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ABSTRACT

Graph Neural Networks (GNNs) exploit signals from node features and the input
graph topology to improve node classification task performance. Recently proposed
GNNs work across a variety of homophilic and heterophilic graphs. Among these,
models relying on polynomial graph filters have shown promise. We observe that
polynomial filter models, in several practical instances, need to learn a reasonably
high degree polynomials without facing any over-smoothing effects. We find
that existing methods, due to their designs, either have limited efficacy or can be
enhanced further. We present a spectral method to learn a bank of filters using a
piece-wise polynomial approach, where each filter acts on a different subsets of the
eigen spectrum. The approach requires eigendecomposition for a few eigenvalues
at extremes (i.e., low and high ends of the spectrum) and offers flexibility to learn
sharper and complex shaped frequency responses with low-degree polynomials.
We theoretically and empirically show that our proposed model learns a better filter,
thereby improving classification accuracy. Our model achieves performance gains
of up to ∼6% over the state-of-the-art (SOTA) models.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown impressive performance on a wide range of graph
learning tasks, including node classification (Kipf & Welling, 2017; Wu et al., 2019; Veličković
et al., 2018). Several popular GNNs rely on the homophily assumption that connected nodes share
same labels. However, these approaches perform poorly on heterophilic graphs, where connected
nodes share different labels. To address this, a multitude of approaches were proposed that use
modified aggregation scheme (Pei et al., 2020; Kim & Oh, 2021; Zhu et al., 2020), or the label-label
compatibility matrix (Zhu et al., 2021).

Recent methods (Klicpera et al., 2019; Bo et al., 2021; Bianchi et al., 2021; Chien et al., 2021; He
et al., 2021; Dong et al., 2021; Zheng et al., 2021) tackle Heterophily from a graph filter learning
perspective. These approaches employ different filter designs to implicitly adapt the eigenspectrum
to exploit signals from different frequencies, thereby leading to improved task performance. Among
these, (Chien et al., 2021) proposed to learn polynomial filters utilizing monomial basis; (He et al.,
2021) proposed to learn polynomial filters with positive frequency response, which they achieve by
using Bernstein basis. Though these models can learn better filters and give good performance gains,
we find them ineffective at learning more rich and complex frequency responses, which require higher
order polynomials. One key reason for their inability to learn effective higher-order polynomials is
that they only mitigate the over-smoothing problem. There have been some efforts in addressing this
issue by using infinite impulse response (IIR) filters using auto-regressive moving average (Bianchi
et al., 2021).
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Our goal is to learn an effective polynomial filter for the node classification task in a transductive
setting that can both mitigate the oversmoothing problem and also be capable of learning complex
filter responses. Towards this, we propose PP-GNN, a novel piece-wise polynomial filtering approach
to learn a filter bank, where each filter (low-order polynomial) acts on a subset of the eigenspectrum.
The proposed approach relies on computing few extremal eigenpairs’, making it computationally
feasible and offers significant performance improvements of up to ∼ 6% over previous state-of-the-art
approaches. We also show that PP-GNN’s solution is more expressive and is capable of modeling
richer and complex frequency responses.

2 PIECE-WISE POLYNOMIAL FILTERS

We focus on the problem of semi-supervised node classification (transductive setting) on a simple
graph of n nodes, G = (V, E), where V and E is the set of vertices and edges respectively.
A ∈ {0, 1}n×n denotes the adjacency matrix of G. Let X ∈ Rn×d be the matrix of d-dimensional
features for all the nodes and Y is the set of all possible class labels. Given a set of training nodes
D ⊂ V with known labels, along with A and X, our goal is to predict the labels of the remaining
nodes. Let AI = A + I where I is the identity matrix. Let DAI

be the degree matrix of AI and
Ã = D

−1/2
AI

AID
−1/2
AI

. Let eigendecomposition of Ã = UΛUT .

Polynomial Filters: The spectral convolution of X on the graph A can be defined via the reference
operator Ã and a filter function h operating on the eigenvalues, in the Fourier domain (Tremblay
et al., 2017; Chien et al., 2021) as,

Zx = UH(Λ)UTX =

k∑
j=1

αjÃ
jX (1)

where H(Λ) = diag(h(Λ)). The equality follows when the filter h takes a polynomial form, i.e.,
h(λ) :=

∑k
i=0 αiλ

i with [αi] as coefficients and k as the order. It is well-known that polynomial
filters can approximate any graph filter (Shuman et al., 2013; Tremblay et al., 2017), however, several
practical challenges arise while learning a good polynomial filter. It can be observed in Figure 1
and Appendix A.3.5 that several datasets often require a complex spectral filter to obtain a superior
performance, which in turn requires the order k of the polynomial to be very large. A large order
results in a uniform convergence of the term ÃkX, making the node features indistinguishable
(aka oversmoothing). Empirical demonstration of oversmoothing and its effect on performance
can be found in the Appendix in figures 2,3 and figure 4 respectively. Chien et al. (2021) show
that higher order coefficients in (1) converge to zero during training. While this phenomenon
diminishes contributions of corresponding terms and helps to mitigate oversmoothing, it limits the
model’s capability to learn complex filters that require higher order polynomials. To address this
ineffectiveness, we propose a novel piece-wise polynomial filtering approach.

Piece-wise Polynomial Filters: Instead of using a single polynomial for learning a filter across the
entire spectrum, we propose to partition the eigen spectrum to several subsets, and use different
(low degree) polynomials over each partition to learn a bank of filters. Let S = {σ1, σ2, . . . , σm}
denote a partition set with m contiguous intervals and hi,ki

(λ; γi) denote a ki-degree polynomial
filter function of the interval σi with polynomial coefficients γi (The number and size of partitions;
polynomial orders are hyperparameters). Note ki is a low-degree. We define piece-wise polynomial
GNN (PP-GNN) filter function as:

h(λ) =
∑
σi∈S

hi,ki
(λ; γi) (2)

and learn a smooth filter function by imposing additional constraints to maintain continuity between
polynomials of contiguous intervals at different endpoints (aka knots). Given the filter function, we
compute the PP-GNN node embedding matrix as:

Z =
∑
σi∈S

UiHi(γi)U
T
i Zx(X;Θ) (3)

where Ui is a matrix with eigenvectors corresponding to eigenvalues that lie in σi and Hi(γi) is
the diagonal matrix with diagonals containing the hi evaluated at the eigenvalues; Zx(X;Θ) is
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an MLP network with parameters Θ. Obtaining this filter’s response requires eigendecomposition
which is prohibitive for large graphs. However, if the above partition only consists of a few subsets
containing the spectrum’s extremes, then one can resort to several efficient algorithms to obtain
extremal eigenpairs for large matrices (Davidson & Thompson, 1993). This also follows from recent
investigations (eg. Chien et al. (2021)) that show that graph filters that amplify/attenuate low and
high-frequency components of signals (i.e., low-pass and high-pass filters) are critical in improving
performance on several benchmark datasets of varying homophily. To extract signals from the
remaining (middle) portion of the spectrum, we also define a polynomial filter acting on the entire
spectrum (like GPR-GNN). Thus an efficient variant of (2), which we henceforth denote as PP-GNN
becomes (see Section A.1.4 of appendix for more implementation details):

h̃(λ) = ηl
∑

σi∈Sl

h
(l)
i (λ; γ

(l)
i ) + ηh

∑
σi∈Sh

h
(h)
i (λ; γ

(h)
i ) + ηgprhgpr(λ; γ) (4)

where Sl consists of partitions over low-frequency components, Sh consists of partitions over
high-frequency components. The third term is the filter function used by GPR-GNN which
is efficiently computed. ηl, ηh, ηgpr are hyperparameters to control contributions of each term.
Substituting (4) in (3) results in a linear combination of the outputs of the bank of filters. The
extremal eigendecomposition step is one-time cost per dataset and is amortized over several rounds of
hyperparameter optimization. Such piece-wise filter allows us to approximate a complex frequency
response by using small-degree polynomials, hence we restrict the polynomial order to be a lower
value (see A.3.4), which in turn prevents the model from running into over-smoothing problem. Thus,
our proposed model offers richer capability and flexibility to learn complex frequency response and
balance computation costs over GPR-GNN.

Model Training: Like GPR-GNN, we apply SOFTMAX activation function on (3) and use the
standard cross-entropy loss to learn the sets of polynomial coefficients (γ) and MLP parameters (Θ)
using labeled data. We use validation accuracy for model selection.

Analysis: We present formal proofs to demonstrate: (a) Superior capabilities of our model at
approximating arbitrary filters compared to a standard polynomial filter; (b) The new space of filters
that our model learns from induces a controllable bias towards certain parts of the spectrum. This
new space has a dimension of the same order as the other polynomial filtering approaches. These
theorems along with their proofs can be found in sections A.2.2, A.2.3, A.2.4.

Our model formulation is a generalization of the formulation by Chien et al. (2021). We show in
Section A.2.4 that our model inherits their property of mitigating oversmoothing effects when using a
high degree polynomial. Our experiments show that we can obtain superior performance without
depending on the higher-order polynomials.

3 EXPERIMENTS

We conducted several experiments to answer the following questions: RQ1: How well does PP-
GNN perform in comparison to other SOTA polynomial filtering methods? RQ2: How does the
frequency response of PP-GNN look like? RQ3: How does the training time of PP-GNN compare
with other methods? We first provide details on datasets and baselines.

Datasets: We evaluate our model on several real-world heterophilic and homophilic datasets. The
heterophilic datasets include Texas1, Wisconsin1, Chameleon, Squirrel (Rozemberczki et al., 2021)
and Flickr. The homophilic datasets include Ogbn-Arxiv, Wiki-CS, Citeseer, Pubmed, Cora,
Computer, and Photos borrowed from Kim & Oh (2021). Please refer to A.3.1 for details on dataset
statistics, splits and other preprocessing steps. We report the mean and standard deviation of test
accuracy over splits to compare model performance.

Baselines: We compare against the following baselines: FAGCN (Bo et al., 2021), APPNP (Klicpera
et al., 2019), GPR-GNN (Chien et al., 2021), LGC (Navarin et al., 2020b), BernNet (He et al., 2021),
ARMA (Bianchi et al., 2021). More details regarding the baselines as well as a comprehensive
comparison against other baselines (including recent state-of-the-art models) is resorted to A.3.2 and
A.3.3 respectively.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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(a) Squirrel (b) Citeseer (c) PP-GNNon Squirrel (d) BERNNET on Squirrel
Figure 1: 1a and 1b show the learned filter responses of PP-GNN,GPR-GNN, and BERNNET.
1c and 1d show the t-SNE plots of learned embeddings.

RQ1: From Table 1, we can observe that while PP-GNN outperforms other polynomial filtering
models on almost all datasets, we observe most improvements on heterophilic datasets (∼ 6− 7%
improvements on Texas, Squirrel and Chameleon). These improvements can be attributed due to the
effective polynomial filter that PP-GNN learns, which will be further discussed in RQ2.

Texas Wisconsin Squirrel Chameleon Flickr OGBN-ArXiv Wiki-CS Citeseer Pubmed Cora Computer Photos

FAGCN 82.43 (6.89) 82.94 (7.95) 42.59 (0.79) 55.22 (3.19) OOM OOM 79.23 (0.66) 76.80 (1.63) 89.04 (0.50) 88.21 (1.37) 82.16 (1.48) 90.91 (1.11)

APPNP 81.89 (5.85) 85.49 (4.45) 39.15 (1.88) 47.79 (2.35) 50.33 69.20 79.13 (0.50) 76.86 (1.51) 89.57 (0.53) 88.13 (1.53) 82.03 (2.04) 91.68 (0.62)

LGC 80.20 (4.28) 81.89 (5.98) 44.26 (1.49) 61.14 (2.07) 51.67 69.64 79.82 (0.49) 76.96 (1.73) 88.78 (0.51) 88.02 (1.44) 83.44 (1.77) 91.56 (0.74)

GPR-GNN 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 52.74 68.44 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)

BernNET 83.24 (6.47) 84.90 (4.53) 52.56 (1.69) 62.02 (2.28) 52.35 69.21 79.75 (0.52) 77.01 (1.43) 89.03 (0.55) 88.13 (1.41) 83.69 (1.99) 91.61 (0.51)

ARMA 79.46 (3.65) 82.75 (3.56) 47.37 (1.63) 60.24 (2.19) 53.79 69.49 78.94 (0.32) 78.15 (0.74) 88.73 (0.52) 87.37 (1.14) 78.55 (2.62) 90.26 (0.48)

PP-GNN 89.73 (4.90) 88.24 (3.33) 59.15 (1.91) 69.10 (1.37) 55.30 69.28 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

Table 1: Results on multiple datasets. For additional baselines see A.3.5

RQ2: In Figure 1a and 1b, we show the learned frequency responses (i.e., h(λ)) of the overall
PP-GNN model, GPR-GNN component of PP-GNN (PP-GNN (GPR-GNN)), stand-alone (GPR-
GNN) model and BERNNET model on the Squirrel and Citeseer datasets. For Squirrel (a heterophilic
dataset), we can observe that while GPR-GNN and BERNNET learns the importance of low and
high-frequency signals, it is unable to capture their relative strengths/importance adequately, and this
happens due to the restriction of learning a single polynomial globally. PP-GNN learns sharper and
richer responses at different parts of the spectrum, thereby improving classification accuracy. For
Citeseer (a homophilic dataset) we can observe that all the models in comparison learn a smooth
polynomial, GPR-GNN is not able to capture the complex transition that can be seen at the lower
end of the spectrum, while BERNNET is doing it some degree. This inability to capture the complex
transition leads to a lower classification accuracy. A similar trend can be found on two other datasets
in A.3.5. We also qualitatively assess the difference in the learned embedding of PP-GNN and
BERNNET. Towards this, we generated t-SNE plots of the learned node embeddings and visually
inspected them. From Figure 1c and 1d, we observe that PP-GNN discovers more discriminative
features resulting in discernible clusters on the Squirrel dataset compared to BERNNET, enabling
PP-GNN to achieve significantly improved performance.

RQ3: We conducted a comprehensive training time evaluation study to compare the running-time
performance of various models on diverse datasets. Due to space constraints, we present several key
observations here. We emphasize that eigenpairs’ computation is a one time cost, and this cost can be
amortized over the model training cost required to optimize on total hyper-parameters configurations.
We also observe that the eigenpairs’ compute cost, even for medium-sized graphs like Ogbn-ArXiv
and Flickr is relatively low. Our end-to-end training time comparison results show that PP-GNN is
∼2x slower than GPR-GNN and BERNNET. Please refer to A.3.7 for more details.

4 CONCLUSION

This work proposed an effective polynomial filter bank design using a piece-wise polynomial filtering
approach. We combine GPR-GNN with additional polynomials resulting in a bank of filters that adapt
to low and high-end spectrum using multiple polynomial filters. Our experiments demonstrate that
the proposed approach can learn effective filter functions that improve node classification accuracy
significantly across diverse graphs.
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ufar. How framelets enhance graph neural networks. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 12761–12771. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/zheng21c.html.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. In Neural
Information Processing Systems (NeurIPS), 2020.

Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph Neural Networks with Heterophily. In Association for the Advancement of Artificial
Intelligence (AAAI), 2021.

6

https://www.esann.org/sites/default/files/proceedings/2020/ES2020-96.pdf
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-96.pdf
https://doi.org/10.1137/0717059
https://doi.org/10.1137/0717059
https://proceedings.mlr.press/v139/zheng21c.html


Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

A APPENDIX

The appendix is structured as follows. In Section A.1, we present additional evidence of the limitations
of GPR-GNN and a representative experiment to further motivate Section 2. In Section A.2, we
provide proofs for theorems, propositions and corollaries defined in Section 2. In Section A.3, we
provide more details regarding the baselines, datasets and their respective splits. We also provide
implementation details and rank PP-GNN against current SoTA. We additionally provide details and
results of additional experiments. In Section A.3.7, we provide a comprehensive timing analysis.

A.1 PP-GNN MOTIVATION

Several proposed polynomial based filtering methods (e.g. APPNP, GPR-GNN, BERNNET)
run into the over-smoothing issue when using high-order terms. While some polynomial filtering
methods (e.g. GPR-GNN and BERNNET) mitigate it through slowly zeroing out the coefficients
of higher-order terms while training, this makes them unable to model complex filter response
which would require high-degree polynomials in order to be well approximated. The presence of
the over-smoothing phenomenon is evidenced via experiments demonstrated in Section A.1.1. We
further illustrate the effects of the phenomenon over the performance of GPR-GNN in Section A.1.2.

PP-GNN approximates the filter responses via fitting piece-wise low-order polynomials in different
subsets of the spectrum. To demonstrate the effectiveness of this way of approximation, we conduct a
toy experiment in Section A.1.3. The formulation to obtain final node embeddings for PP-GNN is
illustrated in section A.1.4 along with a different perspective of the model.

A.1.1 NODE FEATURE INDISTINGUISHABLY PLOTS

In Figure 2, we plot the average of pairwise distances between node features for four datasets: Cora,
Citeseer, Chameleon and Squirrel, after computing ÃjX for increasing j values, and observe that the
mean pairwise node feature distance decreases as j increases.

(a) Cora (b) Chameleon

(c) Squirrel (d) Citeseer

Figure 2: Average of pairwise distances between node features, after computing ÃjX , for increasing
j values
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We also observed the mean of the variance of each dimension of node features, after computing ÃjX ,
for increasing j values. We observe that this mean does indeed reduce as the number of hops increase.
We also observe that the variance of each dimension of node features reduces for Cora, Squirrel and
Chameleon as the number of hops increase; however, we don’t observe such an explicit phenomenon
for Citeseer. See Figure 3.

(a) Cora (b) Citeseer

(c) Squirrel (d) Chameleon

Figure 3: Variance of each dimension of node features

A.1.2 EFFECT OF VARYING THE ORDER OF THE GPR-GNN POLYNOMIAL

In Figure 4, we plot the test accuracies of the GPR-GNN model while increasing the order of the
polynomials for four datasets: Cora, Chameleon, Squirrel and Citeseer. We observe that on increasing
the polynomial order, the accuracies do not increase any further.

In Section 2 of the main paper, we claim that due to the over-smoothing effect, even on increasing
the order of the polynomial, there is no improvement in the test accuracy. Moreover, in Figure 1
we can see that our model can learn a complicated filter polynomial while GPR-GNN cannot. This
section shows that even on increasing the order of the GPR-GNN polynomial, neither does the test
accuracy increase nor does the waveform become as complicated as PP-GNN. See Figure 5. Note:
We perform these experiments with GPR-GNN as all other constrained polynomial filters can be
shown as special cases of GPR-GNN.

A.1.3 FICTITIOUS POLYNOMIAL

In Section 2, we claim that having multiple disjoint low order polynomials can approximate a
complicated waveform more effectively than a single higher-order polynomial. To demonstrate, we
create a representative experiment that shows this phenomenon by creating a fictitious complicated
polynomial and try to fit it using a single unconstrained polynomial (representative of GPR-GNN),
a single constrained polynomial (indicative of BERNNET, where the coefficients should be non-
negative) and a disjoint piece-wise polynomial (indicative of PP-GNN). We setup a least square
optimization problem to obtain the coefficients for these different polynomial variants. We evaluate
and plot these polynomials in Figure 6. To quantify the effectiveness of different polynomial variants,
we compute the approximation error (RMSE) with respect to the optimal waveform. We observe that
piece-wise polynomials achieve much lower RMSE (1.5053) compared to constrained polynomial
(3.9659) and unconstrained polynomial (3.3854).

8
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(a) (b)

(c) Citeseer (d) Squirrel

Figure 4: Accuracy of the GPR-GNN model on increasing the order of the polynomial

(a) Chameleon (b) Citeseer

(c) Cora (d) Squirrel

Figure 5: Varying Polynomial Order in GPR-GNN

A.1.4 IMPLEMENTING THE FILTER IN PRACTICE

We provide more details to explain the filtering operation. An Equation similar to Equation 1 can be
derived for our model by substituting Equation 4 from the paper into Equation 3. On substitution, we
get:

9
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(a) Fitting single 10-degree polynomial

Figure 6: To demonstrate the effectiveness of adaptive polynomial filter, we try to approximate a
complex waveform (green dashed line) via (a) 10 disjoint adaptive polynomial filters of order 4
(colored blue) (b) a single constrained order 10 polynomial (colored red), (c) an unconstrained order
10 polynomial (colored purple). The corresponding RMSE values are: (a) 1.5053, (b) 3.9659, (c)
3.3854

Z = ηl
∑
σi∈Sl

k1∑
j=1

γ
(l)
ij U

(l)
σi

(
Λ(l)
σi

)j
U (l)T
σi

Z0(X; θ)+

ηh
∑

σi∈Sh

k2∑
j=1

γ
(h)
ij U (h)

σi

(
Λ(h)
σi

)j
U (h)T
σi

Z0(X; θ)+

ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ) (5)

where

Ã
(l)
i = U (l)

σi
Λ(l)
σi
U (l)T
σi

, σi ∈ Sl

Ã
(h)
i = U (h)

σi
Λ(h)
σi

U (h)T
σi

, σi ∈ Sh

U
(l)
(σi)

, Λ(l)
(σi)

are the matrices containing eigenvectors and eigenvalues corresponding to the partition

σi of the low frequency components and U
(h)
(σi)

, Λ(h)
(σi)

are the matrices containing eigenvectors and

eigenvalues corresponding to the partition σi of the high frequency components and Ã (See Equation
1 in the main paper) where U(σi) ∈ Rn×|σi| and Λ(σi) ∈ R|σi|×|σi| with latter being a diagonal
matrix.

The way we have implemented the filter is that we pre-compute the top and bottom eigenvalues/vectors
of Ã and use them to compute partition specific node embeddings. Note that Equation 5 can be

10
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rewritten as:

Z = ηl
∑
σi∈Sl

U (l)
σi

H(l)
σi

U (l)T
σi

Z0(X; θ)

+ ηh
∑

σi∈Sh

U (h)
σi

H(h)
σi

U (h)T
σi

Z0(X; θ)

+ ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ)

(6)

where H
(l)
σi =

∑k1

j=1 γ
(l)
ij

(
Λ
(l)
σi

)j
and H

(h)
σi =

∑k2

j=1 γ
(h)
ij

(
Λ
(h)
σi

)j
form the effective low and high

frequency component filters. Thus, a weighted combination of low and high frequency component
based embeddings (i.e., the first and second term in Equation above) and the GPR-GNN term based
embedding (i.e., third term) is computed. We implement our model based on equation 6.

Note that the following discussion is just for illustration purpose and we do not explicitly calculate
the newer terms introduced here: We can also interpret the GPR-GNN term in terms of piece-wise
polynomial filters defined on a mutually exclusive partition of the spectrum, with a difference that the
coefficients and the order of the polynomial are shared across all partitions:

ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ) = ηgpr(

∑
σi∈Sl

U (l)
σi

H(gpr)
σi

U (l)T
σi

+
∑

σi∈Sh

U (h)
σi

H(gpr)
σi

U (h)T
σi

+
∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

)Z0(X; θ) (7)

where Smid := S−(Sl∪Sh), and H
(gpr)
σi =

∑k3

j=1 γj

(
Λ
(mid)
σi

)j
. Hence, we can club the respective

terms of the partitions and obtain the final embeddings as:

Z =
∑
σi∈Sl

U (l)
σi

(ηlH
(l)
σi

+ ηgprH
(gpr)
σi

)U (l)T
σi

Z0(X; θ)

+
∑

σi∈Sh

U (h)
σi

(ηhH
(h)
σi

+ ηgprH
(gpr)
σi

)U (h)T
σi

Z0(X; θ)

+ ηgpr
∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

Z0(X; θ)

(8)

From equation 8, it is clear that PP-GNN also adapts the responses from the middle parts of the
spectrum, albeit by a single polynomial. One can also interpret each term of equation 8 as an
effective polynomial filter acting only on the corresponding part of the spectrum, with each effective
polynomial filter can be influenced by a shared polynomial filter.

A.2 THEORETICAL RESULTS

A.2.1 NOTATION USED

Vectors are denoted by lower case bold Roman letters such as x, and all vectors are assumed to be
column vectors. In the paper, h with any sub/super-script refers to a frequency response, which is
also considered to be a vector. A superscript T denotes the transpose of a matrix or vector; Matrices
are denoted by bold Roman upper case letters, such as M. A field is represented by K; sets of real
and complex numbers are denoted by R and C respectively. K[x1, . . . , xn] denotes a multivariate
polynomial ring over the field K, in indeterminates x1, . . . , xn. Set of n× n square matrices with

11
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entries from some set S are denoted by Mn(S). Moore-Penrose pseudoinverse of a matrix A is
denoted by A†. Eigenvalues of a matrix are denoted by λ, with λ1, λ2, . . . denoting a decreasing
order when the eigenvalues are real. A matrix Λ denotes a diagonal matrix of eigenvalues. Set
of all eigenvalues, i.e., spectrum, of a matrix is denoted by σA or simply σ when the context is
clear. Lp norms are denoted by ∥ · ∥p. Frobenius norm over matrices is denoted by ∥ · ∥F . Norms
without a subscript default to L2 norms for vector arguments and Frobenius norm for matrices.
⊕ denotes a direct sum. For maps fi defined from the vector spaces V1, · · · , Vm, with a map
of the form f : V 7→ W , with V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, the the phrase ”f : V 7→ W by
mapping f(vi) to fi(g(vi))” means that f maps a vector v = v1 + . . . + vm with vi ∈ Vi to
f1(g(v1)) + . . .+ fm(g(vm))

A.2.2 PIECEWISE POLYNOMIALS ARE BETTER APPROXIMATIONS

Theorem. For any desired frequency response h∗, and an integer K ∈ N, let h̃ := h + hf , with
hf having a continuous support over a subset of the spectrum, σf . Assuming h and hf to be
parameterized by independent K and K ′-order polynomials p and pf respectively, with K ′ ≤ K,
then there exists h̃, such that min ∥h̃− h∗∥2 ≤ min ∥h− h∗∥2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive filters hf1 , hf2 , ..., hfm
parameterized by independent K ′-degree polynomials with K ′ ≤ K but having disjoint, contiguous
supports, the same inequality holds for h̃ = h+

∑m
i=1 hfi .

Proof. We make the following simplifying assumptions:

1. |σfi | > K, ∀i ∈ [m], i.e., that is all support sizes are lower bounded by K (and hence K ′)

2. All eigenvalues of the reference matrix are distinct

For methods that use a single polynomial filter, the polynomial graph filter, hK(Λ) = diag(Vγ)
where γ is a vector of coefficients (i.e, γ parameterizes h), with eigenvalues sorted in descending
order in components, and V is a Vandermonde matrix:

V =


1 λ1 λ2

1 · · · λK
1

1 λ2 λ2
2 · · · λK

2

...
...

...
. . .

...

1 λn λ2
n · · · λK

n


And to approximate a frequency response h∗, we have the following objective:

min ∥h− h∗∥22 := min
γ

∥diag(h∗)− diag(Vγ)∥2F

= min
γ

∥h∗ −Vγ∥22

= min
γ

∥ep(γ)∥22

Where ∥∥F and ∥∥2 are the Frobenius and L2 norms respectively. Due to the assumptions, the
system of equations h∗ = Vγ is well-defined and has a unique minimizer, γ∗ = V†h∗, and thus
∥ep(γ∗)∥ = minγ ∥ep(γ)∥. Next we break this error vector as:

ep(γ
∗) := h∗ −Vγ∗

=

m∑
i=1

(h∗
i −Viγ

∗) + (h∗
L −VLγ

∗)

:=

m∑
i=1

e∗pi
+ e∗pL

12
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Where e∗pi
:= (h∗

i −Viγ
∗) with similar definition for epL

; h∗
i is a vector whose value at components

corresponding to the set σ(hfi) is same as that of h∗ and rest are zero. Similarly, V∗
i is a matrix

whose rows corresponding to the set σ(hfi) are same as that of V with other rows being zero. Also,
VL = V−

∑m
i=0 Vi and h∗

L = h∗−
∑m

i=0 h
∗
i . Note that as a result of this construction, [ep∗

i
]∪ep∗

L
is

a linearly independent set since the supports [σ(hfi)] form a disjoint set (note the theorem statement).
We split the proof in two cases:

Case 1: K ′ = K. We now analyze the case where we have m polynomial adaptive filters added, all
having an order of K, where the objective is min ∥h̃− h∗∥, which can be written as:

min
γ,[γi]

∥∥∥∥∥diag(h∗)− diag

(
Vγ +

m∑
i=0

Viγi

)∥∥∥∥∥
2

F

= min
γ,[γi]

∥∥∥∥∥h∗ −Vγ −
m∑
i=0

Viγi

∥∥∥∥∥
2

2

= min
γ,[γi]

∥eg(γ, [γi])∥22

Before characterizing the above system, we break a general error vector as:

eg(γ, [γi]) := h∗ −Vγ −
m∑
i=0

Viγi

=

m∑
i=1

(h∗
i −Vi(γ + γi)) + (h∗

L −VLγ)

:=

m∑
i=1

egi + egL

Where egi := (h∗
i −Vi(γ + γi)) with similar definition for egL . Clearly, the systems of equations,

egi = 0, ∀i and egL = 0 are well-defined due to the assumptions 1 and 2. Since all the systems of
equations have independent argument, unlike in the polynomial filter case where the optimization is
constrained over a single variable; one can now resort to individual minimization of squared norms
of egi which results in a minimum squared norm of eg . Thus, we can set:

γ = V†
Lh

∗
L = γ∗

g γi = V†
ih

∗
i −V†

Lh
∗
L = γ∗

i , ∀i ∈ [m]

to minimize squared norms of egi and egL . Note that [egi ] ∪ egL is a linearly independent set since
the supports [σ(hfi)] form a disjoint set and by the above construction, this is also an orthogonal set,
and hence we have ∥eg∥2 =

∑m
i=1 ∥egi∥

2
+ ∥egL∥

2, and hence the above assignment implies:

∥eg(γ∗
g , [γ

∗
i ])∥ = min

γ,[γi]
∥eg(γg, [γi])∥ := min ∥h̃− h∗∥2

Hence, it follows that, minx ∥h∗
i −Vix∥2 =

∥∥e∗gi∥∥2 ≤
∥∥e∗pi

∥∥2 = ∥h∗
i −Viγ

∗∥2 and minx ∥h∗
L −

VLx∥2 =
∥∥e∗gL∥∥2 ≤

∥∥e∗pL

∥∥2 = ∥h∗
L −VLγ

∗∥2. Hence,

m∑
i=1

∥∥e∗gi∥∥2 + ∥∥e∗gL∥∥2 ≤
m∑
i=1

∥∥e∗pi

∥∥2 + ∥∥e∗pL

∥∥2
min ∥h̃− h∗∥ ≤ min ∥h− h∗∥

Case 2: K ′ < K. We demonstrate the inequality showing the existence of an h̃ that achieves
a better approximation error. By definition, the minimum error too will be bounded above by
this error. For this, we fix γ, the parameterization of h as γ = V†h∗ = γ∗

p (say). Note that

13
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γp∗ = argminγ ∥ep(γ)∥. Now our objective function becomes

eg(γ
∗
p , [γi]) := h∗ −Vγ∗

p −
m∑
i=0

V′
iγi

=

m∑
i=1

(h∗
i −Viγ

∗
p +V′

iγi) + (h∗
L −VLγ

∗
p)

=

m∑
i=1

e′gi + e′gL

Where h∗
i , h

∗
L,Vi,VL have same definitions as that in case 1 and V′

i is a matrix containing first
K ′ + 1 columns of Vi as its columns (and hence has full column rank), and, γi ∈ RK′+1. By this
construction, we have

∥eg(γ∗
p ,0)∥ = min

γ
∥ep(γ)∥ = ∥ep(γ∗

p)∥

Our optimization objective becomes min[γi] ∥eg(γ∗
p , [γi])∥, which is easy since the problem is well-

posed by assumption 1 and 2. The unique minimizer of this is obtained by setting

γi = V′†
i (h

∗
i −Viγ

∗
p) = γ∗

i (say) ∀i ∈ [m]

Now,
∥eg(γ∗

p , [γ
∗
i ])∥ = min

[γi]
∥eg(γ∗

p , [γi])∥ ≤ ∥eg(γ∗
p ,0)∥

and,

∥eg(γ∗
p ,0)∥ = min

γ
∥ep(γ)∥ = min ∥h− h∗∥

By the definition of minima, minγ,[γi] ∥eg(γ, [γi])∥ ≤ min[γi] ∥eg(γ∗
p , [γi])∥, and by the definition,

min ∥h̃− h∗∥ = minγ,[γi] ∥eg(γ, [γi])∥, we have:

min ∥h̃− h∗∥ ≤ min ∥h− h∗∥

A.2.3 DESCRIPTION OF THE SPACE OF FILTERS LEARNT BY PP-GNN

Theorem. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations of h} to be
the set of all K-degree polynomial filters, whose arguments are n × n diagonal matrices,
such that a filter response over some Λ is given by h(Λ) for h(·) ∈ H. Similarly H′ :=

{h̃(·) | ∀ possible polynomial parameterizations of h̃} is set of all filters learn-able via PP-GNN ,
with h̃ = h+ hf1 + hf2 , where h is parameterized by a K-degree polynomial supported over entire
spectrum, hf1 and hf2 are adaptive filters parameterized by independent K ′-degree polynomials
which only act on top and bottom t diagonal elements respectively, with t < n/2 and K ′ ≤ K; then
H and H′ form a vector space, with H ⊂ H′. Also, dim(H′)

dim(H) = K+2K′+3
K+1 .

Proof. We start by constructing the abstract spaces on top of the polynomial vector space. Consider
the set of all the univariate polynomials having degree at most K in the vector space over the
ring Kx

n := K[x1, . . . , xn] where K is the field of real numbers. Partition this set into n subsets,
say V1, . . . , Vn, such that for i ∈ [n], Vi contains all polynomials of degree up to K in xi. It
is easy to see that V1, . . . , Vn are subspaces of K[x1, . . . , xn]. Define V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

where ⊕ denotes a direct sum. Define the matrix Di[c] whose (i, i)th entry is c and all the other
entries are zero. For i ∈ [n], define linear maps ϕi : Vi → Mn (Kx

n) by f(xi) 7→ Di[f(xi)].
Im(ϕi) forms a vector space of all diagonal matrices, whose (i, i) entry is the an element of Vi.
Generate a linear map ϕ : V → Mn(Kx

n) by mapping ϕ(f(xi)) to ϕi(f(xi)) for all i ∈ [n] as
the components of the direct sum present in its argument. Note that ϕi for i ∈ [n] are injective
maps, making ϕ an injective map. This implies that H ⊂ Im(ϕ) is a subspace with basis Bh :=
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{ϕ(x0
1 + · · ·+x0

n), ϕ(x1 + · · ·+xn), . . . , ϕ(x
K
1 + · · ·+xK

n )}, making dim(H) = K +1. Similarly
we have, H′ ⊂ Im(ϕ), a subspace with basis Bh′ := Bh

⋃
{ϕ(x0

1 + · · ·+ x0
t + 0 + · · ·+ 0), ϕ(x1 +

· · · + xt + 0 + · · · + 0), . . . , ϕ(xK′

1 + · · · + xK′

t + 0 + · · · + 0)}
⋃

{ϕ(0 + · · · + 0 + x0
n−t+1 +

· · ·+ x0
n), ϕ(0 + · · ·+ 0+ xn−t+1 + · · ·+ xn), . . . , ϕ(0 + · · ·+ 0+ xK′

n−t+1 + · · ·+ xK′

n )} where
x0
i and 0 are the corresponding multiplicative and additive identities of Kx

n, implying H ⊂ H′ and
dim(H′) = K + 2K ′ + 3.

Corollary. The corresponding adapted graph families G := {Uh(·)UT | ∀h(·) ∈ H} and G′ :=

{Uh̃(·)UT | ∀h̃(·) ∈ H′} for any unitary matrix U form a vector space, with G ⊂ G′ and
dim(G′)
dim(G) = K+2K′+3

K+1 .

Proof. Consider the injective linear maps f1, f2 : Mn(Kx
n) → Mn(Kx

n) as f1(A) = UTA and
f2(A) = AU. Define f3 : H → Mn(Kx

n) and f4 : H′ → Mn(Kx
n) as f3(A) = (f1 ◦ f2)(A) for

A ∈ H and f4(A) = (f1 ◦ f2)(A) for A ∈ H′. Since U is given to be a unitary matrix, f3 and f4
are monomorphisms. Using this with the result from Theorem 4.2, H ⊂ H′, we have G ⊂ G′.

A.2.4 PP-GNN MITIGATES OVERSMOOTHING

For showing that our model mitigates oversmoothing for the higher orders, we extend a few results
by Chien et al. (2021).
Lemma A.1. Assume that the nodes in an undirected and connected graph G have one of C labels.
Then, for k large enough, we have,

Hk
:j = βjπ + ok(1)

(Hk
σi
):j =

{
βjπ + ok(1), if ±1 ∈ σi

0, otherwise

for j ∈ [C]. Here πi =

√
D̃ii√∑

v∈V D̃vv

and βT = πTH0.

Proof. The first equality is a standard result. For the second equality, note that all Sσi
have nullspace

of dimension n − |σi|, and rest eigenvalues have their absolute values ≤ 1. By definition, Â is a
doubly stochastic matrix, the stationary distribution for Sσi can only be reached if it contains an
eigenvalue of absolute value 1. (easily seen that the largest eigenvalue of Â is 1).

Thus, whenever the label prediction is dominated by higher order Hk
(), all nodes have a representation

proportional to τβ, giving same label prediction for each node.
Definition A.1. (Oversmoothing). If oversmoothing occurs in PPGNN for K sufficiently large, we
have Z:j = c1βjπ, ∀j ∈ [C] for some c1 > 0 if τk > 0 and Z:j = −c1βjπ, ∀j ∈ [C] for some
c1 > 0 if τk < 0.

Following lemma is the extended from the corresponding lemma of Chien et al. (2021).
Lemma A.2. Let L =

∑
i∈T Li =

∑
i∈T − log

(
⟨PT

i: ,Y
T
i: ⟩
)

be the cross-entropy loss and T be the
training set. The gradient of τk for k large enough is ∂L

∂τk
=
∑

i∈T πi⟨Pi: −Yi:,β⟩+ ok(1)

Now the main result follows in same way as Chien et al. (2021) from the above lemmas:
Theorem A.3. (Extension of Theorem 4.2 of Chien et al. (2021)) If the training set contains nodes
from each of C classes, then PP-GNN can always avoid over-smoothing. That is, for a large enough
k and for a parameter associated with a k-order term, τ ∈ [γi] ∪ [γ

(h)
i ] ∪ [γ

(l)
i ], i ∈ [K] ∪ {0}, we

have:
∂L

∂τ
=

{∑
i∈T πi

(
maxj∈[C] βj − β1[Yi:]

)
+ ok(1), τ > 0∑

i∈T πi

(
minj∈[C] βj − β1[Yi:]

)
+ ok(1), τ < 0
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Where, πi =

√
D̃ii√∑

v∈V D̃vv

and βT = πTH0. This implies that all parameters, τ and their gradients
∂L
∂τ are of same sign for sufficiently high orders. Since the gradients are bounded, higher order
parameters τ will approach to 0 until we escape oversmoothing.

A.3 EXPERIMENTS

A.3.1 DATASETS

We evaluate on multiple benchmark datasets to show the effectiveness of our approach. Detailed
statistics of the datasets used are provided in Table 2. We borrowed Texas, Cornell, Wisconsin
from WebKB2, where nodes represent web pages and edges denote hyperlinks between them. Actor
is a co-occurrence network borrowed from Tang et al. (2009), where nodes correspond to an actor,
and and edge represents the co-occurrence on the same Wikipedia page. Chameleon, Squirrel are
borrowed from Rozemberczki et al. (2021). Nodes correspond to web pages and edges capture mutual
links between pages. For all benchmark datasets, we use feature vectors, class labels from Kim & Oh
(2021). For datasets in (Texas, Wisconsin, Cornell, Chameleon, Squirrel, Actor), we use 10 random
splits (48%/32%/20% of nodes for train/validation/test set) from Pei et al. (2020). We borrowed
Cora, Citeseer, and Pubmed datasets and the corresponding train/val/test set splits from Pei et al.
(2020). The remaining datasets were borrowed from Kim & Oh (2021). We follow the same dataset
setup mentioned in Kim & Oh (2021) to create 10 random splits for each of these datasets. We also
experiment with two slightly larger datasets Flickr Chua et al. (July 8-10, 2009) and OGBN-arXiv
Hu et al. (2020). We use the publicly available splits for these datasets.

Table 2: Dataset Statistics.

Properties Texas Wisconsin Actor Squirrel Chameleon Cornell Flickr Cora-Full OGBN-arXiv Wiki-CS Citeseer Pubmed Cora Computer Photos

Homophily Level 0.11 0.21 0.22 0.22 0.23 0.30 0.32 0.59 0.63 0.68 0.74 0.80 0.81 0.81 0.85

#Nodes 183 251 7600 5201 2277 183 89250 19793 169343 11701 3327 19717 2708 13752 7650

#Edges 492 750 37256 222134 38328 478 989006 83214 1335586 302220 12431 108365 13264 259613 126731

#Features 1703 1703 932 2089 500 1703 500 500 128 300 3703 500 1433 767 745

#Classes 5 5 5 5 5 5 7 70 40 10 6 3 7 10 8

#Train 87 120 3648 2496 1092 87 446625 1395 90941 580 1596 9463 1192 200 160

#Val 59 80 2432 1664 729 59 22312 2049 29799 1769 1065 6310 796 300 240

#Test 37 51 1520 1041 456 37 22313 16349 48603 5487 666 3944 497 13252 7250

A.3.2 BASELINES

We provide the methods in comparison along with the hyper-parameters ranges for each model. For
all the baseline models, we sweep the common hyper-parameters in the same ranges. Learning
rate is swept over {0.001, 0.003, 0.005, 0.008, 0.01}, dropout over {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
weight decay over {1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1}, and hidden dimensions
over {16, 32, 64}. For model-specific hyper-parameters, we tune over author prescribed ranges. We
use undirected graphs with symmetric normalization for all graph networks in comparison. For all
models, we report test accuracy for the configuration that achieves the highest validation accuracy.
We report standard deviation wherever applicable.

LR and MLP: We trained Logistic Regression classifier and Multi Layer Perceptron on the given
node features. For MLP, we limit the number of hidden layers to one.

GCN: We use the GCN implementation provided by the authors of Chien et al. (2021).

SGCN: SGCN (Wu et al., 2019) is a spectral method that models a low pass filter and uses a linear
classifier. The number of layers in SGCN is treated as a hyper-parameter and swept over {1, 2}.

SUPERGAT: SUPERGAT (Kim & Oh, 2021) is an improved graph attention model designed to also
work with noisy graphs. SUPERGAT employs a link-prediction based self-supervised task to learn
attention on edges. As suggested by the authors, on datasets with homophily levels lower than 0.2
we use SUPERGATSD. For other datasets, we use SUPERGATMX. We rely on authors code for our
experiments.

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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GEOM-GCN: GEOM-GCN (Pei et al., 2020) proposes a geometric aggregation scheme that can
capture structural information of nodes in neighborhoods and also capture long range dependencies.
We quote author reported numbers for Geom-GCN. We could not run Geom-GCN on other benchmark
datasets because of the unavailability of a pre-processing function that is not publicly available.

H2GCN: H2GCN (Zhu et al., 2020) proposes an architecture, specially for heterophilic settings,
that incorporates three design choices: i) ego and neighbor-embedding separation, higher-order
neighborhoods, and combining intermediate representations. We quote author reported numbers
where available, and sweep over author prescribed hyper-parameters for reporting results on the rest
datasets. We rely on author’s code for our experiments.

FAGCN: FAGCN (Bo et al., 2021) adaptively aggregates different low-frequency and high-frequency
signals from neighbors belonging to same and different classes to learn better node representations.
We rely on author’s code for our experiments.

APPNP: APPNP (Klicpera et al., 2019) is an improved message propagation scheme derived from
personalized PageRank. APPNP’s addition of probability of teleporting back to root node permits
it to use more propagation steps without oversmoothing. We use GPR-GNN’s implementation of
APPNP for our experiments.

LINEARGCN (LGC): LINEARGCN (LGC) (Navarin et al., 2020a) is a spectrally grounded GCN
that adapts the entire eigen spectrum of the graph to obtain better node feature representations.

GPR-GNN: GPR-GNN (Chien et al., 2021) adaptively learns weights to jointly optimize node
representations and the level of information to be extracted from graph topology. We rely on author’s
code for our experiments.

TDGNN: TDGNN (Wang & Derr, 2021) is a tree decomposition method which mitigates feature
smoothening and disentangles neighbourhoods in different layers. We rely on author’s code for our
experiments.

ARMA: ARMA (Bianchi et al., 2021) is a spectral method that uses K stacks of ARMA1 fil-
ters in order to create an ARMAK filter (an ARMA filter of order K). Since (Bianchi et al.,
2021) do not specify a hyperparameter range in their work, following are the ranges we have fol-
lowed: Graph Convolutional Skip (GCS) stacks (S): {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, stacks’ depth (T ):
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. However we only select configurations such that the number of learnable
parameters are less than or equal to those in PP-GNN. The input to the ARMAConv layer are the
node features and the output is the number of classes. This output is then passed through a softmax
layer. We use the implementation from the official PyTorch Geometric Library 3

BernNet: BernNet (He et al., 2021) is a method that approximates any filter over the normalised
Laplacian spectrum of a graph, by a Kth order Bernstein polynomial approximation. We use the
model specific hyper-parameters prescribed by the authors of the paper. We vary the learning rate
of the propagation layer as as follows: {0.001, 0.002, 0.01, 0.05}. We also vary the dropout of the
propagation layer as follows: {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We rely on the authors code for our
experiments.

AdaGNN: AdaGNN (Dong et al., 2021) is a method that captures the different importance’s for
varying frequency components for node representation learning. We use the model specific hyper-
parameters prescribed by the authors of the paper. The number of layers are varied as follows:
{2, 4, 8, 16, 32, 128}. We rely on the authors code for our experiments.

UFG: UFG (Zheng et al., 2021) decompose the graph into low-pass and high-pass frequencies,
and define a framelet based convolutional model. We use the model specific hyper-parameters as
prescribed by the authors of the paper. We rely on the authors code for our experiments.

Links to the authors’ codebases can be found in Table 3.

A.3.3 PP-GNN VERSUS SOTA MODELS

In this section we compare PP-GNN with all the baselines described in A.3.2.

3https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_
geometric/nn/conv/arma_conv.html#ARMAConv
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Table 3: Links to the codebases of certain baselines.

Method Code Links Commit ID

GCN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

SuperGAT https://github.com/dongkwan-kim/SuperGAT 2d3f44acbb10af5850aa17a3903dea955a29d2e2

H2GCN https://github.com/GemsLab/H2GCN 08011c5199426e1c49b80ee2944d338dfd55e2b5

FAGCN https://github.com/bdy9527/FAGCN 23bb10f6bf0b1d2e5874140cd4b266c60a7c63f3

APPNP https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

GPRGNN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

TDGNN https://github.com/YuWVandy/TDGNN 505b1af90255aace255744ec81a7033a5d682b90

BernNet https://github.com/ivam-he/BernNet 7b9c1652dbe43730f52d647957761bf6d3f17425

AdaGNN https://github.com/yushundong/AdaGNN f178d3144921c8845027234cac68a7f0dd057fe2

UFG https://github.com/YuGuangWang/UFG 229acd89b33f4f4e1bab2c0d92fb93d146127fd1

Heterophilic Datasets. We perform comprehensive experiments to show the effectiveness of PP-
GNN on several Heterophilic graphs and tabulate the results in Table 4. Datasets like Texas,
Wisconsin, and Cornell contain graphs with high levels of Heterophily and rich node features.
Standard non-graph baselines like LR and MLP perform competitively or better on these datasets
compared to many spatial and spectral-based methods. PP-GNN offers significant lifts in performance
with gains of up to ∼6%. The node features in datasets like Chameleon and Squirrel are not adequately
discriminative, and significant improvements are possible via convolutions, as we compare non-graph
and graph-based methods in Table 4. Spatial GNN methods, in general, offer improvements over
non-graph counterparts. In specific, methods like GCN, which also have a spectral connotation,
show better performance on these datasets. We observe from the Table that Spectral methods offer
additional improvements over models like GCN. The difference in performance among spectral
methods majorly comes from their ability to learn better frequency responses of graph filters. Our
proposed model shows significant lifts over all the baselines with gains up to ∼6% and ∼4% on the
Squirrel and Chameleon datasets. These improvements empirically support the efficacy of PP-GNN’s
filter design.

Homophilic Datasets. The input graphs for these datasets contain informative signals, and one can
expect competitive task performance from even basic spatial-convolution based methods as observed
in Table 5. We can see that spatial models are among the top performers for several Homophilic
datasets. Existing spectral methods marginally improve over spatial methods on a few datasets. Not
surprisingly, our PP-GNN model with effective filter design can exploit additional discriminatory
signals from an already rich informative source of signals. PP-GNN offers additional gains up to
1.3% over other baselines.

Large Datasets. We also observe gains on moderately large datasets like Flickr and perform
competitively on the OGBN-arXiv dataset. Please note that our latter numbers are slightly inferior
for baselines like GCN compared to the leaderboard 4 numbers. These differences are because we
turn off the optimization tricks like Batch Normalization.

Note: Several baselines report elevated results on some of our benchmark datasets. This difference
is because of the difference in splits. We use the splits from (Pei et al., 2020). Baselines including
BERNNET, GPR-GNN evaluate on random splits with 60/20/20 distribution for train/val/test labels.
Additional information regarding our experimental setup can be found in A.3.4.

A.3.4 IMPLEMENTATION DETAILS

In this subsection, we present several important points that are useful for practical implementation of
our proposed method and other experiments related details. Our approach is based on adaptation of a
few eigen graphs constructed using eigen components. Following Kipf & Welling (2017), we use a
symmetric normalized version (Ã) of adjacency matrix A with self-loops: Ã = D̃− 1

2 (A+ I)D̃− 1
2

4https://tinyurl.com/oarxiv
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Table 4: Results on Heterophilic Datasets. ‘*’ indicates that the results were borrowed from the
corresponding papers.

Texas Wisconsin Squirrel Chameleon Cornell

LR 81.35 (6.33) 84.12 (4.25) 34.73 (1.39) 45.68 (2.52) 83.24 (5.64)

MLP 81.24 (6.35) 84.43 (5.36) 35.38 (1.38) 51.64 (1.89) 83.78 (5.80)

SGCN (Wu et al., 2019) 62.43 (4.43) 55.69 (3.53) 45.72 (1.55) 60.77 (2.11) 62.43 (4.90)

GCN (Kipf & Welling, 2017) 61.62 (6.14) 58.82 (4.89) 47.78 (2.13) 62.83 (1.52) 62.97 (5.41)

SuperGAT (Kim & Oh, 2021) 61.08 (4.97) 56.47 (3.90) 31.84 (1.26) 43.22 (1.71) 57.30 (8.53)

Geom-GCN (Pei et al., 2020) 67.57* 64.12* 38.14* 60.90* 60.81*

H2GCN (Zhu et al., 2020) 84.86 (6.77)* 86.67 (4.69)* 37.90 (2.02)* 58.40 (2.77) 82.16 (4.80)*

TDGNN (Wang & Derr, 2021) 83.00 (4.50)* 85.57 (3.78)* 43.84 (2.16) 55.20 (2.30) 82.92 (6.61)*

FAGCN (Bo et al., 2021) 82.43 (6.89) 82.94 (7.95) 42.59 (0.79) 55.22 (3.19) 79.19 (9.79)

APPNP (Klicpera et al., 2019) 81.89 (5.85) 85.49 (4.45) 39.15 (1.88) 47.79 (2.35) 81.89 (6.25)

LGC (Navarin et al., 2020a) 80.20 (4.28) 81.89 (5.98) 44.26 (1.49) 61.14 (2.07) 74.59 (3.42)

GPR-GNN (Chien et al., 2021) 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 78.11 (6.55)

AdaGNN (Dong et al., 2021) 71.08 (8.55) 77.70 (4.91) 53.50 (0.96) 65.45 (1.17) 71.08 (8.36)

BernNET (He et al., 2021) 83.24 (6.47) 84.90 (4.53) 52.56 (1.69) 62.02 (2.28) 80.27 (5.41)

ARMA (Bianchi et al., 2021) 79.46 (3.65) 82.75 (3.56) 47.37 (1.63) 60.24 (2.19) 80.27 (7.76)

UFG-ConvR (Zheng et al., 2021) 66.22 (7.46) 68.63 (4.98) 42.06 (1.55) 56.29 (1.58) 69.19 (6.40)

PP-GNN 89.73 (4.90) 88.24 (3.33) 59.15 (1.91) 69.10 (1.37) 82.43 (4.27)

Table 5: Results on Homophilic Datasets.
Cora-Full Wiki-CS Citeseer Pubmed Cora Computer Photos

LR 39.10 (0.43) 72.28 (0.59) 72.22 (1.54) 87.00 (0.40) 73.94 (2.47) 64.92 (2.59) 77.57 (2.29)

MLP 43.03 (0.82) 73.74 (0.71) 73.83 (1.73) 87.77 (0.27) 77.06 (2.16) 64.96 (3.57) 76.96 (2.46)

SGCN 61.31 (0.78) 78.30 (0.75) 76.77 (1.52) 88.48 (0.45) 86.96 (0.78) 80.65 (2.78) 89.99 (0.69)

GCN 59.63 (0.86) 77.64 (0.49) 76.47 (1.33) 88.41 (0.46) 87.36 (0.91) 82.50 (1.23) 90.67 (0.68)

SuperGAT 57.75 (0.97) 77.92 (0.82) 76.58 (1.59) 87.19 (0.50) 86.75 (1.24) 83.04 (1.02) 90.31 (1.22)

Geom-GCN NA NA 77.99* 90.05* 85.27* NA NA

H2GCN 57.83 (1.47) OOM 77.07 (1.64)* 89.59 (0.33)* 87.81 (1.35)* OOM 91.17 (0.89)

TDGNN OOM 79.58 (0.51) 76.64 (1.54)* 89.22 (0.41)* 88.26 (1.32)* 84.52 (0.92) 92.54 (0.28)

FAGCN 60.07 (1.43) 79.23 (0.66) 76.80 (1.63) 89.04 (0.50) 88.21 (1.37) 82.16 (1.48) 90.91 (1.11)

APPNP 60.83 (0.55) 79.13 (0.50) 76.86 (1.51) 89.57 (0.53) 88.13 (1.53) 82.03 (2.04) 91.68 (0.62)

LGC 61.84 (0.90) 79.82 (0.49) 76.96 (1.73) 88.78 (0.51) 88.02 (1.44) 83.44 (1.77) 91.56 (0.74)

GPR-GNN 61.37 (0.96) 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)

AdaGNN 59.57 (1.18) 77.87 (4.95) 74.94 (0.91) 89.33 (0..57) 86.72 (1.29) 81.27 (2.10) 89.93 (1.22)

BernNET 60.77 (0.92) 79.75 (0.52) 77.01 (1.43) 89.03 (0.55) 88.13 (1.41) 83.69 (1.99) 91.61 (0.51)

ARMA 60.23 (1.21) 78.94 (0.32) 78.15 (0.74) 88.73 (0.52) 87.37 (1.14) 78.55 (2.62) 90.26 (0.48)

UFG-ConvR 60.98 (0.82) 78.56 (0.43) 76.74 (1.33) 85.68 (0.62) 87.93 (1.52) 80.01 (1.78) 90.20 (1.41)

PP-GNN 61.42 (0.79) 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

Table 6: Results on Large Datasets.
LR MLP GCN SGCN SuperGAT H2GCN FAGCN APPNP LGC GPR-GNN BernNet TDGNN UFG-ConvR ARMA AdaGNN PP-GNN

Flickr 46.51 46.93 53.40 50.75 53.47 OOM OOM 50.33 51.67 52.74 52.35 OOM OOM 53.79 52.30 55.30

OGBN-arXiv 52.53 54.96 69.37 68.51 55.1* OOM OOM 69.20 69.64 68.44 69.21 OOM OOM 69.49 69.44 69.28
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where D̃ii = 1 +Dii, Dii =
∑

j Aij and D̃ij = 0, i ̸= j. We work with eigen matrix and eigen
values of Ã.

To reduce the learnable hyper-parameters, we separately partition the low-end and high-end eigen
values into several contiguous bins and use shared filter parameters for each of these bins. The
number of bins, which can be interpreted as number of filters, is swept in the set {2, 4, 5}. The orders
of the polynomial filters are swept in the set {2, 4, 6}. The number of EVD components are swept in
the set {256, 1024}. In our experiments, we set ηl = ηh and we vary the ηl parameter in range (0, 1)
and ηgpr = 1− ηl.

For optimization, we use the Adam optimizer (Kingma & Ba, 2015). We set early stopping to 200
and the maximum number of epochs to 1000. We utilize learning rate with decay, with decay factor
set to 0.99 and decay frequency set to 50. All our experiments were performed on a machine with
Intel Xeon 2.60GHz processor, 112GB Ram, Nvidia Tesla P-100 GPU with 16GB of memory, Python
3.6, and PyTorch 1.9.0 (Paszke et al., 2019). We used Optuna (Akiba et al., 2019) and set the number
of trials to 20 to optimize the hyperparameter search for PP-GNN. For other baseline models, we set
the number of trials to 100.

A.3.5 ADAPTABLE FREQUENCY RESPONSES

In Figure 1 of the main paper, we observe that PP-GNN learns a complicated frequency response for
a heterophilic dataset (Squirrel) and a simpler frequency response for a homophilic dataset (Citeseer).
We observe that this trend follows for two other datasets Chameleon (heterophilic) and Computer
(homophilic). See Figure 7.

(a) Squirrel (b) Citeseer

(c) Chameleon (d) Computer

Figure 7: Learnt Frequency Responses
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(a) Varying No. of EVs

Figure 8: Analyzing varying number of eigenvalues on performance

A.3.6 EFFECT OF NUMBER OF EIGENVALUES/VECTORS (EVS).

Since the number of EVs to adapt might not be known apriori, we conducted a study to assess the
effect of using different number of EVs on test performance. We report results on a few representative
datasets. From Figure 8a, we see that Homophilic datasets can benefit by adapting as small as 32 eigen
components. Heterophilic datasets achieve peak performance by adapting (∼250-500) number of
eigen components. These results indicate that the number of EVs required to get competitive/superior
performance is typically small, therefore, computationally feasible and affordable.

A.3.7 TRAINING TIME COMPLEXITY ANALYSIS

In the following subsections, we provide comprehensive timing analysis.

Computational Complexity: Listed below is the computational complexity for each piece in our
model for a single forward pass. Notation n: number of nodes, |E|: the number of edges, A: symmet-
ric normalized adjacency matrix, F : features dimensions, d: hidden layer dimension, C: number of
classes, e∗ denotes the cost of EVD, K: polynomial/hop order, l: number of eigenvalues/vectors in a
single partition of spectrum (for implementation, we keep l same for all such intervals), m: number
of partitions of a spectrum.

• MLP: O(nFd+ ndC)

• GPR-term: O(K|E|C) + O(nKC). The first term is the cost for computing AKf(X) for
sparse A. The second term is the cost of summation

∑
k A

kf(X).

• Excess terms for PP-GNN: O(mnlC). This is obtained by the optimal matrix multiplication
present in Equation 3 of the main paper (Ui is n × l, Hi(γi) is l × l, Z0() is n × C).
The additional factor m is because we have m different contiguous intervals/different
polynomials. Typically n is much larger than l.

• EVD-term: e∗, the complexity for obtaining the eigenvalues/vectors of the adjacency matrix,
which is usually very sparse for the observed graphs. Most publicly available solvers for
this task utilize Lanczos’ algorithm (which is a specific case of a more general Arnoldi
iteration). However, the convergence bound of this iterative procedure depends upon the
starting vectors and the underlying spectrum (particularly the ratio of the absolute difference
of two largest eigenvalues to the diameter of the spectrum) [Saad (1980), LI (2010),
Cullum & Willoughby (2002)]. Lanczos’ algorithm is shown to be a practically efficient
way for obtaining extreme eigenpairs for a similar and even very large systems. We use
ARPACK’s built-in implementation to precompute the eigenvalues/vectors for all datasets
before training, thus amortizing this cost across training with different hyper-parameters
configuration.

Per Component Timing Breakup: In Table 7, we provide a breakdown of cost incurred in seconds
for different components of our model. Since the eigenpairs’ computation is a one time cost, we
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Table 7: PP-GNN’s per component timing cost. Training Time refers to the end to end training
time (without eigen decomposition) averaged across 20 trials. EVD cost refers to the time taken to
obtain x top and bottom eigenvalues. This x can be found in the ‘Number of EV’s obtained’ column.
Since EVD is a one time cost, we average this cost over the total number of trials and add it to the
training time. We refer to this cost as the Effective Training Time.

PP-GNN Training Time EVD Cost Number of EV’s obtained Effective Training Time

Texas 11.89 0.00747 183 (All EVs) 11.89

Cornell 11.63 0.03271 183 (All EVs) 11.63

Wisconsin 12.08 0.01225 251 (All EVs) 12.08

Chameleon 21.44 3.71883 2048 21.63

Squirrel 31.38 15.8152 2048 32.17

Cora 22.46 54.3684 2048 25.18

Citeseer 20.51 56.9744 2048 23.36

Cora-Full 63.98 155.304 2048 71.75

Pubmed 52.54 256.71 2048 65.38

Computers 28.63 76.2738 2048 32.44

Photo 19.3 48.3683 2048 21.72

Flickr 161.16 304.114 2048 176.37

ArXiv 189.94 412.504 1024 210.57

WikiCS 27.92 65.4376 2048 31.19

amortize this cost over the total hyper-parameters configurations and report the effective training time
in the last column on of Table 7.

Average Training Time: In Table 8, we report the training time averaged over 20 hyper-parameter
configurations for several models. To understand the relative performance of our model with respect
to GCN, we compute the relative time taken and report it in Table 9. We can observe in Table 9 that
PP-GNN is ∼ 4x slower than GCN, ∼ 2X slower than GPR-GNN and BernNET, and ∼ 2X faster
than AdaGNN. However, it is important to note that in our average training time, the time taken to
compute K top and bottom eigenvalues/vectors is amortized across the number of trials

Table 8: Training Time (in seconds) across Models

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 9.27 11.89 1.08 3.46 5.59 6.00 13.97

Cornell 9.41 11.63 1.06 3.69 5.37 5.51 12.56

Wisconsin 9.67 12.08 1.07 3.42 5.69 5.36 13.57

Chameleon 14.69 21.63 2.60 6.42 12.46 7.84 28.77

Squirrel 18.94 32.17 5.04 7.52 17.82 28.87 90.36

Cora 12.90 25.18 1.95 5.94 12.25 10.67 22.15

Citeseer 10.62 23.36 3.72 4.56 9.52 19.5 35.34

Cora-Full 24.98 71.75 7.77 8.01 31.26 40.21 175.58

Pubmed 14.00 65.38 6.21 11.73 12.64 27.76 162.01

Computers 7.67 32.44 2.24 6.68 7.48 27.76 118.43

Photo 8.58 21.72 1.68 5.1 7.95 14.34 45.46

Flickr 42.64 176.37 21.00 30.4 62.11 119.3 178.7371

ArXiv 118.35 210.57 78.9 102.88 693.92 771.59 307.84

WikiCS 14.37 31.19 3.34 10.8 11.43 30.79 73.63

A.4 COMPARISON WITH RESPECT TO OTHER POLYNOMIAL FILTERING METHODS

Polynomial filters are a class of filters constructed and evaluated from polynomials. These filters
can be constructed via multiple bases in the polynomial vector space. Examples of such bases are
the canonical mononomial basis or more complicated basis such as the Chebyshev and Bernstein
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Table 9: Training Time of models relative to the training time of GCN

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 2.68 3.44 0.31 1.00 1.62 1.73 4.04

Cornell 2.55 3.15 0.29 1.00 1.46 1.49 3.40

Wisconsin 2.83 3.53 0.31 1.00 1.66 1.57 3.97

Chameleon 2.29 3.37 0.40 1.00 1.94 1.22 4.48

Squirrel 2.52 4.28 0.67 1.00 2.37 3.84 12.02

Cora 2.17 4.24 0.33 1.00 2.06 1.80 3.73

Citeseer 2.33 5.12 0.82 1.00 2.09 4.28 7.75

Cora-Full 3.12 8.96 0.97 1.00 3.90 5.02 21.92

Pubmed 1.19 5.57 0.53 1.00 1.08 2.37 13.81

Computers 1.15 4.86 0.34 1.00 1.12 4.16 17.73

Photo 1.68 4.26 0.33 1.00 1.56 2.81 8.91

Flickr 1.40 5.80 0.69 1.00 2.04 3.92 5.88

ArXiv 1.15 2.05 0.77 1.00 6.74 7.50 2.99

WikiCS 1.33 2.89 0.31 1.00 1.06 2.85 6.82

Average 2.03 4.39 0.50 1.00 2.19 3.18 8.39

Table 10: End to end training time (in HH:MM:SS) for optimizing over 20 hyper-parameter configu-
rations

Dataset Chameleon Citeseer Computers Cora Cora-Full Photo Pubmed Squirrel Texas Wisconsin OGBN-ArXiv

Time 00:03:46 00:10:17 00:34:37 00:05:24 00:59:29 00:10:31 00:57:40 00:10:38 00:02:27 00:02:33 01:03:20

basis. Since all these bases (for a polynomial of order K) span the same vector space, it is possible
to transform one vector space to another and vice versa. APPNP, GPR-GNN, and BERNNET are
all instances of polynomial graph filters. APPNP and GPR-GNN use the monomial basis, while
BERNNET uses the Bernstein basis. Below, we illustrate the differences between these three methods
and also discuss the shortcomings of each of them.

APPNP: One of the early works, APPNP (Klicpera et al., 2019), can be interpreted as a fixed
polynomial graph filter that works with monomial basis. The polynomial coefficients correspond to
Personalised PageRank (PPR) (Jeh & Widom, 2003). The node embeddings are learnt by APPNP as
described below:

Z =

K∑
k=0

γkÃ
k
symZx(X,Θ)

APPNP uses fixed γk values, where γk = α(1− α)k, and γK = (1− α)K ; α is a hyper-parameter,
Zx(X,Θ) are the node features transformed by MLP with parameter Θ. The main shortcoming of
this method is the assumption that the optimal coefficients for the polynomial filter (for all tasks) are
PPR coefficients, which need not necessarily be the case.

GPR-GNN: GPR-GNN builds on APPNP by overcoming this shortcoming by making the filter
coefficients learnable. (Chien et al., 2021) identified that negative coefficients allows the model to
exploit high frequency signals required for better performance on heterophilic graphs. As discussed
in the introductory paragraph, GPR-GNN uses the monomial basis. The node embeddings are learnt
by GPR-GNN as described below:

Z =

K∑
k=0

γkÃ
k
symZx(X,Θ)

Note that the γk(∀k) are learnable coefficients, Zx(X,Θ) are the node features transformed by MLP
with parameter Θ. While this method is an improvement over APPNP, adapting an arbitrary filter
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response, which requires a high-order polynomial, is difficult due to the oversmoothing problem.
GPR-GNN mitigates oversmoothing by making the higher order terms’ coefficients uniformly
converge to zero. Mitigating the oversmoothing problem limits the complexity of the filter learnt, and
therefore makes GPR-GNN ineffective at learning complex frequency responses.

BERNNET: While oversmoothing is one shortcoming of GPR-GNN, BERNNET identified another
shortcoming that GPR-GNN and other polynomial filtering based methods can result in ill-posed
solutions and face optimization issues (converging to saddle points) by not constraining the filter
response to non-negative values. He et al. (2021) proposed a model that learns a non-negative
frequency response, a constraint that can be easily enforced by modifying the learning problem from
learning the coefficients of the monomial basis functions to learning the coefficients of the Bernstein
basis functions, since the latter are non-negative in their standard domain. (He et al., 2021) argue that
constraining coefficients to take on non-negative values is required for stability and interpretability of
the learned filters and is the main reason for performance improvements. The node embeddings are
learnt as described below:

Z =
K∑

k=0

θk
2K

(
K

k

)
(2I − L)K−kLkZx(X,Θ)

=

K∑
k=0

θk
2K

(
K

k

)
(Asym + I)K−k(I −Asym)kZx(X,Θ)

=

K∑
q=0

[

K∑
r=0

θk
2K

(
K

r

) q∑
p=0

(
K − r

q − p

)(
r

p

)
(−1)p]Aq

symZx(X,Θ)

=

K∑
q=0

[

K∑
r=0

θrαrq]A
q
symZx(X,Θ)

=

K∑
q=0

wqA
q
symZx(X,Θ)

Note that in the above expression, θk(∀k) are learnable coefficients and are constrained to non-
negative values. We first replace 1

2K

(
K
r

)∑q
p=0

(
K−r
q−p

)(
r
p

)
(−1)p with αrq and then subsequently

replace
∑K

r=0 θrαrq with wq. Such an exercise was done to show that the filter defined by BERN-
NET does indeed fall into the class of polynomial filters. We tabulate the important attributes of each
of the polynomial filters described above in Table 11.

Method Polynomial Basis Filter Response Constraints

APPNP Monomial h(λ) =
∑K

k=0 γkλ
k γk = α(1− α)k; γK = (1− α)K ; α is a hyper-parameter

GPR-GNN Monomial h(λ) =
∑K

k=0 γkλ
k γk are unconstrained

BERNNET Bernstein h(λ) =
∑K

k=0
θk
2K

(
K
k

)
(2− λ)K−kλk θk ≥ 0

Table 11: Different polynomial filtering based methods. Note that the coefficients of APPNP are
fixed (not learnable) PPR coeffcients (γk ∀ k) and the coefficients of GPR-GNN (γk ∀k)and BERN-
NET (θk ∀k) are learnable.

Previously proposed polynomial filtering approaches rely on a single polynomial filter acting over
the entire spectrum. Hence these models are prone to the oversmoothing problem when the degree of
such a polynomial is increased (as shown in A.1). This phenomenon limits these models to effectively
approximate complex filters. These shortcomings motivates the need for a method that can learn
complex frequency responses, while avoiding the oversmoothing trap. PP-GNN, by relying on
its piece-wise filtering formulation, can effectively approximate complex frequency response with
low-order polynomials. The reliance on multiple polynomial filters, each acting on a subset of the
eigenspectrum, enables PP-GNN’s to effectively approximate complex responses (as described in
Section - 2 of the main paper).
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A.5 FUTURE WORK

In this work, we introduced PP-GNN, an effective polynomial filtering approach that has the
capability to effectively approximate complex frequency responses. In our current implementation
of PP-GNN, We used an unconstrained polynomial filter with monomial basis as the base filter.
However, other polynomial filter variants can be used as the base filter. We leave this exploration as
future work. One can observe that BERNNET is a special case of GPR-GNN. In other words, the
solution space of BERNNET is a subset of that of GPR-GNN. This raises the first open question
Q1: Why does BERNNET perform better than GPR-GNN? Could the performance gap just be an
artifact of model optimization? The authors of BERNNET constrains the filter response to take on
non-negative values. This decision is justified by (He et al., 2021) from signal processing perspective.
However, the implications of such restriction is unclear for the node classification task. This leads
us to the second open question Q2: Is it necessary for polynomial filters to have positive frequency
response to achieve superior task performance? We intend to pursue these questions as future work.
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