perspective of information flow, and find
that the influence of the shortcut on LLMs mainly
affects the information flow from the shortcut to
the corresponding label in the context. Finally,
we develope several different shortcut mitigation
strategies to enhance LLMs resistance to shortcuts
by inhibiting the transmission of information from
the shortcut to the label in the context.

Our contribution is summarized as: Benchmark.
We contribute to the community a benchmark for
the assessment of LL.Ms shortcut learning. Evalu-
ation. We evaluate three common LLMs families
and explain the similarities and differences in short-
cut learning among different LLMs. Analysis. We
reveal the interaction between shortcuts and labels
in LLMs shortcut learning process from the per-
spective of Information Flow. Mitigation. Based
on the above observations, we further explore sev-
eral feasible shortcut mitigation strategies.

2 Related Work

In-Context Learning. ICL is designed to prompt
LLMs to learn by analogy and perform reasoning
by inputting few similar samples, which can be ap-
plied to a variety of downstream tasks, such as cod-
ing (Chen et al., 2021), data generation (Hartvigsen
et al.,, 2022; Ye et al., 2023a), and strategic
game (FAIR et al., 2022). The popularity of ICL
has raised increasing concerns about their instabil-
ity on LLMs (Liu et al., 2022), which has spawned
many methods of selecting ICL samples (Agrawal
et al., 2023; Ye et al., 2023b). Further, much stud-
ies have focused on an in-depth analysis of ICL.
For example, perturbations are applied to the input
to explore the influencing factors of ICL (Yoo et al.,
2022; Wei et al., 2022). Alternatively, some meth-
ods analyze ICLs by applying different conceptual
lenses, such as gradient descent (von Oswald et al.,
2023) and Bayesian inference (Xie et al., 2022).
Shortcuts to learning and mitigation. Short-
cut learning, or called superficial correlations, can
cause degradation of out-of-distribution generaliza-
tion performance for a variety of NLP tasks, such
as text classification (Song et al., 2023), Question-
Answering (Lai et al., 2021), and NLI (Du et al.,
2023). Therefore, many approaches improve per-

formance by exploring shortcut mitigation strate-
gies for language models during training or fine-
tuning, including including regularization (Moon
et al., 2021; Stacey et al., 2022), contrastive learn-
ing (Choi et al., 2022), reweighting (Utama et al.,
2020), and causal inference (Eisenstein, 2022;
Bansal and Sharma, 2023). For LLMs that can-
not be trained, the shortcut exploration research
based on ICL has been derived in recent years. For
LLMs lacking parameter update, the shortcut ex-
ploration research based on ICL has been derived
in recent years (Si et al., 2022; Tang et al., 2023;
Zhou et al., 2023).

Different from previous methods, our work fo-
cuses on a comprehensive assessment of the inhibi-
tion and promotion effects of shortcuts on LLMs,
combined with interpretability analysis in ICL, to
provide a quantitative support for shortcut learning
in LLMs.

nouns
event place institution verbs
Olympics Canberra Facebook stay
Cold War Madrid NBA visit
Beijing Games Hawaii WTO shop
World War | Washington FIFA wake up
New Year the Red Sea Palace Museum go to sleep
person time organism
Spielberg December Spruce tree
Isaac Newton past year Cactus
Pablo Picasso tea time H5N1
Bill Gates prime time Green pepper
J.K. Rowling half a day Lettuce
I Immigrants
gender race rellglon 9
refugees
Igirl black people jihad refugee
girlfriend Chinese Judaism _immigrant
moms Egypt mosque immigration
wife German Muslim illegals
woman Latinos sharia illegal aliens
LGBTQ mentally disabled physically disabled
Gay mental disabilities blind
Homosexual mental disorder deaf
Lesbian mental health disabilities
mentally ill wheelchair

Homosexuality
Igbtq schizophrenia disabled people

Figure 1: Different shortcuts in sentiment classification
and toxicity detection.

3 Benchmark Construction

Our work starts with building benchmarks for
LLMs’ shortcut learning. Although a few methods
have tried to build anti-short test sets for shortcut
learning (Zhao et al., 2018; Tang et al., 2023), we
want to include examples of more natural shortcuts
in the benchmark, rather than simply integrating
shortcuts into text by injecting trigger words (Tang
et al., 2023). This means that our shortcut is a
piece of text (word or phrase) in a natural language
description that has a stronger semantic relevance



to the context. Specifically, the benchmark takes
into account two types of categorization tasks com-
monly used in shortcut learning assessments, in-
cluding sentiment classification and toxicity detec-
tion (Tang et al., 2023). We then derive the bench-
mark through a mix of LLMs generation, public
data collection, and experts labeling.

Sentiment Classification. For the former, we
reasonably construct prompts to induce the LLMs
to generate two sets of samples containing the same
shortcut. Since LLMs tend to generate sentences
with a similar format (Hartvigsen et al., 2022), two
different LLMs, ChatGPT? and ERNIE-bot 4.0,
are considered in order to ensure the variety of
generated texts with the following prompt:

Help me generate 20 positive/nagative diverse
English sentences containing {shortcut}, ev-
ery sentence must contain words {shortcut}.

where shortcut can be replaced by any word or
phrase. (Si et al., 2022) notice that PLMs are more
likely to generalize based on certain features, such
as n-grams and content words, than others, such
as stop words, thus we choose nouns and verbs.
Adjectives and adverbs are excluded because some
of them might turn out to be true causal features of
sentence prediction, such as good and well. For the
nominal shortcuts, we further refer to the common
entities in named entity recognition tasks, and spec-
ify six different entities: event, place, institution,
person, time and organism. We use Erney-Bot 4.0
to generate the desired shortcut words, details can
be found in Appendix A. Each different category
of shortcut contains 50 words or phrases, as shown
in Figure 1. For each shortcut word in an emotion
category, we generate 20 samples as candidates.
Therefore, a total of 50*7*2%20= 14,000 samples
containing shortcuts are generated.

Toxicity Detection. Unlike sentiment classifi-
cation, we can not instruct LLMs to generate tox-
icity samples because LLMs are subject to strict
toxicity reviews to prevent toxic output (Touvron
et al., 2023b). Although the demonstration-based
prompt can be used to encourage certain behaviors
of LLMs, the probability of generating toxic con-
tents remains low (Mishra et al., 2021; Hartvigsen
et al., 2022). Therefore, we consider several pub-
licly available toxic datasets (Hartvigsen et al.,

Zhttps://chat.openai.com/ The version used in this paper is
as of December 10, 2023.

*https://cloud.baidu.com/product/wenxinworkshop The
version used in this paper is as of November 7th, 2023.

2022; Hosseini et al., 2023), using minority group
demographics as shortcuts from which to col-
lect samples containing the corresponding short-
cuts. Specifically, we consider the most common
words and phrases in toxic descriptions of gender,
race, religion, LGBTQ, mentally disabled, phys-
ically disabled, and immigrants, and use these
words/phrases as shortcuts. Two different deriva-
tion methods are adapt for the toxic and non-toxic
samples of these shortcuts. For toxicity, we select
as many as possible samples labeled as toxic from
the dataset given by (Hartvigsen et al., 2022; Hos-
seini et al., 2023), and if the number of samples is
less than 20, we assign the shortcut to two humans
and ask them to give several toxic descriptions that
includes the shortcut until the number of samples
is equal to 20. For non-toxic normal samples, if the
number is less than 20, we can easily induce LLMs
to generate other 20 samples. So in some cases the
number of samples will be more than 20, we use
Diversity Ordering to select the most appropriate
sample. Finally, after the above steps, we derive
104*20%2=4,160 samples for 104 shortcuts.

Diversity Ordering. Since LLMs tend to gener-
ate texts with similar contents, we order all samples
under each category corresponding to each short-
cut according to the text diversity to ensure that
the samples which are least similar to the others
are given priority especially for the toxicity detec-
tion task. Specifically, we use BM25 (Robertson
et al., 2004) to calculate the similarity between all
samples and get the similarity sum between each
sample and the other samples as Similarity Score.
Then, top 20 samples are inverted according to their
Similarity Score. In this way, text with more diverse
content will be counted first in ICL to prevent the
LLMs from learning duplicate contents.

Manual Calibration. To further ensure that the
samples generated by the LLMs are usable, all data
is uniformly recalibrated by humans. If the sample
does not contain the corresponding shortcut, an
expert is asked to add the corresponding shortcut
by editing the text without changing the semantics.

4 Evaluation Tasks

In this section, we discuss in detail the evaluation
tasks based on the above benchmarks. Before going
into detail about the evaluation, task definitions are
given.



adversarial-only prompt

Review: Spietberg's movies always touch people's hearts.
Review: | am disappointed in Spielberg's films.
Review: No one can make a film as moving as Spielberg.

Sentiment: positive
Sentiment: negative
Sentiment:  ?

inductive-only prompt

Review: Spielberg's movies always touch people's hearts.
Review: | am disappointed in Spietberg's films.
Review: No one can make a film as moving as Spielberg.

Sentiment: positive
Sentiment: negative

Sentiment: ?

Figure 2: An example of the adversarial-only prompt
and the inductive-only prompt. Spielberg denotes the
shortcut.

4.1 Problem Statements

Given a LLM M, its ICL is regarded as a con-
ditional generation task whose goal is to predict
the label 1yes¢ Of yesy With input N pairs of la-
beled samples X' = {(74, yi) }ic[1,2v) and a sample
Ztest to be predicted. Here 2 « N means that all
of our benchmarks are binary classification tasks,
and each prompt P must contain an equal number
of categories to ensure balanced samples for few-
shots classification. This prevents sample imbal-
ance from affecting the prediction. The generation
process can then be formally described as:

P
Ytest p/\/l(ytest‘ Z1,Y1, .- L2N, Y2N, xtest);

context

(1

where « is decoding strategies (Ye et al., 2023b).
Following (Lovering et al., 2021), a shortcut is
defined as a piece of text in = that contains a spu-
rious feature s, if a spurious association is estab-
lished on s : © — y by LLMs, LLMs are consid-
ered to have learned the shortcut. According to the
similarities and differences between the labels of
the shortcut sample and the sample to be predicted,
we give two different definitions of the shortcut and

the corresponding prompts as shown in Figure 2.

Definition 1 If (s € ;) A (yi # Ytest) holds, then
shortcut s is an adversarial shortcut. ForVz; € X,
if {3 € mi‘yi 7é ytest} A {5 gé $i|yi = ytest}
holds, then the corresponding prompt Pq, is an
adversarial-only prompt.

Definition 2 If (s € ;) A (Yi = Ytest) holds, then
shortcut s is an inductive shortcut. ForVr; € X,
if {5 € 337,|y7, = ytest} A {5 ¢ 357,|y7, 7& ytest}
holds, then the corresponding prompt P, is an
inductive-only prompt.

Further, if the model does not rely on shortcuts

to make judgments, we have:

Epam (ytest ’,P) = Epm (ytest ’Padv)

)
= Eppmt (Yeest|Pind)-

4.2 LLMs Evaluation

Subsequently, several different types of LLMs
with different parameter sizes are considered and
compared in three different cases: normal ICL
prompts, adversaria-only prompts, and inductive-
only prompts.
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Figure 5: Results of LLaMA LLMs.

LLMs. We consider three common used
LLMs, OPT (Zhang et al.,, 2022)(OPTy 3,
OPTs.7,, OPTg7, OPTi3*), GPT-neo (GPT-
neo; 35, GPT-neos 7,°), and LLaMA (Touvron

*https://huggingface.co/facebook
Shttps://huggingface.co/Eleuther Al/



et al., 2023a)(LLaMAs5;,, LLaMA7,, LLaMA 15:9).
We choose 1.3B as the minimum model parameter
size since models with similar parameter size have
been proven to achieve decent ICL results (Dai
et al., 2023) which is different from (Tang et al.,
2023).

Table 1: Prompts for different assessment tasks.

Prompts Labels
Review:{} Sentiment:{ } negative/positive
Input:{} Prediction:{} negative/positive
Input:{} Prediction:{} good/bad
Input:{} It is good or bad? Answer:{} good/bad
Input:{} Prediction:{} normal/toxic
Input:{} Result:{} normal/toxic
Sentence:{ } Prediction:{} normal/toxic
Sentence:{} Result:{} normal/toxic

Assessment Settings. To prevent ICL from
causing LLMs to produce unstable prediction re-
sults (Zhao et al., 2021), we evaluate the same sam-
ples under 4 different prompts shown in Table 1,
and take the average accuracy as the final result
of LLMs. Then, to show the effect of different
sample sizes N on the results, N € {1,2,3,4} is
considered.

Shortcut Prompts. To quantify the effect of
shortcuts on LLMs, we consider adversarial-only
prompt and inductive-only prompt for the same ex-
ample to be predicted. P4, implicitly induces the
LLMs to learn the association between the shortcut
and the opposite label by removing the shortcut
in the sample with the same label as the sample
to be predicted, while P;,,; makes LLMs to learn
the associations between the predited labels and
shortcuts. Therefore, intuitively, the former will
cause the performance of LLMs to decrease, while
the latter will cause the performance to increase.

4.3 Results

Figure 3, 4, and 5 show the ICL test results of differ-
ent LLMs in different tasks and different shortcut
prompts. In summary, different LLMs are usu-
ally affected by shortcuts, and in general, adversar-
ial shortcuts lead to reduced LLMs performance,
while inductive shortcuts do the opposite. This
illustrates the concern that LLMs are easily use
superficial associations. But the effects of different
shortcuts are also correlated with sample number
N, assessment tasks, and model sizes.

First, we observe that the effect of shortcut injec-
tion is not always intuitive when [V is small, such

®https://huggingface.co/openlm-research

as OPT1 3, and GPT-neo; 3, on sentiment classi-
fication task. This is due to the unstable LLMs
learning effect caused by a small number of la-
beled samples. Besides, the nuances of different
prompts may also be amplified when NV is small.
But as NV increases until it is equal to 4, inductive-
only prompts achieve the best results in all cases,
while adversarial-only prompts result in decreased
performance. This indicates that LL.Ms must be
affected by shortcuts if the number of samples is
sufficient.

Second, we observe the specificity of different
LLMs and tasks. For example, LLaMAs are more
susceptible to adversarial-only shortcuts in senti-
ment classification, while induced shortcuts are
more pronounced in toxicity detection. In addi-
tion, a larger parameters does not represent bet-
ter performance, either in pure ICL results or in
resistance to shortcut learning, especially when
it comes to toxicity detection. For example, for
OPTs, the results of sentiment classification in-
crease steadily with model sizes, while the results
of OPT;3, are worse than those of OPTg 7, and
the effects of adversarial-only and inductive-only
prompts on OPT;3; increase with N. These phe-
nomena seem to suggest that different models con-
tain biases against minorities (Li et al., 2023).

4.4 Influence of shortcut in x;

We give additional modifications on the basis of
adversarial-only prompt and inductive-only prompt,
remove the shortcut in x5 of the corresponding
prompts to get P,qy—s and Pjq—s. We then test
all LLMs at N = 4 in Fugure 6. The results show
that removing the shortcut from x5, results in im-
proved performance of the adversarial only prompt
in all cases, and reduced performance of the induc-
tive only prompt in all cases. This suggests that
one of the main causes of shortcut learning is the
LLMs’ attention to shortcuts in Z¢.st. But remov-
ing only the shortcuts in x4 raises the concern
that LLMs will establish new spurious associations,
which makes the results of Adv-s and Ind-s often
higher than normal ICL. For example, consider-
ing the example in Figure 2, Adv-s may make the
LLMs more focused on the association between
Spielberg and negative, which in turn increases the
probability that the LLMs will predict ;.5 that no
longer contains Spielberg as positive. This inspires
us to choose more unbiased examples in real-world
applications.
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5 Information Flow Analysis

Through the evaluation, we confirm the LLMs’ re-
liance on shortcuts. To further reveal the cause of
shortcut learning of LLMs in ICL, we provide an
information flow (Wang et al., 2023) perspective
to analyze the internal mechanism of LLMs using
shortcuts. Specifically, we intend to use the infor-
mation flow between the shortcuts and the labels to
quantify the impact of different shortcut injection
methods on the LL.Ms prediction results. Before
doing so, we give the following definitions.

5.1 Maetrics Definition

We use the saliency technique to demonstrate the
interaction of different tokens (Socher et al., 2013),
where saliency score of each element in the self-
attention matrix is calculated using Taylor expan-
sion (Michel et al., 2019):

OL(P @ Ytes
S = ZZ\AT T QPO tes)| 3

)

where A ; denotes the ht" attention head of the
It layer, P @ yest denotes the concatenation of
prompt and the label string to be predicted, and £
is the loss function. In this way, the significance of
the information flow from the *” token to the ;"
token in the sentence can be represented by S(i, 7).
Then, we define two metrics to quantify the impact
of shortcuts on label anchors and label anchors on
the final prediction as shown in Figure 7.

Ss—sy;» the impacts of shortcuts on label an-
chors in the context. It describes the ratio of the
shortcut’s contribution to the corresponding label
anchor in a particular context to the average contri-

bution of all tokens in the context:

S(ps; py,)
Ss—)yi - Yi s (4)
orx] Lkecrx Sk py;)
here, CTX = [p,,(0), Py;) represents the context

interval of the sample x;, where p; and p,, indicate
the position of the shortcut in z; and i** label in
the prompt, respectively. p,, ) means the start of
x;. To correspond to inductive-only prompt and
adversarial-only prompt, we further give the global
scores according to the different label values:

Zc

Ss%y— = Z C(yz 7& ytest)ss%yi/Na

sg)y+ ytest s—>yi /N7

&)

where S;_,,+ denotes the information flow of the
shortcut to the anchor in a sample with the same
label as ys¢, and ((-) is the indicator function.
Sy+ Jy——y,» the ratio of information flow from
the same anchors and opposite anchors when
aggregating information for prediction:

S _ Z?N C(yl = ytest)S(pyi ) pytest)

+ Jy— est ‘
YT /Yy~ —Ytest Z?N C(yl ;é ytest)s(py”pytest)
(6)

5.2 Results

Figure 8 shows the analysis results of information
flow under different LLMs and different prompts.
We find that Sy + /.., for different models and
tasks is irregular, but in most cases it approaches 1.
This shows that LLMs aggregates information from
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different labels for prediction as fairly as possible,
except for GPT-neo; 3, and LLaMAg, for toxic-
ity detection. The unsociability of the two LLMs
suggests that LLMs are in some cases more sus-
ceptible to inductive-only prompt of toxicity due to
their underlying bias. Compared to Sy+ /y— ;... >
Se—yy+ and Sy_,, — show greater regularity, where
both inductive-only prompts and adversarial-only
prompts lead to increases in the information flow of
shortcuts to labels than ordinary ICL. In addition,
we find that both Adv-s and Ind-s lead to a decrease
to the information flow in context, suggesting that
LLMs is also influenced by the shortcuts in xes;
when capturing the association of the shortcuts and
labels in the context.

The increase in information flow provides an ex-
planation for the evaluation results in Section 4.2:
Adversarial shortcuts cause LLMs to aggregate
more information from samples that are opposite
to the one to be predicted, thus dragging down
model performance; Induced shortcuts, on the other
hand, lead to an unhealthy increase in LLMs perfor-
mance. Shortcuts in the sample to be predicted are
one of the reasons for this increase in information
flow. Combined with the results of the performance
changes in Figure 6, we can conclude that LLLMs

increases the amount of information between
the shortcuts and the labels in the context by
sensing the shortcut in the predicted sample,
may be the cause of shortcut learning.

6 Shortcut Mitigation

This section discusses several possible shortcut mit-
igation methods for LLMs based on observations
made in previous sections to improve performance
in shortcut learning data. Here we give a stringent
qualification, we cannot obtain a fairer sample by
reweighting or resampling the dataset (Zhou et al.,
2023), but can only ease the shortcut learning of
LLMs by modifying the prompts. Following the
work of (Tang et al., 2023), we only focus on perfor-
mance improvements of adversarial-only prompts,
as in the process of practical application, inductive-
only prompt can be actively used to improve pre-
dictive performance (Du et al., 2023).

6.1 Shortcut Mitigation Prompts

We have specifically explored the following differ-
ent prompts:

Unbiased Instruction (UI). This is inspired
by some approaches to improve the fairness of
LLMs through simple instructions (Ganguli et al.,



Table 2: Performance variation of different mitigation schemes compared to adversarial shortcut learning. The
boldface indicates that the effect is improved compared to the shortcut learning.

task prompt

LLMs

OPT1,3b OPT2_7b OPT6‘7b OPT13b GPT—HCOl_gb GPT—I’IGOQ‘?b LLaMAgb LLaMA7b LLaMAlgb

Toxicity Adv 6421 58.72 7034 5954 67.19 70.12 56.85 55.71 55.17
Detection Ul 6038 6211 6833 63.08 60.35 67.88 55.69 55.61 55.60
KG 66.76 60.10 69.87 63.30 74.37 71.58 57.45 58.38 56.48

Sentiment Adv  77.88 95.05 96.65 96.21 61.05 79.92 92.27 92.87 93.01
Classification 71.05 9517 96.92 96.26 63.82 74.33 91.48 93.61 94.11
KG 7995 9504 96.84 96.43 66.89 79.15 92.48 93.41 92.62

2023), we try to mitigate the shortcut learning ef-
fect by admonishing LLMs not to rely on shortcut
words. Specifically, we prefix each adversarial-
only prompt with the following: Assume you are
a robust model and do not make predictions based
on {Shortcut).

Keyword Guidance (KG). This is inspired by
the shortcut learning mitigation approach in train-
able situations, which mitigates the effects of short-
cut learning by inducing the model to focus on
keywords that are beneficial to outcome predic-
tion (Choi et al., 2022). Specifically, we search
a trained BERT for potential keywords and prefix
each adversarial-only prompt with the following:
Review: {Keywords List}). Sentiment: The detailed
implementation process is in the Appendix B.

6.2 Mitigation Results

Table 2 shows the performance of two shortcut
mitigation strategies. In general, shortcut mitiga-
tion strategies based on unbiased instructions are
not always effective because LLMs may not under-
stand overly complex instructions. The injection
of complex instructions destroys the stable context
structure, which damages the prediction results,
such as the toxicity detection task on OPT; g (-
3.83%) and GPT 3, (-6.84%). The effect of the
shortcut mitigation is more pronounced when the
LLMs has a large number of parameters (13b), be-
cause the LLMs with a large number of parameters
have a better understanding ability to respond to
instructions. Keyword guidance can achieve more
stable performance gains than instruction-based
approaches, because directing LLMs to focus on
causal keywords other than shortcuts reduces the
reliance on shortcut words. Although there are
differences between the keywords corresponding
to BERT and the keywords of LLMs, which can
cause the performance degradation of KG (such as
OPT5 7, and GPT-neos 7;, on sentiment classifica-
tion), the decline in performance is not dramatic.
Therefore, the keyword-guided approach may be a

promising shortcut mitigation approach for LLMs.

6.3 Keyword Guidance and Information Flow
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Figure 9: Changes in information flow caused by KG.

Figure 9 shows the effect of keyword guidance
on information flow changes. In addition to GPT-
neos 73 on sentiment classification and OPT4 35 on
toxicity detection, KG is observed to reduce the in-
formation flow score, suggesting that improving the
performance of the model under shortcut learning
will reduce the information flow from the short-
cut. This further confirms the relationship between
shortcut learning and information flow.

7 Conclusion

Aiming at the problem of shortcut learning In the
in-context learning of LL.Ms, this paper establishes
the process from benchmark, assessment, analysis
to mitigation. Through testing in different LLMs,
we find that there is a common phenomenon of
shortcut learning in LLMs: adversarial shortcuts
reduce performance, while inducing shortcuts can
improve performance. Further information flow
analysis verifies the effect of shortcuts on LLMs
prediction in ICL, and subsequent experiments con-
firm that effective keyword-based injection would
be a potential way to mitigate shortcut learning.
We hope that this paper can further arouse the at-
tention of shortcut learning in LLMs and stimulate
subsequent research.



Limitations

Due to limited computing resources, some larger
models are not tested, such as LLaMA-30b. Be-
sides, in actual operation, the calculation of infor-
mation flow needs the backpropagation of LLMs,
so in view of the consistency of shortcut learning
shown by different models, we only test the model
information flow with the maximum size of 3b. In
addition, although we have explored some poten-
tially effective shortcut mitigation models, more
general and effective shortcut mitigation strategies
still need to be explored.

Ethics Statement

This paper has been thoroughly reviewed for ethical
considerations and has been found to be in com-
pliance with all relevant ethical guidelines. The
paper does not raise any ethical concerns and is a
valuable contribution to the field.
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A Shortcuts Generation

The shortcut generation process is similar to the
sample generation process, we induce the LLMs
to give the desired shortcut by adjusting different
instructions. In the case of events, an available
prompt is as follows:

Give 50 famous events:

Then we need to remove duplicates for the short-
cuts. This limitation of repetition is stringent, for
example, World War II and Second World War be-
long to the same shortcut, and only one can be kept,
because LLMs tend to give similar output based on
their background knowledge.

B Keyword Search

We introduce the keywords extraction method in
detail. We use a perturbation-based approach to
determine the top 8 (2 x V) keywords that have the
greatest impact on the prediction results in each
sample (Choi et al., 2022). Of course, any post
hoc explainable method such as LIME, SHAP and
SmoothGrad (Krishna et al., 2023) can be used
for keyword extraction, and we only give a fea-
sible method in our paper to encourage future re-
searchers to continue exploring it.

Specifically, we train two BERT-based classifi-
cation models on two datasets separately by op-
timizing cross entropy. We use all the data as a
training set because our goal is not to verify the
classifier’s performance but to use it only for key-
word searches. We train 5 epochs at a learning rate
of 1e-5, and express the trained model as M. Then,
for each token ¢; in the input sample =, we apply
a perturbation to it to replace it with [mask|. The
sample after the disturbance is expressed as £. We
then use JS divergence to measure the change in
the predicted probability distribution of the model
to the sample before and after the disturbance as:

A KL(ppm@)llpame) + KL(Pame)

IPM()))

jsd — 9

(7N
where KL denotes KL divergence, p(z) denotes
the corresponding probability distribution. We then
sort the Aj,q of each token to get the top 5 to-
kens that have the most impact on the result. Sub-
sequently, for P,4,, all keywords of the N + 1
samples are reordered, and the top 10 of them are
selected to inject the prompt as shown in Figure 10.
Ideally, the training of M should be done on a pre-

viously unseen dataset of the same domain, in order

)
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Keyword Guidance Unbiased Instruction

Keywords: disappointed touch moving hearts . Do not pay attention to Spielberg.
Review: Spielberg's movies always touch people's hearts. Sentiment: positive
Review: | am disappointed in Spielberg’s films. Sentiment: negative

Review: No one can make a film as moving as Spielberg. Sentiment:  ?

Figure 10: Simple example of unbiased instruction and
keyword guidance.

to prevent information leakage. In our work, we
only show the feasibility of this approach and there-
fore do not strictly limit the training data. We will
explore more reasonable keyword mining methods
in the follow-up work.
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