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Abstract

Cause-effect relationships are typically evaluated
by comparing outcome responses to binary treat-
ment values, representing two arms of a hypothet-
ical randomized controlled trial. However, in cer-
tain applications, treatments of interest are contin-
uous and multidimensional. For example, under-
standing the causal relationship between severity
of radiation therapy, summarized by a multidimen-
sional vector of radiation exposure values and post-
treatment side effects is a problem of clinical inter-
est in radiation oncology. An appropriate strategy
for making interpretable causal conclusions is to
reduce the dimension of treatment. If individual
elements of a multidimensional treatment vector
weakly affect the outcome, but the overall rela-
tionship between treatment and outcome is strong,
careless approaches to dimension reduction may
not preserve this relationship. Further, methods de-
veloped for regression problems do not directly
transfer to causal inference due to confounding
complications. In this paper, we use semiparamet-
ric inference theory for structural models to give a
general approach to causal sufficient dimension re-
duction of a multidimensional treatment such that
the cause-effect relationship between treatment and
outcome is preserved. We illustrate the utility of
our proposals through simulations and a real data
application in radiation oncology.

1 INTRODUCTION

In causal inference, the exposure of interest is commonly
assumed to be either binary (e.g., comparing treatment vs
placebo) or continuous (e.g., effect of treatment dosages on
viral load.) In the latter cases, in addition to contrasts of
responses to two specific doses, we may be interested in

the entire dose-response relationship, and choose to model
it via a simple functional, for example a logarithmic or
sigmoidal function. In other applications, we might be in-
terested in assessing causal relationships between outcomes
and treatments with values that lie in a multidimensional
space. For instance, in natural language processing interest
lies in causal analyses that involve high dimensional text
data [Gentzkow et al., 2019, Feder et al., 2021]. Another
example is the neuroimaging data used to relate neuronal
network activity to cognitive processing and behavior [Ram-
sey et al., 2010, Mather et al., 2013].

As our motivational example, we focus on an application in
radiation oncology. In neck and head cancers, minor varia-
tions in dose and direction of radiation may result in similar
tumor reduction but vastly improve secondary outcomes,
such as weight loss, or dysfunction induced by radiation
therapy, such as dysphasia or xerostomia [Robertson et al.,
2015]. Thus, understanding the causal relationship between
a multidimensional radiation exposure and downstream side
effects in cancer patients undergoing radiation therapy is
of clinical interest. Unlike standard treatments, radiation
therapy is complex and is represented by three dimensional
voxel maps of radiation doses in different parts of the body.
Since this representation is very high dimensional, the exact
dose localization information in the voxel map is some-
times represented by cumulative dose-volume histograms
and summarized by a multidimensional vector of exposure
dosages. Even such summaries complicates establishing
clinically relevant causal relationships.

Since we are interested in dimension reduction for the sake
of explicating a particular relationship between treatments
and outcomes, approaches that do not take outcomes into ac-
count in the right way run the risk of distorting the estimate
of this relationship, or even falsely concluding the relation-
ship is absent. Therefore, seemingly natural approaches to
dimension reduction, such as principal component analysis
(PCA), are not appropriate in our setting. On the other hand,
there is a line of research in statistics on sufficient dimension
reduction (SDR) [Li, 1991] with the objective of reducing
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the dimension of covariates by preserving the associational
relations between covariates and outcome. However, due
to spurious associations introduced by confounding which
is ubiquitous in observational data sources, naive use of
SDR approaches to discern causal relationships between
treatments and outcomes leads to bias.

We are interested in applying SDR core ideas to reduce
dimension of a treatment in a way that preserves a causal
rather than associational relationship with the outcome. In
addition, we are interested in doing so under the weakest
possible assumptions, which entails generalizing the semi-
parametric approaches in the SDR literature [Ma and Zhu,
2012]. In this paper, we provide a framework for structural
(causal) models based on semiparametric inference theory
developed for marginal structural models [Robins, 1999] to
give what we believe is the first approach to causal SDR of
a multidimensional treatment.

2 PRELIMINARIES

Sufficient dimension reduction. Given an outcome variable
Y and a p-dimensional covariate vector X, the goal of SDR
is to find a known function gX(.;β) parameterized by β with
a much smaller range than domain such that Y depends on
X only through gX(X;β). Often this function is assumed to
be linear, in which case the goal is to find β ∈ Rp×d, where
d < p, such that Y depends on X only through XTβ, i.e.,
E[Y |X] = E[Y |XTβ]. Often, proposed solutions to SDR
rely on strong parametric assumptions that are unlikely to
hold in practical applications, such as the linearity condition
where E[X|XTβ] is assumed to be a linear function ofX , or
the assumption that cov(X | XTβ) is constant rather than a
function of X , [Li, 1991, Cook and Weisberg, 1991, Hardle
and Stoker, 1989, Ichimura, 1993, Cook and Li, 2002].

Ma and Zhu [2012] introduced a new approach to SDR
by recasting the problem in terms of estimation in a semi-
parametric model. Crucially, this approach relies on far
weaker assumptions than is typical in SDR, and is thus
much more generally applicable. To obtain the relevant
semiparametric model, we rewrite the above condition as
Y = `(XTβ) + ε, where `(XTβ) := E[Y |XTβ] is an
unspecified smooth function and E[ε|X] = 0, while the
distribution p(ε|X) remains otherwise unrestricted. Ma and
Zhu [2012] derived the class of all influence functions for β,
a.k.a. the orthogonal nuisance tangent space denoted by Λ⊥η ,
as: Λ⊥η = {(Y −E[Y |XTβ])× (α(X)−E[α(X)|XTβ])},
where α(X) is any function of X .

The main objective of semiparametric theory of influence
functions is to derive an estimator that has the characteris-
tics of parametric models (such as a

√
n-consistency and

asymptotic normality) without the restrictive parametric as-
sumptions. Influence functions are arguably the most impor-
tant approach to estimation in causal inference, especially in

observational studies where we do not have prior knowledge
on what the true likelihood is; see Appendix A for a brief
overview of influence functions, and [Van der Vaart, 2000,
Bang and Robins, 2005, Tsiatis, 2007] for more details.

A well-known property of semiparametric models is that
all elements of Λ⊥η are mean 0 under the true distribution.
Hence, a general class of estimating equations can be ob-
tained using the sample version of

E[U(β)] (1)

= E
[(
Y − E[Y | XTβ]

)
×
(
α(X)− E[α(X) | XTβ]

)]
= 0,

where U(β) is an arbitrary element in Λ⊥η . The estimator
obtained from (1) is doubly robust under any choice of
models for E[Y |XTβ] and E[α(X)|XTβ],meaning that the
estimator remains consistent if either of these two models is
correctly specified [Ma and Zhu, 2012].

Causal inference. In causal inference, we seek to make in-
ferences about the causal relationship of a treatment variable
A and an outcome variable Y by counterfactual contrasts
of the form Y (a) representing a hypothetical experiment
where treatment A is set to a, possibly contrary to the fact.
A common setting considers, in addition to A and Y , a
vector of baseline variables C, yielding an observed data
distribution of the form p(Y,A,C). Under standard assump-
tions of consistency, which states that counterfactual out-
come is the same as observed outcome if treatment is set to
observed value, conditional ignorability which states that
{Y (a)} is independent of A conditional on C, and positiv-
ity of p(A | C), the counterfactual distribution p(Y (a)) is
identified as the following function of observed data

p(Y (a)) =
∑
c

p(Y | A = a,C = c)× p(C = c). (2)

The average causal effect (ACE) of a binary treatment on an
outcome is defined as ACE = E[Y (1)] − E[Y (0)]. Under
the above assumptions, the counterfactual mean E[Y (a)] is
given as the following function of the observed data, called
the adjustment formula or g-formula,

E[Y (a)] = E
[
E[Y | A = a,C]

]
, (3)

where the outer expectation is taken with respect to p(C);
see Tian and Pearl [2002], Shpitser and Pearl [2006], Bhat-
tacharya et al. [2020] for general identification algorithms
in the presence of unmeasured confounders.

There are several different approaches on estimating the ad-
justment formula such as plug-in, inverse probability weight-
ing (IPW), and semiparametric based estimators such as
augmented IPW (AIPW) [Van der Vaart, 2000, Bang and
Robins, 2005, Van der Laan et al., 2011]. An alternative
class of IPW estimators models the relationship between A
and Y via a marginal structural model (MSM), or a causal
regression. A simple version of such a model takes the form
E[Y (a)] = f(a;β), for finite set of parameters β. Given



such a model, inferences about E[Y (a)] reduce to inferences
about β. For binary treatments, f(a;β) can be written as
β0 + βa × a without loss of generality, with ACE = βa.
An MSM is different from an ordinary regression model,
since E[Y (a)] 6= E[Y |A = a] given our causal assumptions.
Thus, one approach to estimating β is via the following esti-
mating equation, appropriately reweighted by the treatment
propensity score model, Wa(C; ηa) := p(A|C; ηa),

Pn
[

p∗(a)

Wa(C; η̂a)
× {Y − f(a;β)}

]
= 0, (4)

where Pn = 1
n

∑n
i=1(.), p∗(a) is an arbitrary function of

a with the same dimension as β, and η̂a is the maximum
likelihood estimate of ηa. This IPW procedure is known to
be inefficient. A more efficient (in fact optimal in a wide
class of reasonable estimators) approach is to use influence
functions, described in detail in [Robins, 1999]. Our ap-
proach to causal SDR stands in the same relation to the
semiparametric approach to SDR for regression problems
in [Ma and Zhu, 2012] as fitting regression models does to
fitting marginal structural models.

3 CAUSAL SUFFICIENT DIMENSION
REDUCTION

We are interested in the causal effect of a multidimensional
treatment A ∈ Rp on outcome Y , assuming all relevant
covariates that need to be controlled for are observed and
denoted by C. We would like to reduce the dimension of
treatment A such that the causal relationship between A
and Y is preserved. Let g(.;β) be a function parameterized
by β that takes values in Rp and maps them to values in
Rd, d < p, i.e., g : A ∈ Rp 7→ g(A;β) ∈ Rd. We want
to reduce the dimension of A in such a way that the coun-
terfactual response E[Y (a)] only depends on A via g(a).
Specifically, we assume that if E[Y (a)] is identified, that is
if E[Y (a)] is a mapping f from values a of A to functionals
ha(p(V )) of the observed data distribution, where p(V ) de-
notes the joint distribution over the set of observed variables
V, then f(a) = f(g(a;β)). The methodology proposed in
this paper does not depend on the choice of g(.;β), although
we fix a particular g(.;β) in our experiments. We assume
the three identification assumptions that were discussed in
the previous section, namely consistency, conditional ignor-
ability, and positivity, hold in our analysis. Therefore, we
fix ha

(
p(C,A, Y )

)
= E

[
E[Y |A = a,C]

]
, as shown in (2).

The estimation procedure for MSMs shown in (4) can be
viewed as a standard estimating equation for a regression
model relating treatment and outcome, but applied to ob-
served data readjusted via inverse weighting in such a way
that treatment appear randomly assigned. In other words,
MSMs are regressions applied to a version of observed
data in such a way that regression parameters can be in-
terpreted causally. Unlike other estimating equations that

solve for β by maximizing the feature outcome relation-
ship, the equation in (1) fits β to maintain the identity
E[Y |X] = E[Y |XTβ]. As a consequence, semiparamet-
ric causal SDR can be viewed as an MSM version of this
regression problem, which seeks to find β which maintains
E[Y (a)] = E[Y (g(a;β))]. In other words, our aim is to
estimate β by maintaining the following identity

E
[
E
[
Y | a,C

]]
= E

[
E
[
Y | g(a;β), C

]]
, (5)

where the outer expectation is wrt the density p(C).

We note here the different roles that variables play in re-
gression SDR and causal SDR. The goal of regression SDR
is to preserve the associative relationship between high di-
mensional features X and outcome Y . The goal of causal
SDR, as we view it here, is to preserve the causal rela-
tionship between a multidimensional treatment A and out-
come Y , which is made complicated by the presence of
spurious associations induced by covariates C. Thus, the
goal in causal SDR is not to maintain the regression re-
lationship between covariates and outcome by assuming
E[Y |{A,C}] = E[Y |g({A,C};β)], but to preserve the re-
lationship as in (5) where C is marginalized (adjusted for).
The set of confounders C could still be high dimensional,
but they are not of primary interest in our problem. Incor-
porating baseline covariates into the dimension reduction
strategy along with the treatment, as is done in some MSMs,
is left as an interesting avenue for future work. Examples
of work focusing on dimension reduction of common con-
founders include Imai and Ratkovic [2014], Hu et al. [2014],
Shortreed and Ertefaie [2017], Banijamali et al. [2018], Ma
et al. [2019], Luo and Zhu [2020], Cheng et al. [2020].

As stated earlier, our objective is to preserve the causal
effect of A on Y , which is of the form shown in (3). How-
ever, it suffices to say that if the counterfactual response
curve, i.e., E[Y (a)], is preserved under our dimensionality
reduction scheme, then the causal effect is preserved. Hence,
we stated our constraint in (5) in terms of the counterfac-
tual mean rather than the counterfactual contrast that would
define the effect. Moreover, even though treatment is multi-
dimensional, we emphasize that each unit still receives one
treatment session; e.g., a single session of radiation ther-
apy with no followups. Records of radiation treatment are
usually stored as monodimentional cumulative dose-volume
histograms, and are summarized as amount of radiation on
k% of the organ’s volume, where k ranges from 1 to 100.

In a conditionally ignorable causal model, intervention onA
corresponds to dropping the term p(A|C) from the observed
density p(Y,A,C) yielding (2). Define q(Y,A,C) as the
following modified version of (2):

q(Y,A,C) := p(Y | A,C)× p∗(A)× p(C),

where p∗(A) is any density with the same support as p(A).



Then (5) can be rewritten as

Eq[Y | A = a] = Eq[Y | g(a;β)], (6)

where Eq is the expectation taken with respect to the density
q(Y,A,C) defined above, and q(Y |A) =

∑
C q(Y,C|A) =∑

C p(Y |A,C)× p(C) by definition.

Equations (5) and (6) are equivalent forms of our constraint
in the causal SDR problem where the MSM model for
E[Y (a)] = Eq[Y |a], is assumed to be a function of the
multidimensional treatment intervention a only through its
lower dimension representation g(a;β). We now describe
two approaches to estimating β.

3.1 INVERSE PROBABILITY WEIGHTED SDR

Let `(g(A;β)) := Eq[Y |g(A;β)] and ν
(
g(A;β)

)
:=

Eq[α(A) | g(A;β)] be two unspecified smooth functions
of g(A;β). A simple estimation strategy for β based on
generalizing (4), entails solving

E
[

p∗(a)

p(A = a | C)
× Ũ(β)

]
= 0, (7)

where Ũ(β) = {Y − `(g(a;β))} ×
{
α(A)− ν(g(a;β))

}
,

p∗(a) is an arbitrary function of a, and p(A|C) is a correctly
specified statistical model which governs how the treatment
A is assigned based on baseline characteristicsC. The above
equation may be solved using observed data by evaluating
the expectation empirically.

Lemma 1. An estimator for β based on solving (7) is
unbiased under correct specification of p(A|C), and ei-
ther one of `(g(A;β)) := Eq[Y |g(A;β)] or ν(g(A;β)) :=
Eq[α(A) | g(A;β)].

3.2 SEMIPARAMETRIC CAUSAL SDR

A general approach for deriving regular and asymptotically
linear (RAL) estimators of β is based on deriving Λ̃⊥η , the
orthogonal complement of the nuisance tangent space of a
semiparametric model that enforces the constraint (5), but
places no other restrictions on the observed data distribution;
Λ̃⊥η is the class of all influence functions. One approach is
to derive this space explicitly, as was done in [Ma and Zhu,
2012]. An alternative is to take advantage of general theory
relating orthogonal complements of regression problems,
and orthogonal complements of “causal regression prob-
lems,” or MSMs, developed by Robins [1999]. Given the
semiparametric modelM induced by the restriction (5), we
take advantage of this theory in the following result.

Theorem 1. The orthogonal complement of the nuisance
tangent space Λ̃⊥η for β that satisfies (6) is:

Λ̃⊥η =
{ Ũ(β)

Wa(C)
− φ(A,C) + E[φ(A,C) | C]

}
,

where φ(A,C) is an arbitrary function of A and C, Wa(C)
is the IPW weight p(A = a|C)/p∗(a) for a fixed p∗(a), and
Ũ(β) is of the form

Ũ(β) =
{
Y − `(g(a;β))

}
×
{
α(A)− ν(g(a;β))

}
,

where `(g(a;β)) := Eq[Y |g(a;β)] and ν(g(a;β)) :=
Eq[α(A)|g(A;β)]. Moreover, the most efficient estimator
in this class, for any fixed α(A), is recovered by setting

φopt(A,C) = E
[
Ũ(β)
Wa(C) | A,C

]
.

Lemma 2. For a fixed choice of α(A) and normalized
function p∗(A), the element Ũ(β∗) ∈ Λ̃⊥η corresponding to
the optimal choice of φ(A,C) has the form.

p∗(A)

p(A | C)
× Ũ(β)− p∗(A)

p(A | C)
× E

[
Ũ(β)

∣∣∣A,C]
+ Eq

[
E
[
Ũ(β)

∣∣∣A,C]∣∣∣C] , (8)

where Eq[.] is the expectation taken with respect to the
density q(Y,A,C) := p(Y |A,C)× p∗(A)× p(C).

3.3 ROBUSTNESS PROPERTIES

Just as Λ⊥η in Section 2 entailed double robustness of U(β)
for semiparametric regression SDR, we now show that the
structure of Λ̃⊥η yields additional robustness properties.

Lemma 3. If one of
{
p(A|C), E[Ũ(β)|A,C]

}
and

one of
{
`(g(A;β)) := Eq[Y |g(A;β)], ν(g(A;β)) :=

Eq[α(A)|g(A;β)]
}

is correctly specified, then the estimator
for β based on (8) is consistent and asymptotically normal
with mean zero and variance τ−1 × Var

(
Ũ(β∗)

)
× τ−1′ ,

where Ũ(β∗) is given in (8) and τ = E[∂Ũ(β∗)/∂β].

This result implies that the estimating equation in (8) yields
a “2× 2” robustness property. In practice, since we will be
dealing with multidimensional problems, correct specifica-
tion of models is difficult to ensure. However, robustness
properties of semiparametric estimators also implies that
in regions where sufficient subset of models are approxi-
mately correct, the overall bias remains small. If p(A|C)

and one of the models in Ũ(β) is correctly specified, the
AIPW estimator using (8) remains consistent for any choice
of E

[
Ũ(β)|A,C

]
. One promising direction of future work

is to consider cases where p(A|C) and Ũ(β) are known and
search for E[Ũ(β)|A,C] which yields good properties of
the overall estimator.

4 ESTIMATION AND IMPLEMENTATION

In order to estimate the parameters β in 6, we need to solve
the estimating equation Pn[Ũ(β∗)] = 0, where Ũ(β∗) is
given in (8). For any Ũ(β) of the form given in Section



3.1, Theorem 1, provides the class of all RAL estimators
for β∗ along with the most efficient estimator in this class.
Under the general form of Ũ(β) =

{
Y − `(g(A;β))

}
×{

α(A) − ν(g(A;β))
}
, the term E

[
Ũ(β)|A,C

]
in Ũ(β∗)

equals
{
E[Y |A,C]−`(g(A;β))

}
×
{
α(A)−ν(g(A;β))

}
.

Hence, in the expression in 8, four different models are
involved in estimating Ũ(β∗), namely (i) `(g(A;β)) :=
Eq[Y |g(A;β)], (ii) ν(g(A;β)) := Eq[α(A)|g(A;β)], (iii)
p(A|C), and (iv) E[Y |A,C] = Eq[Y |A,C]. The last term
in (8) is equal to Ea

[
E[U(β)|A,C]

]
, where Ea[.] is the

expectation wrt the marginal distribution of A which can be
evaluated empirically without additional modeling.

For a pre-specified functional form of `(g(A;β)), we
need to fit three different nuisance models. Given mod-
els ν(g(A;β); ην), p(A|C; ηa), and E[Y |A,C; ηy] for
ν(g(A;β)), p(A|C), and E[Y |A,C], respectively, it can
be shown that if n

1
4+ε(η̂− η0) is bounded in probability for

some ε > 0, then the estimating equation Pn[Ũ(β∗); η̂] = 0
yields an estimate of β with the same asymptotic prop-
erties as if the nuisance models were known. Here η =
{ην , ηa, ηy}, and η̂, η0 denote the estimated and the true
parameters of the nuisance models, respectively.

Theorem 2. Let φ0 denote the influence function of
the estimator β obtained from the estimating equation
Pn[Ũ(β∗, η0)] = 0. If n

1
4+ε(η̂−η0) is bounded in probabil-

ity for some ε > 0, then the influence function corresponding
to the estimator β̂ obtained from the estimating equation
Pn[Ũ(β∗, η̂)] = 0 is the same as φ0. In other words, β̂ fol-
lows the same asymptotic properties as if we knew the true
nuisance models.

The condition for the rate of convergence of nuisance models
in Theorem 2 is a sufficient condition and is potentially too
conservative. In practice, we might be able to use models
with the slower convergence rates, see [Fisher and Kennedy,
2018] for more details. [Stone, 1982] provides a detailed
analysis of the convergence rates of nonparametric models.

Implementation. We now describe in detail our proce-
dure for estimating β by solving the empirical version of
E[Ũ(β∗)] = 0, where Ũ(β∗) is given in (8). In what follows,
we assume the structural dimension d, i.e. the cardinality of
the range of g(;β), is known; we provide a discussion on
choosing the structural dimension at the end of this section.

For a given choice of p∗(A) and α(A),

1. First estimate η̂a and η̂y in p(A|C; ηa) and
E[Y |A,C; ηy] by maximum likelihood or nonparamet-
ric methods. These two models do not depend on β
and are not updated within the iterations below.

2. Pick starting values β(1).

3. At jth iteration, given a fixed β(j), estimate

̂̀(g(A;β(j))) and ν̂(g(A;β(j))), and compute:

Uq(β(j))=
{
Y − ̂̀(g(A;β(j)))

}
×
{
α(A)− ν̂(g(A;β(j)))

}
,

E[Uq(β(j)) | A,C] =
{
E[Y | A,C; η̂y]− ̂̀(g(A;β(j)))

}
×
{
α(A)− ν̂(g(A;β(j)))

}
.

4. Form the sample version of E[Ũ(β∗)] as follows.

ζ(β(j)) = Pn

[
p∗(A)

p(A | C; η̂a)
×
{
Uq(β(j))−

− E
[
Uq(β(j))

∣∣ A,C]}+ Eq

[
E
[
Uq(β(j))

∣∣ A,C] ∣∣∣ C]]

where Pn[.] := 1
n

∑n
i=1[.]i.

5. Calculate the first and second derivatives of
∂{||ζ(β)||2}/∂{β} numerically and evaluate them at
β(j), and use the Newton-Raphson update rule to up-
date β(j).

6. Repeat steps (3) through (5) until convergence.

The implementation of an empirical evaluation of (7) fol-
lows a similar set of steps, except all steps pertaining to
second and third terms of (8) are skipped. Moreover, in
step 3 of the above implementation, we need to specify
individual models for `(g(A;β)) := Eq[Y |g(A;β)] and
E[Y |A,C] := Eq[Y |A,C]. However, due to variation de-
pendence of these models, it may be difficult to fit these
two models in a congenial way in general. We provide an
alternative approach in the following section.

In order to deal with the issue of congeniality, we
may opt to specify Eq[Y |g(A;β)] and f̃(A,C, β) =
Eq[Y |A,C] − Eq[Y |g(A;β)], which yield a variation-
ally independent specification of Eq[Y |g(A;β)] and
Eq[Y |A,C] = Eq[Y |g(A;β)] + f̃(A,C, β). Consequently,
the four variationally independent models we need to spec-
ify are as follows: `(g(A;β)), ν(g(A;β)), p(A|C), and
f̃(A,C, β); the last term in (8) can be evaluated empiri-
cally without additional modeling. Thus, we need to specify
the additional nuisance model f̃ . We propose to fit f̃ by
borrowing ideas from the theory of structural nested mean
models (SNMMs) in [Vansteelandt and Joffe, 2014, Robins,
1999]. We defer the descriptions to the appendix and refer
to f̃ as an “inverted” structural nested mean model.

Choosing the structural dimension. Up until here, we as-
sumed the structural dimension was known a priori. Finding
the correct dimension is not an straightforward task and
incorrect choices may greatly affect performance. We adapt
the technique in [Ma and Zhu, 2012] that was used to se-
lect the structural dimension in regression SDR to causal
SDR. Specifically, we utilize a resampling procedure to
select the structural dimension. This procedure was orig-
inally described by [Dong and Li, 2010] and adapts the



idea of [Ye and Weiss, 2003]. We consider a family of
functions g1(.;β1), . . . , gm(.;βm) with different structural
dimensions, and use the cross-validation procedure we de-
scribe below to pick the best dimension.

Let β̂ρ be the estimate of β from the original sample for
the ρth working dimension, where ρ = 1, . . . , p− 1, and let
β̂ρ,b be the estimate of β from the bth bootstrap sample, for
b = 1, . . . , B. The structural dimension can be estimated by
finding the dimension ρ to be the cardinality of the range of
the function

g∗ = arg max
gi

1

B

B∑
b=1

r2
(
gi(A; β̂ρ), g

i(A; β̂ρ,b)
)
,

where r2(u, v) = k−1
∑k
i=1 λi and λis are the non-zero

eigenvalues of

{var(u, v)}−1/2 cov(u, v) {var(v)}−1 cov(v, u) {var(u)}−1/2.

This procedure uses resampling to choose β to maximize
variability of the reduced set of features given by gi(.;βi)
where gi(.;βi) is chosen in a way that aims to preserve the
causal regression relationship between A and the mean of
Y . Exploring other alternatives for choosing the structural
dimension is an interesting area for future work.

In the next section, we describe a set of simulations to
illustrate the key results presented in this paper and pro-
vide a real-data analysis using a cohort of patients with
head and neck cancer treated with radiation therapy. All
code necessary to reproduce the results is available at
https://github.com/raziehna/multidimensional-treatments.

5 SIMULATION STUDY

Causal SDR is not well-solved via standard methods for
dimension reduction such as PCA, as they do not take the
feature-outcome relationship into account, nor by standard
SDR methods, as they do not take the confounding issues
into account. We illustrate the utility of our proposal to
causal SDR, via simulation studies, and compare them with
regression SDR and PCA methods. We also illustrate the
consistency of our estimators and illustrate the procedure
for selecting the structural dimension. To provide continuity
with previous work, our simulation study is similar to that
described in [Ma and Zhu, 2012].

We perform 50 replications with fixed sample sizes, where
the true response E[Y (g(a))] is an object of dimension d =
2, and the observed data distribution p(Y,A,C) is set as
follows. The dimension of the baseline factors C is fixed as
4 and the observed treatment dimension p is set to be 6 and
12. The baseline factors C are generated from a standard
multivariate normal distribution. We consider two cases
for the treatment vector: one where the linearity and the
constant covariance conditions in regular SDR are violated,
and one where these assumptions are satisfied.

Case 1. We generated (A1, A2)T (when p = 6) and
(A1, A2, A7:12)T (when p = 12) from a multivariate nor-
mal distribution where the mean of each component is given
as: µ1 =

∑
i Ci, µ2 =

∑
i(−1)iCi, µ7 = C1, µ8 = C2,

µ9 = C3, µ10 = −C1 + C2, µ11 = −C2 + C3, µ12 =
−C3 + C4, and the covariance matrix is (σij)(p−4)×(p−4)
where σij = 0.5|i−j|. We generated A3 from a normal dis-
tribution with mean |A1 +A2| and variance |A1|. A4 has a
normal distribution with mean |A1 + A2|1/2 and variance
|A2|. A5 and A6 were generated from Bernoulli distribu-
tions with success probabilities exp(A2)/{1 + exp(A2)},
and Φ(A2), respectively, where Φ(.) denotes the standard
normal cumulative distribution.

Case 2. The treatment vector is generated from a multivari-
ate normal distribution where the mean of each component
is given as follows. µ1 =

∑
i Ci, µ2 =

∑
i(−1)iCi, µ3 =

C1 − C2 − C3 + C4, µ4 = −C1 + C2 + C3 − C4, µ5 =∑
i Ci− 2C3, µ6 =

∑
i Ci− 2C1, and µ6+i = Ci, µ9+i =

−Ci for i = 1, 2, 3, and the covariance matrix is (σij)p×p
where σij = 0.5|i−j|.

The response variable is generated using

Y = ATβ1 + (AT )2β2 +

4∑
i=1

Ci +
{ p∑

j=1

Aj

}
×
{ 4∑

i=1

Ci

}
+ ε,

where the error term ε is generated from standard nor-
mal. For p = 6, we set β1 = (1, 1, 1, 1, 1, 1)T /

√
6, and

β2 = (1,−1, 1,−1, 1,−1)T /
√

6. For p = 12, the last 6
components of β1 and β2 are identically zero.

As mentioned in Section 3.2, Theorem 1 provides the whole
class of estimating equations for a given Ũ(β). For sim-
plicity, we assume E[α(A) | g(A;β)] = 0, and therefore
Ũ(β) = {Y − `(g(A;β))}×α(A) in the following simula-
tions. The performance of the estimates was computed using
the distance between true β and β̂, defined as the Frobenius
norm of the matrix β̂(β̂T β̂)−1β̂T − β(βTβ)−1βT .

Simulation 1. In this set of simulations, we aim for evalu-
ating the performance of different estimation strategies for
β and fix the sample size to 200. The results for both Case
1 and Case 2 when p = 6 are presented in Fig. 1, and the
results for both Case 1 and Case 2 when p = 12 is deferred
to the appendix. In each case, there are 4 different boxplots.
The first one, from the left hand side, labeled as Reg, cor-
responds to semiparametric SDR estimating equation (1).
Since regular SDR ignores the influence of confounding
variables C, the estimates are not capturing the true causal
relationship between A and Y . In the second boxplot, la-
beled as IPW, we use the IPW estimator in (7) with the
correct model for p(A|C), by properly adjusting for all the
confounders. This recovers a more reasonable β∗ estimate
than the first one. However, while IPW generally performs
better than PCA or regression SDR, the improvement is rela-
tively modest. This might be due to the inefficiency of naive
IPW estimators at the reported sample size. The third plot,

https://github.com/raziehna/multidimensional-treatments


Figure 1: Boxplots of Frobenius norms between true and
estimated parameters in simulations (p = 6).

labeled AIPW, uses the augmented IPW (AIPW) estimator
corresponding to (8), which greatly outperforms the other
estimators. The last plot corresponds to the classical PCA di-
mension reduction technique where the treatment-outcome
relation is ignored. In this case, the first two principal di-
rections are reported as estimating the basis of the lower
dimensional space. As illustrated in the plots, this naive
approach does not seek to preserve a causal, nor indeed any,
relationship to the outcome.

Our main objective was to reduce the dimension of the treat-
ment such that the cause-effect relation between treatment
and outcome is preserved. In order to show that our estimat-
ing procedures actually preserve this relation, we compute
the contrast between E[Y (g(ai;β))] and E[Y (g(aj ;β))]
for i, j = 1, . . . , n, given the true parameters and the esti-
mated ones. The n× n heatmap of effects are provided in
Fig. 2 for the true effects and the ones estimated by regu-
lar SDR and AIPW. We used 500 sample points generated
from Case 2 with p = 6 to plot these heatmaps. The plots
in 2(a) and (c) demonstrates the significant similarity be-
tween the true surface and the one estimated by AIPW. The
surface estimated by regression SDR appears to be a very
different surface. The root-mean-squared errors between the
true causal surface and the ones estimated from AIPW and

regular regression SDR are 0.48 and 14.29, respectively.

Simulation 2. We also evaluate the performance of our
bootstrap procedure for estimating the structural dimension
d, discussed in Section 4. We use the same data generating
process as in Simulation 1, with p = 6 and n = 200. We
set the bootstrap size to B = 50. The relative frequency of
the selected dimension are reported in the appendix, and it
reveals that the bootstrap procedure reliably recovers the
true structural dimension, namely 2 in both cases (98% of
the times in Case 1 and 90% of the times in Case 2.)

Simulation 3. We also demonstrate the effect of sample size
on IPW and AIPW estimators of β in the causal SDR model.
Results are revealed in the appendix.

6 DATA APPLICATION

We now illustrate our methods using a cohort of patients
treated with radiation therapy for head and neck cancer.
The cohort consists of 613 patients who received radiation
therapy at the Johns Hopkins hospital prior to 2016. Ra-
diation therapy is one of the most effective modalities for
the treatment of head and neck cancers. However, because
of the complex shape of target volumes in close proxim-
ity to sensitive organs, it may be associated with acute and
late radiation morbidities such as xerostomia, mucositis,
and dysphagia affecting the patient’s quality of life. Such
morbidities can lead to severe reduction in food intake and
undesirable and possibly dangerous weight loss in patients.
There are prospective studies that evaluated risk factors for
weight loss in patients who undergo radiation therapy [John-
ston et al., 1982, Cacicedo et al., 2014]. However, a proper
analysis of whether radiation causes weight loss has not
yet been reported likely due to the methodological chal-
lenges involved in using high dimensional variables such as
radiation therapy as a treatment in causal analysis.

Here, we focus on the parotid glands which are incidentally
irradiated by radiation and examine the summary measures
of radiation therapy given by the cumulative dose-volume
histograms extracted from the raw voxel maps of radiation
doses. In particular, we looked at 5 equally spaced percent-
ages of volume to construct a vector of treatment doses.
We used weight loss as the outcome of interest, which
was defined as the difference between weight measured
within 100 to 160 days after the completion of treatment
and the weight measured during consultation before the
start of treatment. The data has records on demographics
such as age, gender, race, and baseline clinical factors such
as whether the patient had used feeding tubes and/or re-
ceived chemotherapy before the initiation of treatment. We
assumed these variables are sufficient to control for con-
founding and thus would ensure the conditional ignorability
assumption was met. A copy of this dataset is available on
https://github.com/raziehna/multidimensional-treatments.

https://github.com/raziehna/multidimensional-treatments


Figure 2: Heatmaps of true causal effects and effects computed by estimating β via the regular SDR and the AIPW estimators.
Heatmaps are antidiagonally symmetric.

Figure 3: Heatmap to illustrate the causal effect of radiation
on weight loss, where effects are computed by estimating β
via AIPW estimator. Heatmap is antidiagonally symmetric
with opposite color tones.

There exists a rich literature relating parotid dose-volume
characteristics to radiotherapy-induced salivary toxicity. It
has been shown that the mean dose to the parotid glands
correlates strongly with xerostomia and salivary dysfunction
which are risk factors of weight loss [Deasy et al., 2010]. In
light of such studies, we assume there exists a single dimen-
sion in the radiation exposure that captures the relationships
between exposure and side effects including weight loss.
Therefore, we set the structural dimension d to be one. We
set the mapping function g(.;β) to be linear in its param-
eters β, and use Bayesian additive regression trees to fit
all nuisance models. The code is provided as part of the
supplementary materials. The oncology data were excluded
for reasons of patient confidentiality.

We generated n × n heatmaps in Fig. 3 to illustrate the
cause-effect relationship between radiation treatment and
weight loss. We use AIPW estimator obtained from Theo-
rem 1. The absolute values on the plots are antidiagonally
symmetric. Radiation doses were sorted in increasing val-
ues along both axes. We interpret the heatmaps as follows.
Consider the (i, i)th point on the plot and draw a line along
the y-coordinate. Since radiation doses were sorted in in-
creasing order, then the radiation value at any point on the
line to the right of (i, i) is higher than the radiation value
at the (i, i)th point. For any point to the left of (i, i), the
radiation value is lower. The value at the (k, i)th coordinate
corresponds to the contrast E

[
Y (g(ak;β))− Y (g(ai;β))

]
.

Consequently, if k > i, then a red dot at (k, i) coordinate
implies that an increase in radiation doses leads to an in-
crease in weight loss. On the other hand, a blue dot would
imply that an increase in radiation doses would not lead to
an increase in weight loss. Similarly, a blue dot at (k, i), for
k < i, would imply that a decrease in radiation leads to a
decrease in weight loss. Reverse is implied when the dot
is red. Focusing on the bottom right triangle, we note that
most of the area is filled with red color. It implies that as we
increase the amount of radiation, the severity of weight loss
increases. Thus, radiation therapy is potentially a cause of
weight loss among patients who undergo the treatment.

We investigated the relationship between the treatment and
outcome as the treatment size increases by selecting larger
numbers of equally spaced percentages of volume in the
dose-volume histograms. The plots are provided in the sup-
plement. Throughout the experiment, we examined the sum-
mary measures of radiation therapy given by the cumulative
dose-volume histograms extracted from the raw 3D voxel
maps of radiation doses. A more fine-tuned approach is to
look at the exact dose localization information in the raw
3D voxel maps. A voxel-based approach would identify
the relations between radiation-induced morbidity and lo-
cal dose release, thus providing a potentially better insight



into spatial signature of radiation sensitivity in composite
regions like the head and neck district [Monti et al., 2017].
Given the small cohort of patients that we have access to,
a voxel-based approach would fall into p � n paradigm,
and would require strong sparsity assumptions [Li, 2007] to
deal with. This is an interesting and challenging direction
for future work.

7 CONCLUSIONS

In this paper, we have described a generalization of the semi-
parametric sufficient dimension reduction (SDR) approach
for regression problems described in [Ma and Zhu, 2012]
to causal SDR. Specifically, we developed a method that re-
duces the dimension of a multidimensional treatment, while
preserving the causal relationship between the treatment
and the outcome quantified as a counterfactual mean. Using
ideas from structural models [Robins, 1999], we provided
semiparametric estimators for parameters of the function
that maps the multidimensional treatment to a lower dimen-
sional subspace. We have shown our estimator exhibits “2x2
robustness,” where the estimator remains consistent if one
of two models, for two pairs of models, is chosen correctly.

Even though we use radiation therapy as our main motiva-
tion example, our methodology can be used in other applica-
tions as well. For instance, in natural language processing,
a growing literature is focused on understanding causal ef-
fects of high dimensional text data; see [Feder et al., 2021].
Another example is relating neuronal network activity (col-
lected via high dimensional neuroimaging data) to cognitive
processing and behavior; see [Ramsey et al., 2010, Mather
et al., 2013] for examples. Our proposed framework can
also be useful in settings where we are interested in causal
effects of multiple treatments simultaneously. In order to
scale our methods to high dimensional applied settings, such
as fMRI scans, text data, or radiation oncology voxel data,
we need to incorporate ideas from parametric modeling,
and sparsity within a semiparametric framework. Another
natural extension for future work is to apply these methods
to classical causal inference in longitudinal studies, where
multiple time points render a collection of binary treatments
a multidimensional object. Our causal SDR approach would
provide an alternative to parametric marginal structural mod-
els typically employed in such settings.
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