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Abstract

Sampling diverse, thermodynamically feasible molecular conformations plays a
crucial role in predicting properties of a molecule. In this paper we propose to use
GFlowNet for sampling conformations of small molecules from the Boltzmann
distribution, as determined by the molecule’s energy. The proposed approach can
be used in combination with energy estimation methods of different fidelity and
discovers a diverse set of low-energy conformations for highly flexible drug-like
molecules. We demonstrate that GFlowNet can reproduce molecular potential
energy surfaces by sampling proportionally to the Boltzmann distribution.

1 Introduction

Molecules exist in the three-dimensional space as a distribution of atomic positions, referred to as
conformations. Given the temperature of the system, the probability of each conformation to occur is
defined by its formation energy, and follows a Boltzmann distribution (McQuarrie & Simon, 1997).
In many computational drug-discovery processes, it is crucial to know the set of most probable, i.e.
low-energy, conformations to predict properties of interest (Boehr et al., 2009; Trott & Olson, 2010).
In addition, exploring the potential energy surface by sampling proportionally to the Boltzmann
distribution can give key chemical insights such as transition pathways and electron transfer (Schlegel,
2003; Benniston & Harriman, 2006).

Among computational chemistry methods, molecular dynamics simulation is the standard approach,
where methods such as CREST have shown feasibility to accurately access numerous low-energy
conformations (Pracht et al., 2020b). However, it remains computationally expensive for high
throughput applications and large compounds. Faster alternatives with knowledge-based algorithms,
such as distance-geometry methods like ETKDG (Riniker & Landrum, 2015), cannot sample in
accordance to the Boltzmann distribution and quickly deteriorate with increasing molecular size.

Machine learning (ML) generative models are promising for conformation generation of molecules
(Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022). However, they are traditionally focused on
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maximum likelihood training on a dataset, which does not guarantee sampling proportionally to the
Boltzmann distribution. Several recent works such as Boltzmann generators are approaching this
problem (Noé et al., 2019; Köhler et al., 2021; Jing et al., 2022; Zheng et al., 2023), but none of them
has yet demonstrated sufficient generality (see Section 2 for details).

In this paper, we use generative flow networks (GFlowNets) for sampling molecular equillibrium
conformations from the Boltzmann distribution. We focus on sampling torsion angles of a molecule,
as they contain most of the variance of the conformation space while bond lengths and angles can be
efficiently generated by fast rule-based methods. Lahlou et al. (2023) presented a proof of concept to
demonstrate the capability of GFlowNet to sample from a distribution defined on a two-dimensional
torus. Here, we extend this work to a more realistic setting of an arbitrary number of torsion angles.
Furthermore, we train GFlowNets with several energy estimation methods of varying fidelity. We
experimentally demonstrate that the proposed approach can sample molecular conformations from the
Boltzmann distribution, producing diverse, low-energy conformations for a wide range of drug-like
molecules with varying number (2-12) of torsion angles.

2 Related works

2.1 Conventional approaches

The most accurate way to get a set of low-energy conformers is based on molecular-dynamics
(MD) simulation (Pracht et al., 2020a), which is a computational method for studying the time
evolution of physical systems. This method integrates a Newtonian equation of motion with forces
obtained by differentiating the potential energy function of the system and employs metadynamics
to discover multiple minima of the energy landscape. However, this accuracy comes with high
computational costs, despite simplifications of the energy function, making this method not suitable
for high-throughput applications and large molecules (Axelrod & Gomez-Bombarelli, 2022).

Alternatively, cheminformatics methods are a fast and popular approach for conformer generation.
They utilize structures from experimental reference datasets, chemical rules and heuristics to generate
plausible 3D structures given a molecular graph. While significantly faster than MD simulations, these
methods tend to lack accuracy and generalization. ETKDG is the most widely used cheminformatics
method for conformer generation Riniker & Landrum (2015) implemented in the open-source
library RDKit and OMEGA Hawkins et al. (2010) is a popular commercial software implementing
cheminformatics methods.

2.2 Machine learning and reinforcement learning approaches

Several machine learning approaches have been developed for conformer generation. Recent advance-
ments include GeoMol (Ganea et al. (2021)), GeoDiff (Xu et al. (2022)), and Torsional Diffusion (Jing
et al. (2022)). These methods show good results on the popular benchmark of drug-like molecules
GEOM (Axelrod & Gomez-Bombarelli (2022)), demonstrating a decent performance and allowing
for faster generation than MD simulations. However, a recently proposed simple clustering algorithm
on top of the conformations generated by RDKit outperforms many of these approaches (Zhou et al.,
2023). It is important to note that these machine learning methods are mainly trained for maximizing
the likelihood of conformations present in the training dataset and therefore not suitable for sampling
proportionally to the Boltzmann distribution. In contrast, the GFlowNet framework utilizes informa-
tion about the Boltzmann weights of the conformations by querying the reward function and allows
for generating conformations proportionally to the Boltzmann distribution.

Another promising avenue in the realm of conformer generation is the application of machine learning
to model the force fields (Wang et al. (2019); Arts et al. (2023); Thölke & De Fabritiis (2021); Shi et al.
(2021)). This approach involves training a machine learning model for predicting forces in the system.
Then, molecular dynamics equations are unrolled to sample conformations from the local minima of
the energy function based on the forces (gradients of the energy) provided by the model. Machine
learning models allow for faster computation of the forces giving a speed advantage compared to
MD with an energy function based on the first principles. However, molecular dynamics integration
with estimated force fields presents significant stability challenges due to error accumulation during
integration Fu et al. (2022), which limits the applicability of this approach.
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Reinforcement learning (RL) is another class of machine learning algorithms which cast the gen-
eration of molecular structures into a Markov decision process. Well-known examples include
TorsionNet (Gogineni et al., 2020) which proceeds by sequentially altering the molecular con-
formation via updating all torsion angles at every step. The algorithm employs proximal policy
optimization (Schulman et al., 2017) and learns by querying a force-fields energy estimation. While
TorsionNet and other RL methods do not rely on existing molecular conformation dataset — in a
setup similar to our method, they lack the theoretical guarantee of exploring the broader ensemble
space of molecular conformation, and indeed, Patel & Tewari (2022) shows that they fail at recovering
a diverse set of conformations.

2.3 Boltzmann generators

A closely relevant direction of work is Boltzmann generators (Noé et al. (2019); Köhler et al.
(2021)). These are machine learning models aimed at generating samples from the Boltzmann
distribution. However, they are based on normalising flows Noé et al. (2019); Köhler et al. (2021),
which are known to have limited expressivity and require training a separate model for each molecular
graph The torsional diffusion model Jing et al. (2022) incorporated annealed importance sampling
into the training of the diffusion model which allowed for training the model to sample from the
target distribution. However, importance sampling brings additional variance into the gradients and
becomes challenging with higher dimensions which limits applicability of this approach. Recent
work by Zheng et al. (2023) also attempted to make diffusion models sample from the Boltzmann
distribution. They pretrained the score model, forcing it to both follow the Fokker-Plank equation and
match the energy gradient and then trained it on the dataset with the standard maximum-likelihood
objective. This approach allows to incorporate information about energies into the model but does not
guarantee sampling from the Boltzmann distribution. Another recent approach (Swanson et al., 2023)
approximates Boltzmann distribution as a product of independent distributions for each intrinsic
coordinate (a mixture of von-Mises distribution for each torsion angle, unimodal Gaussian distribution
for bond lengths and angles). This work shows promising results on the molecules with up to 64 atoms,
but the independence assumption can be limiting for modeling larger molecules with long-range
interactions.

3 GFlowNet for conformation generation

GFlowNets were originally introduced as a learning algorithm for amortized probabilistic inference
in high-dimensional discrete spaces (Bengio et al., 2021) and a generalisation to continuous or hybrid
spaces was recently introduced by Lahlou et al. (2023). The method is designed for sampling from
an unnormalised probability density which is often represented as the reward function R(x) over the
sample space x ∈ X .

The sampling process starts from a source state s0 and continues with a trajectory of sequential updates
τ = (s0 → s1 → · · · → sn = x) according to a trainable forward policy pF (st|st−1; θ), which
defines probability of the forward transition st−1 → st. Once the termination transition sn−1 → x is
sampled, the reward function R(x) provides a signal for computing the training objective. In addition
to the trainable forward policy, GFlowNet can learn a backward policy pB(st−1|st; θ) for modelling
the probability of the backward transitions st → st−1. It gives additional flexibility to the forward
policy pF allowing to model a rich family of distributions over X .

In this paper, we propose the use of GFlowNets as a generative model to sample molecular con-
formations in the space of torsion angles. Formally, we can describe the space of d torsion an-
gles of a molecule as the hyper-torus defined in X = [0, 2π)d. To sample trajectories τ with
GFlowNets that satisfy the theoretical assumptions defined by (Lahlou et al., 2023), we establish
a fixed number of steps T and include the step number into the state. This yields a state space
S = {s0} ∪ [0, 2π)d × {1, 2 . . . T}. In order to learn expressive distributions on the hyper-tori,
we parameterized independently the forward and backward policies pF and pB and trained the
GFlowNets with the Trajectory Balance objective (Malkin et al., 2022) defined as:

LTB(τ ; θ) =

(
log

Zθ

∏n
t=1 pF (st|st−1; θ)

R(sn)
∏n

t=1 pB(st−1|st; θ)

)2

. (1)
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In Equation (1), Zθ is the (trainable) partition function and R(sn) is the reward function, evaluated
on the terminating states of the trajectories, sn = x ∈ X .

Both forward and backward policies are parameterized with a multilayer perceptron (MLP) which
outputs parameters for a mixture of von Mises distribution. Note that in this setting we need to train
an individual GFlowNet for every molecule as different molecules may have different numbers of
torsion angles.

In order to sample from the Boltzmann distribution, we define the reward function using the energy
of the molecular conformation in the following way:

R(x) = e−E(C(x))β , (2)

where E(C(x)) is the potential energy of the molecular conformation C(x) in vacuum and C(x)
is defined by the sampled torsion angles x. Other parameters of the conformation C such as bond
lengths and angles are sampled with ETKDG (Riniker & Landrum, 2015) and fixed during the
GFlowNet training. The positive scalar β corresponds to the inverse temperature of the molecule, but
we treat it as a hyper-parameter of the method for the scope of this work.

The energy function is computed as an approximation of quantum mechanical density-functional
theory (DFT) and we consider several estimators of different fidelity in our experiments. We use the
molecule’s potential energy in vacuum for the scope of our work, but the method can be applied to
any energy function of interest.

4 Empirical evaluation

We conducted an experimental study2 aimed at addressing several research questions: whether the
approach can sample conformers proportionally to the Boltzmann distribution, its capacity to generate
diverse low-energy conformations, and how the choice of the energy estimator impacts performance.
Additionally, we examined how the proposed approach scales with an increasing number of torsion
angles. Firstly, we conducted experiments on molecules with only two considered torsion angles to
perform a more in-depth analysis of the results which was not possible in higher dimensions. Then,
we scaled up our study, considering a broader range of molecules with varying numbers of torsion
angles. Training details can be found in Appendix A.

4.1 Set-up

Conformation generation is conditioned on an input molecular graph encoded as a SMILES string.
We first process SMILES with RDKit library (Landrum, 2016) which uses ETKDG to generate
an initial conformation. This defines bond lengths and angles and non-rotatable torsion angles.
Then, GFlowNet generates rotatable torsion angles and their values are updated accordingly in the
conformation.

Energy estimation We experimented with a representative set the existing approaches to energy
estimation with different trade-offs between accuracy and computational costs. The most accurate of
the considered methods is a semiempirical quantum chemical method, GFN2-xTB (Bannwarth et al.,
2019), which is designed for estimating energies of molecular systems for accurate conformation
generation. We also employ a faster and less precise force-field approach, GFN-FF (Bannwarth et al.,
2021). Finally, we consider TorchANI (Gao et al., 2020), which implements a neural network potential
called ANI (Devereux et al., 2020) for energy estimation of organic molecules. Its computational
cost is comparable to GFN-FF, but applicability is limited to the specific domain of molecules it was
trained on.

Data In the two-dimensional setting, we used alanine dipeptide, ibuprofen and ketorolac molecules.
All of them have two main torsion angles largely affecting their energy. For experiments with multiple
torsion angles, we used molecules from the GEOM-DRUGS dataset (Axelrod & Gomez-Bombarelli,
2022), a popular benchmark containing low-energy conformations of 304k drug-like molecules,

2One can reproduce our results using the code: https://github.com/alexhernandezgarcia/
gflownet and the dataset: https://github.com/learningmatter-mit/geom.
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(a) Reward GFN2-xTB (b) GFlowNet GFN2-xTB (c) MCMC GFN2-xTB

(d) Reward TorchANI (e) GFlowNet TorchANI (f) MCMC TorchANI

Figure 1: KDE on samples from the reward function (left), GFlowNet (centre) and MCMC (right)
for two molecules and two different proxies: ketorolac from GFN2-xTB (top) and ibuprofen from
TorchANI (bottom).

which were generated with meta-dynamics simulation of potential energy estimated by GFN2-xTB
(Pracht et al., 2020b). The average number of rotatable torsion angles for GEOM-DRUGS molecules
is 7.9 and 92.8% of them have less than 13 rotatable torsion angles (Appendix B).

Non-rotatable torsion angles Torsion angles between the triplets of adjacent bonds defines the
shape of the molecule together with bond lengths and angles. Due to the chemical constraints, some
torsion angles do not vary between different conformations and can be accurately identified from
a SMILES string by rule-based methods together with the bond lengths and angles. Specifically,
torsion angles corresponding to non-single bonds and torsion angles within the rings are considered
as non-rotatable. In our study we kept these torsion angles fixed and did not sample them with the
GFlowNet.

4.2 Two-dimensional setting

We begin by investigating the performance of GFlowNet in simple, well-studied molecular systems in
two dimensions: alanine dipeptide, ibuprofen, and ketorolac (Vargas et al., 2002; Zeng et al., 2023).
In this experiment, we aim to assess how well the proposed approach can learn to sample from the
target distribution and analyze the impact of the energy estimator.

The low dimensionality allows us to visualize the kernel density estimation and evaluate the perfor-
mance numerically using the Jensen–Shannon divergence (JSD). We used nested sampling (Buchner,
2023) to produce reference ground-truth energy surfaces, and compared the proposed approach with
MCMC as an example of an unamortized method for sampling from an unnormalized probability
distribution.

In Figure 1, we present the obtained potential energy surfaces of ketorolac and ibuprofen. Comparable
analysis for all three molecules and proxies, as well as the computed JSD values, can be found in
Appendix E. As can be seen, while the choice of the energy estimator can influence the overall shape
of the energy surface, both considered methods accurately reproduce the ground truth energy surface
for all estimators. Interestingly, GFlowNet outperformed MCMC in some cases, producing energy
surfaces more closely resembling the ground truth.
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Figure 2: COV (higher is better) and MAT (lower is better) metrics for samples from GFlowNet,
RDKit, RDKit+Clustering, MCMC. The markers indicate the median out of five molecules and the
vertical lines the range between minimum and maximum values.
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Figure 3: Estimated Jensen-Shannon divergence (JSD) (lower is better) between Boltzmann distri-
bution (with GFN2-xTB energy function) and distributions of samples from GFlowNet and other
methods. The markers indicate the median out of five molecules and the vertical lines the range
between minimum and maximum values.

4.3 Scaling to multiple torsion angles

We then examined a setting with a higher number of torsion angles, up to 12. For each number
of torsion angles we selected 5 different molecules from the GEOM-Drugs dataset, and trained
GFlowNet using TorchANI energy estimator separately for each one of them. We compared our
method with several baselines: MCMC, ETKDG (Riniker & Landrum, 2015) implemented by
the RDKit library, as well as a recent approach combining ETKDG with clustering (Zhou et al.,
2023), which was shown to outperform most existing machine learning methods in the low energy
conformation generation task. Note that both ETKDG-based approaches perform a qualitatively
different task of generating optimized, low-energy conformers, whereas GFlowNet and MCMC aim
at sampling from the underlying Boltzmann distribution. In this experiment, we investigate whether
diverse low-energy conformations are present among the GFlowNet samples.

In Figure 2, we report the COV and MAT metrics (Appendix C.1), which evaluate the proportion of the
reference conformations among samples (COV) and the proximity of the sampled conformations to the
reference onces (MAT). We use a set of 1000 generated conformations for all methods to compute the
metrics. As can be seen, GFlowNet outperforms vanilla RDKit, and achieves performance comparable
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Figure 4: Correlation between estimated sample probabilty and its reward, as a function of the number
of torsion angles (higher is better).

to MCMC and RDKit-clustering, indicating that it can sample diverse low-energy conformations that
closely match the ground-truth dataset even when using low-fidelity energy estimator (TorchANI).

4.4 Sampling from the Boltzmann distribution

To measure the discrepancy between model samples and the target distribution, we estimated Jensen-
Shannon divergence (JSD) between samples and Boltzmann distribution given by GFN2-xTB energy
function (see Appendix C.2 for more details). As one can see from the Figure 3 and Figure 5, both
GFlowNet and MCMC samples are much closer to the Boltzmann distribution compared to RDKit
and RDKit+Clustering methods. In this experiment, both GFlowNet and MCMC used TorchANI
energy estimator and the obtained results suggest that utilising the low fidelity estimation is sufficient
to sample according to the higher fidelity energy estimator.

Finally, to provide additional evaluation of GFlowNet’s scalability to higher dimensions, we exam-
ined the correlation between the estimated probability to sample a conformation with a GFlowNet
(Appendix D) and its energy. We performed this analysis for GFlowNet exclusively because other
methods do not provide a straightforward way for estimating sample probability. For the sake of this
comparison, we also considered GFN-FF and GFN2-xTB as higher-fidelity energy estimators. The
results are presented in Figure 4. As can be seen, while the correlation declines with the increasing
number of torsion angles, it remains relatively high throughout the considered range, serving as a
further indication that the proposed approach sample according to the Boltzmann distribution in the
high dimensions. Interestingly, the higher correlation in higher dimensions with GFN2-xTB and
GFN-FF may suggest that their energy landscape is easier to learn than TorchANI, possibly because
of the more accurate modelling of the energy surface.
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Figure 5: Marginal distributions over the torsion angles for
O=C1COc2ccc(C(=O)COC(=O)CCSc3ccccc3)cc2N1 molecule. Notably, GFlowNet and
MCMC distributions are much closer to the reward distribution compared to other methods
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5 Discussion and future work

In this paper, we have proposed a method for sampling molecular conformations using GFlowNet,
which samples proportionally to the Boltzmann distribution. We experimentally evaluated the
proposed approach and demonstrated that it can sample diverse, low-energy conformations, can be
used in combination with energy estimators of different fidelity, and scales well to a higher number
of torsion angles.

While the proposed method still requires training individually for every molecule, the described work
can be treated as a stepping stone towards developing a generalised GFlowNet model, which could
be trained on a whole data set of molecules and sample torsion angles for an arbitrary molecule
conditioned on its molecular graph. This can potentially allow us to amortize the computational costs
of sampling proportionally to the Boltzmann distribution compared to methods such as MCMC.
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A Experimental details

A.1 Energy computation

Due to perceived energy artifacts observed for GFN-FF, we performed energy normalization and
clamping for all of the considered energy estimation methods. Specifically, for every molecule we
computed 10,000 random conformations, based on them estimated the minimum and maximum
energy values, and normalized all of the estimated energy values to a [0; 1] range. Furthermore, to
remove outliers we clamped the values between 1st and 99th quantile of the energy values observed
in the initial random sample.
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Figure 6: Distribution of torsion angles for molecules in GEOM-DRUGS.

A.2 GFlowNet training

GFlowNet used separate MLP for forward and backward policy, both consisting of 5 hidden layers
with 512 neurons each, and using leaky ReLU activation function. Policy input was using positional
encoding, with every torsion angle encoded by 10 different values using trigonometric functions.
Policy output consisted of predicted von Mises distribution parameters, with 5 separate components
per torsion angle. Trajectories of length 5 were used, meaning that every sample was constructed by
making 5 separate steps, sampled from the predicted distribution parameters. Minimum concentration
of 4 was used for the von Mises distribution. GFlowNet was trained using Boltzmann reward function
with β = 32. Training of a single molecule lasted 40,000 iterations, and used Adam optimizer with
learning rate of 0.0001 for the policy and 0.01 for Zθ. Batches consisted of 80 on-policy trajectories
with probability of random sampling equal to 0.1, and 20 trajectories from replay buffer of best
trajectories seen so far, with a total buffer capacity of 1000.

A.3 MCMC sampling

For the Markov-Chain Monte Carlo (MCMC) experiments, we run a Metropolis-Hastings algorithm,
with a self-tuning covariance matrix for the proposal step. We use the publicly available Cobaya
implementation Torrado & Lewis (2019, 2021). We use 4 randomly initialized walkers, and run until
reaching a Gelman-Rubin (Gelman & Rubin, 1992) statistic R− 1 < 0.01. We then burn-in the first
20% of the chains, and randomly select 1000 samples from the remaining set.

B GEOM-DRUGS torsion angle distribution

One important consideration for the experimental study was the range of evaluated torsion angles. To
chose an appropriate range we analysed the distribution of torsion angles for molecules contained in
GEOM-DRUGS, as presented in Figure 6. As can be seen, the considered range of 2 to 12 torsion
angles faithfully represents the dataset, with majority of molecules contained in it.

C Evaluation

C.1 COVMAT metrics

Root Mean Square Deviation (RMSD) is a metric for evaluating the difference between 3D positions
of two conformations, typically computed after first aligning the molecules using a function Φ.
Formally, for two molecules R, R̂ it can be defined as:
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RMSD(R, R̂) = min
Φ

(
1

n

n∑
i=1

∥∥∥Φ (Ri)− R̂i

∥∥∥2) 1
2

(3)

Coverage (COV) and matching (MAT) are two metrics incorporating RMSD that, given a set
of reference low-energy conformations Sr, measure to what extent generated samples Sg cover
the modes in the reference dataset (COV), and how closely do they resemble specific reference
conformations (MAT):

COV (Sg, Sr) =

∣∣∣{R ∈ Sr | RMSD(R, R̂) < δ, R̂ ∈ Sg

}∣∣∣
|Sr|

, (4)

MAT(Sg, Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂). (5)

Note that COVMAT metrics were traditionally used in the task of low-energy molecular conformation
generation, with the assumption that generated conformations Sg are close to local energy optima.
This does not hold when sampling from Boltzmann distribution, and can produce unfavourable results.
Because of that we adjusted the procedure by sampling more conformations than typically seen in the
literature, as described in the main text.

We follow the literature (Xu et al., 2021; Shi et al., 2021; Zhou et al., 2023) and set δ to 1.25Å in our
experiments.

C.2 JSD estimation

Estimating Jensen-Shannon divergence (JSD) between target q(x) and sampled p(x) distribution
in high dimensions x ∈ X = [0, 2π)d is computationally expensive. Therefore, we estimated JSD
separately for each marginal distribution of a torsion angle and then took the average.

For estimating marginal JSD, we first discretized each dimension into K bins. Then, we sampled M
d-dimensional vectors of torsion angles from the uniform distribution over X . Then, we computed
their Boltzmann weights w(x) = exp(−E(C(x))β) and used them to estimate Boltzmann probability
for each bin:

qk =
1

MĊ

M∑
i=1

w(xi)[xi ∈ bink] (6)

where C = 1
M

∑M
i=1 w(xi) and the indicator function [condition] = 1 when condition is true

and [condition] = 0 otherwise. After that, we sampled M samples from the model and estimated
sampling probability in each bin as a standard histogram:

pk =
1

M

M∑
i=1

[xi ∈ bink] (7)

Finally we computed discrete marginal JSD using estimated qk and pk:

JSDmarginal ≈
1

2

K∑
k=1

qk log
( 2qk
pk + qk

)
+

1

2

K∑
k=1

pk log
( 2pk
pk + qk

)
(8)

And took the average over dimensions

JSD(q||p) ≈ 1

d

d∑
j=1

JSDmarginalj (9)

In our analysis, we used M = 1000 and K = 25.
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D Estimation of the log-likelihood of sampling a terminating state x

The log-probability of sampling a terminating state x according to the GFlowNet policy π(x) can be
expressed as follows:

log π(x) = log

∫
τ :s|τ|−1→x∈τ

|τ |−1∏
t=0

PF (st+1|st; θ) dτ = log

∫
τ :x∈τ

PF (τ) dτ.

Note that we are abusing notation in favour of readability in the domain of the integral of the right-
most equation, which should be identical to the previous integral’s. While computing the integral (or
even the corresponding sum, if the state space is discrete but very large) in the above expression is
intractable in general, we can efficiently estimate it with importance sampling, by using the backward
transition probability distribution PB(τ |x) as the importance proposal distribution. Let us recall the
core aspects of importance sampling, which is a kind of Monte Carlo simulation method.

Monte Carlo simulation methods can be used to estimate integrals I(f) =
∫
τ :x∈τ

f(τ)p(τ) dτ ,
as well as very large sums, by drawing N independent and identically distributed (i.i.d.) samples
{τ (i)}Ni=1 and computing an estimate IN (f) = 1

N

∑N
i=1 f(τ

(i)) which converges to I(f) as N → ∞.
Importance sampling introduces an importance proposal distribution q(τ) whose support includes the
support of the target distribution p(τ), such that we can express the integral I(f) as an expectation
over the proposal distribution:

I(f) =

∫
τ :x∈τ

f(τ)
p(τ)

q(τ)
q(τ) dτ = Eq(τ)[f(τ)

p(τ)

q(τ)
]

By drawing N i.i.d. samples from the proposal distribution q(τ) we can compute the estimate

ÎN (f) =
1

N

N∑
i=1

f(τ (i))
p(τ (i))

q(τ (i))
.

Returning to the original problem of estimating the log-probability of sampling x with a GFlowNet,
we have that the target density is the forward transition probability distribution (p(τ) = PF (τ)),
the importance proposal distribution is the backward transition probability distribution given x
(q(τ) = PB(τ |x)), and the sample performance is simply one (f(τ) = 1). Therefore:

log π̂(x) = log
1

N

N∑
i=1

PF (τ
(i))

PB(τ (i)|x)
= log

N∑
i=1

PF (τ
(i))

PB(τ (i)|x)
− logN. (10)
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E Two-dimensional results

Table 1: Comparison of JSD for model molecules in the two-dimensional setting.
Method Proxy Alanine Dipeptide Ibuprofen Ketorolac

MCMC TorchANI 0.0056 0.0055 0.0172
GFN-FF 0.0076 0.0175 0.0123
GFN2-xTB 0.0090 0.0074 0.0143

GFlowNet TorchANI 0.0077 0.0055 0.0070
GFN-FF 0.0166 0.0182 0.0078
GFN2-xTB 0.0073 0.0075 0.0059

E.1 Ketorolac

(a) Reward GFN2-xTB (b) GFlowNet GFN2-xTB (c) MCMC GFN2-xTB

(d) Reward GFN-FF (e) GFlowNet GFN-FF (f) MCMC GFN-FF

(g) Reward TorchANI (h) GFlowNet TorchANI (i) MCMC TorchANI

Figure 7: KDE on samples from the reward function (left) GFlowNet (centre) and MCMC (right) for
ketorolac for the three proxies: GFN2-xTB (top), GFN-FF (middle) and TorchANI (bottom).
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E.2 Ibuprofen

(a) Reward GFN2-xTB (b) GFlowNet GFN2-xTB (c) MCMC GFN2-xTB

(d) Reward GFN-FF (e) GFlowNet GFN-FF (f) MCMC GFN-FF

(g) Reward TorchANI (h) GFlowNet TorchANI (i) MCMC TorchANI

Figure 8: KDE on samples from the reward function (left) GFlowNet (centre) and MCMC (right) for
ibuprofen for the three proxies: GFN2-xTB (top), GFN-FF (middle) and TorchANI (bottom).
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E.3 Alanine dipeptide

(a) Reward GFN2-xTB (b) GFlowNet GFN2-xTB (c) MCMC GFN2-xTB

(d) Reward GFN-FF (e) GFlowNet GFN-FF (f) MCMC GFN-FF

(g) Reward TorchANI (h) GFlowNet TorchANI (i) MCMC TorchANI

Figure 9: KDE on samples from the reward function (left) GFlowNet (centre) and MCMC (right) for
alanine dipeptide for the three proxies: GFN2-xTB (top), GFN-FF (middle) and TorchANI (bottom).
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