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Abstract

Many empirical studies have provided evidence for the emergence of algorithmic
mechanisms (abilities) in the learning of language models, that lead to qualitative
improvements of the model capabilities. Yet, a theoretical characterization of how
such mechanisms emerge remains elusive. In this paper, we take a step in this
direction by providing a tight theoretical analysis of the emergence of semantic
attention in a solvable model of dot-product attention. More precisely, we consider
a non-linear self-attention layer with trainable tied and low-rank query and key
matrices. In the asymptotic limit of high-dimensional data and a comparably large
number of training samples we provide a tight closed-form characterization of
the global minimum of the non-convex empirical loss landscape. We show that
this minimum corresponds to either a positional attention mechanism (with tokens
attending to each other based on their respective positions) or a semantic attention
mechanism (with tokens attending to each other based on their meaning), and
evidence an emergent phase transition from the former to the latter with increasing
sample complexity. Finally, we compare the dot-product attention layer to a linear
positional baseline, and show that it outperforms the latter using the semantic
mechanism provided it has access to sufficient data.

1 Introduction
Recent years have seen an upheaval in our ability to learn and implement complex tasks from textual
data. Instrumental in these advances is the use of self-attention layers [1], which provide an efficient
method of extracting information from sentences – both the information encoded in the ordering
(i.e. positions) of the words, and that encoded in the meaning (i.e. semantics) of the words. In
theory, attention layers can learn to leverage both types of information, by having tokens attend
to each other based on their respective positions (a mechanism called positional attention in [2])
and/or respective meanings (henceforth referred to as semantic attention). In this paper, we aim at a
theoretical understanding of the emergence of these different mechanisms in attention layers, and the
transitions therebetween.

Many empirical studies have provided evidence for the emergence of specific algorithmic mechanisms
(abilities) in the learning of language models that lead to qualitative improvements of the model
capabilities [3, 4, 5]. By reverse-engineering trained models into human-interpretable components [6,
7, 8] a growing body of work on mechanistic interpretability aims to empirically understand which
precise algorithmic mechanisms a neural network learns. Such investigations have demonstrated
that attention layers are able to implement a wide range of different algorithms, even for the same
task, using both positional and semantic attributes of the inputs. We offer a particularly simple
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Figure 1: A phase transition in a toy model of attention. (A) We investigate a tied low-rank
attention model in a teacher-student setting. The teacher mixes the L individual tokens of dimension
d according to a semantic (as a function of the token’s content x) and a positional (as a function of the
token’s position) attention matrix. The student can only use positional encodings p to fit the positional
properties of the teacher. (B) Schematic view of the loss landscape of the teacher, which contains
both a positional and a semantic minimum. (C) We find that in the asymptotic high-dimensional limit
and as a function of the sample complexity and the composition of the teacher, the global minimum
switches, constituting a phase transition between positional and semantic learning.

illustration of this idea in Appendix A, where we show that for a sequence modelling task involving
counting different algorithmic mechanisms co-exist, each corresponding to a distinct local minimum
of the empirical loss. Out of these possibilities, the precise implementation that a model learns
during training is jointly affected by its architecture [9], the training procedure itself [7, 4, 10]
and the available data [11, 12, 13]. It remains an open question how to theoretically characterise
the conditions under which a given behaviour emerges in the model leading to said qualitative
improvements.

From a theoretical perspective, even the nature of this type of algorithmic emergence is unclear. It is
not known whether it is simply a fast but smooth change in performance or whether the emergence
is due to a sharp boundary between fundamentally different regimes of learning [14]. In our work,
we take inspiration from physics, where a similar theoretical question about the nature of phase
transitions was posed a century ago for models of interacting particles, such as the famous Ising
model describing ferromagnetism [15, 16]. In the limit of infinitely many particles, it was shown
that it is possible to theoretically deduce sharp discontinuities in some properties of interest (e.g. the
magnetization of a magnet), delineating qualitatively very different regimes (e.g. magnetized or not).
While mathematically, a large size limit needs to be considered to confirm the existence of sharp
phase transitions, this asymptotic theory usually closely matches simulations, even for relatively
moderate finite sizes.

In the theory of feed-forward fully connected neural networks, phase transitions in the network’s
generalisation ability as more training samples are available were studied as early as in [17, 18],
and their existence was proven mathematically rigorously in [19]. In those works, the limit of
many particles corresponds to taking the number of training samples and the dimensionality of the
data to infinity at a fixed ratio. These theories rely on the property that macroscopic quantities
of interest, such as the test error, become concentrated and deterministic in the high-dimensional
limit. A dimension-free set of equations is then derived which predicts these deterministic quantities.
Since then, a plethora of works along these lines both in statistical physics of phase transitions
and in the theory of feed-forward neural networks have continued to study these phenomena, see
e.g. [20, 21, 22, 23].

In this work, for the first time, we bring this type of study to the analysis of neural networks with
attention layers. While several previous theoretical studies of the attention mechanism considered
some type of high-dimensional limit [24, 25, 26, 2], none of them identified a phase transition
between different types of mechanisms that are implemented by the attention layer. Simultaneously,
the finite-dimensional real-world models that are the focus of works in mechanistic interpretability
do not lend themselves to a tractable definition of a high-dimensional limit, which is necessary to
identify a phase transition theoretically, as explained above. We aim to fill this gap by introducing and
analysing a tractable model that permits such a sharp high-dimensional characterisation for attention
layers (see Fig. 1).
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In particular our contributions are:

• We describe a model with a single self-attention layer with tied, low-rank query and key ma-
trices. On Gaussian input data and realizable labels, we show that this model exhibits a phase
transition in terms of sample complexity between a semantic and a positional mechanism.

• As the main technical result, we analyse this model in the asymptotic limit where the embed-
ding dimension d of the tokens and the number n of training samples grow proportionally.
We provide a tight closed-form characterization of the test error and training loss achieved at
the minima of the non-convex empirical loss. Using this high-dimensional characterization,
we locate the positional-semantic phase transition, thus providing the first theoretical result
about the emergence of sharp phase transitions in a model of dot-product attention.

• We contrast the performance of the dot-product attention layer with that of a linear model,
which can only implement positional mechanisms, and show how the former outperforms
the latter once it learns the semantic mechanism, highlighting the advantage of the attention
architecture for this task, when there is a sufficient amount of training data.

In Section 2, we discuss further related work. Section 3 defines the general version of a solvable model
of tied low-rank attention, and Section 4 provides a tight characterization of the global minimum of its
empirical loss. Section 5 analyses a concrete instance of dot-product attention and demonstrates that
in this case the global minimum corresponds to either a semantic or positional mechanism, depending
on the training data and task, with a phase transition between them. We conclude with a discussion of
the limitations of our analysis in Section 6.

2 Related work

Theory of attention Attention models have been the object of sizeable theoretical scrutiny in
recent years, with a growing body of work investigating various aspects such as their expressivity
[25, 27, 28], inductive bias [29, 30, 31], training dynamics [2, 32, 33, 34], and in-context learning
[26, 35, 36, 37, 38]. [39] and [25] analyze models with frozen non-trainable queries and keys, under
the lens of signal propagation in such frozen models, or of their expressivity. [2] similarly studies
the learning of the value matrix and positional encodings only, fixing keys and queries to identity,
and shows how a transformer with a single attention head can learn spatial structure with a purely
positional attention mechanism. The works of [29, 37] analyze the learning of a single layer of
attention, with trainable queries and keys, assuming linear or ReLu activations – instead of the
standard softmax activation. [33] provide convergence bounds for non-linear transformer models
with a single attention layer, with trainable queries and keys. Because these studies are not tight,
they do not allow to capture sharp changes in the behaviour of attention mechanisms such as phase
transitions, and cannot for the same reason provide a theoretical description of the sudden emergence
of new algorithmic mechanisms. A first tight description was provided in [24], in the context of
learning a high-dimensional graphical model with a single layer of factored attention, leveraging its
formal equivalence to a linear and convex learning problem. On the other hand, this model does not
exhibit any emergent phenomenon. [38] analyze how induction head mechanisms can be learnt from
gradient descent on the population loss, i.e. when an infinite amount of data is available. The present
manuscript conducts a tight analysis of the non-convex learning of a non-linear attention model with
trainable tied queries and keys from a finite train set, thereby allowing the description of sharp phase
transitions in sample complexity in the behaviour and performance of the model.

Positional encodings To combine the positional and semantic information in textual or general
sequential data, a variety of models and input encodings have been explored. Many approaches are
based on autoregressive models, e.g. recurrent architectures [40], where the positional information
is provided implicitly by the order in which the input is processed. While some transformers can
leverage implicit positional information through causal masks in training [41, 42, 43], in principle
a dot product attention layer requires an explicit encoding of positional information as it views the
input sequence in parallel, as a bag of words [1]. Several works experimentally explore different
types of positional encodings with the goal of improving the downstream task performance [44, 45].
In this work, we provide a tractable model to quantify the generalization error of a single layer of
attention in the presence of positional encodings.
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Theory of phase transitions in neural networks In supervised learning with feed-forward
fully connected neural networks, phase transitions in sample complexity were identified in settings
where the data consists of random Gaussian samples, and the labels are generated by a target neural
networks with random weights. For a single-layer perceptron and a variety of teacher weights
distributions and activation functions, a discontinuity of the optimal test error as the number of
samples increases was established in [18, 17, 19]. For a two-layer neural network, [21, 20] evidenced
a specialization threshold in the sample complexity below which linear regression matches the
optimal test accuracy, and above which a strictly better accuracy can be reached. To our awareness,
phase transitions in neural networks with attention layers have not been studied theoretically yet.

3 Tied low-rank attention model

Input data model We consider a model of embedded sentences with uncorrelated (1-gram) words.
More precisely, a sentence x ∈ RL×d, where L is the sentence length and d represents the embedding
dimension, consists of L tokens {xℓ}1≤ℓ≤L independently drawn from a Gaussian distribution
xℓ ∼ N (0,Σℓ) with covariance Σℓ ∈ Rd×d. In the following, we denote the probability distribution
of x as px. Note that while this sentence model does not involve in itself statistical correlations
between tokens, the task (target function) will entail interactions between different tokens. While
more general data models involving inter-token correlations can also be readily analyzed such analyses
come at the price of much more intricate analytical formulae. We thus choose for clarity to restrict the
discussion to this simple instance, which already displays rich phenomenology, as will be explored in
Section 5. We defer a discussion and an analytical treatment of the general case to Appendix C.

Target function The target function (teacher) is assumed to be of the form

y(x) = T

[
1√
d
xQ⋆

]
x, (1)

for a function T : RL×t → RL×L. The term T [1/
√
dxQ⋆] ∈ RL×L in (1) should be interpreted as the

target attention matrix, which mixes the tokens of the input x. This attention matrix is parametrized
by the target weights Q⋆ ∈ Rd×rt .

Tied attention We consider the learning of the target (1) by a single attention layer

fQ(x) = S

[
1√
d
(x+ p)Q

]
(x+ p). (2)

In (2), p ∈ RL×d is a fixed matrix, corresponding to positional encodings, and Q ∈ Rd×rs

is a trainable weight matrix. We denote subsequently pℓ ∈ Rd the ℓ−th row of p. Like the
target (1), the parametric function (2) takes the form of a data-dependent attention matrix
S [1/

√
d(x+ p)Q] ∈ RL×L mixing the tokens of the input x. Note that, compared to the usual

attention mechanism [1] employed in practice, (2) corresponds to setting the value weights to identity,
and – since (2) is parametrized by a single matrix Q– tying the key and query weights. While the
assumption of tied weights is not strictly necessary, it makes for simpler and more interpretable
analytical characterizations, and is thus considered in this work for clarity. We provide in Appendix
C a full analysis of the untied architecture for completeness.

Empirical risk minimization We study the learning of the attention layer (2), when a training set
D = {xµ, y(xµ)}nµ=1 with n independently sampled sentences {xµ}nµ=1, and the associated labels
{y(xµ)}nµ=1, is available. The target (1) can be learnt by carrying out an empirical risk minimization:

Q̂ = argmin
Q∈Rd×r

[
n∑

µ=1

1

2d
∥y(xµ)− fQ(xµ)∥2 + λ

2
∥Q∥2

]
. (3)

The performance of the resulting trained model fQ̂ is measured at test time by the mean squared
error (MSE)

ϵg ≡
1

dL
Ex∼px

∥∥∥y(x)− fQ̂(x)
∥∥∥2 . (4)
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4 Closed-form characterization of the training loss

High-dimensional limit We analyze the learning problem (3) in the limit where the embedding
dimension d and the number of training samples n jointly tend to infinity, while their ratio α = n/d
(henceforth referred to as the sample complexity) stays of order Θd(1). We further assume the
sentence length L, the ranks rs, rt of the weights Q,Q⋆, and the norm of the positional embeddings
∥p∥, to be Θd(1). This limit has been considered in a stream of previous works (e.g. [46, 47, 48])
and allows to derive closed-form characterization of the ERM problem (3), which we present in
the next section. It also exhibits a particularly rich learning phenomenology which we further explore
in Section (5). Finally, let us comment briefly on the assumption that rs = Θd(1), which in words
implies that the weight matrix Q is low-rank. While primarily motivated by technical limitations
here, it is worth noting that low-rank weights are also considered in machine learning practice, in
the context of model compression [49] or fine-tuning [50].

The main technical result of the present work is a closed-formed characterization of the test MSE
(4) and training loss (3) achieved in the high-dimensional limit when training the model (2) via the
empirical risk minimization of (3).
Assumption 4.1. The covariances {Σℓ}Lℓ=1 admit a common set of eigenvectors {ei}di=1. We
further note {λℓi}di=1 the eigenvalues of Σℓ. The eigenvalues {λℓi}di=1 and the projection of the
positional embedding {pℓ}Lℓ=1 and the teacher columns {Q⋆

j}
rt
j=1 on the eigenvectors {e⊤i pℓ}i,ℓ,

{e⊤i Q⋆
j}i,j are assumed to admit a well-defined joint distribution ν as d → ∞ – namely, for

γ = (γ1, ..., γL) ∈ RL,π = (π1, ..., πrt) ∈ Rrt and τ = (τ1, ..., τL) ∈ RL:

1

d

d∑
i=1

L∏
ℓ=1

δ
(
λℓi − γℓ

)
δ
(√

de⊤i pℓ − τℓ

) rt∏
j=1

δ
(
e⊤i Q

⋆
j − πj

) d→∞−−−→ ν (γ, τ, π) . (5)

In words, Assumption 4.1 guarantees that all parameters of the problem admit well-defined limits
in the considered asymptotic limit, with the further assumption that the covariances {Σℓ}Lℓ=1 of the
different tokens can be jointly diagonalized. We are now in a position to state the main technical
result of the present work.
Result 4.2. Under Assumption 4.1, in the limit n, d→∞, ∥p∥, n/d, L, rs, rt = Θd(1), the summary
statistics

ρℓ ≡
Q⊤

⋆ ΣℓQ⋆

d
∈ Rrt×rt , qℓ ≡

Q̂⊤ΣℓQ̂

d
∈ Rrs×rs ,

mℓ ≡
Q̂⊤pℓ

d
∈ Rrs , θℓ ≡

Q̂⊤ΣℓQ⋆

d
∈ Rrs×rt (6)

concentrate in probability, and are solutions of the set of finite-dimensional self-consistent equations

qℓ =
∫
dν(γ, τ, π)γℓ

(
λIrs+

L∑
κ=1

γκV̂κ

)−1
(

L∑
κ=1

γκq̂κ+
( L∑
κ=1

m̂κτκ +γκθ̂κ · π
)⊗2
)(

λIrs+
L∑

κ=1
γκV̂κ

)−1

Vℓ =
∫
dν(γ, τ, π)γℓ

(
λIrs +

L∑
κ=1

γκV̂κ

)−1

mℓ =
∫
dν(γ, τ, π)τℓ

(
λIrs +

L∑
κ=1

γκV̂κ

)−1( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)

θℓ =
∫
dν(γ, τ, π)γℓ

(
λIrs +

L∑
κ=1

γκV̂κ

)−1( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)
π⊤.

(7)

q̂ℓ = αEΞ,UV
−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2

ℓ ξℓ −mℓ

)⊗2

V −1
ℓ

V̂ℓ = θ̂ℓθ
⊤
ℓ q

−1
ℓ −αEΞ,UV

−1
ℓ

(
prox(Ξ, U)ℓ −q

1
2

ℓ ξℓ −mℓ

)
ξ⊤ℓ q

− 1
2

ℓ

m̂ℓ = αEΞ,UV
−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2

ℓ ξℓ −mℓ

)
θ̂ℓ = αEΞ,UV

−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2

ℓ ξℓ −mℓ

)(
uℓ − ξ⊤ℓ q

−1/2
ℓ θℓ

)⊤ (
ρℓ − θ⊤ℓ q

−1
ℓ θℓ

)−1

(8)
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In (7), U = {uℓ}Lℓ=1 and Ξ = {ξℓ}Lℓ=1, with uℓ ∼ N (ξ⊤ℓ q
−1/2
ℓ θℓ, ρℓ−θ⊤ℓ q

−1
ℓ θℓ) and ξℓ ∼ N (0, Irs),

and ·⊗2 denotes the outer product of a vector with itself. Finally, the resolvents {prox(Ξ, U)ℓ}Lℓ=1
are defined as the minimizers of the Moreau envelope

M(Ξ, U) = inf
z1,...,zL

{
L∑

ℓ=1

Tr

[
V −1
ℓ

(
xℓ−q

1/2
ℓ ξℓ−mℓ

)⊗2
]
+Tr

[
S(Z)ρΣS(Z)⊤

]
−2Tr

[
T(U)ρΣS(Z)⊤

]}
.

We noted Z ∈ RL×rs (resp. U ∈ RL×rt ) the matrix whose rows are zℓ (resp. uℓ) and:

ρΣ ≡ diag

[(∫
dν(γ, τ, π)γℓ

)L

ℓ=1

]
∈ RL×L. (9)

In the same limit, the test error (4) converges in probability to

ϵg =
1

L
Eh Tr

[
S[h]ρΣS[h]

⊤]+ 1

L
Eh⋆ Tr

[
T[h⋆]ρΣT[h

⋆]⊤
]
− 2

1

L
Eh,h⋆ Tr

[
S[h]ρΣT[h

⋆]⊤
]
. (10)

where the average bears on h ∈ RL×rs , h⋆ ∈ RL×rt with independent rows with statistics

(hℓ, h
⋆
ℓ ) ∼ N

[(
mℓ

0

)
,

(
qℓ θℓ
θ⊤ℓ ρℓ

)]
(11)

Finally, the training loss ϵt converges in probability to

ϵt = αEY,ΞM−
1

2

L∑
ℓ=1

Tr[q̂ℓVℓ] +
λ

2

∫
dν(γ, τ)Tr

[(
λ+

L∑
ℓ=1

γℓV̂ℓ

)−2
 L∑

ℓ=1
γℓq̂ℓ+

(
L∑

ℓ=1
τℓm̂ℓ+θ̂ℓ·π

)⊗2

]
. (12)

Result 4.2 provides a tight asymptotic characterization of the test error ϵg (10) and the training loss ϵt
(12), as a function of a finite set finite-dimensional summary statistics {qℓ, Vℓ,mℓ, θℓ}Lℓ=1, thereby
providing a finite-dimensional description of the high-dimensional learning problem (3). These
summary statistics are further characterized in closed form by the set of equations (7), in terms of the
solution of a low-dimensional minimization problem (91). Intuitively, this low-dimensional problem
may be viewed as a form of an effective loss averaged over the finite training set. In practice, the
solution of the self-consistent equations (7) can be found by numerically iterating the equations
until convergence. The resulting summary statistics can then be used to evaluate the expressions
(10) and (12) to reach the asymptotic limits of the test error and train loss. In Section 5 we evaluate
exactly these functions to understand the different minima in the models empirical loss landscape.
Similar sharp asymptotic characterizations have been derived in the literature for other neural network
architectures trained with ERM, in particular generalized linear models (see e.g. [51, 52, 48]) and
auto-encoders [47].

The derivation of Result 4.2 is provided in Appendix B, and is exploiting a mapping of the model (2)
to a (variant of) a Generalized Linear Model (GLM) [53, 54]. The summary statistics characterized
by the equations (7) (often called state evolution [55] in this context) asymptotically describe the
fixed points of a Generalized Approximate Message Passing (GAMP) algorithm [56], which we state
in Appendix B. The fixed points of GAMP in turn correspond to critical (zero-gradient) points of the
non-convex empirical loss landscape (3). Therefore, while Result (4.2) is stated as a characterization
of the global minimum of (3), which is the main concern of the present work, solutions of (7) also
describe local minima and saddles.

This strategy has been used in many recent work to study asymptotics of a large number of high-
dimensional problems, see e.g. [57, 58, 59, 60, 48]. We note, however, that we importantly assume the
point-wise convergence of GAMP. While we believe that this point can be rigorously justified, it would
require a considerable amount of work —in particular, the usual rigorous tools used in recent works
fall short because of the non-convexity of the loss— and we leave this point for future studies (see the
discussion in Appendix C, where we also provide an alternative derivation using the replica method
from statistical physics [61]). Finally, we mention that while Result 4.2 is presented for an ℓ2 regular-
ization of the empirical loss (3) for clarity, similar results can be reached for generic convex regulariz-
ers, and are presented in Appendix C. In the following section, we explore the phenomenology uncov-
ered from the study of the equations (7) of Result 4.2, for the special case of dot-product attention.

6



0.0 0.5 1.0 1.5 2.0c

0.0010

0.0005

0.0000

0.0005

t

0.0 0.5 1.0 1.5 2.0c

0.0

0.2

0.4

0.6

0.8

1.0 / 2

m/ 2

0.0 0.5 1.0 2.0c l

0.002

0.003

0.004

lin
g

min
g

Figure 2: Mixed positional/semantic teacher for ω = 0.3. Setting is rs = rt = 1, L = 2, A =
((0.6, 0.4), (0.4, 0.6)),Σ1 = Σ2 = 0.25Id, p1 = 1d = −p2 and Q⋆ ∼ N (0, Id). (left) Solid lines:
difference in training loss ∆ϵt between the semantic and positional solutions of (7) in Result 4.2.
Markers: difference in training loss at convergence achieved by training the model (2) using gradient
descent initialized resp. at Q⋆ and at p1. Marker color as in Fig. 3. (center) overlap θ between the
learnt weights Q̂ and the target weights Q⋆ overlap m between the learnt weights Q̂ and the positional
embedding p1. Solid lines represent the theoretical characterization of these two summary statistics
provided by Result 4.2. Only the solution of (7) corresponding to the lowest found training loss is
represented (i.e. the positional solution for α < αc and the semantic otherwise). Markers represent
experimental measures of these quantities, for gradient descent at convergence. Gradient descent was
initialized at p1 for α < αc and at Q⋆ for α > αc. (right) We show the MSE achieved by the dense
linear as ϵmin

g (Result 4.2), and MSE achieved by the dense linear baseline ϵling (15) (Result 5.1).
Markers indicate the MSE experimentally reached by the model (2) trained using gradient descent,
initialized previously for the overlaps. All experiments were performed in d = 1, 000 with the
Pytorch implementation of full-batch gradient descent, for T = 5, 000 epochs and learning rate
η = 0.15. All points are averaged over 24 instances of the problem each.

5 Positional-to-semantic phase transition

Rank one dot-product attention In the following, we turn to a special case of tied low-rank
attention (2) – namely a dot-product attention layer, which is the example from Fig. 1:

S

[
1√
d
(x+ p)Q

]
= softmax

(
1

d
(x+ p)QQ⊤(x+ p)⊤

)
. (13)

As in (2), we allow for positional encodings p in the dot-product attention parametrization (13). We
further consider a specific case of target attention matrix (1) of the form

T

[
1√
d
xQ⋆

]
= (1− ω)softmax

(
1

d
xQ⋆Q

⊤
⋆ x

⊤
)
+ ωA· (14)

with A ∈ RL×L a fixed matrix. In (14), the parameter ω ∈ [0, 1] tunes the relative strength of the
dot-product term and the fixed matrix term, and interpolates between a fully positional and a fully
semantic task:

• For ω = 0, the target reduces to the first dot-product term, and is purely semantic, in that the
i, j−th element of the score matrix softmax(1/dxQ⋆Q

⊤
⋆ x

⊤) only depends on the tokens
xi,xj and not explicitely on their respective placements i, j inside the sentence. To learn
satisfyingly the target, the learning model thus has to learn a semantic attention matrix.

• For ω = 1, the target reduces to the second fixed term A in (14). The attention matrix A
associated thereto is purely positional, in the sense that Aij is a function of i, j but not of
xi,xj . To complete the learning task, a positional mechanism then needs to be learnt.

The parameter ω thus allows to tune the amount of semantic/positional content in the target (14),
and thus the extent to which the task requires the model to implement semantic attention (small
ωs) or rather positional attention (large ωs). In the following, for definiteness, we further assume
rs = rt = 1 and set Q⋆ to be a fixed random Gaussian vector drawn from N (0, Id), and choose the
positional encodings p1 = −p2 = 1d. Finally, for simplicity, we consider sentences with two tokens
L = 2 and isotropic token covariances Σ1 = Σ2 = σ2

1d.

Semantic and positional mechanisms The summary statistics θℓ,mℓ describing the global
minimizer of the empirical loss minimization (3) of the dot-product attention (13) on the target
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Figure 3: Phase transition between semantic and positional training loss. Setting and experiments
were performed identical to Fig. 2. (left) Scaling d and n jointly for α = 1.5 concentrates for θ and
m, in different locations for the positional and semantic local minima each. We show 30 runs for each
d ∈ [10, 15, 23, 36, 56, 87, 135, 209, 323, 500]. (center) The color map represents the difference
in training loss at convergence when training the model (2) using the Pytorch implementation of
full-batch gradient descent, respectively from an initialization at p1 or at Q⋆. The green dashed
line represents the theoretical prediction for the threshold αc(ω) above which the semantic solution
of (7) in Result 4.2 has lower loss than the positional solution. (right) The color map represents the
difference in test MSE at convergence when training the attention model (13) using the Pytorch
implementation of full-batch gradient descent initialized at Q⋆, and the dense linear baseline (15).
The red dashed lines indicate the theoretical prediction –following from Result 4.2 and Result 15–
for the threshold sample complexity αl(ω) above which the dot-product attention (2) outperforms the
baseline (15).

(14) are captured alongside the corresponding test error (4) and training loss (3), by Result 4.2.
The solution of the system of equations (7) is not unique, and different stable fixed points describe
different corresponding critical points of the non-convex empirical loss landscape (3). In practice, we
notably find two solutions of (7), corresponding to two minima associated with different mechanisms
implemented by the dot-product attention (13) when approximating the target (14):

–Positional solution One solution of (7) correspond to vanishing overlap θ = 0 between the trained
weights Q̂ and the semantic target weights Q⋆, and non-zero m > 0 between the trained weights
Q̂ and the positional embedding p1 = −p2. Consequently, the argument of the dot-product
attention Q̂(x+ p) has a sizeable token-independent –thus positional– contribution Q̂p, alongside
a token-dependent semantic part Q̂x. Because of the positional terms, the resulting learnt attention
attention matrix softmax(1/d(x+ p)Q̂Q̂⊤(x+ p)⊤) implements a partly positional mechanism.
–Semantic solution Another solution of the system of equations (7) is associated with a vanishing
overlap m = 0 between the learnt weights Q̂ and the positional embeddings, and a finite
overlap θ > 0 with the target weights Q⋆. Therefore the resulting learnt attention matrix
softmax(1/d(x+ p)Q̂Q̂⊤(x+ p)⊤) ≈ softmax(1/dxQ̂Q̂⊤x⊤) is largely semantic.

While the system of self-consistent equations (7) may admit other solutions, we did not find solutions
with lower training loss than the two aforedescribed fixed points. Which of these solution corresponds
to the global minimum – and thus the solution of the optimization (3)– depends on the sample com-
plexity α and the positional/semantic parameter ω (14), as we describe in the following subsection.

Positional-to-semantic phase transition For a fixed parameter ω in (14), an analysis of equations
(7), further detailed in Appendix C, reveals that for a sizeable range of ω, in the probed setups, there
exists a threshold αc for the sample complexity so that

• For α < αc, the global minimum of (3) corresponds to a positional mechanism, and is
described by the positional solution of (7) of Result 4.2 with θ = 0,m > 0.

• For α > αc, the global minimum of (3) corresponds to a semantic mechanism, and is
described by the semantic solution of (7) of Result 4.2 with θ > 0,m = 0.

The dot-product attention thus displays a phase transition in sample complexity from a positional
mechanism to a semantic mechanism, implementing the simpler positional mechanism when having
access to small amounts of data, and only learning the semantic content of the target (14) when
presented sufficient data. The critical sample complexity αc generically grows with the positionality
ω of the target function (14), as the semantic content – i.e. the first term of (14)– is less apparent
for larger ω, and thus requires larger amounts of data to be identified and approximated by the
dot-product attention (13). An example for ω = 0.3 is given in Fig. 2. In Fig. 3 (center) the difference
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in training loss ∆ϵt between the positional and semantic solutions of (7) is represented, alongside
the difference in training loss at convergence experimentally reached by gradient descent. For small
(resp. large) sample complexity α < αc (resp. α > αc), the training loss of the positional (resp.
semantic) minimum is lower, and thus corresponds to the global minimum.

Experimentally, the positional minimum can be reached for α < αc via gradient descent by initializing
the weights Q of the attention (13) close to the positional embedding p1. By the same means, the
semantic minimum can be reached from an initialization at the teacher weights Q⋆ (14). Henceforth,
we refer with a slight abuse to the minimum experimentally reached from a positional (resp. semantic)
initialization as the positional (resp. semantic) minimum, even when it is not global. Note that
importantly the semantic initialization is informed in nature, in that it necessitates the knowledge of the
target parameters Q⋆. Note that even though the minima we characterize analytically are fixed points
of gradient descent, a precise analysis of the dynamics of gradient descent from an agnostic (random)
initialization, and ascertaining whether the optimizer reaches the global minimum, is an interesting
question but falls out of the scope of the present manuscript – which is an analysis of the loss landscape.
We however conduct numerical experiments from a random initialization of Q in Appendix E.4, and
show that the dynamics may reach either of the local minima, or get stuck in a different one.

In Fig. 2, we compare our analytical characterizations for different metrics at the global mimimum –
the summary statistics θ,m (middle), and the test MSE (right)–, with the corresponding experimental
estimates, obtained by optimizing (3) with the Pytorch implementation of gradient descent, from
a positional (resp. semantic) initialization for α < αc (resp. α > αc), displaying overall good
agreement. In Fig. 3 (left) and Appendix E.1 we further verify that in the scaling limit of our analysis,
namely n, d→∞ for α = O(1), the agreement improves with growing n, d.

The dot-product attention (13) thus implements a semantic mechanism when learning from sufficient
amounts of data. The learning of the semantic mechanism by the dot-product attention at sample
complexities α > αc corresponds to a noticeable drop in the generalization MSE as can be observed
in Fig. 2, right. But just how essential is the learning of semantic mechanism in the ability of the
dot-product attention to generalize well? We explore this question in the following subsection, by
comparing the dot-product attention (13) to a purely positional attention model.

Purely positional baseline In this subsection, for the same target (14), we contrast the dot-product
attention model (13), analyzed in the previous subsections, to the baseline given by a linear layer

fW (x) = W · x, (15)

with a trainable weight matrix W ∈ RL×L. As for the dot-product attention (13), we consider the
case where the weights Ŵ are learnt by minimizing the empirical risk

Ŵ = argmin
W∈RL×L

n∑
µ=1

∥y(xµ)− fW (xµ)∥2. (16)

The model (15) is a natural counterpart to the dot-product architecture (13). In (15), the attention
matrix is parametrized by a single fully-trainable matrix W , instead of being parametrized as a
dot-product attention as in (13). A seminal difference in the two parametrizations is that while
the elements of softmax(1/dxQQ⊤x⊤) can depend on the input tokens x, and therefore express
semantic information, the elements Wij of W can only depend on the positions i, j. The model (15)
can thus only implement positional mechanisms, while the dot-product attention (13) can implement
both linear and semantic mechanisms, as discussed above. Finally, observe that the model (15)
is closely related to the one analyzed by [24] in another asymptotic limit. The following result
characterizes the test error achieved by the purely positional model (15):

Result 5.1. In the same asymptotic limit as Result (4.2), the learnt weights Ŵ trained by minimizing
the empirical risk (16) coincide with the minimizer of the population risk, and thus admit the compact
expression

Ŵ = ExT

[
1√
d
xQ⋆

]
= EhT[h] (17)

where the average bears over a finite-dimensional matrix h ∈ RL×t with independent rows hℓ with
statistics hℓ ∼ N (0, ρℓ), where ρℓ was defined in (6) in Result (4.2). We remind that T [1/

√
dxQ⋆]
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corresponds to the target score matrix (1). Finally, the test MSE 1/dLEx∥y(x)− fŴ (x)∥2 achieved
by the trained dense linear model fŴ (15) admits the asymptotic characterization

ϵling =
1

L
Tr
[
ŴρΣŴ

⊤
]
+

1

L
Eh Tr

[
T[h]ρΣT[h]

⊤]− 2

L
Eh Tr

[
ŴρΣT[h]

⊤
]
. (18)

The MSE achieved by the baseline (15) when learning the target (14) is plotted in Fig. 2 (right) as the
orange solid line, alongside the MSE achieved by the dot-product attention (13) discussed in previous
subsections. Remarkably, in the setup of Fig. 2, in the positional regime α < αc when the dot-product
attention relies on a positional mechanism θ = 0,m > 0 to approximate the target, the dot-product
attention (13) is outperformed by the purely positional attention (15) ϵg > ϵling . In contrast, in the
semantic regime α > αc where the dot-product attention learns the semantic mechanism, there exists
a sample complexity αl ≥ αc above which ϵg < ϵling , i.e. the dot-product attention (13) outperforms
the dense linear baseline (15). This threshold value αl is plotted for various positionality strengths ω
in Fig. 3, alongside the positional-to-semantic threshold αc. Interestingly, we observe αl ≥ αc in all
probed settings, temptingly suggesting the natural interpretation that the dot-product attention needs
to learn the semantic mechanism first (at α = αc) in order to then be able to outperform the best
positional approximation fŴ (at α = αl). This highlights the importance of the semantic mechanism,
enabled by the dot-product parametrization (13), in learning targets with semantic content such as (14).

6 Limitations

Compared to the original transformer [1] we consider a simplified model: the query and key matrices
in our model are sharing weights and are of a low rank, as a value matrix we use the identity,
and we employ only one head and a single layer. Further, our data model is limited to Gaussian
data with sentences of 1-grams. Concerning the analysis, our characterization holds only in the
high-dimensional limit, but we show that even in the finite case experimental values lie close to the
theoretical prediction. Since the analysis only concerns the minima of the models loss landscape the
implications for the dynamics of learning algorithms, e.g. gradient decent, are limited. This shows
in our numerical experiments where we need to initialize GD close to the minima in order to arrive
at them. It is yet unclear if there are scaling limits of learning algorithms which would reliably find
the lower or a specific one of the minima from a random initialization.

Conclusion

We explored the interplay between positional and semantic attention, through the prism of tied
low-rank self-attention in high dimensions. In a theoretically controlled setting, we characterized
the global optimum of the empirical loss, when learning a target attention layer. This global optimum
was found to correspond to either a positional or a semantic mechanism, with a phase transition
between the two mechanisms occurring as the sample complexity increases. We believe the present
asymptotic analysis of the inner workings of attention mechanisms opens up exciting research
directions. Considering alternative attention architectures (including a readout network after the
attention layer, or considering cross-attention) or training procedures (such as masked language
modelling, or training with causal masks), are some possible extensions which will hopefully
pave the way towards a satisfactory theoretical comprehension of attention mechanisms. Finally,
elucidating under which conditions either minimum can be reached by a given optimizer from a
random initialization constitutes an important future research avenue.
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B B C C D D B B B B
B
B
C
C
D
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B
B
B
B
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42 6 6 6 7 6 6 6 6 7
6 41 6 7 6 6 6 6 7 7
6 6 42 6 7 7 6 6 6 6
6 6 6 43 6 6 6 6 6 7
7 6 6 7 42 6 6 7 6 6
7 6 6 7 7 42 7 6 6 6
6 7 7 7 6 7 42 7 6 7
7 6 6 7 7 7 6 41 6 6
6 6 6 6 7 6 6 6 42 7
7 6 6 7 7 6 6 6 6 42

Example Sequence #1
L M D M M M A H H B

L
M
D
M
M
M
A
H
H
B

42 6 6 6 7 6 6 6 6 7
6 41 6 7 6 6 6 6 7 7
6 6 42 6 7 7 6 6 6 6
6 6 6 43 6 6 6 6 6 7
7 6 6 7 42 6 6 7 6 6
7 6 6 7 7 42 7 6 6 6
6 7 7 7 6 7 42 7 6 7
7 6 6 7 7 7 6 41 6 6
6 6 6 6 7 6 6 6 42 7
7 6 6 7 7 6 6 6 6 42
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F
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6 6 42 6 7 7 6 6 6 6
6 6 6 43 6 6 6 6 6 7
7 6 6 7 42 6 6 7 6 6
7 6 6 7 7 42 7 6 6 6
6 7 7 7 6 7 42 7 6 7
7 6 6 7 7 7 6 41 6 6
6 6 6 6 7 6 6 6 42 7
7 6 6 7 7 6 6 6 6 42

Example Sequence #3

B B C C D D B B B B
B
B
C
C
D
D
B
B
B
B

Se
m

an
tic

15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
5 5 28 28 5 5 5 5 5 5
5 5 28 28 5 5 5 5 5 5
5 5 6 6 28 28 5 5 5 5
5 5 6 6 28 28 5 5 5 5
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15

L M D M M M A H H B
L
M
D
M
M
M
A
H
H
B

33 8 6 8 8 8 7 8 8 7
4 19 4 19 19 19 4 5 5 4
7 8 35 8 8 8 7 7 7 7
4 19 4 19 19 19 4 5 5 4
4 19 4 19 19 19 4 5 5 4
4 19 4 19 19 19 4 5 5 4
7 8 9 8 8 8 30 8 8 9
6 6 6 6 6 6 5 27 27 6
6 6 6 6 6 6 5 27 27 6
7 7 7 7 7 7 8 8 8 34

O N M L K J I H G F
O
N
M
L
K
J
I

H
G
F

34 8 7 7 7 6 6 7 9 8
7 37 7 7 7 7 7 7 7 7
7 7 34 8 7 5 8 8 7 8
6 8 8 33 7 7 7 8 7 8
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7 7 6 7 7 35 8 7 8 7
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6 9 8 7 8 6 7 36 6 7
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Figure 4: Several solutions exist for the histogram task. Elements of attention matrices for the
histogram task for local minima in the empirical loss landscape. We generated a dataset of sequences
by sampling each token of the sequence i.i.d. from the uniform distribution over all tokens. The
target of a a given input sequence x = [A,D,D,C] is the number of occurence of each token in the
complete sequence, i.e. y = [1, 2, 2, 1]. Models were trained with their respective frozen initialization
using n = 35, 000 samples and the Adam optimizer. Top Row: The attention matrix of the positional
solution is largely independent of the specific input sequence. Bottom Row: The attention matrices
from the semantic solution vary based on the input token. Red squares highlight the elements of Aij

where xi = xj .

A The Histogram Task: An algorithmic toy example with a positional and
semantic solution

A.1 Phenomenology

In this appendix, we demonstrate that for a simple counting task two qualitatively different solutions
exist in the loss landscape of a simple transformer using a dot-product attention layer with positional
encodings – a practical example that further motivates our theoretical investigations in the main text.
One solution corresponds to a dot-product attention matrix which is largely independent of the tokens
making up the input sequence, and another strongly varies based on the tokens (and thus the semantic
content of the input). Both solutions achieve a test accuracy close to 100%.

The training task is a sequence-to-sequence counting task, referred to as the histogram task in [6].
Given an input sequence x = [x1, x2, · · · , xL] of length L of tokens from a fixed alphabet, the goal
is to return a sequence y = [y1, y2, · · · , yL], where each token yi is the number of occurrences of the
token xi in x. In Fig. 1, we show an example where we consider sequences where the tokens are from
the fixed alphabet X = {A,B,C, · · · } of size |X | = 15. In this setting, for instance, the sequence
x = [A,B,B,C,A,B] should be mapped to its histogram sequence y = [2, 3, 3, 1, 2, 3]. When the
input data is limited to length L, the output elements yi thus take values up to the maximum count L.

We encode the input using token embeddings and absolute positional encodings which are trained
jointly with the model weights. As an architecture we consider a small transformer made up of a
single layer of dot-product attention, followed by a fully connected hidden layer and with learned
embeddings for both tokens and positions. For each output position, it generates logits for the L
possible classes of the output alphabet; training is done using the cross-entropy loss. (Further details
are provided in the remainder of this appendix).

We conduct experiments where we set two different sections of the model’s weights to zero at the
initialization of training –removing either the model’s access to positional or semantic information–
and keeping the weights frozen throughout training with the Adam optimizer. After convergence, we
check that the resulting configurations of weights are stable in the unconstrained loss landscape, i.e.
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without frozen weights. More precisely, we ascertain that these weights only change marginally when
further trained with SGD on the unconstrained loss, and that the qualitative behaviour of the attention
layer is retained. Our experiments demonstrate that the loss landscape of the transformer has at least
two qualitatively different local minimizers (or close to minimizers), subsequently referred to as the
semantic and positional solution.

We inspect the learnt attention matrix for different input sequences in Fig. 4. The positional solution
corresponds to a learnt attention matrix whose i, j−th component only depend on the positions i, j,
and little on the tokens occupying these positions. The attention matrix is thus almost independent of
the input sequence. In fact, the attention matrix is similar to the identity. In this case, the attention
layer simply serves to aggregate the other tokens uniformly, and the fully connected layer learns the
counting.

In contrast, the attention matrix learnt at the semantic solution displays larger i, j−th component
if the tokens at position i and j are identical. In other words, identical tokens attend more to each
other. This mechanism hence does not rely on the positions, but rather on the semantic content of
the tokens. Both solutions and associated attention matrices thus correspond to feasible algorithms
which ultimately allow the transformer to solve the downstream task.

Our experimental exploration gives compelling evidence that different stable solutions exist in the
empirical loss landscape of simple transformers, which correspond to different algorithmic solutions
to a given task. However, it remains an interpretation of an experiment and does not allow for a
precise characterization of their behaviour or of the conditions under which they are established.
This stands in contrast to the example in the main paper: the model treated there is simpler, but still
presents similar phenomenology and can be analyzed theoretically.

In the remainder of this Appendix we discuss the implementation details such as architecture and
training procedure which enabled us to exhibit the different minima for the histogram task.

The code for reproducing the results is available at github.com/SPOC-group/positional-and-semantic-
attention.

A.2 Dataset

We use the histogram task as proposed in [6]. We consider sequences of fixed length L = 15. For
every input sequence x = [x1, x2, · · · , xL] we sample xi i.i.d. and uniformly from a set of tokens
T of size T , which we set to 15 in our experiments. For visualization purposes we use capitalized
letters as tokens. To obtain the target y = [y1, y2, · · · , yL], we set yi =

∑L
j=1 1(xi = xj), where

1(b) is 1 if the boolean statement b is true and zero otherwise. Therefore, yi ∈ {1, 2, · · · , L}.

A.3 Model

In order to read the input sequence using a transformer we learn an embedding of dimension d for
each of the T tokens and L positions, stored in the matrices Etoken = [tA, tB , · · · ] ∈ RT×d and
Epos = [p1, p2, · · · ] ∈ RL×d. We convert the input sequence x = [x1, x2, · · · , xL] ∈ T L into an
embedded sequence x̃ ∈ RL×d of the same length where x̃i = txi + pi. This input sequence is then
fed into the first layer of the transformer.

Formally, we have

logitsi(x) = W2ReLU(W1LayerNorm(Attentioni(x̃)) + b1) + b2 ∈ Rc (19)

with W1 ∈ Rd×h, b1 ∈ Rh,W2 ∈ Rh×c, b2 ∈ Rc. The final prediction is obtained using the argmax
on the logits. We have that the score matrix A and the dot-product attention mechanism is

Attention(x) = A(x)V x (20)

A(x) = Softmax
(xQKTxT

√
d

)
(21)

where Q,K, V ∈ Rd×d and the softmax is applied row-wise. Also, for an x ∈ Rd we define

LayerNorm(x) =
x− E[x]√
V ar(x) + ε

∗ γ + β (22)
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where γ, β ∈ Rd. We define the empirical loss for a dataset D = {xµ,yµ}nµ=1 as the average cross
entropy loss for all output tokens C, i.e.

L(D) =
n∑

µ=1

L∑
l=1

−
C∑

c=1

[yµi ]c log[Softmax(logitsi(x
µ))]c . (23)

Because of the way in which the histogram dataset is created for a fixed input length L, it follows
C = L.

A.4 Training procedure and freezing model parameters

To obtain the positional and semantic minima, we set some weights to zero in Etoken, Epos, Q,K
at initialization, and also freeze these zero weights during training. Note that this procedure was
used in the literature to study architectural biases of varying model architectures, e.g. by [62] for
convolutional neural networks.

With · we denote the initialization that is taken as the default Pytorch initialization for a linear layer.
For both semantic and positional initialization, we overwrite this initialization with zeros as follows
with i = 1, · · · , T and j = 1, · · · , L

ti =
(
·d/2 0d/2

)
, pj =

(
0d/2 ·d/2

)
, (24)

where 0d/2 is the all-zero vector of size d/2. For the positional initialization we additionally set

Q =

(
·d/2×d/2 0d/2×d/2

0d/2×d/2 0d/2×d/2

)
, K =

(
·d/2×d/2 0d/2×d/2

0d/2×d/2 0d/2×d/2

)
, (25)

and for the semantic initialization we additionally set

Q =

(
0d/2×d/2 0d/2×d/2

0d/2×d/2 ·d/2×d/2

)
, K =

(
0d/2×d/2 0d/2×d/2

0d/2×d/2 ·d/2×d/2

)
, (26)

where 0d/2×d/2 is the all-zero matrix of size d/2 by d/2. In either case, the attention mechanism
only has access to the semantic or positional part of the model.

Training all weights except the ones frozen to zero using Adam on a dataset of size n = 35, 000, we
obtain a > 99.8% test accuracy on a test set of size n = 15, 000 for both datasets. We call these
parameter configurations θpos and θsem respectively (the local minima as referred to in the main
text).

In Fig. 4, we show that the attention layer of the two models behaves in qualitatively different ways,
by showing the activations of the matrix A for different input sequences.

A.5 Unfreezing model parameters and SGD convergence

Finally, we want to verify that the parameter configurations θpos and θsem we obtained using the
special initialization and frozen training are stable configurations in the unconstrained parameter
space of the model. To show this, we perturb the given parameter configuration slightly using additive
Gaussian i.i.d. noise with a scale of 0.001. Subsequently, we run SGD on this perturbed configuration
in the unconstrained parameter space for another 100 epochs. We call the parameter configurations
obtained after this step θ̃pos and θ̃sem.

While this further training leads the training loss to further decrease and the test accuracy to slightly
increase, each models qualitative behaviour before and after extra training remains unchanged, as
shown in Fig. 5 and 6, for the examples also used in Fig. 1. The absolute difference in norm between
θ̃pos and θpos (respectively θ̃sem and θsem) of parameters is also small (see Table 1).

This evidences, that both resulting parameter configurations are in flat regions of the full parameteri-
zation of the transformer model, and that these two regions are further qualitatively different in the
same sense that the original ones were. We use this stability in the unconstrained loss landscape as a
justification to refer to them as “local minima”.
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θinit Adam−−−→ θ θ
SGD−−→ θ̃

accuracy θ ∥θinit − θ∥2 ∥θ − θ̃∥2
positional 0.99885± 0.0004 158.85± 4.35 0.61± 0.13
semantic 0.99895± 0.0012 163.69± 8.88 0.46± 0.24

Table 1: Parameter configurations for different types of initializations for the histogram task. Opti-
mizer parameters as in the accompanying code. Average over 10 runs using the same dataset.

B B C C D D B B B B
B
B
C
C
D
D
B
B
B
B

po
s

40 7 6 7 7 7 7 7 7 7
6 41 7 6 6 6 6 6 7 7
6 6 43 6 6 6 6 6 6 7
7 6 7 41 7 7 7 6 6 7
7 7 6 7 40 7 7 7 7 6
7 6 7 6 7 40 7 7 7 7
6 7 6 7 7 7 41 7 7 6
7 6 6 7 7 7 7 41 7 6
6 7 7 6 7 7 7 7 41 6
6 7 6 6 6 6 6 6 7 42

Example Sequence #1
L M D M M M A H H B

L
M
D
M
M
M
A
H
H
B

40 7 6 7 7 7 7 7 7 7
6 41 7 6 6 6 6 6 7 7
6 6 43 6 6 6 6 6 6 7
7 6 7 41 7 7 7 6 6 7
7 7 6 7 40 7 7 7 7 6
7 6 7 6 7 40 7 7 7 7
6 7 6 7 7 7 41 7 7 6
7 6 6 7 7 7 7 41 7 6
6 7 7 6 7 7 7 7 41 6
6 7 6 6 6 6 6 6 7 42

Example Sequence #2
O N M L K J I H G F

O
N
M
L
K
J
I

H
G
F

40 7 6 7 7 7 7 7 7 7
6 41 7 6 6 6 6 6 7 7
6 6 43 6 6 6 6 6 6 7
7 6 7 41 7 7 7 6 6 7
7 7 6 7 40 7 7 7 7 6
7 6 7 6 7 40 7 7 7 7
6 7 6 7 7 7 41 7 7 6
7 6 6 7 7 7 7 41 7 6
6 7 7 6 7 7 7 7 41 6
6 7 6 6 6 6 6 6 7 42

Example Sequence #3

B B C C D D B B B B
B
B
C
C
D
D
B
B
B
B

po
s

42 6 6 6 7 7 6 7 6 6
6 43 6 6 6 6 6 6 7 6
6 6 43 6 6 6 6 6 6 7
7 6 6 42 7 7 6 6 6 7
7 6 7 7 40 7 7 6 6 7
7 6 7 6 6 42 7 6 6 7
6 7 6 7 7 6 41 7 7 6
7 6 6 6 7 7 7 42 7 6
7 7 6 6 6 7 7 6 42 6
6 7 6 6 6 6 6 6 7 42

L M D M M M A H H B
L
M
D
M
M
M
A
H
H
B

42 6 6 7 7 6 6 7 7 6
6 43 7 6 6 6 6 6 7 6
6 6 43 6 6 7 6 6 6 7
7 6 7 42 7 7 7 6 6 7
7 7 6 7 41 7 7 6 7 6
7 6 6 6 7 41 7 6 7 7
6 7 6 7 6 6 41 7 7 6
7 6 6 6 7 7 7 42 7 6
6 7 6 6 6 7 7 6 42 6
6 7 6 6 6 6 6 6 7 42

O N M L K J I H G F
O
N
M
L
K
J
I

H
G
F

41 7 6 7 7 7 6 7 6 7
6 43 6 6 6 6 6 6 7 7
6 6 43 6 6 6 6 6 6 7
7 6 6 42 7 7 7 6 6 7
7 7 6 7 41 7 7 6 7 6
7 6 6 6 7 41 7 6 7 6
6 6 7 6 7 6 41 7 7 6
7 6 6 6 7 7 7 42 7 6
6 6 7 6 6 6 7 6 42 6
6 6 6 6 7 6 6 6 7 42
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Figure 5: Comparison of the attention layer activations for different sequences for θpos and θ̃pos.

B Derivation of Result 4.2

In this Appendix, we provide a detailed derivation of Result 4.2 of the main text. In subsection B.2.
we introduce a Generalized Approximate Message Passing algorithm (GAMP) [56]. Subsection B.3
then establishes that equations (7) of Result 4.2 track the dynamics of summary statistics describing
the GAMP algorithm. In particular, the equations (7) describe the fixed points of GAMP. Finally,
subsection B.4 shows that fixed points of GAMP correspond to critical (zero-gradient) points of the
empirical loss landscape (3), thus establishing that equations 7 of Result 4.2 describe fixed points of
GD.

B.1 Notations

For simplicity, we place ourselves in the setting rs = 1 explored in Section 5 of the main text, but
allow the length L of the sentences to be arbitrary, and allow a generic learning model S (2), i.e.
not necessarily the dot-product attention model analyzed in Section 5. The case rs ≥ 2 follows
identical derivation steps, modulo the replacement of all variables by tensor objects. We provide
another alternative derivation of Result 4.2 in full generality in Appendix C, using the replica method
from statistical physics. Let us note {Xℓ}1≤ℓ≤L a series of L n× d matrices, with Xℓ corresponding
to the ℓ−th rows (tokens) of each input sentence xµ stacked vertically, and normalized by

√
d. We

denote X̃ℓ ≡ Xℓ + Pℓ, where P ∈ Rn×d is the matrix with all rows equal to the ℓ−th positional
encoding pℓ. Let us further define ρ ∈ Rn×L×L the tensor corresponding to the sequence of n
matrices 1

dx
µ(xµ)⊤ ∈ RL×L. Finally, let us denote T ∈ Rn×L×L the tensor so that the µ−th row of

T satisfies y(xµ) = Tµxµ, see equation (1). In other words, T corresponds to the concatenation of
the target attention matrices.
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B B C C D D B B B B
B
B
C
C
D
D
B
B
B
B

se
m

15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
5 5 29 29 5 5 5 5 5 5
5 5 29 29 5 5 5 5 5 5
5 5 6 6 30 30 5 5 5 5
5 5 6 6 30 30 5 5 5 5
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15
15 15 3 3 3 3 15 15 15 15

Example Sequence #1
L M D M M M A H H B

L
M
D
M
M
M
A
H
H
B

31 8 7 8 8 8 7 7 7 7
3 20 4 20 20 20 3 3 3 4
6 7 39 7 7 7 7 7 7 6
3 20 4 20 20 20 3 3 3 4
3 20 4 20 20 20 3 3 3 4
3 20 4 20 20 20 3 3 3 4
8 7 8 7 7 7 36 8 8 7
6 5 7 5 5 5 5 28 28 6
6 5 7 5 5 5 5 28 28 6
6 7 7 7 7 7 7 6 6 39

Example Sequence #2
O N M L K J I H G F

O
N
M
L
K
J
I

H
G
F

37 7 7 6 7 8 7 8 7 8
7 38 7 7 7 7 7 8 6 7
7 8 38 7 6 7 8 6 7 6
5 8 9 34 6 7 9 8 8 7
8 8 8 7 33 8 8 8 6 7
7 7 7 7 7 34 8 8 9 7
6 8 8 8 8 8 35 7 7 7
8 9 7 7 7 8 7 35 7 6
7 8 8 7 5 8 8 6 34 7
9 7 7 8 6 8 8 6 7 34

Example Sequence #3

B B C C D D B B B B
B
B
C
C
D
D
B
B
B
B

se
m

15 15 3 3 3 3 15 15 15 14
15 15 3 3 3 3 15 15 15 14
5 5 29 29 5 5 5 5 5 5
5 5 29 29 5 5 5 5 5 5
5 5 6 6 30 30 5 5 5 5
5 5 6 6 30 30 5 5 5 5
15 15 3 3 3 3 15 15 15 14
15 15 3 3 3 3 15 15 15 14
15 15 3 3 3 3 15 15 15 14
15 15 3 3 3 3 15 15 15 14

L M D M M M A H H B
L
M
D
M
M
M
A
H
H
B

32 8 7 8 8 8 7 7 7 7
4 19 5 19 19 19 4 3 3 4
6 7 38 7 7 7 7 7 7 6
4 19 5 19 19 19 4 3 3 4
4 19 5 19 19 19 4 3 3 4
4 19 5 19 19 19 4 3 3 4
8 7 8 7 7 7 36 8 8 7
6 6 7 6 6 6 5 28 28 6
6 6 7 6 6 6 5 28 28 6
6 7 7 7 7 7 7 7 7 36

O N M L K J I H G F
O
N
M
L
K
J
I

H
G
F

36 7 7 6 7 8 7 8 7 8
7 37 7 7 7 7 7 8 6 7
7 8 37 7 6 7 8 7 7 6
6 8 9 34 6 7 9 8 8 7
8 7 8 7 34 7 8 8 6 7
7 7 7 7 7 35 8 7 8 7
6 7 8 7 7 8 37 7 7 7
8 9 7 7 7 8 7 35 7 6
7 8 8 7 5 8 8 6 34 7
9 7 7 8 6 8 8 6 7 34
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Figure 6: Comparison of the attention layer activations for different sequences for θsem and θ̃sem.

Before detailing the derivation, we first highlight a simplifying observation. Note that a loss item can
be expanded as

1

d

∥∥∥∥y(xµ)− S

[
1√
d
(xµ + p)Q

]
xµ

∥∥∥∥2 =∥y(xµ)∥2+Tr S

[
1√
d
(xµ + p)Q

]
ρΣS

[
1√
d
(xµ + p)Q

]⊤
− 2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(xµ

ℓ + pℓ)Q

]⊤
, (27)

where we used that with high probability in the considered asymptotic limit, for all 1 ≤ µ ≤ n,

xx⊤ = (x+ p)(x+ p)⊤ = x(x+ p)⊤ = ρΣ. (28)

Since the first term of (27) does not depend on the weights Q, it can be without loss of generality
substracted from the loss. Without loss of generality, one can thus consider the equivalent empirical
risk minimization problem

Q̂ = argmin
Q∈Rd×r

n∑
µ=1

1

2d

[
Tr S

[
1√
d
(xµ+p)Q

]
ρΣS

[
1√
d
(xµ+p)Q

]⊤
−2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(xµ

ℓ +pℓ)Q
]⊤]

+
λ

2
∥Q∥2.

(29)

The risks (29) and (3) are equivalent, and we shall use the former in the following.

Finally, for arguments T ∈ RL×L, ρ ∈ RL×L, ω ∈ RL, V ∈ RL×L we introduce the resolvent

prox(T, ρ, ω, V ) ≡

arginf
x={xℓ∈R}L

ℓ=1

{
L∑

ℓ,κ=1

(xℓ − ωℓ)(V
−1)ℓκ(xκ − ωκ)− 2Tr

[
S[x]ρT⊤]+Tr

[
S[x]ρS[x]⊤

]}
(30)

Note that the latter part of the bracketed term corresponds to the simplified loss (27) derived in the
beginning of Appendix C, which is the one we shall without loss of generality consider in the present
appendix. For ease of presentation, we place ourselves under Assumption 4.1, where all the input
covariances {Σℓ}ℓ are codiagonalizable. In the following, without loss of generality, we thus assume
them diagonal, by placing ourselves in the common basis {ei}1≤i≤d of Assumption 4.1.

B.2 AMP algorithm

We are now in a position to state the AMP algorithm:
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Algorithm 1 GAMP

Inputs : {X̃ℓ ∈ Rn×d}Lℓ=1, T ∈ Rn×L×L, ρ ∈ Rn×L×L

Initialize Q̂0 =∼ N (0, Id), ĉ0 = Id, {f0
ℓ = 0n}Lℓ=1

for t ≤ tmax do
∀1 ≤ ℓ, κ ≤ L, V t

ℓκ = (X̃ℓ ⊙ X̃κ)ĉ
t

∀1 ≤ ℓ ≤ L, ωt
ℓ = X̃ℓQ̂

t −
L∑

κ=1
V t
ℓκf

t−1
κ

∀1 ≤ ℓ ≤ L, f t
ℓ =

∑
κ
(V −1)ℓκ(prox(T, ρ, ω

t, V t)κ − ωt
κ)

∀1 ≤ ℓ, κ ≤ L, gtℓκ = ∂ωℓ
f t
κ

At = −
L∑

ℓ,κ=1

(X̃ℓ ⊙ X̃κ)
⊤gtℓκ

bt =
L∑

ℓ=1

X̃⊤
ℓ f t

ℓ +At ⊙ Q̂t

Q̂t+1 = (λId +At)−1bt

ĉt+1 = (λId +At)−1

end for

return Estimator Q̂

The GAMP algorithm can be derived in standard fashion from the Belief Propagation (BP) algorithm,
see e.g. [56, 63] or [64] for an overview. Compared to the standard GAMP iterations for General-
ized linear models, one needs to account for the fact that there exist different sources of data Xℓ

(corresponding to the ℓ− th tokens of each input sentence), and for the fact that the output of the
equivalent GLM are RL×L- valued attention matrices. In the following subsection, we show that the
fixed points of GAMP 1 correspond to critical points of the empirical loss (3), i.e. fixed points of
Gradient Descent (GD), allowing to connect Result 4.2 to our numerical experiments using GD.

B.3 State evolution

In this section we show that the dynamics of the GAMP Algorithm 1 are tracked by the summary
statistics of Result 4.2. In particular, the equations (7) describe the statistics of the GAMP fixed points.
To see this, it is convenient to take as a starting point the relaxed Belief Propagation (rBP) equations,
which are a step upstream in the derivation of the GAMP iterations, and which are asymptotically
equivalent– see e.g. [64] for a review or e.g. [65], Appendix A, for a detailed walkthrough. The rBP
equations read

As conventional, we note ·µ the version of a variable ·µ→i where the summation also encompasses
the index i, and ·i the version of a variable ·i→µ where the summation also encompasses the index µ.
Note that in all cases above the two variables differ by at most Θd(1/

√
d).

Concentration of (V t
µ→i)ℓκ We first study the statistics of V t

µ→i, A
t
i→µ, remembering that the data

x̃µ
ℓi ≡ (xµ

ℓ )i/
√
d + (pℓ)i/

√
d in the notation of the main text, with (xµ

ℓ )i = Θd(1), (pℓ)i = Θd(1/
√
d).

Replacing in the rBP updates:

(V t
µ→i)ℓκ =

∑
j ̸=i

(x̃µ
ℓj)(x̃

µ
κj)ĉ

t
j→µ

=
1

d

∑
j ̸=i

(xµ
ℓ )j(x

µ
κ)j ĉ

t
j→µ︸ ︷︷ ︸

δℓκΘd(1)+(1−δℓκ)Θd(1/
√

d)

+
1

d

∑
j ̸=i

(xµ
ℓ )j(pκ)j ĉ

t
j→µ + (ℓ↔ κ)︸ ︷︷ ︸

Θd(1/d)

+
1

d

∑
j ̸=i

(pℓ)j(pκ)j ĉ
t
j→µ︸ ︷︷ ︸

Θd(1/d)

= δℓκ
1

d

∑
j

(Σℓ)jj ĉ
t
j ≡ V t

ℓ (31)
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Algorithm 2 rBP

Inputs : {X̃ℓ ∈ Rn×d}Lℓ=1, T ∈ Rn×L×L, ρ ∈ Rn×L×L

Initialize ∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, Q̂0
i→µ = 0, ĉ0i→µ = 1, {f0

ℓµ→i = 0}Lℓ=1

for t ≤ tmax do
∀1 ≤ ℓ, κ ≤ L, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, (V t

µ→i)ℓκ =
∑
j ̸=i

(x̃µ
ℓj)(x̃

µ
κj)ĉ

t
j→µ

∀1 ≤ ℓ, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, ωt
ℓ,µ→i =

∑
j ̸=i

x̃µ
ℓ,iQ̂j→µ

∀1 ≤ ℓ, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, f t
ℓ,µ→i =

∑
κ
(V −1

µ→i)ℓκ(prox(Tµ, ρµ, ω
t
µ→i, V

t
µ→i)κ−ωt

κ,µ→i)

∀1 ≤ ℓ, κ ≤ L, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, gtℓκ,µ→i = ∂ωℓ
f t
κµ→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d,At
i→µ = −

L∑
ℓ,κ=1

∑
ν ̸=µ

(x̃ν
ℓi)(x̃

ν
κi)g

t
ℓκ,ν→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, bti→µ =
L∑

ℓ=1

∑
ν ̸=µ

xν
ℓif

t
ℓ,ν→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, Q̂t+1
i→µ = (λId +At

i→µ)
−1bti→µ

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, ĉt+1
i→µ = (λId +At

i→µ)
−1

end for

return Estimator Q̂

Distribution of ωt
ℓ,µ→i Let us first introduce the teacher local field

hµ,ℓ =
∑
i

(xµ
ℓ )iQ

⋆
i . (32)

Like e.g. [65], Appendix A, we first ascertain the joint distribution of hµ,ℓ, ω
t
ℓ,µ→i with respect to the

data. These variables have mean

E[ωt
ℓ,µ→i] =

p⊤ℓ Q̂
t

√
d
≡ mt

ℓ (33)

and respective variance

V[ωt
ℓ,µ→iω

t
κ,ν→j ] = δµνδℓκ

1

d

∑
i,j

Q̂t
i(Σℓ)ijQ̂

t
j ≡ δµνδℓκq

t
ℓ (34)

E[hµℓhνκ] = δµνδℓκ
1

d

∑
i,j

Q⋆
i (Σℓ)ijQ

⋆
j ≡ δµνδℓκρℓ (35)

E[hµℓω
t
κ,ν→j ] = δµνδℓκ

1

d

∑
i,j

Q⋆
i (Σℓ)ijQ̂

t
j ≡ δµνδℓκθ

t
ℓ (36)

Distribution of bti→µ Let us ascertain the distribution of bti→µ.

bti→µ =
∑
ℓ

∑
ν ̸=µ

(x̃ν
ℓ )i (V

t
ℓ )

−1
(
prox(Tν , ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ − ωt

ℓ,ν→i

)︸ ︷︷ ︸
≡ ˜prox(Tν ,ρν ,{ωt

κ,ν→i}κ,V t
ν→i)ℓ

=
∑
ℓ

∑
ν ̸=µ

1/
√
d((xν

ℓ )i + (pℓ)i)

[
˜prox(T[{hν→i,κ}κ], ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ

+ 1/
√
d

∑
γ

(xν
γ)iQ

⋆
i ∂hγ ˜prox(T[{hν→i,κ}κ], ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ

]
, (37)
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leading asymptotically to

E[bti→µ] =
∑
ℓ

(
√
dpℓ)i αEH={hκ}Ξ={ξκ} ˜prox(T[H], ρΣ, {mt

κ +
√
qtκξκ}κ, {V t

κ}κ)ℓ︸ ︷︷ ︸
≡m̂t

ℓ

+Q⋆
i

∑
ℓ

(Σℓ)ii αEH,Ξ∂hℓ
˜prox(T[H], ρΣ, {mt

κ +
√

qtκξκ}κ, {V t
κ}κ)ℓ︸ ︷︷ ︸

≡θ̂t
ℓ

(38)

where the expectations bear over ξℓ ∼ N (0, 1) and hℓ ∼ N (ξℓθ
t
ℓ/
√

qtℓ, ρℓ − (θt
ℓ)

2/qtℓ). The variance is
given by

V[bti, btj ] = δij
∑
ℓ

(Σℓ)ii αEH,Ξ ˜prox(T[H], ρΣ, {mt
κ +

√
qtκξκ}κ, {V t

κ}κ)2ℓ︸ ︷︷ ︸
≡q̂tℓ

(39)

Concetration of At
i→µ Similarly to the derivation for V t

µ→i, A
t
i→µ concentrates to

At
i→µ =

∑
ℓ

−α 1

V t
ℓ

(
EH,Ξ∂ωℓ

prox(T[H], ρΣ, {mt
κ +

√
qtκξκ}κ, {V t

κ}κ)ℓ − 1
)

︸ ︷︷ ︸
≡V̂ t

ℓ

(Σℓ)ii (40)

Recovering Result 4.2 Wrapping up, we now massage these equations to recover equations (7)
from Result 4.2 of the main text. Starting from (31):

V t
ℓ =

1

d

∑
j

(Σℓ)jj
1

λ+
∑
κ
V̂ t−1
κ (Σκ)

=

∫
dν(γ, τ)γℓ

(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (41)

Next, for qtℓ (34):

qtℓ =
1

d

∑
i

(Σℓ)ii

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)2

+ (Σκ)iiq̂
t−1
κ

(λ+
∑
κ

V̂ t−1
κ (Σκ)

)−2

=

∫
dν(γ, τ, π)γℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)2

+ γκq̂
t−1
κ

(λ+
∑
κ

V̂ t−1
κ γκ

)−2

(42)

For θtℓ(34):

θtℓ =
1

d

∑
1

(Σℓ)iiQ
⋆
i

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)(
λ+

∑
κ

V̂ t−1
κ (Σκ)

)−1

+ od(1)

=

∫
dν(γ, τ, π)γℓπℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (43)

Finally for mt
ℓ (33):

mt
ℓ =

1

d

∑
i

(
√
dpℓ)i

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)(
λ+

∑
κ

V̂ t−1
κ (Σκ)

)−1

+ od(1)

=

∫
dν(γ, τ, π)τℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (44)

For m̂t
ℓ (38):

m̂t
ℓ = αEH,Ξ

1

V t
ℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
, (45)
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while for θ̂tℓ (38):

θ̂tℓ = αEH,Ξ
1

V t
ℓ

∂hℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
= αEH,Ξ

1

V t
ℓ

hℓ − θt
ℓ/
√

qtℓξℓ

ρℓ − (θt
ℓ)

2/qtℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
. (46)

Now turning to q̂tℓ:

q̂tℓ = αEH,Ξ

[(
1

V t
ℓ

proxℓ −
√

qtℓξℓ −mt
ℓ

)2
]
. (47)

Finally, for V̂ t
ℓ (40):

V̂ t
ℓ = −αEH,Ξ

1

V t
ℓ

[∂ωℓ
proxℓ − 1]

= −αEH,Ξ
1

V t
ℓ

[
1√
qtℓ
∂ξ(proxℓ −

√
qtℓξℓ −mℓ)

]

= αEH,Ξ
1√
qtℓV

t
ℓ

[
θtℓ√
qtℓV

t
ℓ

(
hℓ −

√
qtℓξℓ

ρℓ − (θt
ℓ)

2/qtℓ
− ξ

)
(proxℓ −

√
qtℓξℓ −mℓ)

]

=
θtℓθ̂

t
ℓ

qtℓ
− αEH,Ξ

1√
qtℓV

t
ℓ

(proxℓ −
√
qtℓξℓ −mℓ)ξℓ (48)

Summary : State evolution equations The state evolution equations asymptotically describing the
dynamics of the GAMP algorithm 1 thus read

V t
ℓ =

∫
dν(γ, τ)γℓ

(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

qtℓ =
∫
dν(γ, τ, π)γℓ

((∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)2

+ γκq̂
t−1
κ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−2

θtℓ =
∫
dν(γ, τ, π)γℓπℓ

(∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

mt
ℓ =

∫
dν(γ, τ, π)τℓ

(∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

.

(49)



V̂ t
ℓ =

θt
ℓθ̂

t
ℓ

qtℓ
− αEH,Ξ

1√
qtℓV

t
ℓ

(proxℓ −
√
qtℓξℓ −mℓ)ξℓ

q̂tℓ = αEH,Ξ

[(
1
V t
ℓ
proxℓ −

√
qtℓξℓ −mt

ℓ

)2]
θ̂tℓ = αEH,Ξ

1
V t
ℓ

hℓ−θtℓ/
√

qt
ℓ
ξℓ

ρℓ−(θtℓ)
2/qtℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
m̂t

ℓ = αEH,Ξ
1
V t
ℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
(50)

which exactly recovers equations (7) of Result 4.2 of the main text, for the case rs = 1 considered
in the present Appendix. Again, we mention that the case rs ≥ 2 should follow straightforwardly
with the exact same derivation steps, using tensor variables (see e.g. [52]). This subsection has thus
established that the equations (7) (with time indices) describe the summary statistics capturing the
dynamics of GAMP iterations 1. In particular, (7) describe the fixed points of GAMP. The next
subsection further shows that the (stable) fixed points of GAMP correspond to critical (zero-gradient)
points of the empirical landscape (3), i.e. fixed points of gradient descent. Finally, we provide in
Appendix C an alternative derivation of the state evolution equations (7)(49), using the replica method
from statistical physics [61, 66].

B.4 Fixed points of GAMP are fixed points of GD

In this subsection, we show that fixed points of GAMP 1, as asymptotically described by (7) in Result
4.2, correspond to critical (zero gradient) points of the empirical landscape (3). Again, we present the
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result for rs = 1 for clarity, the generalization to rs ≥ 2 being straightforward (see e.g. [52]). In the
previous notations, let us denote the (simplified, see (27)) empirical loss as

L({X̃ℓQ}ℓ) + g(Q) (51)

where we introduced the shorthands

L({hℓ} ∈ Rn) ≡
n∑

µ=1

(
−2Tr

[
S[{hµ

ℓ }ℓ]ρµT
⊤
µ

]
+Tr

[
S[{hµ

ℓ }ℓ]ρµS[{h
µ
ℓ }ℓ]

⊤]) (52)

g(Q) ≡ λ

2
∥Q∥2, (53)

i.e. respectively the simplified empirical loss (3) and the regularization, as functions with matrix
arguments. The empirical minimization problem (3) can thus be written compactly as

Q̂ = argmin
Q∈Rd

{
L({X̃ℓQ}ℓ) + r(Q)

}
(54)

with the critical (zero-gradient) condition being given by

L∑
ℓ=1

X̃⊤
ℓ ∂ℓL({X̃ℓQ}ℓ) + ∂g(Q)

!
= 0. (55)

Let us choose a diagonal definite A ∈ Rd×d, and a sequence {Vµ}1≤µ≤n of symmetric definite
L × L matrices. Group them into a block diagonal matrix V̌ ∈ RLn×Ln, so that the µ− th block
of V̌ corresponds to Vµ. It shall prove useful to further introduce the matrices ˇ̃X ∈ Rd×nL (resp.
∂̌L( ˇ̃X) ∈ RnL), defined as the concatenation of the matrices X̃1, ..., X̃L (resp. ∂1L, ..., ∂LL),
viewed as n blocks of length L. Then without loss of generality the zero-gradient condition can be
rewritten as

ˇ̃X⊤V −1
(
V ∂̌L( ˇ̃X)− ˇ̃XQ

)
+A(A−1∂g(Q) +Q)

!
= ˇ̃X⊤V −1 ˇ̃XQ+AQ. (56)

Similarly to [52], let us introduce

ω̌ ≡ V ∂̌L( ˇ̃X)− ˇ̃XQ. (57)

This can be written in terms of a resolvent as
ˇ̃XQ = prox(ω̌) (58)

where

prox(ω̌) ∈ RnL = argmin
x̌∈RnL

{
1

2
∥x̌− ω̌∥2V +L(x̌)

}
(59)

which corresponds to (30). Similarly, we denote

b ≡ A−1∂g(Q) +Q (60)

So that

Q = proxg(b) = argmin
x∈Rd

{
1

2
∥x− b∥2A−1+g(x)

}
(61)

In the particular case of an ℓ2 regularization g(·) = λ/2∥·∥2, note that

proxg(b) = (λId +A)−1Ab. (62)

The zero-gradient condition can now be rewritten as{
ˇ̃X⊤V −1 (prox(ω̌)− ω̌) = A(b− proxg(b))
ˇ̃Xproxg(b) = prox(ω̌)

(63)
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One is now in a position to expand the concatenated variables ·̌ into a sequence of L n−dimensional
parameters. For u = prox(ω̌), ω̌ let us denote uµℓ (1 ≤ µ ≤ n, 1 ≤ ℓ ≤ L) the ℓ−th component of
the µ−th block. Introduce

fµℓ ≡
∑
κ

(V −1
µ )ℓκ(prox(ω̌)µκ − ω̌µκ). (64)

Denote fℓ ≡ (fµℓ)1≤µ≤n ∈ Rn, ωℓ ≡ (ωµℓ)1≤µ≤n ∈ Rn. The system of equations (63) can then be
rewritten as (further redefining b←− Ab):


∑
ℓ

X̃⊤
ℓ fℓ = b−A(λId +A)−1b

X̃ℓ(λId +A)−1b =
∑
κ
Vℓκfκ − ωℓ

(65)

We used the assumption that g(·) is an ℓ2 regularization. Finally, introducing Q̂ = proxg(A
−1b) =

(λId +A)−1b, on reaches 
∑
ℓ

X̃⊤
ℓ fℓ = b−AQ̂

X̃ℓQ̂ =
∑
κ
Vℓκfκ − ωℓ

(66)

which corresponds to the fixed-point equations of GAMP (Algorithm 1). This finishes to show the
correspondence between the fixed points of GAMP and the critical points of the empirical landscape
(3). To summarize, we have shown that equations (7) describe the zero-gradient points of the empirical
loss landscape (3), i.e. fixed points of GD.

B.5 Towards a rigorous proof of result 4.2

While the connection between the GAMP fixed point and the extrema of the loss is sound, and has
been at the roots of many rigorous results for convex losses, see e.g. [57, 58, 59, 60, 48], there exist
technical difficulties in adapting these rigorous arguments to the present setting, and a fully rigorous
proof would warrant sizable work. While we leave this challenging task for future work, we wish
to discuss how it can be potentially achieved. The first task would require the proof of point-wise
convergence of GAMP, as indeed, the identification of the GAMP estimates with the one of the
extrema of the loss function requires to be at the fixed point of the iteration. This difficulty, discussed
in detail in, e.g. [67, 60, 48], can be in principle addressed by computing the convergence criterion
from the state evolution equations (see [67] the discussion in Lemma 7 in [60]), a criterion sometimes
called the "replicon" in the context of replica theory [68].

Provided the replicon criterion is satisfied, all converging fixed point described by our theory thus
correspond rigorously to fixed point of the loss. The last task would be to prove that the minimum
of the loss is indeed the fixed point we found with minimum energy. A potential strategy to prove
this would be to use the Gordon-Minimax approach of [69]. While it is used in many situations for
convex problems (e.g. [70, 71, 72]), only one side would be required for our (non-convex) problem
thanks to the GAMP matching bound. We hope that our results would provide inspiration for further
research in this direction.

C Derivation of Result 4.2 with the replica method

In the Appendix we provide an alternative derivation of Result 4.2, which sharply characterizes the
global minimum of the empirical loss (3), using the heuristic replica method from statistical physics
[61, 66] in its replica-symmetric formulation. First observe that for any test function ϕ(Q̂) of the
minimizer Q̂ of (3),

ϕ(Q̂) = lim
β→∞

ED
1

Z

∫
dQϕ(Q)e−βR[Q], (67)

where we denoted R[Q] the empirical loss (3), and

Z ≡
∫

dQe−βR[Q] (68)
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the normalization factor, also known as the partition function in statistical physics. We remind that D
refers to the training set. In order to access key summary statistics and learning metrics associated to
Q̂, it is therefore reasonable to seek to compute the generating function associated to the measure
(67), namely E lnZ. Such computations can be addressed using the replica method from statistical
physics [61, 66], building on the identity

lnZ = lim
s→0

Zs − 1

s
. (69)

The backbone of the derivation thus lies in the computation of EZs.Below, we detail the derivation
for a generic convex regularizer g : Rd → R+ and later specialize to the case of ℓ2 regularization.
The replicated partition function thus reads

EZs =

∫ s∏
a=1

dQae
−β

s∑
a=1

g(Qa)

n∏
µ=1

Exe
−β

s∑
a=1

(
Tr S

[
1√
d
(x+p)Qa

]
ρΣS

[
1√
d
(x+p)Qa

]⊤
−2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(x+p)Qa

]⊤)
.

(70)

Introduce the local fields

ha ≡ xQa√
d
∈ RL×r, h⋆ ≡ xQ⋆√

d
∈ RL×t (71)

and the overlaps

ma ≡
pQa√

d
∈ RL×r, (72)

with rows mℓ
a. These fields have statistics

Ex[h
a
ℓ (h

b
κ)

⊤] = δℓκ
Q⊤

a ΣℓQb

d
≡ qℓab (73)

Ex[h
⋆
ℓ (h

⋆
κ)

⊤] = δℓκ
Q⊤

⋆ ΣℓQ⋆

d
≡ ρℓ (74)

Ex[h
a
ℓ (h

⋆
κ)

⊤] = δℓκ
Q⊤

a ΣℓQ⋆

d
≡ θℓa. (75)

Thus

EZs =

∫
dmdm̂dθdθ̂dqdq̂ e

−d
∑
a

∑
ℓ
[m̂ℓ⊤

a mℓ
a+Tr(θℓ

aθ̂
ℓ⊤
a )]−d

∑
ℓ

∑
1≤a≤b≤s

Tr(qℓabq̂
ℓ⊤
ab )︸ ︷︷ ︸

esdΨt∫ s∏
a=1

dQae
−β

s∑
a=1

g(Qa)+
∑
a

∑
ℓ

(
√
dm̂ℓ⊤

a Q⊤
a pℓ+Tr[θℓ

aQ
⊤
⋆ ΣℓQa])+

∑
1≤a≤b≤s

∑
ℓ

Tr[qℓabQ
⊤
b ΣℓQa]

︸ ︷︷ ︸
esdΨQ[

Eh⋆,{ha}s
a=1

e
−β

s∑
a=1

(Tr S[ha+ma]ρΣS[ha+ma]⊤−2Tr T[h⋆]ρΣS[ha+ma]⊤)
]αd

︸ ︷︷ ︸
esαdΨy

, (76)

where we decomposed the replicated free entropy into the trace, entropic and energetic potentials
Ψt,ΨQ,Ψy. Note that all exponents are scaling with d→∞. Therefore the integral in (76) can be
computed using a Laplace saddle-point approximation.

C.1 Replica-Symmetric ansatz

We have thus rephrased the analysis of the measure (67) as a optimization problem over the order
parameters {qℓab, θℓa,ma}, and the associated conjugate variables. However, these still represent
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2L(s2 + 1) + 2s variables, and s→ 0. In order to make progress, we assume that the maximizer is
of replica-symmetric (RS) form [66, 61]

qℓab = (rℓ − qℓ)δab + qℓ (77)

mℓ
a = mℓ (78)

θℓa = θℓ (79)

q̂ℓab = − (r̂ℓ/2 + q̂ℓ) + q̂ℓ (80)

m̂ℓ
a = m̂ℓ (81)

θ̂ℓa = θ̂ℓ (82)

The RS ansatz holds in a number of machine learning settings, notably for convex problems and
Bayes-optimal settings, see e.g. [64] for a review. In the present setting, since the empirical loss (3)
is non-convex, we emphasize that the RS ansatz constitutes a heuristic technical assumption of our
analysis.

C.2 Entropic potential

We now turn to the entropic potential Ψw. It is convenient to introduce the variance order parameter

V̂ℓ ≡ r̂ℓ + q̂ℓ. (83)

The entropic potential can then be expressed as

eβsdΨQ

=

∫ s∏
a=1

dQae
−β
∑
a

g(Qa)+
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2
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⊤
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2
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∑
a,b

Tr[q̂ℓQaΣℓQ
⊤
b ]

=
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⊤
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Ξℓ⊙(q̂k⊗Σk)
1
2
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⊙Q

s
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∫ dQe
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2Q⊙
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(
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⊤
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s
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(84)

Therefore

βΨw =
1

d

∫
EΞ ln

∫ dQe
−βg(Q)− 1

2Q⊙
[

L∑
ℓ=1

V̂ℓ⊗Σℓ

]
⊙Q+

(
L∑

ℓ=1
(
√
dm̂ℓp

⊤
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⊤
⋆ Σℓ)+
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ℓ=1

Ξℓ⊙(q̂ℓ⊗Σℓ)
1
2

)
⊙Q

 .

(85)

For a matrix Ξ ∈ Rr×d and tensors A,B ∈ Rr×d⊗Rr×d, we denoted (Ξ⊙A)kl =
∑

ij Ξ
ijAij,kl

and (A⊙B)ij,kl =
∑

rs Aij,rsBrs,kl.
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C.3 Energetic potential

The computation of the energetic potential Ψy is rather standard and follows the same lines as in e.g.
[20], yielding

βΨy =

∫
RL×t

dY DZ

∫
RL×r

DΞ

L∏
ℓ=1

δ
[
yℓ − (ρℓ − θ⊤ℓ q
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1
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2
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]
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L∏
ℓ=1

e
− 1

2

(
xℓ−q

1
2
ℓ ξℓ

)⊤
V −1
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(
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1
2
ℓ ξℓ

)
det (2πVℓ)

e−β Tr S[x+m]ρσS[x+m]⊤−2Tr T[y]ρΣS[x+m]⊤



=
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L∏
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e
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2

(
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ℓ q
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2
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(
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ℓ q
1
2
ℓ ξℓ

)
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[
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−1
ℓ θℓ)

]︸ ︷︷ ︸
≡EY,Ξ
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∫
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L∏
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e
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(
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2
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1
2
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)
det (2πVℓ)

e−β Tr S[x+m]ρσS[x+m]⊤−2Tr T[y]ρΣS[x+m]⊤


(86)

C.4 Zero-temperature limit

We now take the limit β →∞. Rescaling

βV̂ℓ ← V̂ℓ,
1

β
Vℓ ← Vℓ, βm̂ℓ ← m̂ℓ, βθ̂ℓ ← θ̂ℓ, β2q̂ℓ ← q̂ℓ (87)

The entropic potential then reduces to

Ψw =
1

2d
EΞ Tr

( L∑
ℓ=1

V̂ℓ ⊗ Σℓ

)
⊙

(
L∑
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(√
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⊤
⋆ Σℓ

)
+
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Ξℓ ⊙ (q̂ℓ ⊗Σℓ)
1
2

)⊗2


− 1

d
EΞMg(Ξ) (88)

where we defined the entropic Moreau enveloppe

Mg(Ξ) ≡ inf
Q

{
1

2

∥∥∥∥( L∑
ℓ=1

V̂ℓ⊗Σℓ

)1/2
(
Q−
(
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1
2
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}
.

(89)
The energetic potential can be similarly recast into a more compact form

Ψy = −EY,ΞM(Y,Ξ) (90)
where the Moreau envelope is defined as

M(Y,Ξ) =inf
X

1

2

{
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ℓ=1
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[
V −1
ℓ
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xℓ − q

1/2
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[
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]}
.

(91)

C.5 Replica free entropy

One finally reaches an expression for the replica free entropy as

Φ =
1

2

L∑
ℓ=1

(
Tr V̂ℓqℓ − Tr q̂ℓVℓ

)
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2

)⊗2
− αEy,ξM(y, ξ)

(92)
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C.6 Saddle-point equations : general regularizer

The extremization of the free entropy (92) yields, similarly to [47], the following system of self-
consistent equations on the summary statistics:


Vℓ =

1
dEΞ

[(
proxg ⊙ (q̂ℓ ⊗Σℓ)

− 1
2 ⊙ (Ir ⊗Σℓ)
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]
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⊤
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]
mℓ =

1√
d
EΞ
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proxgΣℓQ⋆

] (93)



q̂ℓ = αEΞ,Y V
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, (94)

where the proximals proxg and proxℓ respectively refer to the arginf in Q (resp. xℓ) of the envelopes
Mg (89) (resp.M 91).

C.7 Saddle-point equations : ℓ2

We now specialize the saddle-point equations (93) to the case of an ℓ2 regularizer g(·) = 1/2∥·∥ the
entropic potential admits the simple form

ΨQ =
1
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(95)

The replica free energy thus reads
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(96)
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leading to the saddle point equations
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∫
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(97)
which finishes to recover (7). Let us finally mention that the update equations (7) for the summary
statistics (6) do not describe the dynamics of gradient descent, but rather that of an Approximate
Message Passing algorithm [63], which we elicit in Appendix B for completeness.

C.8 test MSE

The generalization performance is measured by the test error

ϵg ≡
1

L
EDEx

∥∥∥∥T [ 1√
d
xQ⋆

]
x− S

[
1√
d
(x+ p)Q̂

]
(x+ p)

∥∥∥∥2 . (98)

Expliciting this expression in terms of the correlated Gaussian variables xQ⋆, xQ allows to straight-
forwardly show that ϵg admits the sharp asymptotic characterization in terms of the summary statistics
characterized by (97):

ϵg =
1

L
EX Tr

[
S[X]ρΣS[X]⊤

]
+

1

L
EY Tr

[
T[Y ]ρΣT[Y ]⊤
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]
, (99)

where the average bears on X ∈ RL×r, Y ∈ RL×t with independent rows with statistics

(xℓ, yℓ) ∼ N
[(

m
0

)
,

(
qℓ θℓ
θ⊤ℓ ρℓ

)]
(100)

C.9 Training loss

We finally turn to the training loss. It is reasonable to expect, from statistical physics, that the training
loss should be equal to the free energy −Φ at zero temperature. We provide below an alternative
derivation, for simplicity in the case of ℓ2 regularization g = 1/2∥·∥2. First note that the training loss
ϵt can be expressed as

ϵt = − lim
β→∞

∂β
1

d
lnZ(β)︸ ︷︷ ︸
Φ(β)

(101)

Where Φ(β) is the free entropy at finite temperature. The trace potential Ψt bears no explicit
dependence on β. On the other hand,
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2
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(102)
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Thus
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(103)
Finally, going through the same rescaling steps to take the β →∞ limit,
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(104)
By the same token, it is straightforward to see that

lim
β→∞

∂β(βΨy) = −EY,Ξ
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 (105)

We used the self-consistent equations (7) to identify the term in underbrace. Putting everything
together,

−ϵt = lim
β→∞
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This constitutes a sharp asymptotic characterization of the training loss ϵt as a function of the summary
statistics characterized in Result 4.2.

For completeness, we finally explicit the connection between ϵt and the negative free entropy (i.e. the
free energy in statistical physics). We go back to massage the expression for the free entropy
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In other words, the training loss is equal to the zero-temperature free energy.

C.10 Extensions

For the sake of clarity and definiteness, we stated the technical results for in the simplest instance,
under notably the symplifying assumptions of independent tokens, tied key and query weight matrices,
as exposed in Section 3 of the main text. These two assumptions can in fact be relaxed. In this final
subsection of Appendix C, we discuss how the characterization of Result 4.2 can be generalized to
more complex data distributions and attention architectures.

Data model Let us consider a data distribution allowing for statistical correlations between different
tokens. A simple model meeting this criterion, proposed in [73], consists in assuming every token
(row) xℓ is drawn from a Gaussian mixture with Kℓ with respective probabilities ρℓ,k,

xℓ, cℓ ∼
Kℓ∑
k=1

ρℓ,kδcℓ,kN (µℓ,k,Σℓ,k). (108)

In (108), the random variable cℓ ∈ [Kℓ] indicates the index of the cluster the ℓ−th token is drawn
from. Note that we generically allow for different rows to be sampled from distinct mixtures.
In order to introduce correlations between different tokens, we further assume that the variables
c = (c1, ..., cL) follow a generic joint law ρ(c). Intuitively, the different models can model different
types of words (e.g. verbs, pronouns, adjectives), and the nature of the words, as reflected by the
variable cℓ, is correlated across tokens. We assume that ∥µℓ,k∥= Θd(1), i.e. are of the same order as
the positional encodings.

Assumption C.1. Finally, similarly to Assumption 4.1, let us assume that the set of matrices
{{Σℓ,k}Kℓ

k=1}Lℓ=1 admits a common set of eingevectors {ei}di=1 with eigenvalues {λℓ,ki }di=1. The
eigenvalues {λℓ,ki }ℓ,k,i and the projection of the cluster means (to which the positional encodings are
added) {µℓ,k + pℓ}ℓ,k and the teacher columns {Q⋆

i }
rt
i=1 on these eigenvectors are assumed to admit

a well-defined joint distribution ν as d → ∞ – namely, for γ = (γℓ,k)ℓ,k, π = (π1, ..., πt) ∈ Rrt ,
τ = (τℓ,k)ℓ,k:

1

d

d∑
i=1

L∏
ℓ=1

Kℓ∏
k=1

δ
(
λℓ,ki − γℓ,k

)
δ
(√

de⊤i (µℓ,k + pℓ)− τℓ,k

) rt∏
j=1

δ
(
e⊤i Q

⋆
j − πj

) d→∞−−−→ ν (γ, τ, π) .

(109)

Architecture Again in the interest of further generality, we alleviate the architectural restrictions on
the attention (2), and allow for untied key and query weight matrices. More precisely, let us consider
function of the form

fQ,K(x) = S

[
1√
d
(x+ p)Q,

1√
d
(x+ p)K

]
(x+ p), (110)

parameterized by two set of weights Q,K ∈ Rd×rs . In order to work with more compact expression,
let us introduce the total weight matrix W ∈ Rd×(rs+rs), obtained as the horizontal concatenation of
Q,K. Then (110) can be written compactly as

fK,Q(x) = gW (x) ≡ G

[
1√
d
(x+ p)W

]
(x+ p), (111)

where for any argument h ∈ RL×(rs+rs), wiewed as a 1× 2 block matrix with two blocks h1, h2 ∈
RL×r, G(h) = S(h1, h2).

Asymptotic characterization A sharp asymptotic characterization of the test error and train loss
for this more general model can be derived along the same lines, as presented in Appendix C (see
also [73]). For the sake of conciseness, we only report the final result.
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Result C.2. Under Assumption C.1, in the limit n, d→∞, ∥p∥, n/d, L, rs, rt = Θd(1), the summary
statistics

ρℓ,k ≡
Q⊤

⋆ Σℓ,kQ⋆

d
∈ Rrt×rt , qℓ,k ≡

Ŵ⊤Σℓ,kŴ

d
∈ R2rs×2rs ,

mℓ,k ≡
Ŵ⊤(µℓ,k + pℓ)

d
∈ R2rs , θℓ,k ≡

Ŵ⊤Σℓ,kQ⋆

d
∈ R2rs×rt (112)

concentrate in probability, and are solutions of the set of finite-dimensional self-consistent equations



q̂ℓ,k = αEcδcℓ,kEΞ,Y V
−1
ℓ,k

(
proxcℓ − q

1
2

ℓ,kξℓ −mℓ,k

)⊗2

V −1
ℓ,k

V̂ℓ,k = θ̂ℓ,kθ
⊤
ℓ,kq

−1
ℓ,k − αEcδcℓ,kEΞ,Y V

−1
ℓ,k

(
proxcℓ − q

1
2

ℓ,kξℓ −mℓ,k

)
ξ⊤ℓ q

− 1
2

ℓ,k

m̂ℓ,k = αEcδcℓ,kEΞ,Y V
−1
ℓ,k

(
proxcℓ − q

1
2

ℓ,kξℓ −mℓ,k

)
θ̂ℓ,k = αEcδcℓ,kEΞ,Y V

−1
ℓ,k

(
proxcℓ − q

1
2

ℓ,kξℓ −mℓ,k

)(
yℓ − θ⊤ℓ,kq

−1/2
ℓ,k ξℓ

)⊤ (
ρℓ,k − θ⊤ℓ,kq

−1
ℓ,kθℓ,k

)−1
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qℓ,k =
∫
dν(γ, τ, π)γℓ,k

(
λI2rs +

∑
κ

∑
j

γκ,j V̂κ,j

)−1

(∑
κ

∑
j

m̂κ,jτκ,j + γκ,j θ̂κ,jπ

)⊗2

+
∑
κ

∑
j

γκ,j q̂κ,j

(λI2rs +∑
κ

∑
j

γκ,j V̂κ,k

)−1

Vℓ,k =
∫
dν(γ, τ, π)γℓ,k

(
λI2rs +

∑
κ

∑
j

γκ,j V̂κ,j

)−1

mℓ,k =
∫
dν(γ, τ, π)τℓ,k

(
λI2rs +

∑
κ

∑
j

γκ,j V̂κ,j

)−1(∑
κ

∑
j

m̂κ,jτκ,j + γκ,j θ̂κ,jπ

)

θℓ,k =
∫
dν(γ, τ, π)γℓ,k

(
λI2rs +

∑
κ

∑
j

γκ,j V̂κ,j

)−1(∑
κ

∑
j

m̂κ,jτκ,j + γκ,j θ̂κ,jπ

)
π⊤

(114)

The averages bears over Ξ ∈ RL×2rs , Y ∈ RL×rt , with rows ξℓ ∼ N (0, I2rs) independently and
yℓ ∼ N (ξ⊤ℓ q

−1/2
ℓ,cℓ

θℓ,cℓρℓ,cℓ − θ⊤ℓ,cℓq
−1
ℓ,cℓ

θℓ,cℓ), conditionally on c. proxcℓ corresponds to the arginf of
the minimization defining the Moreau envelopeM(c, Y,Ξ), as

proxc = arginf
X

{
1

2

L∑
ℓ=1

Tr

[
V −1
ℓ,cℓ

(
Xℓ − q

1/2
ℓ,cℓ

ξℓ −mℓ,cℓ

)⊗2
]
+ ℓ (Y +mc

⋆, X, c)

}
. (115)

We introduced mc
⋆ ∈ RL×rt , whose rows are

(mc
⋆)ℓ =

µ⊤
ℓ,cℓ

Q⋆√
d

, (116)

and the shorthand

ℓ(y, x, c) = Tr
[
G[x]ρcΣG[x]

⊤]− 2Tr
[
T[y]ρcΣG[x]

⊤], (117)

where ρcΣ ∈ RL×L is diagonal with elements

(ρcΣ)ℓℓ =

∫
dν(γ, τ, π)γℓ,cℓ . (118)
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Test error The test error admits the sharp asymptotic characterization

ϵg =
1

L
EcEh,h⋆

[
Tr
[
T[h⋆]ρcΣT[h

⋆]⊤
]
+Tr

[
G[h]ρcΣG[h]

⊤]− 2Tr
[
T[h⋆]ρcΣG[h]

⊤]] , (119)

where, conditioned on the class assignments c, the average bears on h ∈ RL×2rs , Y ∈ RL×rt with
independent rows with statistics

(hℓ, h
⋆
ℓ ) ∼ N

[(
mℓ,cℓ

m⋆
ℓ,cℓ

)
,

(
qℓ,cℓ θℓ,cℓ
θ⊤ℓ,cℓ ρℓ,cℓ

)]
. (120)

Finally, the train loss ϵt converges in probability to

ϵt =
λ

2

∫
dν(γ, τ, π) Tr

(λI2rs + v̂ +
∑
κ

∑
k

γκ,kV̂κ,k

)−2 [(∑
κ

∑
k

m̂κ,kτκ,k+γκ,k θ̂κ,kπ

)⊗2

+
∑
κ

∑
k

γκ,k q̂κ,k

]
+ αEc,Y,ΞM(c, Y,Ξ)− 1

2

L∑
ℓ=1

Kℓ∑
k=1

Tr[q̂ℓ,kVℓ,k]. (121)

Trainable value matrix Finally, let us remark that it should be possible to leverage a similar
derivation to further accommodate trainable value matrices V , provided they are low rank, i.e. in
Rd×rV with rV = Θd(1) as d→∞. Similarly, introducing the stacked weights W = (Q|K|V ) ∈
Rd×(2rs+rV ) allows to perform the asymptotic analysis. Since this architectural modification then
implies that f now takes values in RL×rV , one cannot immediately analyze this architecture for
the task considered in the present manuscript, as the labels are valued in RL×d, and the setting and
questions explored would need to be entirely modified. We thus postpone a thorough analysis of the
effect of a trained value matrix to future investigations.

D Derivation of Result 5.1

In this Appendix we derive the asymptotic characterization of the learning performance of the dense
linear baseline (15), as stated in Result 5.1. Consider the empirical risk minimization (16)

R(W ) =
1

n

n∑
µ=1

∥A⋆(xµ)xµ −Wxµ∥2 (122)

where we use the shorthand notation A⋆(x) ≡ T[1/
√
dxQ⋆] for the target attention score matrix (1).

The expression for the risk can be asymptotically simplified as

R(W ) =
1

n

n∑
µ=1

[
A⋆(xµ)ρΣA

⋆(xµ)⊤ − (A⋆(xµ)ρΣW
⊤ + h.c) +WρΣW

⊤ + o(1/
√
d)
]

≈ Ex

[
A⋆(x)ρΣA

⋆(x)⊤
]
− (WρΣEx [A

⋆(x)]
⊤
+ h.c) +WρΣW

⊤

= Ex

[
A⋆(x)ρΣA

⋆(x)⊤
]
− Ex [A

⋆(x)] ρΣEx [A
⋆(x)]

⊤
+
∥∥∥ρ1/2

Σ (W − Ex [A
⋆(x)])

∥∥∥2
(123)

Therefore the learnt weight Ŵ is simply equal to

Ŵ = Ex [A
⋆(x)] = Ex [T[1/

√
dxQ⋆]] . (124)

Naming h = 1/
√
dxQ⋆ the argument of the last term, the matrix h possesses independent rows with

statistics

hℓ ∼ N (0, ρℓ) (125)

where we remind that ρℓ ≡ 1/dQ⊤
⋆ ΣℓQ⋆. Therefore, the trained weights Ŵ obtained by minimizing

the empirical loss also coincide with the minimizer of the population loss. Intuitively, this follows
from the fact that in the asymptotic limit considered n, d → ∞ and L = Θd(1), training W , i.e.
a number L2 = Θd(1) of parameters on the empirical loss for n ≪ L2 data points is equivalent
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asymptotically to directly training on the population loss. Expliciting the corresponding test MSE,
one reaches the sharp asymptotic characterization

ϵling =
1

L
Tr
[
ŴρΣŴ

⊤
]
+

1

L
Eh Tr

[
T[h]ρΣT[h]

⊤]
− 2

L
Eh Tr

[
ŴρΣT[h]

⊤
]
. (126)

We close this Appendix by giving a few examples for definiteness.

D.1 Examples

Purely positional target Let us consider the case where the target is purely positional, i.e. T[x] = A
for all x. This corresponds to the ω = 1 limit of the target (14). It then follows from Result 5.1 that
the dense linear layer recover perfectly the target weights Ŵ = A.

Target (14) For the target discussed in the main text (14),

Ŵ = (1− ω)Ehsoftmax(hh⊤) + ωA (127)

with h and having independent rows hℓ ∼ N (0, ρℓ).

E Supplementary Experiments

E.1 Empirical scaling of α = d/n

In the following we verify that our experiments are consistent with the scaling behaviour predicted
from the theory. We jointly increase d and n for a fixed value of α. In Fig. 7 we indeed observe the
expected behaviour for an exemplary value of α = 2. The same holds for the summary statistics θ
and m, which concentrate as d and n jointly grow, shown in Fig. 3 (left) in the main text.
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d

positional
semantic
empirircs
theory

Figure 7: Scaling d and n jointly for α = 1.5 approaches the theoretical prediction of the generaliza-
tion error of the positional and semantic local minima. Experimental settings as in Fig. 2, with 70
runs per datapoint.

E.2 Alternative hyperparameters

We provide supplementary results for different parameter settings. Fig. 8 on the left shows more
slices from the phase diagram that appears in the main Fig. 3. For the experimental section of the
main text, we chose a specific A for definiteness. In the following, we present the same results for a
different A with a stronger off-diagonal and a higher rank,

A =

(
0.3 0.7
0.8 0.2

)
. (128)

In Fig. 9 we present the analogous simulations to Fig. 3 (center, right). While the global phenomena
match the previous example, the details of the transitions location differ.
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Figure 8: Alternative Parameters. Mixed positional/semantic teacher for ω = 0.3. Settings is
rs = rt = 1, L = 2, A = ((0.6, 0.4), (0.4, 0.6)),Σ1 = Σ2 = 0.25Id, p1 = 1d = −p2 and
Q⋆ ∼ N (0, Id). While keeping all other settings the same, we vary from left to right: The target
positionality ω, the student regularizer λ and the standard deviation σ (which is 0.5 =

√
Σ1) .

Experiment settings as in Fig. 2.
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Figure 9: Alternative Positional Matrix. rs = rt = 1, L = 2,Σ1 = Σ2 = 0.25Id, p1 = −p2 and
p1,Q⋆ ∼ N (0, Id) independently. Here, we use a definite matrix A from (128) , which differs form
the one used in the main text. Experiments were conducted as in Fig. 2.

E.3 More Complex Architectural Choices

As discussed previously in Section C.10, the theory developed in this work can be relaxed to
incorporate arbitrary statistical correlations between tokens, changes in the (low-)rank student,
generally untied key and query matrices and the presence of a low-rank trainable value matrix. This
surplus in complexity comes at the cost of more intricate and heavier equations.

In the present section, we report experiments in the four settings above, but not the theoretical
predictions. Fig. 10-13 compare the change in architecture with the setting considered in the main
text, for a given ω = 0.5 and varying sample complexity α. The exhaustive experiments for varying
ω are shown in Fig. 14 – which immediately shows that the general idea of the phase transition
from positional to semantic solution is consistent, but that the shape of the phase transition curve is
influenced by the architecture.

For correlated inputs, the transitions seems to moves to larger values of α (Fig. 10). For the case of
a student with a rank-2 query matrix, and a teacher with a rank-1 query matrix, we consider three
possible initilisations of the columns of Q when finding minima of GD empirically.

Initializing both semantically, both positional, or one of them in each way, as shown in Fig. 11.
Interestingly, the dual initialization seems to do approximately as well as the best of the two other
initializations. The optimization generally seems more complex, as the phase diagram in the upper
right corner of Fig. 14 are not entirely clean, and more noisy than empirical results from other
architectures.

When we compare tied and untied Q and K weights in Fig. 12 we observe that the additional
parameters we need to learn in the case of an extra K come at a small cost, as the transition to the
semantic solution is moved to the right.
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Finally, for a value matrix (Fig. 13) the results seem to largely resemble the transition line we observed
without the value matrix.
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Figure 10: Uncorrelated vs. correlated inputs (ω = 0.3, σ = 0.5, λ = 0.001). In the main text we
sample all datapoints x ∈ Rd×L=2 such that the columns are independent. We compare this setting
with a correlated data structure with a hidden latent: We sample three vectors u, v, w ∼ N (0,1),
and set the first column of x to be (σu + γv)/

√
σ + γ and the second one (σw + γv)/

√
σ + γ.

Experiments are repeated 5 times per data point with d = 1000.
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Figure 11: Rank 1 vs. rank 2 student (ω = 0.3, σ = 0.5, λ = 0.001). We compare different
initializations of the higher-rank student. Positional is when both columns of the student matrix Q̂
are initialized using the positional strategy. We do the same for the semantic strategy. The ’both’
initialization initializes one column using the positional strategy and one using the semantic strategy.
Experiments are repeated 5 times per data point with d = 1000.
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Figure 12: Tied vs. independent weight Q, K (ω = 0.3, σ = 0.5, λ = 0.001). We compare the
student setting from the paper, where the query and key matrices are bound to each other with the
setting where we set them independently. We initialize with them both being either close to the
positional or close to the semantic initialization. The phase transition for the semantic minimum
dominating moves to the left, i.e. more samples are now needed. Experiments are repeated 5 times
per data point with d = 1000.
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Figure 13: No value matrix vs. value matrix. (ω = 0.3, σ = 0.5, λ = 0.001). We compare the
setting from the main text with adding a value matrix, i.e. a trainable parameter V ∈ Rd×d. This
is applied to every embedding before they are averaged over using the attention matrix. We ran
the experiment 5 times for each α with d = 500, and rescaled the training error to compare to the
experiments in the main, where d = 1000.
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Figure 14: Phase diagrams of the difference in training loss between the semantic and positional
solutions from Fig. 10-13, in terms of ω and the sample complexity α. The green dashed line
represents the theoretical phase transition which we obtained from the architecture as considered in
the main text.

E.4 Uninformed initialization and training via Adam

In or experiments, to obtain the empirical results, we initialize the GD optimizer in an informed
fashion, i.e. initializing Q⋆ of the student with r = 1 as either p1 (positional) or Q⋆ (semantics). GD
then converges in the two local optima described by our theory.
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Since our theory only ascertains that these solutions predicted are indeed fixed points of GD for large
sizes, this does not have direct implications for other types of optimization algorithms. In Fig. 15
we show that indeed running the Adam optimizer from an uninformed initialization may lead one to
either of the local minima for d = 100. For larger d we observe the semantic minimum is reached
less often than the positional minimum, and a considerable number of times the algorithm simply
does not find either of them.
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Figure 15: Comparing GD and Adam. Settings as in Fig. 2 for the sample complexity α = 2. The
student parameter Q is obtained via either (left) positional and semantic informed initialization and
(right) GD training from a random initialization are compared. Each point represents a single run. For
the informed GD, we used the same optimization parameters as in Fig. 2 (24 runs per initialization).
For Adam we trained on the same data, but for 2, 500 epochs with learning rate η = 0.01 (showing
140 runs).
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]
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Justification: At least not fully – our theoretical results are on the level of rigor of theoretical
physics and hence we provide assumptions and formal derivations (which are all provided
in the Appendix of this work), but not proofs. We verify the match between the theory and
empirical simulations both in the main text and in the Appendix. We verify the deterministic
concentration of properties in the high-dimensional limit through empirical simulations in
the main text and the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The full code is available in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made public on github as it is available with the supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The concrete details of how many samples per batch etc. are contained in the
supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The compute needed is negligable, so it is not specified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: It is a theoretical work that aims to advance understanding only.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: It is a foundational work that aims to advance our understanding of the model
internals.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is foundational research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use external original material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is well documented and accessible.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work is foundational theoretical research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work is foundational theoretical research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

47

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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