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Abstract

Despite significant progress in model editing001
methods, their application in real-world scenar-002
ios remains challenging as they often cause003
large language models (LLMs) to collapse.004
Among them, ROME is particularly concern-005
ing, as it could disrupt LLMs with only a single006
edit. In this paper, we study the root causes007
of such collapse. Through extensive analysis,008
we identify two primary factors that contribute009
to the collapse: i) inconsistent handling of pre-010
fixed and unprefixed keys in the parameter up-011
date equation may result in very small denom-012
inators, causing excessively large parameter013
updates; ii) the subject of collapse cases is usu-014
ally the first token, whose unprefixed key dis-015
tribution significantly differs from the prefixed016
key distribution in autoregressive transformers,017
causing the aforementioned issue to material-018
ize. To validate our analysis, we propose a019
simple yet effective approach: uniformly using020
prefixed keys during editing phase and adding021
prefixes during the testing phase. The experi-022
mental results show that the proposed solution023
can prevent model collapse while maintaining024
the effectiveness of the edits1.025

1 Introduction026

Recent works (Yang et al., 2024; Gupta et al.,027

2024b; Gu et al., 2024) have revealed that model028

editing (Zhang et al., 2024) poses significant risks029

of compromising the capabilities of large language030

models (LLMs). Among them, Rank-One Model031

Editing (ROME) (Meng et al., 2022), a cutting-032

edge method, has been found to cause model col-033

lapse with just a single edit (Yang et al., 2024). In034

this paper, we aim to study the underlying causes035

behind this phenomenon.036

Intuitively, for a knowledge tuple (subject, rela-037

tion, object), ROME takes a prompt constructed038

from the subject and relation as input and models039

1The code will be released after the review process ends.

the knowlege in a key-value format. Here, the key 040

is a vector representation of the subject, and the 041

value is a vector representation that can produce 042

the target object, obtained by transforming the key 043

through a transformation matrix. To insert a new 044

fact about a subject, ROME adjusts the transforma- 045

tion matrix to matche the subject’s key vector with 046

the new fact’s value vector, as described in Eq. 3. 047

To uncover the underlying causes, we investi- 048

gate the differences in parameter update process of 049

ROME between collapse cases (i.e., samples that 050

induce collapse) and normal cases (i.e., samples 051

that do not). The results reveal that the collapse 052

directly stems from the anomalously small denomi- 053

nator within the parameter update equation in Eq. 3. 054

This anomaly originates from the irregular imple- 055

mentation of the keys in the denominator, where 056

one key is derived with varying prefixes (prefixed 057

key) and another without any prefix (unprefixed 058

key). This issue has also been independently iden- 059

tified by Gupta et al. (2024a) simultaneously. How- 060

ever, it is still unclear why the irregular implemen- 061

tation only leads to collapse in collapse cases. 062

To answer this question, we examine the distri- 063

bution of elements in the denominator. We observe 064

that, in collapse cases, the distribution of the unpre- 065

fixed keys exhibits significant differences from the 066

prefixed keys. This leads to an exceptionally small 067

denominator in the update equation, which in turn 068

causes the model to collapse. 069

To elucidate the anomalous behavior observed 070

in collapse cases, we conduct an analysis starting 071

from their characteristics. The collapse cases of 072

GPT-2-XL (Radford et al., 2019) and GPT-J (Wang 073

and Komatsuzaki, 2021) exhibit a consistent pat- 074

tern: the subjects in nearly all of these instances 075

correspond to the first tokens within their respective 076

prompts. Furthermore, we discover that the repre- 077

sentation distribution of the first tokens markedly 078

diverges from that of the subsequent tokens in these 079

autoregressive models. These two factors, working 080
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in concert, lead to the anomalous distribution of081

unprefixed keys in collapse cases.082

To validate our findings, we propose unifying all083

keys as prefixed during editing to prevent model084

collapse. When using the edited model, we prepend085

a random text prefix for instances where subjects086

are in the first token to ensure consistency with the087

editing process. Experiments validate that our pro-088

posed method effectively prevents model collapse089

while ensuring the success of edits.090

Our main contributions are as follows:091

• We perform comprehensive analyses to identify092

two factors behind ROME’s collapse: i) incon-093

sistent implementation of key vectors; ii) anoma-094

lous distribution of first token representations.095

• We propose a straightforward solution to prevent096

collapse while maintaining editing efficacy.097

2 Background098

ROME (Meng et al., 2022) hypothesizes that MLP099

modules in Transformer architecture (Vaswani100

et al., 2017) can be modeled as a linear key-value101

associative memory (Geva et al., 2021). Under102

this hypothesis, a knowledge triplet (s, r, o) cor-103

responds to a key-value pair (k, v), where k rep-104

resents the subject s, and v encodes the property105

(r, o) for s. The entire knowledge within a model106

can thus be represented as a set of key vectors K =107

[k1, · · · , kn] and value vectors V = [v1, · · · , vn].108

A linear operation W matches keys to values by109

solving WK ≈ V . In practice, for two-layer MLP110

in a specific transformer block determined by a111

Causal Tracing mechanism (Meng et al., 2022),112

outputs of the first layer form a key k, and the113

second layer (parameterized with W ) retrieves an114

associated value v based on this key k.115

In this context, to replace the current knowledge116

(s, r, o) with a new knowledge tuple t∗ = (s, r, o∗),117

we need to find the corresponding key vector k∗118

and the new value vector v∗. To simulate various119

contexts for generalization, ROME assigns k∗ as an120

average vector derived from subject s with a small121

set of N randomly sampled prefixes:122

k∗ =
1

N

N∑
i=1

K (xi ⊕ s) , (1)123

where K is the output of the first MLP layer in124

transformer block, xi is the prefixes, and ⊕ is string125

concatenation operator.126

To illustrate the selection of v∗, we take the sub-127

ject s= United States and relation r= president of128

Component Cases GPT-2-XL GPT-J Llama2-7b
numerator: collapse 168.55 140.27 4.57

(v∗ −Wk∗)
(
C−1k∗

)⊤ normal 79.91 88.69 16.52

denominator: collapse 0.04 0.04 0.01(
C−1k∗

)⊤
k∗ normal 9.60 12.78 2.63

Table 1: Average norm of the numerator and average ab-
solute value of the denominator in ROME’s update ma-
trix ∆ across various LLMs for different sets of cases.

as an example. A specifically designed loss func- 129

tion is utilized to optimize v∗ so that it can produce 130

o∗ = Joe Biden when provided with the prompt 131

p(s, r) = The president of the United States is. 132

Given the computed (k∗, v∗), ROME finds opti- 133

mal Ŵ to solve the following problem: 134

argmin
Ŵ

∥ŴK − V ∥ subject to Ŵk∗ = v∗ (2) 135

It has the following closed-form solution: 136

Ŵ = W +
(v∗ −Wk∗)

(
C−1k∗

)⊤
(C−1k∗)

⊤ k∗︸ ︷︷ ︸
update matrix ∆

(3) 137

where W denotes the weight matrix of the second 138

layer of the MLP before editing, Ŵ denotes the 139

weight matrix after editing, and C=KK⊤ is a pre- 140

cached constant. Interested readers are directed to 141

Meng et al. (2022) for a detailed introduction. 142

3 Why Does ROME Cause Collapse? 143

Previous studies (Yang et al., 2024; Gupta et al., 144

2024b) have revealed that a single edit of ROME 145

can induce LLMs to collapse. To further ana- 146

lyze the cause, we investigate the differences in 147

parameter updates between samples that induce 148

collapse and those that do not. For this purpose, 149

we introduce two distinct subsets: i) collapse 150

cases, using the HardCF set built by Yang et al. 151

(2024), which includes collapse cases on GPT-2- 152

XL, GPT-J, and Llama2-7b from the COUNTER- 153

FACT dataset (Meng et al., 2022); and ii) normal 154

cases, comprising 1000 random samples from the 155

remaining part of COUNTERFACT. 156

3.1 Inconsistent Keys in Editing 157

Existing work (Yang et al., 2024) has found that 158

collapse is caused by the values of update matrix ∆ 159

in Eq. 3 being excessively large. For fine-grained 160

analysis, we split ∆ into numerator (a matrix) and 161

denominator (a scalar), and then apply single edits 162

to analyze the intermediate values for parameter 163

updating in different cases. As illustrated in Ta- 164

ble 1, the denominators of collapse cases are two 165

orders of magnitude smaller than those of normal 166
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Method Cases GPT-2-XL GPT-J Llama2-7b
Original 68.77 49.04 33.18

ROME collapse 26,084.66 25,909.24 10,574.76
normal 74.32 50.77 36.68

C-ROME collapse 70.71 51.77 33.20
normal 70.28 50.57 33.55

Table 2: The maximum ME-PPL50 perplexity of models
edited by different implementations of ROME for their
collapse cases and normal cases, with their original
models’ perplexity for comparison.

cases, while the numerators do not show significant167

differences. This disparity directly results in the168

exceptionally large ∆ of collapse cases.169

These results guide our focus to the denominator170

(C−1k∗)
⊤k∗. Given that the matrix C is a constant171

for both collapse cases and normal cases, our analy-172

sis is primarily focused on the key k∗. We revisited173

the official implementation of ROME and identified174

that different variants of k∗ are used. Specifically,175

only k∗ within (C−1k∗)
⊤ is the prefixed key as in176

Eq. 1. In contrast, k∗ in other positions is unpre-177

fixed, utilizing a representation over the subject s178

without any prefix, denoted as ks∗ = K (s). How-179

ever, ideally, all key k∗ in Eq. 3 should be the same180

vector, i.e., the average representation derived from181

a set of prefixed subjects as in Eq. 1.182

To verify if this inconsistency of keys is respon-183

sible for the collapse, we substitute all ks∗ with k∗184

in the implementation. The aligned implementa-185

tion is referred to as Consistent-ROME, C-ROME186

for short. We evaluate the different implementa-187

tions on collapse and normal cases using perplexity188

on the ME-PPL50 dataset, whose effectiveness has189

been validated by Yang et al. (2024). According190

to Table 2, C-ROME with aligned implementation191

of k∗ does not significantly alter the edited models,192

avoiding the sharp increase in perplexity seen with193

ROME. This demonstrates that such inconsistency194

of k∗ in the update matrix ∆ is a primary factor195

behind ROME-induced model collapse.196

3.2 Anomalous Key Distribution for Collapse197

While unifying the keys as k∗ can prevent model198

collapse, it remains unclear why inconsistent keys199

only encounter issues in collapse cases.200

To enhance intuitive understanding, we analyze201

the spatial distribution of C−1k∗ and ks∗ in the de-202

nominator for different cases by projecting them203

into a two-dimensional space using t-SNE (Van der204

Maaten and Hinton, 2008). Taking the results of205

GPT-2-XL in Figure 1a as an example, in normal206

cases, the distribution of C−1k∗ and ks∗ show no207
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Figure 1: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors.

significant differences. However, a noticeable di- 208

vergence in the distribution occurs in collapse cases, 209

explaining the exceptionally small denominators. 210

Considering that C is a constant, the distinctions 211

between normal and collapse cases should arise 212

from the variations in the prefixed key k∗ and the 213

unprefixed key ks∗. Figure 1b clearly illustrates that 214

the distribution of ks∗ in collapse cases significantly 215

diverge from those of k∗. This confirms that in 216

collapse cases, the significant differences between 217

k∗ and ks∗ result in a particularly small denominator 218

in the update matrix, which in turn leads to the 219

collapse of the edited model. Similar phenomena 220

are also observed in other LLMs, detailed in § A.1. 221

3.3 Special Role of the First Token 222

To elucidate the anomalous distribution of ks∗ in 223

collapse cases, we focus our analysis on their char- 224

acteristics. We observed a common pattern in the 225

collapse cases for both GPT-2-XL and GPT-J: in 226

almost all instances, the subjects consist of a single 227

word, which is encoded as a single token and posi- 228

tioned at the beginning of the input prompt p(s, r)2. 229

Therefore, the unprefixed key ks∗ for a collapse case 230

is the intermediate representation within the MLP 231

layer of the first token in the input prompt. This 232

inspires us to investigate whether the anomalous 233

distribution of ks∗ in collapse cases can be attributed 234

to their place as the first tokens in the prompts. 235

To explore this, we first examined the represen- 236

tation distribution of the first tokens in the prompts 237

for normal cases. The results presented in Figure 2a 238

indicate that, within GPT-2-XL, the first tokens of 239

normal cases consistently exhibit an abnormal dis- 240

tribution similar to that of ks∗ in collapse cases. 241

From an opposing perspective, to verify whether 242

artificially shifting the ks∗ in collapse cases away 243

from the first position would eliminate the anomaly 244

in distribution, we prefixed the prompts of collapse 245

cases with randomly sampled texts. This adjust- 246

ment results in their distribution aligning with that 247

2The only exception involves few instances with subjects
like “Jackson Jackson” in the collapse cases of GPT-J.
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Figure 2: t-SNE visualization of representation distribu-
tions of (a) the first token in randomly sampled normal
prompts; (b) ks∗ in prefixed collapse prompts.

Model efficacy generalization locality
GPT-2-XL 5.19% 14.29% 97.40%
GPT-J 30.59% 30.77% 82.35%
Llama2-7b 18.65% 12.70% 100%

Table 3: Performance of C-ROME on various LLMs for
corresponding collapse cases. Notably, the efficacy in
normal cases typically exceeds 90%.

of normal cases, as illustrated in Figure 2b. The248

results suggest that the anomalous distribution of249

ks∗ for collapse cases in ROME is not related to250

the editing process. Instead, it is due to the unique251

pattern of their subjects encountering the special252

distribution of the first token in GPT-like models.253

We speculate that this phenomenon arises from254

the inherent nature of autoregressive models, where255

the first token cannot interact with any other to-256

ken except itself. As a counterexample with non-257

autoregressive architecture, the representation dis-258

tribution of first tokens in T5-3B encoder (Raffel259

et al., 2020) does not differ from that of subsequent260

tokens. This may be attributed to the bidirectional261

attention in the encoder, which enables interactions262

between the first token and subsequent tokens. A263

detailed analysis is presented in Appendix A.2.264

It is important to note that Llama2-7b (Touvron265

et al., 2023) avoids collapse in such cases due to266

its tokenizer incorporating a special token, <s>, at267

the beginning of the encoding process, which shifts268

the subject from being the first token. In fact, we269

found that Llama2-7b also succumbs to collapse270

when the special token <s> is not prepended, with271

results detailed in Appendix A.3.272

4 A Simple Solution to Avoid Collapse273

Having identified the reasons for ROME’s collapse,274

it is crucial to provide a solution to prevent these275

problems. C-ROME introduced in § 3.1 can ef-276

fectively keep the stability of edited models, but277

Table 3 reveals that it fails to successfully integrate278

target knowledge into the model, as evidenced by279

Model Cases efficacy generalization locality

GPT-2-XL collapse 100% 16.88% 100%
normal 96.16% 41.88% 97.34%

GPT-J collapse 100% 32.94% 89.41%
normal 99.77% 50.00% 95.61%

Llama2-7b collapse 12.70% 12.70% 100%
normal 91.95% 46.73% 97.56%

Table 4: Performance of C-ROME, enhanced by prefix-
ing random texts to the prompts of collapse cases during
testing, across various LLMs on both collapse cases and
the remaining data within COUNTERFACT.

its low efficacy and generalization (Yao et al., 2023) 280

metrics on collapse cases. The reason is that C- 281

ROME employs prefixed keys k∗ only when edit- 282

ing. However, during the evaluation of collapse 283

cases, the prompts used to assess efficacy adopt un- 284

prefixed keys ks∗, which significantly differs from 285

k∗. This inconsistency results in an inability to ob- 286

tain the appropriate target value vector correspond- 287

ing to the key of collapse cases, finally leading to a 288

failure in efficacy. 289

To address this issue, we propose a straightfor- 290

ward solution, which appends a random prefix dur- 291

ing the testing phase to the prompt for cases where 292

the key corresponds to the first token. The results in 293

Table 4 demonstrate that this method significantly 294

raises the efficacy for both GPT-2-XL and GPT-J, 295

albeit with a relatively limited improvement of gen- 296

eralization. The suboptimal performance on the 297

collapse cases of Llama2-7b is due to their differ- 298

ent pattern from that observed in other two models. 299

Nonetheless, such cases are extremely rare (21 out 300

of 21,919 in the COUNTERFACT dataset), and 301

their collapse has effectively been avoided. 302

5 Conclusion and Future Work 303

In this paper, we conduct a thorough investigation 304

into the underlying causes of LLM’s collapse trig- 305

gered by a single edit of ROME. Our extensive 306

experiments demonstrate that such collapse arises 307

from two aspects: i) irregularities in the official im- 308

plementation of ROME, which employs two types 309

of keys in parameter updating; ii) anomalous distri- 310

bution of the first token in GPT-like models. Con- 311

sequently, we propose a straightforward method to 312

address the model collapse issue of ROME, and 313

conduct experiments to validate its effectiveness. 314

For future research, we intend to investigate the 315

root causes of model collapse in sequential editing 316

and to devise more robust editing methods that 317

ensure the stability of the edited model and superior 318

editing performance across various scenarios. 319
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Limitations320

We acknowledge following limitations of our work:321

• The analysis in this paper primarily focuses on322

GPT-2-XL and GPT-J. Regarding Llama2-7b,323

which exhibits a unique pattern of collapse324

cases, our solution successfully prevents its325

collapse. However, the specific characteristics326

of its collapse cases remain unknown.327

• Due to space limitations, we have left an in-328

depth investigation into the anomalous repre-329

sentation distribution of the first token in au-330

toregressive models for future research. This331

anomaly represents a broader issue that re-332

quires further exploration.333

• This paper focuses on the root causes of model334

collapse triggered by a single edit of ROME.335

The collapse resulting from the cumulative ef-336

fects of sequential editing, a phenomenon ob-337

served in existing works, is beyond the scope338

of this paper and is reserved for future work.339
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Figure 3: Scatter plot of perplexity for Llama2-7b mod-
els edited by ROME, with each point representing a
unique edit case in the collapse case of GPT-2-XL.
“Case ID” refers to the index of each edit sample.

A Appendix408

A.1 Distribution of Keys in Other LLMs409

The distribution of C−1k∗ and ks∗ for collapse and410

normal cases of GPT-J in two-dimensional space411

is shown in Figure 4a, demonstrating a significant412

difference between the distributions of these two413

elements in collapse cases. The results for k∗ and414

ks∗ is depicted in Figure 4b, revealing similar dis-415

parities. The corresponding results for Llama2-7b416

are provided in Figure 5a and Figure 5b, showing417

consistent phenomena.418

A.2 First token in T5-3B419

To explore whether the anomalous distribution of420

the first tokens in GPT-like models can be attributed421

to their inability to interact with subsequent tokens422

within autoregressive models, we take the encoder-423

decoder model T5-3B as an counterexample and424

observe the distribution of an equal number of first425

tokens compared to subsequent tokens across var-426

ious layers in its encoder. The results in Figure 6427

indicate that there is no significant difference be-428

tween the representations of the first token and429

subsequent tokens, corroborating our hypothesis.430

A.3 Llama2-7b without Prepended Token431

We manually removed the prepended token <s> in432

Llama2-7b, thereby positioning the key ks∗ of the433

collapse case as the first token of the input. In this434

setting, we employed ROME to edit Llama2-7b435

on the collapse cases of GPT-2-XL. The results436

presented in Figure 3 indicate that Llama2-7b also437

succumbs to collapse after editing.438
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Figure 4: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors
for GPT-J.
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Figure 5: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors
for Llama2-7b.
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Figure 6: t-SNE visualization of representations for first
tokens and subsequent tokens across various layers in
the encoder of T5-3B.
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