
Modelling the Control of Offline Processing with Reinforcement Learning

Eleanor Spens¹

ellie.spens@ndcn.ox.ac.uk

Neil Burgess²

n.burgess@ucl.ac.uk

Timothy Behrens^{1,2}

timothy.behrens@ndcn.ox.ac.uk

¹University of Oxford ²University College London

Abstract

Brains reorganise knowledge offline to improve future behaviour, with ‘replay’ involved in consolidating memories, abstracting patterns from experience, and simulating new scenarios. However, there are few models of how the brain might orchestrate these processes, and of when different types of replay might be useful. Here we propose a framework in which a meta-controller learns to coordinate offline learning of a lower-level agent or model in ‘sleep’ phases to maximise reward in a ‘wake’ phase. The meta-controller selects among several actions, such as learning from recent memories in a hippocampal store, abstracting patterns from memories into a ‘world model’, and learning from generated data. In addition, the meta-controller learns to estimate the value of each episode, enabling the prioritisation of past events in memory replay, or of new simulations in generative replay. Using image classification, maze solving, and relational inference tasks, we show that the meta-controller learns an adaptive curriculum for offline learning. This lays the groundwork for normative predictions about replay in a range of experimental neuroscience tasks.

1 Introduction

Brains are busy during rest, reorganising knowledge to improve future behaviour. In particular, rest improves the ability to generalise, infer ‘missing links’, and learn statistical patterns [1, 2]. This is linked to replay, the hippocampal reactivation of experiences in temporally compressed form [3]. Offline replay has several proposed functions: Firstly, it is thought to reactivate real memories to consolidate them into neocortex [4, 3] or to abstract general patterns from episodes [5]. Secondly, replay can generate new experiences [6], sometimes referred to as generative replay, which may help generalisation [7] and lessen catastrophic forgetting [8]. In addition, replay is thought to recombine conceptual ‘building blocks’ to extrapolate beyond direct observation [7, 9]. Excitingly, recent studies show that the content of replay depends on the stage of learning [10] and the stage of cognitive development [11], suggesting variation in the brain’s ‘strategy’ for offline learning over both short and long timescales. (See Appendix A.2 for additional neuroscience context.)

One might expect the optimal balance of these offline processes to vary based on task demands, the uncertainty of the environment, and the reliability of internal models. Machine learning involves similar trade-offs: collecting real-world data may be expensive, while synthetic data may not be reliable. Whilst ‘data augmentation’ is often used to expand datasets by specifying label-invariant transformations (e.g. adding noise, rotating, or cropping an image in the case of image classification), identifying the right transformations can be a process of trial and error. As a result, training data tends

to be curated and ordered based on human judgement. The fields of meta reinforcement learning [12], curriculum learning [13] and data valuation [14, 15] explore solutions to some of these issues.

Drawing together these ideas, we propose a framework in which a meta-controller learns to select between different offline actions in a ‘sleep’ state to maximise reward in a ‘wake’ state. In the simulations of image classification and maze solving, these actions are i) learning from recent memories in a hippocampal store, ii) abstracting patterns from memories into a ‘world model’, and iii) learning from data generated with this ‘world model’. In the case of relational inference, the model has a more complex range of actions, including the abstraction of relational patterns, and the application of those patterns to infer new relationships. This framework could be used to make normative predictions about the types of offline processing and content of replay observed in neuroscience data. It also suggests how access to ‘metacognitive actions’, with which an agent can process its own knowledge offline, can improve the performance of a reinforcement learning agent, as can the ability to construct a custom curriculum for this learning.

1.1 Previous work

Reinforcement learning (RL), which has long used experience replay to improve performance, is a common framework in which to consider offline learning. In particular, Dyna [16] is an approach that uses real experiences to update both a policy and a learned model of the environment, which is then used to generate simulated experiences for additional updates, improving the sample efficiency of learning. However, Dyna and subsequent algorithms [17] rely on fixed heuristics to schedule real-world and synthetic updates. Meta RL refers to approaches in which a higher-level agent guides the learning of a lower-level agent [12]. Our work extends these ideas to metacognitive control over offline processes in a neuroscience context, and is related to the suggestion that the prefrontal cortex functions as a meta-controller [18].

Many studies in the RL literature explore ways to prioritise experience replay, either at the level of episodes or individual transitions [19], e.g. based on reward, uncertainty, or prediction error [20]. This often requires balancing selective replay with random sampling to maintain some diversity in the training data. Other studies suggest different prioritisation criteria for experience replay at different stages of learning [21]. Meanwhile neuroscience research suggests that memories are replayed in order of utility, i.e. the amount they would improve decision-making [22], or based on their longer-term value for ‘map-building’ [23]. Note that methods for prioritising experiences are not only useful for replaying past data – they can also guide which new experiences an agent should gather next in online learning, e.g. to enable efficient exploration [24].

Curriculum learning refers to the arrangement of training examples into an order that benefits learning, e.g. in which the model is exposed to data of an appropriate difficulty level at each stage [13]. Meanwhile data valuation is a growing field of applied machine learning which explores how to select the most useful samples with which to train a model, e.g. by estimating the marginal contribution of a given example [15], or by training a network to select the best examples via RL [14]. The data valuation aspect of our framework can be thought of in terms of learning a curriculum for offline learning.

2 The model

In each simulation, we consider alternating sleep and wake states (Figure 1a). During the wake state, the meta-controller receives new observations (images, maze navigation episodes, or observed relationships) from the environment which are stored in its model hippocampus. In addition, a reward is obtained reflecting performance on some task (image classification, maze navigation, or relational inference). During the sleep state, the meta-controller takes actions which correspond to different ways to process offline knowledge, gradually learning to act offline in a way that maximises the awake reward.

More formally, consider a meta-controller which co-ordinates the offline learning of a lower-level RL agent. For each sleep/wake cycle $n = 1, \dots, N$:

1. **Sleep phase:** A meta-controller takes T offline actions $a_{n,0:T-1}$ using its recurrent proximal policy optimisation (PPO; [25]) policy $\pi_\phi(a | x)$, where x is an observation capturing the state of

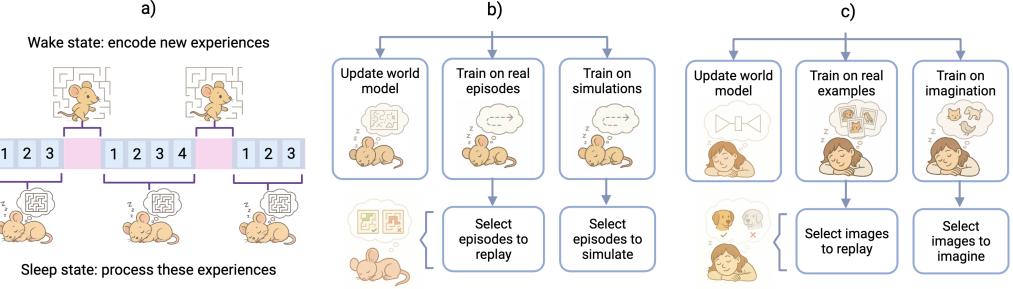


Figure 1: The model. a) In all simulations, a meta-controller learns to select from a range of possible offline actions during sleep, receiving a reward only at the end of the episode based on performance in the wake state. b) The maze task involves learning to navigate to a goal in a gradually changing maze. The meta-controller chooses between training a lower-level agent on real episodes from the hippocampus, updating its ‘world model’ of the maze’s transition statistics from the hippocampus, and training the lower-level agent on episodes simulated with the world model. In addition, the system learns which episodes are most valuable to replay or to simulate. c) In the image task, images are encoded in the hippocampus during the wake state, where the distribution of classes varies, and the goal is to learn to classify them accurately. The meta-controller chooses between training a classifier on real images from the hippocampus, updating a simple generative (Gaussian mixture) model on images from the hippocampus, and training a classifier on generated images. In addition, the system learns which images are most valuable to replay or to generate.

the system. These actions involve offline processing of current memories and knowledge, *without* interacting with the real environment.

2. **Wake phase:** The agent is tested on the task for n_{test} episodes, recording the evaluation reward $R_n = \frac{1}{n_{\text{test}}} \sum_{m=1}^{n_{\text{test}}} r_m$ where r_m is the total reward in episode m . The meta-controller’s policy is updated based on this reward.

The agent interacts with the environment - which may have changed since the previous wake phase - for K steps, encoding memories $H_n = \{(s_{k-1}, a_{k-1}, s_k, r_k)\}_{k=1}^K$ in the model hippocampus (here simply a list).

The lower-level task can be an arbitrary supervised learning task rather than an RL one by replacing the references to episodes above with observations and targets, and storing memories as $H_n = \{(\text{observation}_i, \text{target}_i)\}_{i=1}^K$.

The system also learns which items are most valuable to replay or generate, as follows. Truth data for the value is obtained for a small subset of candidate items by calculating their utility with a Shapley value approach, which estimates the change in performance if an example were omitted [15]. Then a small model is trained on this subset to predict the value of items (with the model fine-tuned each time data is selected rather than trained from scratch so that value estimates improve over time). Crucially, the data valuation procedure estimates the value of an example for subsequent learning *contingent on the state of the current model*, allowing it to capture the value of examples at different stages of training; this differs from some existing approaches which compute Shapley values with respect to a surrogate model trained from scratch, e.g. [26]. Given predicted values for *all* candidates, items are selected using maximal marginal relevance (MMR; [27]), which balances selecting the most valuable examples with promoting variety. Note that data valuation can be used to either undersample or oversample from a set of candidates. The data valuation component can be trained at the same time as the meta-controller, or separately for efficiency as shown here, in which case random sampling is used during meta-controller training. Whilst the meta-controller is frozen during inference, the value estimator network continues to be updated each time memory or generative replay is selected.

Our experiments used Stable-Baselines3 [28] for the RL algorithms, Gymnasium [29] to create the custom environments, and PyTorch [30] for other neural network training. See Appendix A.1 for further details.

3 Results

3.1 Image task

At the start of each episode 200 new images are stored in a buffer representing the hippocampus. The reward in the wake state, after three offline steps in the asleep state, is the accuracy of a classifier. Fashion-MNIST (a more challenging variant of MNIST featuring images of ten items of clothing) is used as a toy dataset [31].

The meta-controller agent is a recurrent PPO agent, enabling it to learn an optimal sequence of offline actions. The agent’s inputs are the number of steps since the sleep phase began, the fraction of observations per class in the buffer, and the most recent action. The action space consists of the following actions (see Figure 1c):

- **Action 0:** Update the image generator with stored images from the model hippocampus. Specifically, the image generator is a Gaussian mixture model from which samples can be drawn for a particular class.
- **Action 1:** Train the classifier on *stored* images from the model hippocampus, selecting the 50 most useful ‘memories’ to replay with the value estimator model.
- **Action 2:** Train the classifier on *generated* images. As above, the 50 most useful items for ‘generative replay’ are selected using the value estimator model.

Note that we assume a small validation set exists for the data valuation element. To describe this more concretely, if the hippocampus contained many images, the marginal contribution of each of a subset (here, 25%) of images to the classification accuracy on a small validation set would be obtained. Then the value estimator (a linear regression model) would learn to estimate these values. Predicting the value of the many candidate items could then be performed efficiently with the value estimator, with these estimates used to prioritise which items to replay. (But in principle this validation set could be generated by the generative model, as we demonstrate for the maze task.)

3.1.1 Image results

Catastrophic forgetting or interference occurs when newly learned information overwrites previously learned information in a neural network, leading to poor performance on the previously learned tasks [32]. Continual learning is the ability to learn a series of tasks sequentially without the occurrence of catastrophic forgetting [33], and poses a general challenge for connectionist models of the brain. The training data for machine learning problems is carefully curated, e.g. to balance the number of examples of different categories, and shuffled before training. Reality is far messier, so biological learning must be robust to changing distributions over time.

To explore whether the agent can learn a strategy for continual learning, we compare a balanced and an imbalanced experience case. In the balanced experience case, examples from all ten Fashion-MNIST classes are encoded in the hippocampus in each wake state, and the model’s accuracy on all ten classes is returned as feedback. In the imbalanced experience case, examples from two classes are encoded in the hippocampus in each wake state, and the model’s accuracy on all ten classes is returned as feedback. This is sometimes referred to as class-incremental learning in the continual learning literature [34]. (Note that the image classification, generation, and valuation models are re-initialised when all categories of the dataset have been encoded, i.e. every five episodes in the imbalanced case.) We find that in the balanced experience case, replaying from the hippocampus is optimal (Figure 2b), but in the imbalanced experience case, training the generative model then learning from simulations is (Figure 2a). Unlike the baselines in Table 1, the meta-controller approach can do well in both settings, using generative replay to reduce catastrophic forgetting where necessary. (Note that the Gaussian mixture model learns a distribution per class, so in generative replay an equal number of samples are taken per class, from all classes added to the model so far.)

The behaviour of the data valuation component of the model was explored with i) the original Fashion-MNIST dataset (Figure 2d and g), and ii) a noisy version of the same dataset in which a randomly chosen fraction of pixels (25%, 50%, 75% or 100%) was set to zero in each image (Figure 2c and f), intended as a simple check that data valuation improved performance. Both variants were tested in the class-balanced case, hard-coding the actions to three stages of either memory replay or generative replay. That is, we enforced three consecutive actions and recorded the estimated values

of each image at each stage of memory or generative replay. Figure 2c and f show that selecting the images based on value estimates plus MMR results in significantly better performance than random selection, for memory replay and generative replay respectively. Table 2 shows it performs better than several other baselines too.

Figure 2d and g show that novelty (the distance from the mean of the class) is negatively correlated with estimated value in the first step of learning, but positively correlated by the third, for both memory replay and generative replay. One way to interpret this is that novel examples are *less* useful at first because they are too challenging, as observed in curriculum learning [13], but become *more* useful over time. We visualise value in the UMAP projected datasets in Figure 2i, and also corroborate this finding with MNIST (Figure 2e and h).

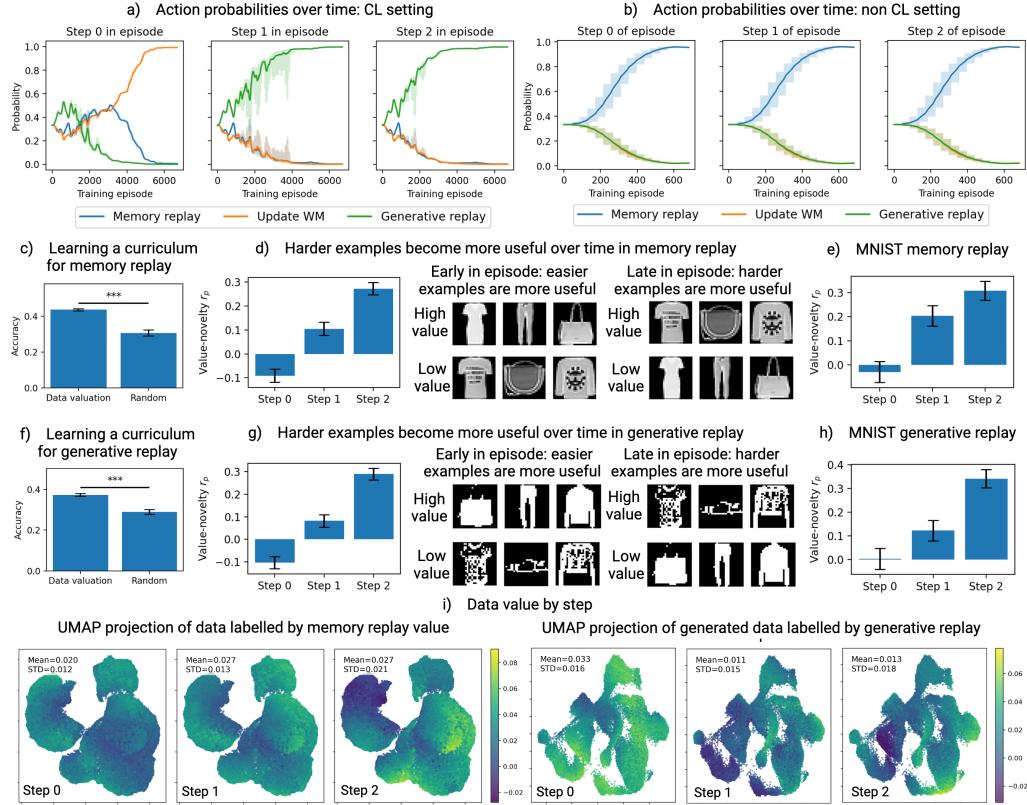


Figure 2: Image simulations. a) Action probabilities for each position in the sleep sequence over the course of training in the continual learning (CL) setting, in which the distribution of the agent’s experiences is imbalanced, with only two classes observed in each wake phase. Shading indicates the SD across a sliding window of 100 episodes. (In other words, step 0 is the first action chosen in the sleep phase, step 1 is the second, and so on.) b) Action probabilities for each position in the sleep sequence over the course of training, but in the balanced experience baseline case. c) Learning to select the images for memory replay results in significantly better performance than random selection. The means across 10 repetitions are shown, and error bars give the SEM. Fashion-MNIST is used with the addition of random noise (setting a variable fraction of pixels to zero), with a balanced class distribution (i.e. the non-CL setting above). d) Here we take the original Fashion-MNIST dataset (no noise), and look at the relationship between novelty (distance from the class mean) and value for three consecutive stages of memory replay. At first the correlation is negative, indicating that easier examples are more valuable. But by stage three, the correlation is positive, indicating that harder examples are more valuable. e) Repeating the experiment in part d but for the MNIST dataset displays a similar pattern. f-h) As in parts c-e but for generative replay. Note that three steps of generative replay, following the training of the ‘world model’, are shown for consistency with the memory replay results. i) A projection into 2D with UMAP of the Fashion-MNIST data and their value estimates for memory replay (left), and of the generated data and their value estimates for generative replay (right).

Table 1: Image task results by approach. The meta-controller learns to use generative replay in the continual learning (CL) setting but memory replay in the non-CL setting. Results are averaged across 25 meta-episodes in each setting.

Approach	Acc. (CL)	Acc. (non-CL)	Mean acc.	SEM
Meta-controller	0.307	0.411	0.359	0.010
Memory replay only	0.171	0.411	0.291	0.003
Generative replay only	0.307	0.355	0.331	0.011

Table 2: Data valuation network for the image task compared to other data selection baselines, for choosing data to replay from the model hippocampus (memory replay; MR) or simulate (generative replay; GR). Ten meta-episodes are tested in each case. Diverse random selection uses the MMR method but with random data values. For the most and least challenging image baselines, the difficulty of an image is quantified as the fraction of an ensemble of scikit-learn classifiers that labelled the image correctly.

Approach	Mean acc. (MR)	SEM (MR)	Mean acc. (GR)	SEM (GR)
Data valuation network	0.438	0.007	0.373	0.007
Random selection	0.307	0.017	0.290	0.013
Diverse random selection	0.378	0.012	0.273	0.018
Most challenging	0.145	0.014	0.300	0.009
Least challenging	0.364	0.009	0.300	0.009

3.2 Maze task

Next we model a maze solving task in which the maze gradually changes over time, based on a rodent neuroscience task [35]. Here the higher-level agent is a recurrent PPO agent as above, but the lower-level agent for navigating from a random start to a random reward location in the environment is a Deep Q-Network (DQN; [36]) agent. The inputs to the DQN agent are one-hot encoded representations of the current and goal locations. The maze is simply a six-by-six grid where a subset of squares are barriers (but all non-barrier squares are connected). In the wake phase, the maze is updated by adding one barrier square and removing another (see Figure 6a, Appendix A.3). This means that the lower-level agent must update its strategy by replaying or simulating trajectories in the new maze.

In the wake phase the hippocampus receives 50 trajectories in the maze, before the meta-controller takes three actions in the sleep phase. The reward in the next wake phase is the performance of the lower-level maze solver agent on the same maze. The agent’s inputs are the number of steps since the sleep phase began, the current accuracy of the world model, and the most recent action. The action space consists of three actions (see Figure 1b), closely analogous to those for the image classification task:

- **Action 0:** Update the world model from memories. This is a simple network for predicting the next state given a state and action, which is sufficient to allow the simulation of new episodes. (In a deterministic environment, the world model could simply cache the result of the most recent observation of a state-action pair.)
- **Action 1:** Train the maze solver on *stored* episodes from the model hippocampus (50 episodes oversampled to 200).
- **Action 2:** Train the maze solver on 200 *generated* episodes, in which the agent acts *within* the world model, i.e. epsilon-greedy rollouts are simulated.

In addition, the system learns which episodes are most valuable to replay or to simulate, similarly to the approach in the image task described above. Specifically, the Shapley values of a subset of the candidates (50 out of 576 possible start-goal combinations, in the case of generative replay) are obtained, using the world model to estimate the improvement to the agent. Then a value estimator predicts the utility of a particular start-goal pair. Unlike in the image case, this does not require a

real validation set, as the world model can be used to quantify the benefit. That is, the system can *simulate* how well a variant of the model trained on a subset of the training data would do.

3.2.1 Maze results

Figure 3a shows the learned schedule with which the meta-controller improves the maze solver; if only a few sequences are stored, it is more effective to learn the transition structure of the maze than simulate episodes than it is to learn from the limited data in the hippocampus. The meta-controller’s ‘success rate’ of reaching the goal is higher than action selection and data selection baselines (Tables 3 and 4).

Even though the agent is tested only on the current maze, its learned strategy of training a generative model then learning from simulations resembles that of the image agent in the imbalanced case. This is because RL agents perform poorly with very limited training data, so learning from the hippocampus alone is not feasible. In addition, the world model in the maze task generates higher quality samples than the world model in the image case, so there is less of a trade-off associated with generative replay.

Start-goal pairs for which the shortest path was changed in the most recent maze update are higher value in both stages of generative replay (Figure 3c), but the relationship between shortest path length and value varies with learning (Figure 3d). We can also inspect the average estimated value of maze trajectories passing through each point in the maze. In some cases, locations nearby a recent change are more valuable at first, but learning saturates in later stages (Figure 3b), though these effects are not significant (Figure 3e).

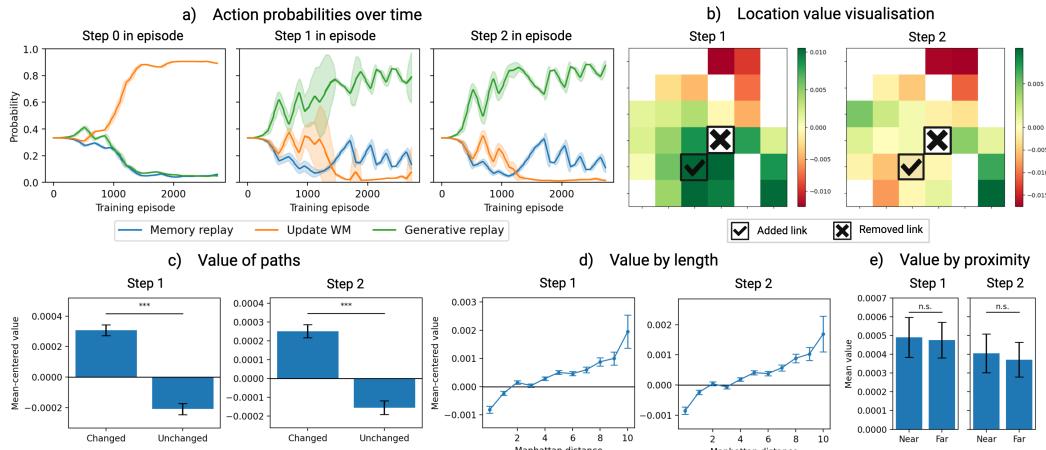


Figure 3: Maze simulations. a) Action probabilities for each position in the sleep sequence over the course of training. (In other words, step 0 is the first action chosen in the sleep phase, and so on.) The agent learns to update the world model then simulate new episodes with it. Shading indicates the SD across a sliding window of 100 episodes. b) Visualising the learned values of different locations in the maze. Each square shows the mean estimated value of all candidate episodes which pass through that point. The most recently added and removed squares are indicated. c) The mean-centered value of start-goal pairs for which the shortest path is changed vs. unchanged, for two stages of generative replay. Error bars give the SEM. d) The mean-centered value of start-goal pairs by their shortest path length, for two stages of generative replay. e) The mean value of locations near vs. far from maze changes.

3.3 Relational knowledge model

Biological intelligence excels at generalising from relatively few examples. In our framework, can the agent learn how to infer as much information as possible offline from a small number of online observations? We trained and tested the model on two relational inference tasks: spatial inference, and family tree inference, as in [37], although the approach is applicable to any scenario in which observations can be expressed as edges in a graph with an underlying structure. In the family tree

Table 3: Maze task results for the meta-controller’s action selection compared to memory replay only baseline (with random data selection for both), averaged across ten incremental maze updates for three different random seeds.

Approach	Success rate	SEM
Meta-controller	0.822	0.007
Memory replay	0.161	0.005

Table 4: Maze task results for the data valuation method compared to baselines (all with meta-controller action selection), averaged across mazes and seeds as in Table 3.

Approach	Success rate	SEM
Data valuation	0.871	0.010
Random selection	0.822	0.007
Longest paths	0.736	0.013

inference task, the goal is to predict as many relationships as possible from a subset of family relationships (see Figure 4b), while in the spatial inference task, the goal is to predict the relative directions of locations in a 2D grid (i.e. whether each location is east / west / north / south of every other location).

In the wake phase the hippocampus receives 20 observed relationships, corresponding to a few of the edges of a true underlying graph. The agent interacts with a relational graph in each environment, iteratively updating its knowledge by choosing various meta-actions. In the previous simulations, the world models were used to generate new items in isolation with which to train a model to perform a given task. Here the model trained offline has a different function, inferring new facts to flesh out partial observations. Specifically, the world model is a graph autoencoder, with graph convolutional layers which allow it to learn shared patterns across graphs. Its decoder predicts missing edges in a graph, allowing the agent to infer new relationships. (Note that for training efficiency the model is cached, rather than retrained repeatedly.)

The meta-controller, a recurrent PPO agent as in the previous simulations, receives a three-dimensional observation vector consisting of the number of relationships learned so far, the number of edges in the current graph, and the accuracy of the world model. The action space consists of six discrete meta-actions:

- **Action 0:** Learn the task (i.e. add relationships to a list of known facts) from the model hippocampus. Here the task is trivial, but this could be some other operation on the knowledge, e.g. identifying the youngest members of the family, or finding the shortest path to a goal location.
- **Action 1:** Transfer (or ‘consolidate’) observed relationships in the model hippocampus into the knowledge graph.
- **Action 2:** Learn the task (i.e. add relationships to a list of known facts) from the knowledge graph.
- **Action 3:** Train the world model on all instances of graphs that have been built so far during meta-training.
- **Action 4:** Expand the knowledge graph using predictions from the world model. For example, if the world model has learned that a parent of a parent of X is a grandparent of X, applying the world model to the graph would add inferred grandparent edges to a family tree.
- **Action 5:** Do nothing. This avoids a penalty of 0.2 for all other actions, to incentivise efficient behaviour, and reflects the cognitive cost of taking the other actions.

The episode ends when either 10 meta-steps have been reached or a random stopping probability (0.05) triggers termination. At this point, the reward is computed based on the number of correct relationships inferred by the model compared to the true graph. The data valuation aspect is omitted in this simulation for simplicity.

3.3.1 Relational knowledge results

The meta-controller learns a schedule for offline actions to maximise online reward (Figure 4c and d). In the spatial task, the agent first learns from memories in the hippocampus, which is desirable because the episode can stop at any point, and this ensures at least some reward is obtained. Then the observed relationships are transferred (or ‘consolidated’) into the knowledge graph, as this is a prerequisite for relational inference to take place. After this, the world model is updated. (Note

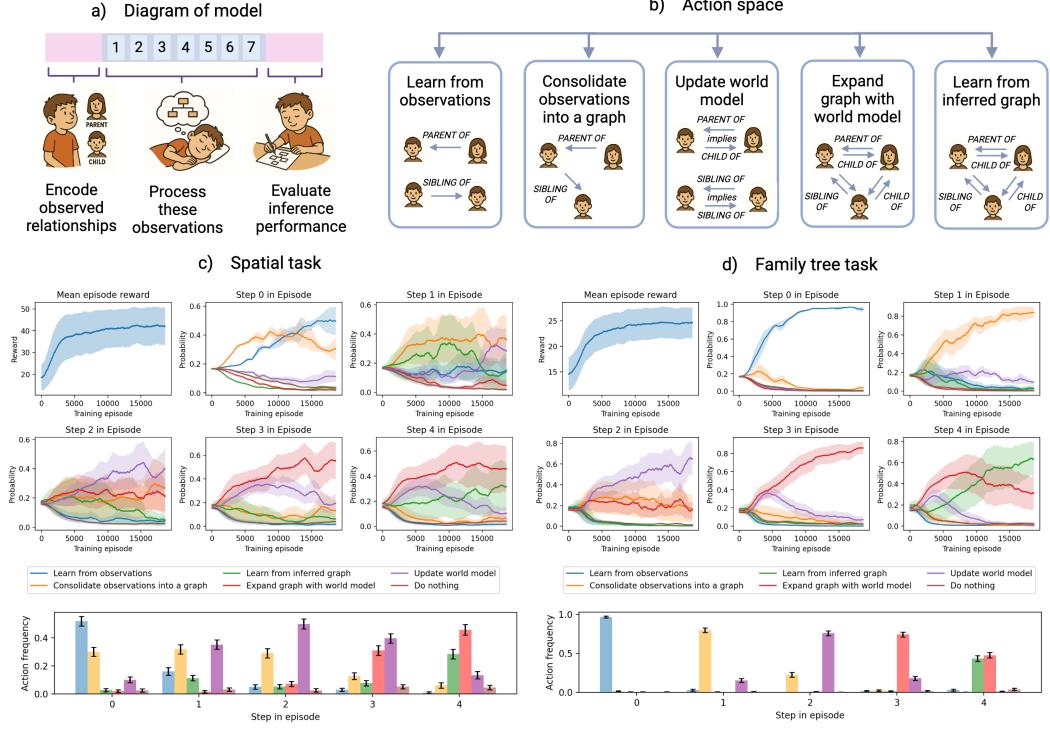


Figure 4: Relational knowledge simulations. a) Diagram of the model. At the start of each episode, twenty observations from a new graph are added to the hippocampus. The meta-controller learns to choose between several actions for expanding this knowledge, taking up to ten steps. The reward is the number of edges in the true graph which can be inferred by the end of the episode. b) The possible actions are: learning a given task from the observations in the model hippocampus, ‘consolidating’ observations from the hippocampus into a graph, updating a world model that captures relational structure, expanding the graph with new edges based on this world model, and learning a given task from the inferred graph. (Here the task is simply to build up a list of facts, but this could be some other operation on the knowledge, e.g. identifying the youngest members of the family, or finding the shortest path to a goal.) c) Above: Mean reward and action probabilities over the course of training for the spatial model, where the probabilities are plotted separately for each position in the sleep sequence. Shading indicates the SD across a sliding window of 100 episodes. Below: The final frequencies of actions chosen at each position, calculated across 20 episodes. Error bars give the SEM. Note that only the first five steps are shown. d) Likewise but for the family tree task.

that in this simple demonstration, the world model must be relearned in each episode, but one would expect this choice to be modulated by the accuracy of the world model if it were not reset.)

Next, the meta-controller uses the trained world model to infer additional relationships in the graph, e.g. inferring the fact that X is west of Z from the facts that X is west of Y and Y is west of Z. This action can be applied multiple times, iteratively expanding the graph. With each application of the graph convolutional autoencoder, links are predicted with a given probability, and those with a probability greater than 0.5 are added (see Figure 5, Appendix A.3 for an example of the iterative expansion of a family tree graph from a few edges). The chance of learning from the inferred graph ramps up later in the episode, as does the chance of doing nothing, as this avoids the small penalty for all other actions. The family tree task displays a similar pattern.

4 Discussion

We trained RL agents to perform metacognitive actions in an offline ‘sleep’ state in order to improve the ‘awake’ capabilities of a lower-level agent / model. The actions correspond to different processes

observed in biological offline learning, namely learning directly from memories, the training of predictive models, and the simulation of new events.

We found that the agents learned an effective curriculum for offline learning. In the maze navigation task, the agent learned to first update a world model capturing transition statistics, then simulate episodes with this model. The learned strategy depended on the demands of the task. In an image classification scenario requiring continual learning, the agent updated its generative model after receiving new observations, then learned from generated samples. Whilst these samples were lower quality, generative replay improved reward in the wake state by reducing catastrophic forgetting. But in the case that the agent observed all relevant categories in each wake state, this trade-off was no longer worthwhile, with the agent reverting to learning from real images in the model hippocampus. This could make predictions about how the brain regulates the replay of recent and remote examples to enable lifelong learning. The framework is flexible in that other metacognitive actions can easily be added, as demonstrated in the relational inference simulations, in which the agent learned to extract statistical patterns and then apply these to iteratively infer new facts.

In our simulations, the meta-controller also learns to choose *which* events to replay or simulate. For example, in the image task, easier examples (those closer to the mean of the class) were selected earlier in learning, whereas harder examples were selected later in learning. This was observed for both memory and generative replay. One might expect this to be true over short timescales (within a single block of sleep or rest), and over longer timescales while learning is gradually acquired. This lays the groundwork for making normative predictions about the optimal schedule of replays for learning, which could be compared to experimental neuroscience data. Previous work suggested that offline replay of memories is regulated by their noise level, so that noisy memories do not impair neocortical generalisation [38]. On the other hand, novelty is proposed to promote memory encoding [39]. Our approach could reconcile these different proposals about the relationship between schema congruence and replay by explaining how the optimal curriculum varies over the course of offline learning.

This work has several limitations, which reflect the fact that this is a very simplified model. Firstly, there are many variables that affect the behaviour of the data valuation component, so thorough tests of the sensitivity of the results to these parameters should be performed before we draw any general conclusions about which episodes are optimal to replay or simulate. Secondly, the data valuation aspect is computationally expensive, especially when fine-tuned in each stage of memory or generative replay. It would be more powerful for the data valuation network to learn to predict value based partly on information about the current progress of learning. Then the network could predict different values for the same items of data at different stages of training, without the need to fine-tune the model. Thirdly, a drawback of the current Shapley value-based data valuation mechanism in the image task is that it assumes a small validation set is available to the brain. The model could be refined to avoid this assumption, e.g. by using a subset of items in the hippocampus or generated data as a validation set (the latter is demonstrated in the maze task).

There are several other directions for future research. Here we only consider how offline processes are orchestrated, but an agent could also learn the optimal way to encode and retrieve memories. Such an agent might learn to only encode memories when it is worth the cognitive cost to do so (see also [40]). Similarly, one could integrate a mechanism for learning abstractions, e.g. ‘options’ in the maze navigation task. If the feedback in the wake state included a penalty for the cognitive cost of behaviour, so that solutions that combined a few simple components were advantageous, this might incentivise the meta-controller to develop ‘primitives’.

In conclusion, we present a novel framework in which a meta-controller chooses between different metacognitive actions during ‘sleep’, inspired by the processes observed in resting brains. The meta-controller orchestrates offline learning to optimise ‘wake’ performance, and learns a curriculum for what to replay or simulate.

Acknowledgements

Thanks to Rachel Swanson, Kris Jensen, Xiao Qin, Diksha Gupta, Mathias Sablé-Meyer, and Thomas Akam for helpful discussions.

References

- [1] Jeffrey M Ellenbogen, Peter T Hu, Jessica D Payne, Debra Titone, and Matthew P Walker. Human relational memory requires time and sleep. *Proceedings of the National Academy of Sciences*, 104(18):7723–7728, 2007.
- [2] Simon J Durrant, Charlotte Taylor, Scott Cairney, and Penelope A Lewis. Sleep-dependent consolidation of statistical learning. *Neuropsychologia*, 49(5):1322–1331, 2011.
- [3] David J Foster. Replay comes of age. *Annual review of neuroscience*, 40:581–602, 2017.
- [4] Matthew A Wilson and Bruce L McNaughton. Reactivation of hippocampal ensemble memories during sleep. *Science*, 265(5172):676–679, 1994.
- [5] James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. *Psychological review*, 102(3):419, 1995.
- [6] Anoopum S Gupta, Matthijs AA Van Der Meer, David S Touretzky, and A David Redish. Hippocampal replay is not a simple function of experience. *Neuron*, 65(5):695–705, 2010.
- [7] Philipp Schwartenbeck, Alon Baram, Yunzhe Liu, Shirley Mark, Timothy Muller, Raymond Dolan, Matthew Botvinick, Zeb Kurth-Nelson, and Timothy Behrens. Generative replay underlies compositional inference in the hippocampal-prefrontal circuit. *Cell*, 186(22):4885–4897, 2023.
- [8] Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual learning with artificial neural networks. *Nature communications*, 11(1):1–14, 2020.
- [9] Jacob JW Bakermans, Joseph Warren, James CR Whittington, and Timothy EJ Behrens. Constructing future behaviour in the hippocampal formation through composition and replay. *bioRxiv*, pages 2023–04, 2023.
- [10] Jianxin Ou, Yukun Qu, Yue Xu, Zhibing Xiao, Tim Behrens, and Yunzhe Liu. Replay builds an efficient cognitive map offline to avoid computation online. *bioRxiv*, pages 2025–01, 2025.
- [11] Luoyao Pang, Yukun Qu, Jianxin Ou, Shuqi Wu, Yuejia Luo, Chetan Gohil, Mark Woolrich, Tim Behrens, and Yunzhe Liu. Development of replay-dmn coordination predicts entorhinal grid codes. *bioRxiv*, pages 2025–04, 2025.
- [12] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. *arXiv preprint arXiv:1611.05763*, 2016.
- [13] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 41–48, 2009.
- [14] Jinsung Yoon, Sercan Arik, and Tomas Pfister. Data valuation using reinforcement learning. In *International Conference on Machine Learning*, pages 10842–10851. PMLR, 2020.
- [15] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In *International Conference on Machine Learning*, pages 2242–2251. PMLR, 2019.
- [16] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. *ACM Sigart Bulletin*, 2(4):160–163, 1991.

[17] Jessica B Hamrick. Analogues of mental simulation and imagination in deep learning. *Current Opinion in Behavioral Sciences*, 29:8–16, 2019.

[18] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement learning system. *Nature neuroscience*, 21(6):860–868, 2018.

[19] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. *arXiv preprint arXiv:1511.05952*, 2015.

[20] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with less data and less time. *Machine learning*, 13:103–130, 1993.

[21] Hu Li, Xuezhong Qian, and Wei Song. Prioritized experience replay based on dynamics priority. *Scientific Reports*, 14(1):6014, 2024.

[22] Marcelo Mattar and Nathaniel Daw. Prioritized memory access explains planning and hippocampal replay. *Nature neuroscience*, 21(11):1609–1617, 2018.

[23] Yotam Sagiv, Thomas Akam, Ilana B Witten, and Nathaniel D Daw. Prioritizing replay when future goals are unknown. *bioRxiv*, 2024.

[24] Changmin Yu, Neil Burgess, Maneesh Sahani, and Samuel J Gershman. Successor-predecessor intrinsic exploration. *Advances in neural information processing systems*, 36:73021–73038, 2023.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[26] Bojan Karlaš, David Dao, Matteo Interlandi, Bo Li, Sebastian Schelter, Wentao Wu, and Ce Zhang. Data debugging with shapley importance over end-to-end machine learning pipelines. *arXiv preprint arXiv:2204.11131*, 2022.

[27] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In *Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval*, pages 335–336, 1998.

[28] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann. Stable baselines3. <https://github.com/DLR-RM/stable-baselines3>, 2019.

[29] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

[30] A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint arXiv:1912.01703*, 2019.

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

[32] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pages 109–165. Elsevier, 1989.

[33] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual learning in deep neural networks. *Trends in cognitive sciences*, 24(12):1028–1040, 2020.

[34] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning. *Nature Machine Intelligence*, 4(12):1185–1197, 2022.

[35] B Simões Godinho. *Hippocampal representations in a complex route planning task*. PhD thesis, University of Oxford, 2024.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.

[37] James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess, and Timothy EJ Behrens. The tolman-eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. *Cell*, 183(5):1249–1263, 2020.

[38] Weinan Sun, Madhu Advani, Nelson Spruston, Andrew Saxe, and James E Fitzgerald. Organizing memories for generalization in complementary learning systems. *bioRxiv*, 2021.

[39] Michael E Hasselmo, Bradley P Wyble, and Gene V Wallenstein. Encoding and retrieval of episodic memories: role of cholinergic and gabaergic modulation in the hippocampus. *Hippocampus*, 6(6):693–708, 1996.

[40] Qihong Lu, Uri Hasson, and Kenneth A Norman. A neural network model of when to retrieve and encode episodic memories. *elife*, 11:e74445, 2022.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

[42] David Marr. A theory for cerebral neocortex. *Proceedings of the Royal society of London. Series B. Biological sciences*, 176(1043):161–234, 1970.

[43] David Marr. Simple memory: a theory for archicortex. *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 262(841):23–81, 1971.

[44] Timothy J Teyler and Pascal DiScenna. The hippocampal memory indexing theory. *Behavioral neuroscience*, 100(2):147, 1986.

[45] Gabrielle Girardeau, Karim Benchenane, Sidney I Wiener, György Buzsáki, and Michaël B Zugaro. Selective suppression of hippocampal ripples impairs spatial memory. *Nature neuroscience*, 12(10):1222–1223, 2009.

[46] Philippe Peigneux, Steven Laureys, Sonia Fuchs, Fabienne Collette, Fabien Perrin, Jean Reggers, Christophe Phillips, Christian Degueldre, Guy Del Fiore, Joël Aerts, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? *Neuron*, 44(3):535–545, 2004.

[47] H Freyja Ólafsdóttir, Caswell Barry, Aman B Saleem, Demis Hassabis, and Hugo J Spiers. Hippocampal place cells construct reward related sequences through unexplored space. *Elife*, 4:e06063, 2015.

[48] Federico Stella, Peter Baracskay, Joseph O’Neill, and Jozsef Csicsvari. Hippocampal reactivation of random trajectories resembling brownian diffusion. *Neuron*, 102(2):450–461, 2019.

[49] Yunzhe Liu, Raymond J Dolan, Zeb Kurth-Nelson, and Timothy EJ Behrens. Human replay spontaneously reorganizes experience. *Cell*, 178(3):640–652, 2019.

A Appendix

Code for all simulations can be found at <https://github.com/ellie-as/r1-with-metacognitive-actions>.

Simulations were run on Linux virtual machines with NVIDIA A100 GPUs, and on MacOS with the MPS backend for GPU support.

Diagrams were created using BioRender.com, with some icons created using ChatGPT.

A.1 Further model details

A.1.1 Proximal policy optimisation

Actor-critic methods are a family of reinforcement learning algorithms which jointly learn both a policy (the ‘actor’) and a value function (the ‘critic’), where the critic’s value predictions guide the learning of the actor.

Proximal policy optimisation [25] is one such actor-critic algorithm, which adjusts the policy in small steps to avoid destabilising training.

In PPO, batches of experience collected with the current policy $\pi_{\theta_{\text{old}}}$ are used to update the parameters θ of the policy by maximising a clipped objective:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip} \left(r_t(\theta), 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_t \right) \right],$$

where:

- $r_t(\theta) = \frac{\pi_\theta(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$ is the ratio of the new and old action probabilities at time t .
- \hat{A}_t is an estimate of the advantage, i.e. how much better the chosen action a_t is compared to the average.
- ε is a small clipping parameter (e.g., 0.2) that limits how far r_t can deviate from 1.

The clipping prevents large policy updates that could reduce performance.

To learn the right *sequences* of offline actions, we use a recurrent PPO network so the agent can condition its choices on the history of previous steps within the same ‘sleep’ phase. We use the default LSTM network (but with one hidden layer of 64 units) provided for a recurrent PPO agent in Stable-Baselines3 [28].

A.1.2 Estimating value via Shapley values

To teach the agent which images or trajectories are most useful to replay, we use a small validation set and compute approximate Shapley values [15] for a subset of candidates. The Shapley value ϕ_i for example i measures its average contribution to performance across all subsets of examples. Formally,

$$\phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (|N| - |S| - 1)!}{|N|!} [v(S \cup \{i\}) - v(S)],$$

where $v(S)$ is the classifier accuracy (or maze solver performance) trained on subset S . The second term therefore measures how much adding example i after subset S increases performance. The first term gives the probability that, if you shuffle all N examples into a random order, the set of items that appear before i is S . This sum is therefore the expected marginal contribution of item i when you add it into a randomly shuffled training set.

Because calculating this exactly is very expensive, Shapley values can be approximated by sampling random subsets of the candidates, with and without a particular pair. In the image experiments, we use standard data Shapley: for each training image, we estimate its value by sampling coalitions of images, training the classifier on each coalition with and without the target image, and averaging the

marginal accuracy gains. In the maze experiments, we value all candidate start–goal pairs in a single pass per permutation for efficiency. For each sampled ordering, we sequentially train on each pair and record the marginal performance gain it produces, then we average across all permutations as in standard data Shapley.

These estimated Shapley values for a subset of the candidates are used to train a value estimator model which quickly predicts value for every candidate. In the image task, the input to the value estimator is the image, whilst in the maze task, the input to the value estimator is the start-goal combination, represented as co-ordinates of the start concatenated with co-ordinates of the goal, and the distance between the start and goal.

A.1.3 Selecting examples with maximal marginal relevance

To pick a set of items (real or generated) that are both informative and diverse, we use maximal marginal relevance [27], a common approach for information retrieval. We add examples one at a time to a set S , at each step scoring a candidate item d by:

$$\text{MMR}(d) = \lambda \text{Relevance}(d) - (1 - \lambda) \max_{d' \in S} \text{Similarity}(d, d'),$$

where:

- $\text{Relevance}(d)$ is how valuable the example is predicted to be (from our value estimator),
- $\text{Similarity}(d, d')$ measures how similar two items are (e.g. cosine distance between the pixel vectors in the image task, or the sum of distances between the start locations and goal locations in the maze task),
- $\lambda \in [0, 1]$ balances relevance versus diversity. This is set to 0.9 by default in our simulations.

We then add the item with the highest MMR score, and repeat until the batch is full.

A.1.4 Gaussian mixture model for image generation

To model generative replay in the image classification task, we use a Gaussian mixture model (GMM) as a simple generative model of images, implemented with scikit-learn [41]. This assumes that images from each class come from a mixture of K Gaussian components. For each class c , the probability of an image \mathbf{x} is:

$$p(\mathbf{x} \mid y = c) = \sum_{k=1}^K \pi_{c,k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{c,k}, \boldsymbol{\Sigma}_{c,k}).$$

Here $\pi_{c,k}$ are mixing weights that sum to 1, and each Gaussian component has mean $\boldsymbol{\mu}_{c,k}$ and covariance $\boldsymbol{\Sigma}_{c,k}$. The parameters are found by the expectation–maximisation algorithm.

Images can then be generated by sampling from the learned distribution for a particular class.

A.1.5 Deep Q-network maze solving agent

The DQN agent uses Stable-Baselines3’s DQN with an MLP Q-network: a feed-forward network mapping the observation vector to action-values, with the default architecture of two fully connected hidden layers (64 units each) and ReLU activations, followed by a linear output over actions.

Training uses a learning rate of 1e-4, with epsilon fixed at 0.2 (higher than typical because of the frequent changes to the maze, which require significant exploration).

A.2 Further neuroscience background

Recent memories are encoded in the hippocampus, which is capable of ‘one-shot learning’ of particular events. During sleep and rest, the brain conducts offline processing to better support future behaviour. In particular, replay is a phenomenon in which hippocampal neurons reactivate memories in ‘fast-forward’ [3]. In machine learning terms, hippocampal sequences are reactivated

to train other brain regions, with the neocortex thought to gradually learn statistical patterns across memories through replay [42, 43, 5, 44]. This view is supported by the fact that interventions which interfere with replay lead to increased forgetting [45], and replay after learning a task is correlated with subsequent performance [46]. (Note that much of this research relates to rodents performing spatial tasks like navigating to a reward in a maze, motivating our use of a maze as one scenario in the paper.)

A newer view is that replay may be generative rather than, or as well as, veridical. In rodents, ‘replayed’ sequences can join together paths that were experienced on separate occasions [6], cross regions that have been seen but not visited [47], and even diffuse throughout an open environment [48]. In human neuroimaging studies, ‘replayed’ sequences do not always correspond to real memories either [49]. In addition, conceptual ‘building blocks’ are thought to be learned offline which can then be flexibly recombined.

These findings have led to a body of research about what kinds of replay are observed when, and which events are replayed or simulated during rest. This is thought to depend on several factors. For example, consider the case of a gradually changing maze. Simulating trajectories offline without first updating the world model is detrimental if the world has changed, but updating the world model is costly if the world has not changed. So to optimise offline activity for future behaviour, there must be some mechanism for assessing which offline action to take based on the current cognitive state (e.g. whether recent experiences diverge from the world model’s predictions).

In summary, during rest, the brain is thought to perform some combination of i) replaying real memories, ii) learning a general world model, and iii) simulating events with this world model. There is evidence for all of these processes, but there is little understanding of how they are regulated, and how this depends on the environment and/or current learning. The ‘metacognitive actions’ chosen in the paper are intended to reflect these observed offline processes in the neuroscience literature.

A.3 Supplementary results

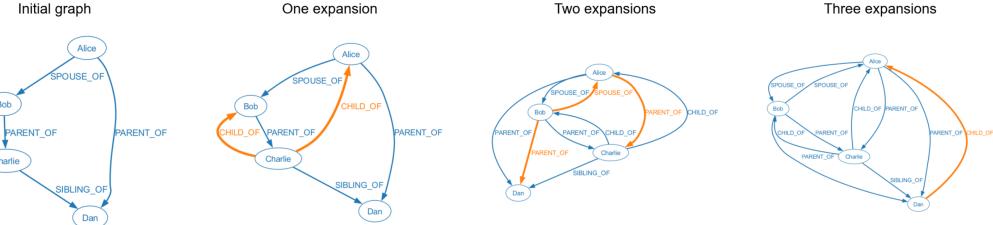


Figure 5: A toy example of iterative graph expansion. From left to right: The initial family tree graph is shown. When the graph autoencoder model for link prediction is applied to this graph, the links shown in orange, which have a probability greater than 0.5, are added. The graph autoencoder is then applied to this expanded graph.

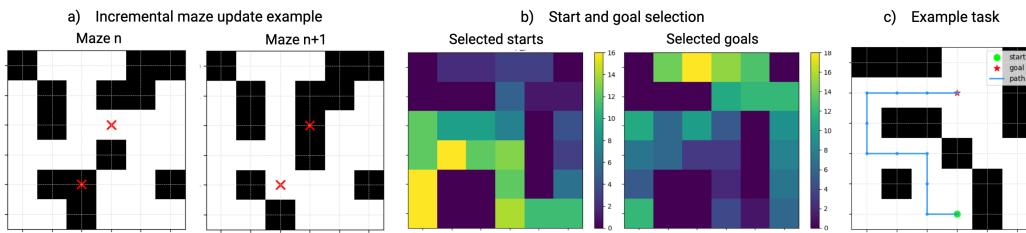


Figure 6: Additional maze visualisations. a) Incremental maze updates break a high centrality link and add another, whilst keeping the maze fully connected. b) Example heatmaps showing the frequency of selected start (left) and goal (right) locations. MMR is applied to select start-goal combinations which balance high value and high diversity. The selected start and goal locations may very different. c) An example task solved by the DQN agent.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction accurately reflect the contributions and scope as specified below.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The Discussion covers limitations of the paper (see paragraph beginning 'This work has several limitations'), and how future work could address them.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: The paper presents empirical rather than purely theoretical results. Where the chosen approach depends on existing theoretical results (e.g. Shapley-based data valuation), these are cited and explained in the Appendix where possible.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A detailed description of all experiments is included, as well as the code to reproduce the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: Code is provided alongside the paper to reproduce the results. It will be made available as a GitHub repo upon publication. The only datasets used are open-source ones, which the code downloads automatically.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: These details are provided in the Appendix and the code to reproduce the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: Results in figures are accompanied by error bars where appropriate, and tables include the SEM.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: This information is provided in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: This complies fully with the ethics guidelines, as there are no harms caused by the research process or potential harmful consequences.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[NA\]](#)

Justification: The purpose of this work is to better understand the brain through computational neuroscience, which has no *direct* societal impact (although the field of neuroscience as a whole has positive societal impacts).

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Creators of the code and data used are clearly cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: A draft of the documentation for code to reproduce the results is provided alongside the paper. More detailed documentation will accompany a public GitHub repo released upon publication.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing or research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for coding assistance / debugging (with human verification and oversight).

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.