
[Re]: Value Alignment Verification

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The main goal of the paper "Value Alignment Verification" [7] is to test the alignment of a robot’s behavior efficiently3

with human expectations by constructing a minimal set of questions. To accomplish this, the authors propose algorithms4

and heuristics to create the above questionnaire. They choose a wide range of gridworld environments and a continuous5

autonomous driving domain to validate their put forth claims. We explore value alignment verification for gridworlds6

incorporating a non-linear feature reward mapping as well as an extended action space.7

Methodology8

We re-implemented the pipeline with Python using mathematical libraries such as Numpy and Scipy. We spent9

approximately two months reproducing the targeted claims in the paper with the first month aimed at reproducing the10

results for algorithms and heuristics for exact value alignment verification. The second month focused on extending11

the action space, additional experiments, and refining the structure of our code. Since our experiments were not12

computationally expensive, we carried out the experiments on CPU. The code is available at https://anonymous.13

4open.science/r/vavrc21/.14

Results15

The techniques proposed by authors in [7] can successfully address the value alignment verification problem in different16

settings. We empirically demonstrate the effectiveness of their proposals by performing exhaustive experiments with17

several variations to their original claims. We show high accuracy and low false positive and false negative rates in the18

value alignment verification task with a minimum number of questions for different algorithms and heuristics.19

What was easy20

The problem statement, as well as the implementation of algorithms and heuristics, were straightforward. We also took21

aid from the original repository published with the paper. However, we implemented the entire pipeline from scratch22

and incorporated several variations to our code to perform additional designed experiments.23

What was difficult24

Comprehending different algorithms and heuristics proposed in prior works along with their mathematical formulation25

and reasoning for their success in the given task was considerably difficult. Additionally, the original code base had26

several redundant files, which created initial confusion. We iterated and discussed the arguments in the paper and prior27

work several times to thoroughly understand the pipeline. Nevertheless, once the basics were clear, the implementation28

was comparatively simple.29

Communication with original authors30

We reached out to the authors numerous times via email to seek clarifications and additional implementation details.31

The authors were incredibly receptive to our inquiries, and we appreciate their thorough and prompt responses.32

Submitted to ML Reproducibility Challenge 2021. Do not distribute.

https://anonymous.4open.science/r/vavrc21/
https://anonymous.4open.science/r/vavrc21/
https://anonymous.4open.science/r/vavrc21/

1 Introduction33

Autonomous agents are used for complex, challenging, riskier, and dangerous tasks which brings up the need of verifying34

whether the agents act in a way that is both optimal and safe w.r.t another agent that has already been performing the35

said task (example, a human agent). This problem of verifying the alignment of one agent’s behavior w.r.t another agent36

is known as Value Alignment Verification. The original paper [7] proposes a framework for efficient value alignment37

verification. They discuss three different settings of increasing difficulty in terms of verification:38

1. explicit human, explicit robot: where both the agents are completely aware of their reward functions.39

2. explicit human, implicit robot: where the human agent is aware of its reward function but the robot agent can40

only be queried about its action preferences on different states.41

3. implicit human, implicit robot: where the only basis of value alignment is through preferences over trajectories.42

Depending on the setting, value alignment can be either exact or approximate. We try to reproduce and validate the43

results for the proposed framework on the first and second setting, i.e., (explicit human, explicit robot) and (explicit44

human, implicit robot). The experiments involve gridworld environments with a deterministic action space. The aim45

of value alignment verification is to create a questionnaire using the human agent’s knowledge (reward function or46

trajectory preferences) that can be given to any agent in order to verify alignment. Efficient verification aims to minimize47

the number of queries in the questionnaire. While few works on value alignment discuss qualitative evaluation of trust48

[10] or asymptotic alignment of an agent’s performance via interactions and active learning [9] [8] [13], [7] solely49

focuses on verifying value alignment for two or more agents with a learned policy. The objective is to efficiently test50

compatibility of different robots with human agents. In the following sections, we reiterate the formal definition of51

value alignment as stated by the original authors (Value Alignment Verification in Section 3 and Exact Value Alignment52

Verification in Section 4), followed by our experiment settings in Section 7 and subsequent observations in Section 8.53

2 Notation54

We use the notation proposed in [2], where a Markov Decision Process (MDP) M is defined by an environment E and a55

reward function R. An environment E = (S,A, P, S0, γ) where S is a set of states, A is a set of actions, P is a transition56

function, P : S × A × S → [0, 1], γ ∈ [0, 1) is discount factor and a distribution over initial states S0. The reward57

function R : S → R. A policy π : S ×A → [0, 1] from states to a distribution over actions. The state and state-action58

values of a policy π are V π
R (s) = Eπ[

∑∞
t=0 γ

tR(st)|s0 = s] and Qπ
R(s, a) = Eπ[

∑∞
t=0 γ

tR(st)|s0 = s, a0 = a] for59

s ∈ S and a ∈ A. The optimal value functions are, V ∗
R(s) = maxπ V

π
R (s) and Q∗

R(s, a) = maxπ Q
π
R(s, a). Let60

AR(s) = argmaxa′∈AQ
∗
R(s, a

′) denote the set of optimal actions at a state s under the reward function R. Then61

AR(s) = {a ∈ A|π∗
R(a|s) > 0}. It is assumed that reward function is linear under state features ([14], [3], [4])62

ϕ : S → Rk, such that R(s) = wTϕ(s), where w ∈ Rk. Note that there is no restriction on the features ϕ, therefore63

these features could be complex non-linear functions of the state as well. The state-action value function can be written64

in terms of features ([1]) as Qπ
R(s, a) = wTΦ

(s,a)
π where Φ

(s,a)
π = Eπ[

∑∞
t=0 γ

tϕ(st)|s0 = s, a0 = a].65

3 Value Alignment Verification66

Consider two agents (for instance, a human and a robot) where the first agent’s (human) reward function provides the67

ground truth for the value alignment verification of the second agent (robot). The definition is as follows:68

Definition 1 Given reward function R, a policy π′ is ϵ-value aligned in environment E if and only if69

V ∗
R(s)− V π

′

R (s) ≤ ϵ, ∀s ∈ S (1)

The aim of the study [7] is efficient value alignment verification which, formally, is a solution for the following:70

min
T⊆T

|T |, s.t. ∀π
′
∈ Π,∀s ∈ S

V ∗
R(s)− V π

′

R (s) > ϵ =⇒ Pr[π
′

passes test T] ≤ δfpr

V ∗
R(s)− V π

′

R (s) ≤ ϵ =⇒ Pr[π′ fails test T] ≤ δfnr

(2)

2

where T is the set of all possible queries, Π is set of all policies for which the test is designed, δfnr, δfpr ∈ [0, 1] are71

the false negative and false positive rates, and |T | is the size of test T . When ϵ = δfpr = 0, the authors call this setting72

exact value alignment verification.73

4 Exact Value Alignment Verification74

Exact value alignment verification is not possible, even for finite MDPs, when we can only query the robot agent for its75

action preferences. Therefore, it is possible only in the most idealized setting, i.e., explicit human, explicit robot.76

Definition 2 Define an agent π′ to be rational ([12]) if:77

∀a ∈ A, π′(a|s) > 0 =⇒ a ∈ argmaxaQ
∗
R′(s, a) (3)

where argmaxaQ
∗
R′(s, a) is the optimal state-action value function for the reward function R′.78

As there exist infinitely many reward functions which can return the same optimal policy ([11]), determining that79

∃s ∈ S,R(s) ̸= R′(s) does not necessarily imply that agents with the reward functions R,R′ are not aligned. We80

provide an example of this in Figure 1, where the optimal policy for human and robot is the same; thus, they are aligned.81

However, the rewards are different, as mentioned in Table 1.82

Figure 1: Counterexample with same optimal policy for human and robot

Table 1: Human and robot rewards for gridworld (Figure 1)
State Color Terminal State Human Reward Robot Reward

Blue No - 0.6157 - 0.5316
White No - 0.3107 - 0.0694
Green Yes + 0.7242 + 0.8441

Definition 3 Define the set of all the optimal policies under the reward function R as OPT(R).83

OPT (R) = {π|π(a|s) > 0 =⇒ a ∈ argmaxaQ
∗
R(s, a)}

Looking at Definition 1 and Equation 3 simultaneously makes it evident that for a rational robot, if all of its optimal84

policies are also optimal under ground truth reward function R; the robot is exactly aligned with the human.85

Corollary 1 We have exact value alignment in environment E between a rational robot with reward function R
′

and a86

human with reward function R if OPT (R
′
) ⊆ OPT (R).87

Revisiting the inspiration ([11]) of the original author’s proposed approach for efficient exact value alignment -88

Definition 4 Given an environment E, the consistent reward set (CRS) of a policy π in environment E is defined as the89

set of reward functions under which π is optimal90

CRS(π) = {R|π ∈ OPT (R)} (4)

When R(s) = wTϕ, the CRS is of the form ([11], [6]):91

Corollary 2 Given an environment E, the CRS(π) is given by the following intersection of half-spaces:92

{w ∈ Rk|wT (Φ(s,a)
π − Φ(s,b)

π) ≥ 0,∀a ∈ argmaxa′∈AQ
π
R(s, a

′), b ∈ A, s ∈ S}

Since the boundaries of the CRS polytope is consistent with a policy that may not be aligned with optimal policy (e.g.93

zero reward), we remove all such boundary cases to obtain a modified set called aligned reward polytope (ARP).94

3

5 Reproducing Exact Value Alignment95

In this section, we explain the procedure in order to verify the claims made in the paper regarding sufficient conditions96

for provable verification of exact value alignment (explained in Section 4). We verify exact value alignment in disparate97

settings proposed by the authors for explicit human - explicit robot setting. If we have access to the value or reward98

function of a human, we term it as explicit human. A similar notion is applicable for the robot as well.99

Theorem 1 Under the assumption of a rational robot (defined in Section 4) that shares linear reward features with100

the human, efficient exact value alignment verification is possible in the following query settings: (1) Query access to101

reward function weights w
′
, (2) Query access to samples of the reward function R

′
(s), (3) Query access to V ∗

R′ (s) and102

Q∗
R′ (s, a), and (4) Query access to preferences over trajectories.103

Case 1 Reward Weight Queries104

A brute-force paradigm can be implemented to evaluate an explicit robot optimal policy under the human reward105

function. However, there exists another succinct verification test. We need to query the weight vector w
′

of the robot106

(here, R
′
(s) = (w

′
)Tϕ(s), ϕ(s) is the feature vector of state s). The paper asserts that it is possible to form a test107

(defined later as ∆) that uses the obtained w
′

to verify alignment. Additionally, this query to the weight vector w
′

is108

done in constant time, and the test is linear in the number of questions.109

Definition 5 Given an MDP M composed of environment E and reward function R, the aligned reward set (ARS) is110

defined as the following set of reward functions:111

ARS(R) = {R
′
|OPT (R

′
) ⊆ OPT (R)}

We state the lemma which proves the sufficient condition for exact value alignment and direct the interested readers for112

the proof of the lemma to refer the paper.113

Lemma 1 Given an MDP M = (E, R), the human’s and robot’s reward function R and R
′

respectively can be represented114

as linear combinations of features ϕ(s) ∈Rk, i.e., R(s) = wTϕ(s), R
′
(s) = w

′Tϕ(s), and given an optimal policy π∗
R115

under R, we have116

w
′
∈ ∩(s,a,b)∈OHR

s,a,b =⇒ R
′
∈ ARS(R)

where117

HR
s,a,b = w|wT (Φ(s,a)

π)− Φ(s,b)
π) > 0 and O = {(s, a, b)|s ∈ S, a ∈ AR(s), b ̸= AR(s)}

Definition 6 The intersection of half-spaces
(
∩(s,a,b)∈O HR

s,a,b

)
is defined as the Aligned Reward Polytope (ARP). The118

design of ARP in the form of ∆ matrix is defined as follows:119

∆ =

[
Φ

(s,a)
π)− Φ

(s,b)
π

...

]

In the above equation, a is an optimal action at state s, and b is a non-optimal action. The actions in the trajectory120

following a and b are optimal. Each row of ∆ represents the normal vector for a strict half-space constraint based121

on feature count differences between an optimal and sub-optimal action. Therefore, for a robot weight vector w
′
, if122

∆w
′
> 0, the robot is aligned. We follow the steps mentioned in the original paper to include only non-redundant123

half-space normal vectors in ∆. We enumerate all possible half-space normal vectors corresponding to each state s,124

optimal action a, and non-optimal action b. We accumulate only non-redundant half-space normal vectors:125

1. Removal of Duplicate Vectors: To remove duplicate vectors, we compute the cosine distance between the126

half-space normal vectors. One vector in each of the pairs of vectors with cosine distance within a small127

precision value (we select 0.0001) is retained in ∆, others being discarded. All zero vectors are also removed.128

2. Removal of Redundant Vectors: According to the paper, the set of redundant vectors can be found efficiently129

using the Linear Programming approach. To check if a constraint aTx ≤ b is necessary, we first remove that130

constraint and solve the linear programming problem. If the optimal solution is still constrained to be less than131

or equal to b, that constraint can be safely discarded. After removing all such redundant vectors, we get only a132

set of non-redundant half-space normal vectors.133

4

Case 2 Reward Queries134

In this case, the tester seeks for the rewards of the robot. Here, a tester is same as a user (human) who wishes to verify135

the alignment of a robot. Since it is assumed that both human and robot have access to their state feature vectors, and136

from the equation R(s) = wTϕ(s), we obtain the weight vector for the robot, and this case reduces to Case 1. Let ΦM137

be defined as the matrix where each row corresponds to the feature vector ϕ(s)T for a distinct state s ∈ S. In order to138

solve the system of linear equation for obtaining the weight vector, the number of queries needed is rank(ΦM).139

Case 3 Value Function Queries140

The tester seeks the action value function and the value function for each state in this case setting. Subsequently, the141

reward weights for the robot are obtained with the aid of the following equations:142

R
′
(s) = (w

′
)Tx and R

′
(s) = Q∗

R′ (s, a)− γEs′ [V
∗
R′ (s

′
)]

This case also boils down to Case 1 as we obtain the weight vector for the robot. According to the paper, if we define143

the maximum degree of the MDP transition function as144

dmax = max
s∈S,a∈A

|{s
′
∈ S|P (s, a, s

′
) > 0}|,

then at most dmax possible next state queries are needed to evaluate the expectation. Therefore, at most145

rank(ΦM)(dmax + 1) queries are required to recover the robot’s weight vector.146

Case 4 Preference Queries147

We obtain preference over trajectories ξ as judged by the human. Each preference ξA > ξB , induces a constraint148

(w
′
)T (Φ(ξA) − Φ(ξB)) > 0, where Φ(ξ) =

∑n
i=1 γ

iϕ(si) is the cumulative discounted reward features (linear149

combination of state features) along a trajectory. Therefore, we construct ∆ where each row corresponds to a half-space150

normal resulting from preference over individual trajectories. In this case, only a logarithmic number of trajectories are151

needed from all possible trajectory space to obtain ∆ matrix and proceed to verify alignment of robot. We obtain all152

valid trajectories, perform preprocessing (remove duplicate & redundant vectors), and observe that the total number of153

queries is bounded by logarithmic number of trajectories we started with ([5]).154

6 Value Alignment Verification Heuristics155

When the robot acts as a black box and can provide state action preferences instead of a policy, the authors propose156

three heuristics; Critical States, Machine Teaching and ARP Heuristic. Each heuristic consists of a method for selecting157

the states at which the robot is tested and queries for an action, subsequently checking if the action is optimal under158

human’s reward function. It is important to note that for these heuristics, δfpr > 0, as there is no guarantee for the159

robot to always take the same action at a given state.160

1. Critical States Heuristic: Inspired by the notion of critical states (CS) [10], the heuristic test consists of161

states for which Q∗
R(s, π

∗
R(s))− 1

|A|
∑

a∈A Q∗
R(s, a) > t, where t is a threshold value. This intuitively states162

the importance of a particular state and tends to make the verification efficient.163

2. Machine Teaching Heuristic: This heuristic is based on Set Cover Optimal Teaching (SCOT) [6], which164

approximates the minimal set of state-action trajectories necessary to teach a specific reward function to an IRL165

agent. [6] show that in the intersection of half-spaces that define the CRS (Corollary 2), the learner recovers a166

reward function. The authors use SCOT to create informative trajectories and create alignment tests by seeking167

a robot action at each state along the trajectory. Producing a test with SCOT takes longer than CS heuristic,168

but unlike CS, SCOT prevents repetitive inquiries by reasoning about reward features over a set of trajectories.169

3. ARP Heuristic: This heuristic is a black-box alignment heuristic (ARP-bb) based on the ARP definition. ARP-170

bb first computes ∆, then uses linear programming to remove duplicate half-space constraints, subsequently171

asks for robot actions from the states corresponding to the non-redundant constraints (rows) in ∆. Intuitively,172

the states probed by ARP-bb are significant because different actions disclose vital information about the173

reward function. ARP-bb approximates testing each half-space constraint by using single-state action queries.174

As a result, ARP-bb trades off increased approximation error in exchange for a lower query and computational175

complexity.176

5

7 Experiments177

In this section, we describe several experiments carried out in order to investigate the following:178

1. Algorithms and Heuristics: Comparison of different algorithms and heuristics in different gridworlds. We179

tabulate the performance of testers (accuracy, false positive rate, false negative rate, and the number of queries180

presented to the robot for verification) w.r.t different gridworld widths ranging from 4 to 8 and feature size from181

3 to 8. The dimension of feature for a state is termed as number of features or feature size. Our experiments182

confine these state features ϕ to be one-hot vectors only.183

2. Diagonal Actions: Comparison of algorithms and heuristics in gridworlds with an extended action space. We184

allow diagonal movement between standard movements. This increases the standard 4 actions (left, up, right,185

and down) to 8 actions (left-up-diagonal, up-right-diagonal, right-down-diagonal, and down-left-diagonal).186

Again, we tabulate the performance of testers w.r.t different gridworld widths.187

3. Non-linear reward and state-feature relationships: Comparison of different algorithms and heuristics with188

non-linear (cubic and exponential) reward R and state-feature ϕ(s) relationships. In cubic, we approximate189

the linear behavior when wTϕ(s) ≈ 0, else not. The exact relationship we consider is R = x3 + 10x where190

x = wTϕ(s). In exponential, we completely remove the linear relationship between R and ϕ(s) and consider191

R = ew
Tϕ(s). We tabulate the performance of testers w.r.t different gridworld widths in both cases.192

4. Critical States Tester for different thresholds: Comparison of Critical States Tester performance with193

different threshold values (0.0001, 0.2 and, 0.8) for a state to be critical.194

Section 8 provides the results for one algorithm (Reward Weight Tester) and one heuristic (Critical State Tester) and195

plots relevant to their accuracy and number of test queries. We redirect readers to Section 2 of Supplementary Material196

for the detailed tabulated performance of all algorithms, heuristics, and the plots related to false positive and false197

negative rates. Also, note that the default gridworld rows are 4, gridworld width is 8, number of actions is 4, feature size198

is 5, reward and state-feature relationship is linear (R = wTϕ(s)), and threshold value of Critical States Tester is 0.2.199

(a) Accuracy (b) Number of Test Queries

Figure 2: Tester performance for different gridworld widths (num features = 5)

We created 100 different human agents for each experiment, and for each human agent, we created 100 different robots200

to check their alignment. Each human agent corresponds to a different human weight vector whose each element is201

sampled from a normal distribution with mean 0 and variance 1. Different robot agents correspond to different robot202

weights that are obtained by adding a random normal noise vector to the corresponding human weight vector. The203

elements of the noise vector are sampled from the same normal distribution. Further, we normalize the robot and human204

weight vector to have a unit norm. In total, we run 1.32 million experiments to address the points mentioned above.205

8 Results206

In the plots and following discussion, rwt indicates Reward Weight Queries Tester, rt indicates Reward Queries Tester,207

vft indicates Value Function Queries Tester, ptt indicates Preference Trajectory Queries Tester, cst indicates Critical208

States Tester, scott indicates SCOT Tester, and arpbbt indicates ARP Black Box Tester.209

6

8.1 Algorithms and Heuristics210

The comparison between the performance of different algorithms and heuristics is presented in Table 2, and Figure 2211

(for different gridworld widths), Table 3 and Figure 3 (for different feature sizes). The plots obtained are similar to212

the plots presented in [7]. We averaged the accuracy over 10000 experiments (100 different human agents and 100213

different robots corresponding to each human agent) and round up to 3 decimal places. We notice that scott takes the214

maximum time to verify 100 different robots whereas rwt takes the minimum time. The details are present in Section215

2 of the Supplementary Material. We observe that, in general, the algorithms for exact value alignment verification216

have slightly higher accuracy. We also observe that the accuracies and number of test queries increase with increasing217

feature sizes. Note that, in [7], the accuracy in various plots is considered as (1 - false positive rate), while we have218

different plots for both. We attribute the comparatively low accuracy with ptt to comparatively bad trajectory queries.219

Table 2: Different testers versus gridworld widths
Tester Width Accuracy False positive rate False negative rate Number of queries

4 0.995 ± 0.013 0.005 ± 0.011 0.001 ± 0.005 1
rwt 6 0.997± 0.007 0.002± 0.005 0.001± 0.005 1

8 0.999± 0.004 0.001± 0.004 0.000± 0.002 1

4 0.973± 0.043 0.000± 0.000 0.027± 0.043 13
cst 6 0.987± 0.018 0.000± 0.000 0.013± 0.018 24

8 0.996± 0.007 0.000± 0.001 0.004± 0.007 29

As per Definition 1, we require δfpr = ϵ = 0 for Exact Value Alignment Verification; hence false negatives can be220

present in the corresponding algorithms. Further, we discussed with the authors the possibility of false positives in221

these algorithms, and we concluded that since we do not consider all possible trajectories in a gridworld (which is222

exponential in the number of actions), false positives can be present. However, we observe that both false positive223

and false negative rates are negligibly small. These results empirically show that indeed the proposed algorithms and224

heuristics successfully identify the alignment between human agents and robots.225

(a) Accuracy (b) Number of Test Queries

Figure 3: Tester performance for different number of features

In Figure 2b, the number of queries indicates the size of the questionnaire, i.e., |T |. The total number of queries required226

to verify the value alignment with cst is higher than other heuristics owing to its simpler mechanism for obtaining state227

queries. We observe that arpbbt is also bounded by the logarithm of the total number of queries, i.e., trajectories of a228

certain maximum length (this value is set at 10), possible in a gridworld. The number of states to be queried in scott is229

fixed at the maximum length of a trajectory possible (this value is set at 5 for scott). Also, with the increase in the size230

of the gridworld, the number of queries with cst increases. Further, we have not presented the number of queries for231

rt and vft in plots because they have well-defined mathematical formulae to calculate |T |.232

8.2 Diagonal Actions233

The performance summary for rwt and heuristics are presented in Table 4 and Figure 4. We observe similar trends to234

gridworld with smaller action space - the accuracy is high, and the false positive and false negative rates are extremely235

7

Table 3: Different testers versus features sizes
Tester Feature size Accuracy False positive rate False negative rate Number of queries

3 0.951± 0.051 0.037± 0.045 0.012± 0.034 1
rwt 5 0.999± 0.004 0.001± 0.004 0.000± 0.002 1

7 1.000± 0.001 0.000± 0.000 0.000± 0.001 1

3 0.876± 0.097 0.000± 0.002 0.124± 0.097 31
cst 5 0.996± 0.007 0.000± 0.001 0.004± 0.007 29

7 0.999± 0.002 0.000± 0.000 0.001± 0.002 28

(a) Accuracy (b) Number of Test Queries

Figure 4: Tester performance for different gridworld widths with extended action space

Table 4: Different testers versus gridworld widths with extended action space
Tester Width Accuracy False positive rate False negative rate Number of queries

4 0.992± 0.017 0.006± 0.015 0.003± 0.010 1
rwt 6 0.994± 0.013 0.005± 0.011 0.001± 0.004 1

8 0.996± 0.008 0.002± 0.005 0.002± 0.005 1

4 0.945± 0.055 0.000± 0.001 0.055± 0.055 9
cst 6 0.984± 0.017 0.000± 0.001 0.016± 0.017 12

8 0.992± 0.011 0.000± 0.000 0.008± 0.011 21

small, the number of queries with cst is higher than other heuristics, and the number of queries for scott is fixed at236

the maximum possible length of a trajectory. These results empirically indicate that the proposed testers are successfully237

able to verify the alignment of robots and humans in gridworlds with an extended action space.238

8.3 Non-linear reward and state-feature relationships239

The performance summary for rwt and cst is presented in Table 5 and Figure 5. We observe that for cubic relationship,240

the performance for both rwt and cst is close to that with linear relationship. Note that cubic approximates the241

linear relationship between R and wTϕ(s), when wTϕ(s) ≈ 0. However, as expected for exponential relationship242

(assumption of Lemma 1 is no longer true), the performance for rwt is exceedingly poor while for cst the decline243

is negligible. This empirically enforces the importance and independence of linear relationship assumption between244

rewards and state features for exact value alignment algorithms (rwt) and heuristics (cst), respectively.245

8.4 Critical States Tester with different thresholds246

The performance of cst with different thresholds (0.0001 and 0.8, 0.2 is cst row in Table 2) is presented in Table 6.247

The corresponding figures are presented in Section 2 of the Supplementary Material. We observe that the accuracy for248

low threshold values is high whereas the accuracy drops considerably with higher threshold value. This is due to a249

decrease in the number of test queries with higher thresholds leading to a decrease in alignment verification ability. The250

8

Table 5: Different testers versus gridworld widths with non-linear reward state-feature relationships
Tester Width Accuracy False positive rate False negative rate Number of queries

4 0.993± 0.013 0.004± 0.007 0.003± 0.011 1
rwt 6 0.995± 0.008 0.003± 0.006 0.002± 0.005 1

(cubic) 8 0.997± 0.006 0.001± 0.005 0.001± 0.004 1

4 0.048± 0.052 0.953± 0.052 0.000± 0.000 1
rwt 6 0.017± 0.021 0.983± 0.021 0.000± 0.000 1

(exponential) 8 0.006± 0.012 0.994± 0.012 0.000± 0.000 1

4 0.968± 0.040 0.000± 0.000 0.032± 0.040 16
cst 6 0.991± 0.015 0.000± 0.000 0.010± 0.015 24

(cubic) 8 0.995± 0.010 0.000± 0.000 0.005± 0.010 32

4 0.947± 0.051 0.000± 0.001 0.053± 0.051 16
cst 6 0.984± 0.022 0.000± 0.001 0.016± 0.022 16

(exponential) 8 0.983± 0.099 0.010± 0.099 0.007± 0.010 31

(a) Accuracy (Cubic) (b) Accuracy (Exponential)

Figure 5: Tester performance for different reward - state features relationship

comparison between the number of test queries for different thresholds displays an expected trend, i.e., the number of251

states to be queried with lower thresholds is higher than those with a higher threshold.252

Table 6: Critical states tester with different thresholds
Tester Width Accuracy False positive rate False negative rate Number of queries

4 0.971± 0.036 0.000± 0.000 0.029± 0.036 16
cst 6 0.987± 0.018 0.000± 0.000 0.013± 0.018 24

(threshold = 0.0001) 8 0.997± 0.007 0.000± 0.000 0.003± 0.007 32

4 0.616± 0.447 0.362± 0.463 0.022± 0.032 1
cst 6 0.563± 0.482 0.431± 0.488 0.007± 0.013 4

(threshold = 0.8) 8 0.644± 0.468 0.354± 0.470 0.003± 0.008 3

9 Discussion253

In this work, we implemented the algorithms and heuristics for Exact Value Alignment Verification. We observe that all254

the methods proposed in [7] can identify the alignment between a robot and a human agent with high confidence in255

two distinct scenarios, implicit and explicit robot with an explicit human agent. In this work, we have not investigated256

implicit robot, implicit human (approximate value alignment verification) setting due to lack of time. Additionally, we257

have carried out ablation studies to study the performance of these proposed methods in different settings, including an258

extended deterministic action space and non-linear reward state-feature relationship. Ultimately, a human agent could259

use any of the algorithms or heuristic (depending on the ability of the robot to access its rewards) to create a driver’s260

test to test the robot’s alignment.261

9

References262

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of263

the twenty-first international conference on Machine learning, page 1, 2004.264

[2] Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. arXiv preprint265

arXiv:1705.05427, 2017.266

[3] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado Van Hasselt, and David Silver.267

Successor features for transfer in reinforcement learning. arXiv preprint arXiv:1606.05312, 2016.268

[4] Daniel Brown, Russell Coleman, Ravi Srinivasan, and Scott Niekum. Safe imitation learning via fast bayesian269

reward inference from preferences. In International Conference on Machine Learning, pages 1165–1177. PMLR,270

2020.271

[5] Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via automatically-272

ranked demonstrations. In Proceedings of the 3rd Conference on Robot Learning, 2019.273

[6] Daniel S Brown and Scott Niekum. Machine teaching for inverse reinforcement learning: Algorithms and274

applications. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 7749–7758,275

2019.276

[7] Daniel S Brown, Jordan Schneider, Anca Dragan, and Scott Niekum. Value alignment verification. In International277

Conference on Machine Learning, pages 1105–1115. PMLR, 2021.278

[8] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement279

learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.280

[9] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse reinforcement281

learning. Advances in neural information processing systems, 29:3909–3917, 2016.282

[10] Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing appropriate trust via critical states.283

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3929–3936. IEEE,284

2018.285

[11] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, page 2,286

2000.287

[12] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.288

[13] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learning of reward289

functions. 2017.290

[14] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse reinforcement291

learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.292

10

	Introduction
	Notation
	Value Alignment Verification
	Exact Value Alignment Verification
	Reproducing Exact Value Alignment
	Value Alignment Verification Heuristics
	Experiments
	Results
	Algorithms and Heuristics
	Diagonal Actions
	Non-linear reward and state-feature relationships
	Critical States Tester with different thresholds

	Discussion

