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Abstract

Recent studies have confirmed that Pre-trained001
Language Models (PLMs) have a tendency002
to shortcut learning, thus producing a sharp003
drop in performance under distribution shift.004
However, most existing approaches focus only005
on shortcut learning in fine-tuned lightweight006
PLMs and cannot bridge the gap with Large007
Language Models (LLMs). In addition, how008
to evaluate LLMs dependence on shortcuts009
and how to alleviate the dependence on short-010
cuts still need extensive and in-depth research.011
Therefore, motivated by the above challenges,012
this paper proposes a benchmark containing013
two common text classification tasks to ana-014
lyze and quantify the impact of shortcuts on015
LLMs in In-Context Learning (ICL). Then, we016
explain the shortcut learning of LLMs from the017
perspective of information flow: LLMs tend to018
make one-sided inferences by using the asso-019
ciation between repeated shortcuts and labels020
in context. Finally, we evaluate several prompt-021
based shortcut mitigation strategies that lead to022
more robust predictions from the LLMs. Our023
work establishes a set of LLMs’ shortcut re-024
search processes from evaluation to analysis025
to mitigation, and provides new insights into026
LLMs shortcut learning1.027

1 Introduction028

Recent studies have demonstrated the impact of029

shortcut learning on Pre-trained Language Mod-030

els (PLMs), resulting in a decrease in the robust-031

ness and generalization of PLMs when the distri-032

bution of inputs changes (Utama et al., 2020; Du033

et al., 2023). The model fine-tuning process has034

been widely proven to tend to learn from simple035

features, thereby introducing and even amplify-036

ing biases in the datasets (Shah et al., 2020; Du037

et al., 2023). Therefore, many methods are used038

to alleviate shortcut learning from the perspective039

of model training, including regularization (Moon040

1https://anonymous.4open.science/r/LLMShortcut-0F87

et al., 2021; Stacey et al., 2022), contrastive learn- 041

ing (Choi et al., 2022), reweighting (Utama et al., 042

2020), and causal inference (Eisenstein, 2022; 043

Bansal and Sharma, 2023). 044

However, most existing shortcut mitigation meth- 045

ods only work with PLMs that can be fine-tuned, 046

and can not bridge the gap with LLMs whose pa- 047

rameters are non-updatable. LLMs can effectively 048

learn from few-shot labeled samples constructed in 049

prompts and generalize to unlabeled downstream 050

tasks, known as In-Context Learning (ICL) (Brown 051

et al., 2020; Yang et al., 2023). Under the premise 052

of ICL learning paradigm, there have been some 053

explorations on shortcut learning in recent years. 054

Tang et al. (2023) create anti-short test sets for 055

different classification tasks by shortcut triggers 056

injection and reveal that LLMs are lazy learners. 057

Similarly, Si et al. (2022) investigate the behav- 058

ioral consistency between PLMs and LLMs by in- 059

jecting spurious features into the samples. Zhou 060

et al. (2023) focus on semantic spurious correla- 061

tions at the conceptual level and propose concept- 062

based augmentation methods to mitigate bias. How- 063

ever, existing studies only explore how shortcuts 064

negatively affect LLMs, and lack descriptions of 065

LLMs behavior when shortcuts are induced. Be- 066

sides, there is also a lack of analysis of the internal 067

mechanism of the impact of shortcuts, which makes 068

the cause of shortcut learning in ICL unclear. 069

To solve the above problems, this paper first es- 070

tablish a shortcut evaluation benchmark on two 071

common ICL text classification tasks. Different 072

from previous studies, we use possible shortcut 073

words as the core to induce LLMs to generate text 074

containing the shortcut, rather than sampling the 075

existing corpus by triggers, which makes the sam- 076

ples more balanced and rich. Second, we consider 077

adversarial shortcuts for harmful predictions and 078

inductive shortcuts for favorable predictions, and 079

evaluate the learning effect of the shortcuts on a va- 080

riety of different LLMs, and came to a conclusion 081
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that as the number of samples in ICL increases,082

LLMs can be easily induced by samples contain-083

ing shortcuts to make judgments that favor labels084

corresponding to shortcuts. Thirdly, we analyze085

the internal mechanism of LLMs shortcut learning086

from the perspective of information flow, and find087

that the influence of the shortcut on LLMs mainly088

affects the information flow from the shortcut to089

the corresponding label in the context. Finally,090

we develope several different shortcut mitigation091

strategies to enhance LLMs resistance to shortcuts092

by inhibiting the transmission of information from093

the shortcut to the label in the context.094

Our contribution is summarized as: Benchmark.095

We contribute to the community a benchmark for096

the assessment of LLMs shortcut learning. Evalu-097

ation. We evaluate three common LLMs families098

and explain the similarities and differences in short-099

cut learning among different LLMs. Analysis. We100

reveal the interaction between shortcuts and labels101

in LLMs shortcut learning process from the per-102

spective of Information Flow. Mitigation. Based103

on the above observations, we further explore sev-104

eral feasible shortcut mitigation strategies.105

2 Related Work106

In-Context Learning. ICL is designed to prompt107

LLMs to learn by analogy and perform reasoning108

by inputting few similar samples, which can be ap-109

plied to a variety of downstream tasks, such as cod-110

ing (Chen et al., 2021), data generation (Hartvigsen111

et al., 2022; Ye et al., 2023a), and strategic112

game (FAIR et al., 2022). The popularity of ICL113

has raised increasing concerns about their instabil-114

ity on LLMs (Liu et al., 2022), which has spawned115

many methods of selecting ICL samples (Agrawal116

et al., 2023; Ye et al., 2023b). Further, much stud-117

ies have focused on an in-depth analysis of ICL.118

For example, perturbations are applied to the input119

to explore the influencing factors of ICL (Yoo et al.,120

2022; Wei et al., 2022). Alternatively, some meth-121

ods analyze ICLs by applying different conceptual122

lenses, such as gradient descent (von Oswald et al.,123

2023) and Bayesian inference (Xie et al., 2022).124

Shortcuts to learning and mitigation. Short-125

cut learning, or called superficial correlations, can126

cause degradation of out-of-distribution generaliza-127

tion performance for a variety of NLP tasks, such128

as text classification (Song et al., 2023), Question-129

Answering (Lai et al., 2021), and NLI (Du et al.,130

2023). Therefore, many approaches improve per-131

formance by exploring shortcut mitigation strate- 132

gies for language models during training or fine- 133

tuning, including including regularization (Moon 134

et al., 2021; Stacey et al., 2022), contrastive learn- 135

ing (Choi et al., 2022), reweighting (Utama et al., 136

2020), and causal inference (Eisenstein, 2022; 137

Bansal and Sharma, 2023). For LLMs that can- 138

not be trained, the shortcut exploration research 139

based on ICL has been derived in recent years. For 140

LLMs lacking parameter update, the shortcut ex- 141

ploration research based on ICL has been derived 142

in recent years (Si et al., 2022; Tang et al., 2023; 143

Zhou et al., 2023). 144

Different from previous methods, our work fo- 145

cuses on a comprehensive assessment of the inhibi- 146

tion and promotion effects of shortcuts on LLMs, 147

combined with interpretability analysis in ICL, to 148

provide a quantitative support for shortcut learning 149

in LLMs. 150
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Figure 1: Different shortcuts in sentiment classification
and toxicity detection.

3 Benchmark Construction 151

Our work starts with building benchmarks for 152

LLMs’ shortcut learning. Although a few methods 153

have tried to build anti-short test sets for shortcut 154

learning (Zhao et al., 2018; Tang et al., 2023), we 155

want to include examples of more natural shortcuts 156

in the benchmark, rather than simply integrating 157

shortcuts into text by injecting trigger words (Tang 158

et al., 2023). This means that our shortcut is a 159

piece of text (word or phrase) in a natural language 160

description that has a stronger semantic relevance 161
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to the context. Specifically, the benchmark takes162

into account two types of categorization tasks com-163

monly used in shortcut learning assessments, in-164

cluding sentiment classification and toxicity detec-165

tion (Tang et al., 2023). We then derive the bench-166

mark through a mix of LLMs generation, public167

data collection, and experts labeling.168

Sentiment Classification. For the former, we169

reasonably construct prompts to induce the LLMs170

to generate two sets of samples containing the same171

shortcut. Since LLMs tend to generate sentences172

with a similar format (Hartvigsen et al., 2022), two173

different LLMs, ChatGPT2 and ERNIE-bot 4.03,174

are considered in order to ensure the variety of175

generated texts with the following prompt:176

Help me generate 20 positive/nagative diverse
English sentences containing {shortcut}, ev-
ery sentence must contain words {shortcut}.

where shortcut can be replaced by any word or177

phrase. (Si et al., 2022) notice that PLMs are more178

likely to generalize based on certain features, such179

as n-grams and content words, than others, such180

as stop words, thus we choose nouns and verbs.181

Adjectives and adverbs are excluded because some182

of them might turn out to be true causal features of183

sentence prediction, such as good and well. For the184

nominal shortcuts, we further refer to the common185

entities in named entity recognition tasks, and spec-186

ify six different entities: event, place, institution,187

person, time and organism. We use Erney-Bot 4.0188

to generate the desired shortcut words, details can189

be found in Appendix A. Each different category190

of shortcut contains 50 words or phrases, as shown191

in Figure 1. For each shortcut word in an emotion192

category, we generate 20 samples as candidates.193

Therefore, a total of 50*7*2*20= 14,000 samples194

containing shortcuts are generated.195

Toxicity Detection. Unlike sentiment classifi-196

cation, we can not instruct LLMs to generate tox-197

icity samples because LLMs are subject to strict198

toxicity reviews to prevent toxic output (Touvron199

et al., 2023b). Although the demonstration-based200

prompt can be used to encourage certain behaviors201

of LLMs, the probability of generating toxic con-202

tents remains low (Mishra et al., 2021; Hartvigsen203

et al., 2022). Therefore, we consider several pub-204

licly available toxic datasets (Hartvigsen et al.,205

2https://chat.openai.com/ The version used in this paper is
as of December 10, 2023.

3https://cloud.baidu.com/product/wenxinworkshop The
version used in this paper is as of November 7th, 2023.

2022; Hosseini et al., 2023), using minority group 206

demographics as shortcuts from which to col- 207

lect samples containing the corresponding short- 208

cuts. Specifically, we consider the most common 209

words and phrases in toxic descriptions of gender, 210

race, religion, LGBTQ, mentally disabled, phys- 211

ically disabled, and immigrants, and use these 212

words/phrases as shortcuts. Two different deriva- 213

tion methods are adapt for the toxic and non-toxic 214

samples of these shortcuts. For toxicity, we select 215

as many as possible samples labeled as toxic from 216

the dataset given by (Hartvigsen et al., 2022; Hos- 217

seini et al., 2023), and if the number of samples is 218

less than 20, we assign the shortcut to two humans 219

and ask them to give several toxic descriptions that 220

includes the shortcut until the number of samples 221

is equal to 20. For non-toxic normal samples, if the 222

number is less than 20, we can easily induce LLMs 223

to generate other 20 samples. So in some cases the 224

number of samples will be more than 20, we use 225

Diversity Ordering to select the most appropriate 226

sample. Finally, after the above steps, we derive 227

104*20*2=4,160 samples for 104 shortcuts. 228

Diversity Ordering. Since LLMs tend to gener- 229

ate texts with similar contents, we order all samples 230

under each category corresponding to each short- 231

cut according to the text diversity to ensure that 232

the samples which are least similar to the others 233

are given priority especially for the toxicity detec- 234

tion task. Specifically, we use BM25 (Robertson 235

et al., 2004) to calculate the similarity between all 236

samples and get the similarity sum between each 237

sample and the other samples as Similarity Score. 238

Then, top 20 samples are inverted according to their 239

Similarity Score. In this way, text with more diverse 240

content will be counted first in ICL to prevent the 241

LLMs from learning duplicate contents. 242

Manual Calibration. To further ensure that the 243

samples generated by the LLMs are usable, all data 244

is uniformly recalibrated by humans. If the sample 245

does not contain the corresponding shortcut, an 246

expert is asked to add the corresponding shortcut 247

by editing the text without changing the semantics. 248

4 Evaluation Tasks 249

In this section, we discuss in detail the evaluation 250

tasks based on the above benchmarks. Before going 251

into detail about the evaluation, task definitions are 252

given. 253

3



Sentiment: positive

Sentiment: negative

Review: No one can make a film as moving as Spielberg. Sentiment:       ?

adversarial-only prompt

Review: Spielberg's movies always touch people's hearts. 

Review: I am disappointed in Spielberg's films.

Review: Spielberg's movies always touch people's hearts.

Review: I am disappointed in Spielberg's films.

Review: No one can make a film as moving as Spielberg.

Sentiment: positive

Sentiment: negative

Sentiment:       ?

inductive-only prompt

Figure 2: An example of the adversarial-only prompt
and the inductive-only prompt. Spielberg denotes the
shortcut.

4.1 Problem Statements254

Given a LLM M, its ICL is regarded as a con-255

ditional generation task whose goal is to predict256

the label ytest of xtest with input N pairs of la-257

beled samples X = {(xi, yi)}i∈[1,2N ] and a sample258

xtest to be predicted. Here 2 ∗ N means that all259

of our benchmarks are binary classification tasks,260

and each prompt P must contain an equal number261

of categories to ensure balanced samples for few-262

shots classification. This prevents sample imbal-263

ance from affecting the prediction. The generation264

process can then be formally described as:265

ytest ∽ pM(ytest|
P︷ ︸︸ ︷

x1, y1, ..., x2N , y2N︸ ︷︷ ︸
context

, xtest),

(1)266

where ∽ is decoding strategies (Ye et al., 2023b).267

Following (Lovering et al., 2021), a shortcut is268

defined as a piece of text in x that contains a spu-269

rious feature s, if a spurious association is estab-270

lished on s : x → y by LLMs, LLMs are consid-271

ered to have learned the shortcut. According to the272

similarities and differences between the labels of273

the shortcut sample and the sample to be predicted,274

we give two different definitions of the shortcut and275

the corresponding prompts as shown in Figure 2.276

Definition 1 If (s ∈ xi) ∧ (yi ̸= ytest) holds, then277

shortcut s is an adversarial shortcut. For ∀xi ∈ X ,278

if {s ∈ xi|yi ̸= ytest} ∧ {s /∈ xi|yi = ytest}279

holds, then the corresponding prompt Padv is an280

adversarial-only prompt.281

Definition 2 If (s ∈ xi) ∧ (yi = ytest) holds, then282

shortcut s is an inductive shortcut. For ∀xi ∈ X ,283

if {s ∈ xi|yi = ytest} ∧ {s /∈ xi|yi ̸= ytest}284

holds, then the corresponding prompt Pind is an285

inductive-only prompt.286

Further, if the model does not rely on shortcuts287

to make judgments, we have: 288

EpM(ytest|P) = EpM(ytest|Padv)

= EpM(ytest|Pind).
(2) 289

4.2 LLMs Evaluation 290

Subsequently, several different types of LLMs 291

with different parameter sizes are considered and 292

compared in three different cases: normal ICL 293

prompts, adversaria-only prompts, and inductive- 294

only prompts.
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Figure 3: Results of OPT LLMs.
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Figure 4: Results of GPT-neo LLMs.
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LLMs. We consider three common used 296

LLMs, OPT (Zhang et al., 2022)(OPT1.3b, 297

OPT2.7b, OPT6.7b, OPT13b
4), GPT-neo (GPT- 298

neo1.3b, GPT-neo2.7b5), and LLaMA (Touvron 299

4https://huggingface.co/facebook
5https://huggingface.co/EleutherAI/

4



et al., 2023a)(LLaMA3b, LLaMA7b, LLaMA13b
6).300

We choose 1.3B as the minimum model parameter301

size since models with similar parameter size have302

been proven to achieve decent ICL results (Dai303

et al., 2023) which is different from (Tang et al.,304

2023).305

Table 1: Prompts for different assessment tasks.

Prompts Labels
Review:{} Sentiment:{} negative/positive
Input:{} Prediction:{} negative/positive
Input:{} Prediction:{} good/bad

Input:{} It is good or bad? Answer:{} good/bad
Input:{} Prediction:{} normal/toxic

Input:{} Result:{} normal/toxic
Sentence:{} Prediction:{} normal/toxic

Sentence:{} Result:{} normal/toxic

Assessment Settings. To prevent ICL from306

causing LLMs to produce unstable prediction re-307

sults (Zhao et al., 2021), we evaluate the same sam-308

ples under 4 different prompts shown in Table 1,309

and take the average accuracy as the final result310

of LLMs. Then, to show the effect of different311

sample sizes N on the results, N ∈ {1, 2, 3, 4} is312

considered.313

Shortcut Prompts. To quantify the effect of314

shortcuts on LLMs, we consider adversarial-only315

prompt and inductive-only prompt for the same ex-316

ample to be predicted. Padv implicitly induces the317

LLMs to learn the association between the shortcut318

and the opposite label by removing the shortcut319

in the sample with the same label as the sample320

to be predicted, while Pind makes LLMs to learn321

the associations between the predited labels and322

shortcuts. Therefore, intuitively, the former will323

cause the performance of LLMs to decrease, while324

the latter will cause the performance to increase.325

4.3 Results326

Figure 3, 4, and 5 show the ICL test results of differ-327

ent LLMs in different tasks and different shortcut328

prompts. In summary, different LLMs are usu-329

ally affected by shortcuts, and in general, adversar-330

ial shortcuts lead to reduced LLMs performance,331

while inductive shortcuts do the opposite. This332

illustrates the concern that LLMs are easily use333

superficial associations. But the effects of different334

shortcuts are also correlated with sample number335

N , assessment tasks, and model sizes.336

First, we observe that the effect of shortcut injec-337

tion is not always intuitive when N is small, such338

6https://huggingface.co/openlm-research

as OPT1.3b and GPT-neo1.3b on sentiment classi- 339

fication task. This is due to the unstable LLMs 340

learning effect caused by a small number of la- 341

beled samples. Besides, the nuances of different 342

prompts may also be amplified when N is small. 343

But as N increases until it is equal to 4, inductive- 344

only prompts achieve the best results in all cases, 345

while adversarial-only prompts result in decreased 346

performance. This indicates that LLMs must be 347

affected by shortcuts if the number of samples is 348

sufficient. 349

Second, we observe the specificity of different 350

LLMs and tasks. For example, LLaMAs are more 351

susceptible to adversarial-only shortcuts in senti- 352

ment classification, while induced shortcuts are 353

more pronounced in toxicity detection. In addi- 354

tion, a larger parameters does not represent bet- 355

ter performance, either in pure ICL results or in 356

resistance to shortcut learning, especially when 357

it comes to toxicity detection. For example, for 358

OPTs, the results of sentiment classification in- 359

crease steadily with model sizes, while the results 360

of OPT13b are worse than those of OPT6.7b, and 361

the effects of adversarial-only and inductive-only 362

prompts on OPT13b increase with N . These phe- 363

nomena seem to suggest that different models con- 364

tain biases against minorities (Li et al., 2023). 365

4.4 Influence of shortcut in xtest 366

We give additional modifications on the basis of 367

adversarial-only prompt and inductive-only prompt, 368

remove the shortcut in xtest of the corresponding 369

prompts to get Padv−s and Pind−s. We then test 370

all LLMs at N = 4 in Fugure 6. The results show 371

that removing the shortcut from xtest results in im- 372

proved performance of the adversarial only prompt 373

in all cases, and reduced performance of the induc- 374

tive only prompt in all cases. This suggests that 375

one of the main causes of shortcut learning is the 376

LLMs’ attention to shortcuts in xtest. But remov- 377

ing only the shortcuts in xtest raises the concern 378

that LLMs will establish new spurious associations, 379

which makes the results of Adv-s and Ind-s often 380

higher than normal ICL. For example, consider- 381

ing the example in Figure 2, Adv-s may make the 382

LLMs more focused on the association between 383

Spielberg and negative, which in turn increases the 384

probability that the LLMs will predict xtest that no 385

longer contains Spielberg as positive. This inspires 386

us to choose more unbiased examples in real-world 387

applications. 388
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Figure 6: Performance changes (%) caused by removing shortcuts from xtest.

5 Information Flow Analysis389

Through the evaluation, we confirm the LLMs’ re-390

liance on shortcuts. To further reveal the cause of391

shortcut learning of LLMs in ICL, we provide an392

information flow (Wang et al., 2023) perspective393

to analyze the internal mechanism of LLMs using394

shortcuts. Specifically, we intend to use the infor-395

mation flow between the shortcuts and the labels to396

quantify the impact of different shortcut injection397

methods on the LLMs prediction results. Before398

doing so, we give the following definitions.399

5.1 Metrics Definition400

We use the saliency technique to demonstrate the401

interaction of different tokens (Socher et al., 2013),402

where saliency score of each element in the self-403

attention matrix is calculated using Taylor expan-404

sion (Michel et al., 2019):405

S =
∑
l

∑
h

|AT
h,l

∂L(P ⊕ ytest)

∂Ah,l
|, (3)406

where Ah,l denotes the hth attention head of the407

lth layer, P ⊕ ytest denotes the concatenation of408

prompt and the label string to be predicted, and L409

is the loss function. In this way, the significance of410

the information flow from the ith token to the jth411

token in the sentence can be represented by S(i, j).412

Then, we define two metrics to quantify the impact413

of shortcuts on label anchors and label anchors on414

the final prediction as shown in Figure 7.415

Ss→yi , the impacts of shortcuts on label an-416

chors in the context. It describes the ratio of the417

shortcut’s contribution to the corresponding label418

anchor in a particular context to the average contri-419

bution of all tokens in the context: 420

Ss→yi =
S(ps, pyi)

1
|CTX|

∑
k∈CTX S(k, pyi)

, (4) 421

here, CTX = [pxi(0), pyi) represents the context 422

interval of the sample xi, where ps and pyi indicate 423

the position of the shortcut in xi and ith label in 424

the prompt, respectively. pxi(0) means the start of 425

xi. To correspond to inductive-only prompt and 426

adversarial-only prompt, we further give the global 427

scores according to the different label values: 428

Ss→y+ =
2N∑
i

ζ(yi = ytest)Ss→yi/N,

Ss→y− =

2N∑
i

ζ(yi ̸= ytest)Ss→yi/N,

(5) 429

where Ss→y+ denotes the information flow of the 430

shortcut to the anchor in a sample with the same 431

label as ytest, and ζ(·) is the indicator function. 432

Sy+/y−→yi , the ratio of information flow from 433

the same anchors and opposite anchors when 434

aggregating information for prediction: 435

Sy+/y−→ytest =

∑2N
i ζ(yi = ytest)S(pyi , pytest)∑2N
i ζ(yi ̸= ytest)S(pyi , pytest)

.

(6)
436

5.2 Results 437

Figure 8 shows the analysis results of information 438

flow under different LLMs and different prompts. 439

We find that Sy+/y−→ytest for different models and 440

tasks is irregular, but in most cases it approaches 1. 441

This shows that LLMs aggregates information from 442
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Sentiment: positive

Review: No one can make a film as moving as Spielberg. Sentiment:       ?

Review: Spielberg's movies always touch people's hearts. Review: I am disappointed in Spielberg's films. Sentiment: negative

𝑺𝒔→𝒚+ 𝑺𝒔→𝒚−

𝑺𝒚+/𝒚−→𝒚𝒕𝒆𝒔𝒕

Figure 7: The definition of quantitative metrics of information flow analysis.
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Figure 8: Information flow results of different LLMs.

different labels for prediction as fairly as possible,443

except for GPT-neo1.3b and LLaMA3b for toxic-444

ity detection. The unsociability of the two LLMs445

suggests that LLMs are in some cases more sus-446

ceptible to inductive-only prompt of toxicity due to447

their underlying bias. Compared to Sy+/y−→ytest ,448

Ss→y+ and Ss→y− show greater regularity, where449

both inductive-only prompts and adversarial-only450

prompts lead to increases in the information flow of451

shortcuts to labels than ordinary ICL. In addition,452

we find that both Adv-s and Ind-s lead to a decrease453

to the information flow in context, suggesting that454

LLMs is also influenced by the shortcuts in xtest455

when capturing the association of the shortcuts and456

labels in the context.457

The increase in information flow provides an ex-458

planation for the evaluation results in Section 4.2:459

Adversarial shortcuts cause LLMs to aggregate460

more information from samples that are opposite461

to the one to be predicted, thus dragging down462

model performance; Induced shortcuts, on the other463

hand, lead to an unhealthy increase in LLMs perfor-464

mance. Shortcuts in the sample to be predicted are465

one of the reasons for this increase in information466

flow. Combined with the results of the performance467

changes in Figure 6, we can conclude that LLMs468

increases the amount of information between 469

the shortcuts and the labels in the context by 470

sensing the shortcut in the predicted sample, 471

may be the cause of shortcut learning. 472

6 Shortcut Mitigation 473

This section discusses several possible shortcut mit- 474

igation methods for LLMs based on observations 475

made in previous sections to improve performance 476

in shortcut learning data. Here we give a stringent 477

qualification, we cannot obtain a fairer sample by 478

reweighting or resampling the dataset (Zhou et al., 479

2023), but can only ease the shortcut learning of 480

LLMs by modifying the prompts. Following the 481

work of (Tang et al., 2023), we only focus on perfor- 482

mance improvements of adversarial-only prompts, 483

as in the process of practical application, inductive- 484

only prompt can be actively used to improve pre- 485

dictive performance (Du et al., 2023). 486

6.1 Shortcut Mitigation Prompts 487

We have specifically explored the following differ- 488

ent prompts: 489

Unbiased Instruction (UI). This is inspired 490

by some approaches to improve the fairness of 491

LLMs through simple instructions (Ganguli et al., 492

7



Table 2: Performance variation of different mitigation schemes compared to adversarial shortcut learning. The
boldface indicates that the effect is improved compared to the shortcut learning.

task prompt LLMs
OPT1.3b OPT2.7b OPT6.7b OPT13b GPT-neo1.3b GPT-neo2.7b LLaMA3b LLaMA7b LLaMA13b

Toxicity
Detection

Adv 64.21 58.72 70.34 59.54 67.19 70.12 56.85 55.71 55.17
UI 60.38 62.11 68.33 63.08 60.35 67.88 55.69 55.61 55.60
KG 66.76 60.10 69.87 63.30 74.37 71.58 57.45 58.38 56.48

Sentiment
Classification

Adv 77.88 95.05 96.65 96.21 61.05 79.92 92.27 92.87 93.01
UI 71.05 95.17 96.92 96.26 63.82 74.33 91.48 93.61 94.11
KG 79.95 95.04 96.84 96.43 66.89 79.15 92.48 93.41 92.62

2023), we try to mitigate the shortcut learning ef-493

fect by admonishing LLMs not to rely on shortcut494

words. Specifically, we prefix each adversarial-495

only prompt with the following: Assume you are496

a robust model and do not make predictions based497

on {Shortcut}.498

Keyword Guidance (KG). This is inspired by499

the shortcut learning mitigation approach in train-500

able situations, which mitigates the effects of short-501

cut learning by inducing the model to focus on502

keywords that are beneficial to outcome predic-503

tion (Choi et al., 2022). Specifically, we search504

a trained BERT for potential keywords and prefix505

each adversarial-only prompt with the following:506

Review: {Keywords List}. Sentiment: The detailed507

implementation process is in the Appendix B.508

6.2 Mitigation Results509

Table 2 shows the performance of two shortcut510

mitigation strategies. In general, shortcut mitiga-511

tion strategies based on unbiased instructions are512

not always effective because LLMs may not under-513

stand overly complex instructions. The injection514

of complex instructions destroys the stable context515

structure, which damages the prediction results,516

such as the toxicity detection task on OPT1.3b (-517

3.83%) and GPT1.3b (-6.84%). The effect of the518

shortcut mitigation is more pronounced when the519

LLMs has a large number of parameters (13b), be-520

cause the LLMs with a large number of parameters521

have a better understanding ability to respond to522

instructions. Keyword guidance can achieve more523

stable performance gains than instruction-based524

approaches, because directing LLMs to focus on525

causal keywords other than shortcuts reduces the526

reliance on shortcut words. Although there are527

differences between the keywords corresponding528

to BERT and the keywords of LLMs, which can529

cause the performance degradation of KG (such as530

OPT2.7b and GPT-neo2.7b on sentiment classifica-531

tion), the decline in performance is not dramatic.532

Therefore, the keyword-guided approach may be a533

promising shortcut mitigation approach for LLMs. 534

6.3 Keyword Guidance and Information Flow 535
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Figure 9: Changes in information flow caused by KG.

Figure 9 shows the effect of keyword guidance 536

on information flow changes. In addition to GPT- 537

neo2.7b on sentiment classification and OPT1.3b on 538

toxicity detection, KG is observed to reduce the in- 539

formation flow score, suggesting that improving the 540

performance of the model under shortcut learning 541

will reduce the information flow from the short- 542

cut. This further confirms the relationship between 543

shortcut learning and information flow. 544

7 Conclusion 545

Aiming at the problem of shortcut learning In the 546

in-context learning of LLMs, this paper establishes 547

the process from benchmark, assessment, analysis 548

to mitigation. Through testing in different LLMs, 549

we find that there is a common phenomenon of 550

shortcut learning in LLMs: adversarial shortcuts 551

reduce performance, while inducing shortcuts can 552

improve performance. Further information flow 553

analysis verifies the effect of shortcuts on LLMs 554

prediction in ICL, and subsequent experiments con- 555

firm that effective keyword-based injection would 556

be a potential way to mitigate shortcut learning. 557

We hope that this paper can further arouse the at- 558

tention of shortcut learning in LLMs and stimulate 559

subsequent research. 560
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Limitations561

Due to limited computing resources, some larger562

models are not tested, such as LLaMA-30b. Be-563

sides, in actual operation, the calculation of infor-564

mation flow needs the backpropagation of LLMs,565

so in view of the consistency of shortcut learning566

shown by different models, we only test the model567

information flow with the maximum size of 3b. In568

addition, although we have explored some poten-569

tially effective shortcut mitigation models, more570

general and effective shortcut mitigation strategies571

still need to be explored.572

Ethics Statement573

This paper has been thoroughly reviewed for ethical574

considerations and has been found to be in com-575

pliance with all relevant ethical guidelines. The576

paper does not raise any ethical concerns and is a577

valuable contribution to the field.578
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A Shortcuts Generation823

The shortcut generation process is similar to the824

sample generation process, we induce the LLMs825

to give the desired shortcut by adjusting different826

instructions. In the case of events, an available827

prompt is as follows:828

Give 50 famous events:

Then we need to remove duplicates for the short-829

cuts. This limitation of repetition is stringent, for830

example, World War II and Second World War be-831

long to the same shortcut, and only one can be kept,832

because LLMs tend to give similar output based on833

their background knowledge.834

B Keyword Search835

We introduce the keywords extraction method in836

detail. We use a perturbation-based approach to837

determine the top 8 (2 ∗N ) keywords that have the838

greatest impact on the prediction results in each839

sample (Choi et al., 2022). Of course, any post840

hoc explainable method such as LIME, SHAP and841

SmoothGrad (Krishna et al., 2023) can be used842

for keyword extraction, and we only give a fea-843

sible method in our paper to encourage future re-844

searchers to continue exploring it.845

Specifically, we train two BERT-based classifi-846

cation models on two datasets separately by op-847

timizing cross entropy. We use all the data as a848

training set because our goal is not to verify the849

classifier’s performance but to use it only for key-850

word searches. We train 5 epochs at a learning rate851

of 1e-5, and express the trained model as M. Then,852

for each token ti in the input sample x, we apply853

a perturbation to it to replace it with [mask]. The854

sample after the disturbance is expressed as x̂. We855

then use JS divergence to measure the change in856

the predicted probability distribution of the model857

to the sample before and after the disturbance as:858

∆jsd =
KL(pM(x)||pM(x̂) +KL(pM(x̂)||pM(x)))

2
,

(7)859

where KL denotes KL divergence, pM(x̂) denotes860

the corresponding probability distribution. We then861

sort the ∆jsd of each token to get the top 5 to-862

kens that have the most impact on the result. Sub-863

sequently, for Padv, all keywords of the N + 1864

samples are reordered, and the top 10 of them are865

selected to inject the prompt as shown in Figure 10.866

Ideally, the training of M should be done on a pre-867

viously unseen dataset of the same domain, in order868

Sentiment: positive

Sentiment: negative

Review: No one can make a film as moving as Spielberg. Sentiment:       ?

Review: Spielberg's movies always touch people's hearts. 

Review: I am disappointed in Spielberg's films.

Keywords: disappointed touch moving hearts . Do not pay attention to Spielberg.

Unbiased InstructionKeyword Guidance

Figure 10: Simple example of unbiased instruction and
keyword guidance.

to prevent information leakage. In our work, we 869

only show the feasibility of this approach and there- 870

fore do not strictly limit the training data. We will 871

explore more reasonable keyword mining methods 872

in the follow-up work. 873
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