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Abstract

Rematerialization and offloading are two well known strategies to save memory
during the training phase of deep neural networks, allowing data scientists to
consider larger models, batch sizes or higher resolution data. Rematerialization
trades memory for computation time, whereas Offloading trades memory for data
movements. As these two resources are independent, it is appealing to consider
the simultaneous combination of both strategies to save even more memory. We
precisely model the costs and constraints corresponding to Deep Learning frame-
works such as PyTorch or Tensorflow, we propose optimal algorithms to find a
valid sequence of memory-constrained operations and finally, we evaluate the per-
formance of proposed algorithms on realistic networks and computation platforms.
Our experiments show that the possibility to offload can remove one third of the
overhead of rematerialization, and that together they can reduce the memory used
for activations by a factor 4 to 6, with an overhead below 20%.

1 Introduction

A general trend in machine learning, especially in NLP today, is to increase the size of models to
improve accuracy. For example, NLP models like BERT [7] or GPT-3 [30] have billions of parameters
and vision networks like EfficientNet [35], AmoebaNet [34] or SENET [15] routinely have a hundred
million parameters, which raises difficult memory issues on architectures like GPUs. Moreover, it
was observed [29] that a sufficiently large batch-size is required to obtain good and fast convergence.
In this paper we focus on the strategies for reducing the memory usage of activations that can be
implemented when considering a single computation node, typically a single GPU. These techniques
can of course be combined with the different possible parallelizations of the training phase, like data
parallelism [39, 27, 11], model parallelism [25, 37, 26], filter or kernel [9] or image parallelisms [8].
The combination with parallel strategies is however out of the scope of the present paper and our
goal here is to model, analyze the complexity and understand how to benefit simultaneously from
rematerialization and offloading.

Rematerialization [14, 5, 20, 3] is a technique that consists in deleting from memory some of the
activations computed during the forward phase as soon as they are no longer needed for the forward
phase. As these activations are required again during the backward phase, they are then recomputed
from other activations kept in memory. The idea is therefore to trade additional computations for
lower memory requirements. The objective, in the context of rematerialization, is to compute a
sequence of valid operations (i.e. such that the inputs of any operation are actually in memory at
the time of the operation) consisting of elementary forward, backward and delete operations, and
which has a minimum execution time among all sequences that satisfy a given memory constraint.
Offloading [32, 2, 23, 4] is a technique that has the same objective, i.e. to produce a sequence of
operations satisfying a given memory constraint. However, in the case of offloading, each computation
operation is executed exactly once.The idea here is therefore to trade transfers on the PCI bus between
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the CPU and the GPU for lower memory requirements. The objective, in the context of offloading,
is therefore to compute a sequence of valid operations consisting of elementary forward, backward,
offload and prefetch operations, and which has a minimum execution time among all sequences that
fulfill a given memory constraint.

While rematerialization and offloading share the common goal of limiting memory consumption, they
rely on different techniques and achieve this result by consuming independent resources, using either
more computation or more transfers between a GPU and a CPU. In this paper we solve the problem
of finding the optimal sequence combining rematerialization and activation offloading, which has not
been addressed in the literature to the best of our knowledge. We discuss related work in Section 2 and
model and notations in Section 3. The algorithmic solution to combine optimally checkpointing and
offloading is presented in Section 4 and experiments to assess the advantage of using both offloading
and rematerialization, based on a large range of neural networks and architecture parameters, are
presented in Section 5.

2 Related work

Parallelism-based memory optimization A first approach to control memory consumption is
to use parallelization. Two main sources of memory consumption in the training phase for deep
neural networks are, on the one hand, the storage of the network weights and, on the other hand,
the storage of activations. To limit the storage cost of activations (for a fixed batch size), data
parallelism [39, 27, 11] is the method of choice. Each batch is divided into mini-batches which are
in turn processed in parallel on different computation resources. In this scheme, however, weights
are replicated on each resource and collective communications are required to synchronize weights
between different resources. When models become large, these collective communications can hinder
the scalability of the data parallel approach.

On the contrary, model parallelism [6, 17, 25, 37] is used to distribute weights over different available
resources. Weights of a neural network are then distributed on different computation resources, and
communications happen between consecutive layers assigned to different resources. Nevertheless,
this approach also requires sophisticated strategies [26] to save fewer activations and models in
memory. The data can also be split along other dimensions. In [8], large images are split into smaller
images, the network is trained on these small images (augmented by a halo) and extra communications
are needed in order to synchronize parameter updates. A similar strategy was proposed to use channel
and filter parallelism in [9]. All these parallel strategies can be combined with the single node memory
optimization strategies considered in the present paper.

Rematerialization-based strategies Rematerialization techniques consist in keeping only a subset
of activations in memory during the whole training phase, while the others are dynamically recom-
puted at runtime when they are needed for the backpropagation. This allows to explore a tradeoff
between memory usage and computational cost. Rematerialization was first considered in the context
of Automatic Differentiation (AD) [12] under the name "checkpointing". In the context of AD, com-
putational networks consist in very long and homogeneous chains, in which the forward activation
corresponding to the i−th stage of the chain has to be kept into memory until the i−th backward
stage. Rematerialization algorithms consist in determining in advance which forward checkpoints
should be kept into memory and which ones should be recomputed from stored checkpoints when
performing the backward phase. In the case of homogeneous chains closed form formulas providing
the exact position of checkpoints were proposed in [13].

The use of rematerialization strategies was advocated for DNN in several papers [14, 5, 20]. An
implementation of a simple periodic strategy [5] was provided in PyTorch [28]1, but it is only optimal
for the restricted case of homogeneous chains and when activation discards are done only before the
loss. However, DNN models are in general more complicated. More recently, this strategy has been
extended to general heterogenous networks represented as sequential networks in [3]2.

The case of non sequential networks was also addressed in the literature [19, 21, 18, 22, 10],
mostly under the simplifying assumption that discarding computed activations is only possible
before the computation of the loss function [22, 10]. In [19] the authors proposed an algorithm

1https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
2https://gitlab.inria.fr/hiepacs/rotor
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Figure 1: Data dependencies induced the training phase of Sequential Deep Neural Networks.

dealing with dynamic data flows, though based on an heuristical approach. The authors of [18]
considered minimization of the runtime with the use of Integer Linear Programming. Even though
this approach is suitable for arbitrary computational graphs with heterogeneous costs, solving this
ILP is computationally very expensive even for intermediate depth networks.

Offloading-based strategies Offloading [32, 2] is an alternative approach which consists in of-
floading some of the forward activations from the memory of the GPU to the memory of the CPU,
which is expected to be much larger. In [32], the authors proposed a simple mechanism of memory
virtualization, that introduces unnecessary synchronizations between data transfers and computations
of later forward activations. This technique was improved in [2]. In both papers, the algorithmic
strategies to decide which activations to offload into the main memory are relatively straightforward,
and basically consist in sending to the CPU either all activations or only those of convolutional layers.
In [4], the complexity of the offloading problem was analyzed and several NP-completeness results
were provided, depending whether activations can be offloaded partially or not.

In order to reduce the overhead incurred by the communications, the use of compression was
advocated in [33]. Memory virtualization was further considered in [24, 23, 16, 38]. Finally, the
speed-centric rematerialization from [5] enhanced with memory-centric rematerialization (discards
activations of every segment all the time) was combined with the simple offloading approach from [32]
in [36]. In addition, the authors in [31] also used rematerialization of [5] with a possibility of further
offloading saved checkpoints to the CPU if rematerialization only is not enough to perform training
under memory constraint.

3 Model and notations

3.1 Forward, backward and offloading elementary operations

In what follows, our goal is to process the chain described by Figure 1 that corresponds to the
processing of a mini-batch. This chain depicted by Figure 1 is defined by the set of operations F` and
B`. The default forward operations F` requires only the activation produced by the previous layer
F`−1 (or the input mini-batch in the case of F1), whereas the default backward operation B` require
the preceding gradient δ`, the activation a`−1 and the intermediate generated data ā` necessary for
the backward step. The distinction between a` and ā` is crucial in practice, since it allows to consider
computation graphs which have a sequential structure, but are not purely sequential. In this setting,
it is indeed possible for F` to represent a complex operation (any Direct Acyclic Graph of layers),
and thus ā` contains all the intermediate activations produced by F` and necessary to compute B`,
whereas a` only contains the output activation of F`, that will be used by F`+1. In general, a` can
therefore be much smaller than ā`.

In order to manipulate different types of activations, we define in Table 1 a set of generic forward and
backward operations, that can be directly translated in automatic differentiation packages such as
tf.GradientTape for Tensorflow or torch.autograd for PyTorch. Operations are defined both
by the type of operands they use and produce (a` or ā`) and by the treatment they make of the input
data after processing (deleted or kept in memory). Each operation is associated to a processing time
and a memory overhead that takes place during the computation. Both the processing time and the
memory overhead only depend on whether the operation is a forward or a backward task.

In addition to the operations described in Table 1, we also consider two operations O` and P` that
correspond respectively to offloading to and prefetching from CPU memory. O` and P` can operate
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Operation Input Output Time Memory overhead

F `
all Forward and save all {a`−1} {a`−1, ā`}

uF` of`{ā`−1} {ā`−1, ā`}

F `
ck Forward and materialize input {a`−1} {a`−1, a`}

uF` of`{ā`−1} {ā`−1, a`}

F `
∅ Forward without saving {a`−1} {a`}

uF` of`{ā`−1} {a`}

Bl Backward step {δ`, ā`, a`−1} {δ`−1}
uB` ob`{δ`, ā`, ā`−1} {δ`−1, ā`−1}

Table 1: Generic operations available in DL frameworks.

both on a`−1 and ā`−1, depending on which type of activation has been produced. Thanks to CUDA
streams, it is possible to asynchronously offload and prefetch activations from and to the CPU memory,
while independent computations are performed.

3.2 Assumptions and limitations

In what follows, our goal is to find a sequence of F `
all, B`, F `

ck, F `
∅, O` and P` operations to compute

δ0 from a0. Given a bandwidth β between the GPU and the CPU, we can compute the peak memory
usage and the total duration of a particular sequence. Our goal is to find a sequence (i) whose memory
peak is smaller than the available memory on the GPU MGPU, and (2) whose overall duration is
minimal. In order to make the problem tractable, we introduce additional assumptions

1. Offloading before loss: all offloading operations must complete before the computation of
the loss and prefetching operations (each prefetching operation being performed only once)
start only after the computation of the loss. This is a reasonable assumption since offloading
(resp. prefetching) introduce delays and therefore should be performed as early (resp. as
late) as possible.

2. Memory persistency holds: if for some layer i activation āi is computed, then no operations
related to layers i′ with i′ < i take place until Bi. This is a common assumption in the
rematerialization literature, and it was shown in [3] that in all practical cases, optimal
solutions satisfy this assumption (despite a theoretical result showing that there are cases
where this is not true)

3. Asynchronous and continuous offloading: activations should be offloaded/prefetched en-
tirely, but memory allocation and release can be performed in several steps during the
communication. This assumption proved to be efficient in [4] to provide a tractable context
without degrading the solution quality, and indeed without this assumption, the problem
becomes strongly NP-hard. Continuous offloading thus allows to write the dynamic program
to obtain efficient solutions; however these solutions are evaluated in Section 5 in a context
where the tensors are discarded entirely and at once.

In Section 4, our goal is to find the optimal sequence of operations under above assumptions.
Removing some of these assumptions may therefore improve the solution (by seeking the solution in
a larger space), but a priori at the cost of more expensive computations.

1. A first limitation comes from the ability to offload ā activation, which is not easy to
implement in frameworks like PyTorch, because it requires modifying and accessing internal
structures. Solutions that currently implement offloading, such as VDNN [32, 2], therefore
require a thorough rewriting of the transfer operations.

2. A second limitation of our work is that it relies on the possibility of linearizing networks,
i.e. representing them as a sequence of operations, in which each operation can in turn be
arbitrarily complex (and associated to any type of dependences). In practice, most networks
are easy to sequentialize. In the case of rematerialization only, optimal solutions based
on integer linear programming such as Checkmate [18] were proposed. However, the cost
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of integer linear programming limits their use to very small networks (smaller than those
considered in Section 5) and their relaxation come without any guarantee. The extension of
the proposed approach to complex dependency structures is nevertheless not straightforward.

4 Combination of offloading and rematerialization

We propose a dynamic programming to optimally solve the problem of finding a sequence containing
rematerialization and offloading operations of minimal duration. This algorithm is denoted by pofo,
for "Persistent with Offloading during Forward Only". To save space, we will not detail in the main
paper all the equations of the dynamic program, which involves a large number of cases. We will
focus in the main part of the paper on the intuitions and the general working principle of the dynamic
program and refer the reader to Appendix B for detailed derivations and proofs.

4.1 Rationale of the different operations

The pofo algorithm is based on a sequence of choices, that consist in deciding, for each 1 ≤ i ≤ L
(i) which type of operation Fi we are going to use and whether we are going to compute ai or āi (ii)
whether we are going to keep the input value ai−1 or āi−1 in the memory of the GPU, offload it in
the memory of the CPU or completely delete it from the memory and (iii) how to compute Bi.

Concerning (i), the size of āi is in general larger than ai. Both can be used to compute Fi+1 and
Bi+1, but if ai only is kept in memory (either CPU or GPU), then Fi will have to be recomputed
during the backward phase before Bi. Concerning (ii), if we delete ai−1 or āi−1 from memory, then
it will be necessary to recompute Fi−1 before processing Bi, but it will save memory for the whole
subsequent sequence Fi+1 . . . FLBL . . . Bi+1. If ai−1 or āi−1 is offloaded on CPU memory (which
may take some time), the memory will be available for the subsequent sequence, and ai−1 or āi−1
will have to be prefetched before computing Bi. The interest of offloading obviously depends on the
bandwidth β of the PCI bus. Concerning (iii), if the input activation (ai−1 or āi−1) has been deleted
from memory, we will have to recompute it, starting from the last kept activation (either ak or āk
for some k < i− 1). Several rematerialization sequences are possible to do this operation that have
potentially different durations and that offer different prefetching possibilities, depending on their
memory profile, and the choice of the optimal sequence will depend on the memory state before
computing Bi, as detailed in Appendix B.

4.2 Intuition of the overall scheme and state variables

The dynamic programming solution is built in several steps. We consider separately the forward
propagation within which the offloading of activations can be done. The forward propagation is
followed then with the loss calculation synchronized with the end of offloading operations. After loss
computation, the backward propagation interleaved with the prefetching starts.

The general principle of pofo is the following. During the forward phase (before the computation
of the loss), we consider the layers in an increasing order (from 1 to L). At each step, we have to
decide which operation to implement among F `

all, F
`
ck, F `

∅ and in the case where the input activation
is kept, we have to decide if we add O`. Inspired by the ideas of Automatic Differentiation [13] (but
proposed in the context of a fully homogeneous chain without offloading), our dynamic programming
relies on the following remark: any solution can be decomposed into parts, where each part computes
layers i to j (j ≥ i), and only the input to layer i is stored in memory. Starting from a layer i, whose
input needs to be saved in memory, pofo needs to decide whether the input will be saved with F i

ck or
F i
all. It also needs to decide the index j of the end of the corresponding part in the solution, so that
j + 1 starts the next part of the sequence, and its input will be the first activation kept in memory
after i. A recursive call to the sub-chain starting from j allows to obtain the corresponding running
time. Between the two saved activations of layers i and j, a sequence of F k

∅ takes place. As forwards
F i
ck and F i

all correspond to two different behaviors, they generate two different cases of the dynamic
programming that are considered in Appendix B.1. In addition, an offloading decision needs to be
made for the input of layer i, either store it in the memory of the GPU or offload it to the CPU; this
decision impacts the memory available for the rest of the chain and idle times due to communications.

In order to use dynamic programming, we need to define a set of variables that describes the state of
the system at any instant. This set of variables should be as small as possible, since it has a direct
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influence on the size of the data structure and on the computing time to solve the dynamic program.
On the other hand, these variables must be chosen wisely and they must contain enough information
to make decisions for subsequent layers and be updated according to these decisions. To evaluate
correctly memory constraints and to compute idle times, it is important to know how memory may
vary between layers i and j with saved inputs: from some minimal memory occupation till maximal
memory occupation. Both can be described for the forward and the backward phases using only three
state variables: in addition of the index i of the last layer with saved input discussed above, we use
Ai,∆Fi

and ∆Bi
, in addition to a boolean variable x.

• Ai denotes the total GPU memory occupied by the saved values among a0, . . . , ai−2 and
ā1, . . . , āi−2 that are not transferred to the CPU.

• ∆Fi denotes the amount of data from a0, . . . , ai−2 and ā1, . . . , āi−2 that the schedule still
needs to offload after Fi−1.

• ∆Bi denotes the amount of data from a0, a1, . . . , ai−2 and ā1, . . . , āi−2 that the schedule
should prefetch before starting Bi−1.

• x is a boolean specifying whether the input of layer i is ai−1 (if x = 0) or āi−1 (if x = 1).

We denote as Ixi = (1 − x)ai−1 + xāi−1 the size of the input activation for layer i. With these
state variables, we can compute Mx

Fi
, the memory on the GPU after executing Fi−1, and Mx

Bi
, the

memory on the GPU before executing Bi−1 (excluding δi−1) are given by Mx
Fi

= Ai + ∆Fi + Ixi
and Mx

Bi
= Ai + ∆Bi

+ Ixi .
These memory values represent the maximal memory occupation between layers i and j for the
forward and backward phases respectively, and are used for computing idle times when overlapping
communications with computations, according to Lemma 1. On the other hand, to estimate the
feasibility of the scheduled operations, we also need to know the memory after everything has been
offloaded, which is either Ai + Ixi (when Ixi stays on the GPU) or Ai (when Ixi is sent to the CPU),
which we use to obtain the maximal memory available on the GPU.

The updates of the state variables follow simple rules described below

• if no new data is offloaded (prefetched), then ∆Fi
(∆Bi

) is constantly decreasing from index
i to index j at speed β, until reaching zero;

• if new data has to be offloaded (prefetched), then the data size is added into ∆Fi
(∆Bi

);

• Ai is updated if new data is saved on the GPU (without being later offloaded to the CPU).

Our goal is to find the sequence of operations that minimizes the overall execution time. However,
both rematerialization and offloading can induce extra time with respect to the execution of the
sequence F1 . . . FLBL . . . B1 which can be computed given infinite memory on the GPU:

• During the forward phase, offloading helps to keep GPU memory low, but, if the transfers
to the CPU are not fast enough due to limited bandwidth, some idle time might occur, waiting
for enough memory to be freed by offloading. This is analyzed in details in Appendix B.1.

• At the interface between the forward and the backward phase, we need to enforce that
offloading and prefetching are well synchronized by the computation of the loss, what can
in turn introduce some idle time on the GPU. This will be analyzed in Appendix B.2.

• During the backward phase (after the computation of the loss), there might be two sources
of delays: recomputations of discarded activations and idle times induced by prefetching.
Indeed, some prefetching operations may not be completed by the time the activation is
needed, if they are delayed because of memory constraints. In fact, these two sources of extra
times are not independent, since a longer rematerialization sequence with lower memory
needs might allow more overlapping of prefetching with computations and thus avoiding
idle time later. We propose an auxiliary dynamic program that includes the computation
of intermediate idle times in each recursive call to find the best schedule under prefetching.
The idle times for prefetching are found using Lemma 1. This is analyzed in Appendix B.3.
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Finally, we present a lemma that describes the general scheme for optimally overlapping the commu-
nications with scheduled operations. Lemma 1 is valid for both prefetching and offloading, as their
behavior is symmetrical. Offloading takes place at the beginning of the sequence, making available
memory increase at the speed β from its initial value mmin. On the contrary, prefetching is done
at the end of the sequence, making available memory decrease at the speed β until reaching mmin.
Performing offloading as soon as possible and prefetching as late as possible allows to have more
available memory for the middle of the execution. Note that mmin could be equivalently replaced
with MGPU −Mmax, where Mmax denotes the maximal memory occupation (either Mx

Fi
or Mx

Bi
).

Lemma 1 Let us consider a fixed sequence of operations, for which the available memory increases
(resp. decreases) during execution because of data unloading (resp. prefetching), with its minimum
at mmin. Let us denote byMSo the memory required to process operation o ∈ S , and do the distance
between o and the end (beginning) of sequence S,i.e. the cumulative duration of operations taking
place before (after) operation o. Then, the execution of S needs to be delayed by some idle time

ε = max

(
maxo∈S(MSo − βdo)−mmin

β
, 0

)
.

The above mentioned ingredients can be used to build the dynamic programming algorithm pofo,
solving optimally the problem in the pseudo-polynomial time. Theorem 1 states this result, while
the complete description of the dynamic program and the proof of the theorem can be found in
Appendix B. The algorithm is pseudo-polynomial in the memory limit and it relies on discretization
of the memory values. In the experiments of Section 5, we systematically use 50 discretization steps
(scaling so that MGPU = 50), which shows no discretization effect (we tried more steps to confirm
this) and a reasonable complexity, with an execution time below 4 minutes in the worst cases. Since
optimization is performed only once before the training starts, we argue that this is fully acceptable.

Theorem 1 Under assumptions of Section 3.2, the problem of finding the minimal processing time for
the chain from Figure 1, using operations from Table 1 together with offloadingO` and prefetching P`,
under memory limit MGPU discretized with NGPU values and bandwidth β, can be solved optimally
with a dynamic programming algorithm with a complexity of O(L2N3

GPU + L3N2
GPU).

5 Experiments

5.1 Additional heuristics

We have implemented two other sophisticated heuristics for comparison purposes. These heuristics
are not bound with the assumptions of Section 3.2, but come without any optimality for the produced
sequences.

In the first heuristic, called opportunist, the objective is to use the communication medium as
much as possible. We compute the first layer with Fall and offload its input and output, ensuring that
the memory will remain fully available for the rest of the computation. The next layers are computed
with F∅ until the end of communications. We then start a new communication by performing the
next layer with Fall and offloading its input and output, and so on until the end of the sequence
can be entirely performed in memory. This process thus builds groups of layers between two Fall
operations. We then compute the backward phase for each group using the rematerialization
algorithm, and concatenate them (with the necessary prefetches) to obtain the final sequence. Note
that opportunist is conceptually close to the implementation from Superneurons [36].

The second heuristic is called autocapper. It relies on an internal capper algorithm, that uses an in-
creased memory limit M ′ > MGPU as an additional input. capper computes a pure rematerialization
sequence with the limit M ′, finds the peak memory usage in the sequence and offloads the lowest
indexed activation present in GPU memory at that time. This process is repeated until the sequence
fits in the memory limit MGPU. autocapper calls capper with 40 values of M ′, evenly spaced
between the target MGPU and M high, the memory required without rematerialization or offloading.
For each value M ′, the resulting sequence from capper is simulated and the best one is kept. Note
that, when autocapper does not perform recomputations, it behaves as the GREEDY heuristic in [4].
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Figure 2: Simulation results for fixed bandwidth β = 12GB/s and varying memory ratio α.

5.2 Simulation results

We measured running times and memory occupation of several networks from PyTorch torchvision
package: resnet, densenet and inception, with a batch size of 16 and images of 500 × 500
pixels. For simplicity, we only present a single value for batch size: we also experimented with other
batch and image sizes, and obtained very similar results. Time measurements were performed on
a NVidia Tesla V100 GPU. We also measured the bandwidth obtained when transferring PyTorch
tensors from and to the GPU and obtained 12GB/s. The simulation results presented here were
obtained using 4 cores of a 24-core Haswell Intel R© Xeon R© E5-2680 v3 at 2,5 GHz, with 128GB of
memory, and used about one hour of computation. We modified the open-source rematerialization
framework rotor to handle offloading, and we implemented our algorithms in this framework.

We consider 5 algorithms in total: our dynamic program pofo, the optimal rematerialization-
only algorithm from [3], the optimal offload-only approach (DYNPROG heuristic from [4]), and
autocapper and opportunist heuristics. We use the sequential time as a reference: it is the
time that it would take to process forward and backward phases with infinite memory, i.e. the sum
of all forward and backward times. For each network, we compute the highest and lowest memory
requirements (denoted respectively M high and M low): M high is obtained with the sequential
approach, while M low is obtained by recomputing everything from the beginning at each step of the
backward phase. We can thus explore the whole range of achievable memory sizes for this network,
by considering values within the interval [M low,M high]: for a given ratio α ∈ [0, 1], the memory limit
MGPU is set to (1− α)M low + αM high. We consider values of α from 0.05 (low memory scenarios)
to 0.8 (high memory scenarios). Larger values of α are not included since this makes the memory
limit so large that the optimization problem becomes easy, and all algorithms behave very similarly,
with almost zero overhead. Depending on the networks, the values of M low range from 1 to 2.5GB,
and the values of M high range from 4 to 20GB. On the other hand, the sizes of the weights range
from 50 to 250MB, which highlights that the main memory usage for these networks comes from the
activations. For the algorithms which perform offloading, we also vary the bandwidth value β, from
12GB/s (a realistic scenario) to 36GB/s (corresponding to possible future improvements).

The results are shown on two plots: Figure 2 presents the behavior of the algorithms for fixed
bandwidth and varying memory constraint, while Figure 3 explores the effects of increasing the
bandwidth for a given memory limit. We draw the following conclusions:

• When memory is large (α = 0.75), offloading is more effective than rematerialization:
with β = 12GB/s, there is time to offload and prefetch enough data to run the whole
chain. However, for smaller memory limits, the offload-only policy exhibits much worse
performance than rematerialization (unless more bandwidth is available, see Figure 3).
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Figure 3: Simulation results for fixed memory ratio α = 0.2 and varying bandwidth.

• Unless in some cases with small memory, the opportunist policy achieves slightly better
performance than pure rematerialization, but is sometimes unable to produce a solution
when the memory limit is too low. On the other hand, the more sophisticated autocapper
algorithm obtains very good performance for memory ratios above 0.5.
• The pofo algorithm successfully combines the advantages of both rematerialization and

offloading, and consistently outperforms both of them. When the memory limit is high
enough, the optimization problem is relatively easy, and autocapper and pofo achieve
similar performance. In some cases autocapper is marginally better than pofo, as pofo
produces solutions under assumptions of Section 3.2, while partial memory releases (as-
sumption (iii)) are difficult to implement in practice. For lower memory limits, the more
optimized pofo algorithm is able to produce much better sequences.

• As can be seen on Figure 3, the offload-only approach works perfectly when the bandwidth
is high. Indeed, if there is enough communication capability to offload all the data while it
is produced, it is possible to avoid recomputations without inducing idle time. Compared to
pure offloading techniques, our pofo solution allows to train models with large activations
with cheaper communication links.

A more precise analysis shows that the solutions computed by pofo offload a significant amount
of data, about 25% of the total activation size for the inception and resnet networks, and 20%
for densenet. This represents for example 2.1GB of offloaded data for resnet 101. For the
same example, the amount of discarded data (which is recomputed later through rematerialization)
varies from 0 (for α = 0.75) to 1.3GB (for α = 0.1). In general, the reason why pofo is more
efficient than offloading alone is that rematerialization reduces memory usage, which means that
fewer activations need to be offloaded. This allows to fit the offloading and prefetching time within
the computing time. Symmetrically, the reason why pofo is more efficient than rematerialization
alone is because offloading allows to remove some activations from the GPU memory “for free” in
terms of recomputation. The rematerialization procedure thus needs to recompute fewer layers, which
reduces the overhead cost.

5.3 Experimental results

In the recent release of PyTorch 1.10, the introduction of the saved_tensors_hooks() feature
makes it possible to implement the offloading technique described in this paper. Indeed, this function
allows to register hooks that can capture all tensors generated by an operation and then “pack” them
(compress or offload) during the forward propagation and “unpack” them (extract or prefetch) during
the backward propagation. We have implemented a preliminary version of our best performing
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Figure 4: Experimental results on actual runs.

algorithms (pofo and autocapper) and made them available in rotor [1]. We further present the
current results in Figure 4 obtained by testing these new extensions of rotor on the same neural
networks as in the previous section, this time on an actual V100 GPU.

Overall, these preliminary experiments confirm that combining offloading with rematerialization
allows to significantly improve over pure rematerialization in most scenarios. In particular, pofo is
still the best algorithm for memory optimization among the ones considered in the plot. In most cases,
pofo either shows the smallest overhead or behaves in the same way as other methods. However,
densenet-169 is the exception to this trend, where rematerialization-only is strictly better than
pofo or autocapper, but even in this case pofo outperforms autocapper. On the other hand,
the case of resnet-101 demonstrates the significant improvement of pofo over other strategies,
highlighting that there exist cases for which the benefit is important.

This discrepancy in the results obtained in simulation and in the experiments comes from the fact that
the current implementation of pofo and autocapper in rotor uses more memory than expected.
Our simulation results hint that further optimization of this preliminary implementation should allow
to obtain even better performance.

6 Conclusion

In this paper, we formalize the problem of the optimal combination of rematerialization and offloading,
which are two classical strategies for coping with memory limitations on a GPU. We show that
the optimal solution can be computed using dynamic programming, in a few seconds or a few
minutes for very deep networks. From experiments, we show that the combination of offloading and
rematerialization is very efficient and allows, in many cases, to transparently perform training with 4
to 6 times less memory, at the cost of a 10-20% time overhead. Among the perspectives of this work,
one could be interested in minimizing the energy consumption under both memory and throughput
constraints. This study would enable to quantify the relative effects of data transfers and redundant
computations from a different viewpoint. Another perspective of this work would be to adapt the
dynamic programming approach to the case where we consider the possibility of offloading not only
the activations, but also the weights of the network, which is necessary in the case of recent very large
NLP networks in particular and which is used, for example, on the basis of heuristic optimization
in Deepspeed 3. The dynamic programming approach also seems to be adapted to this new context.
Finally, it could be possible to extend the results of this paper to more general memory hierarchies,
which include the case of CPU with limited memory and a possibility of offloading to a disk.

3https://www.deepspeed.ai
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