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Abstract

In statistical learning, many problem formulations
have been proposed so far, such as multi-class
learning, complementarily labeled learning, multi-
label learning, multi-task learning, which provide
theoretical models for various real-world tasks. Al-
though they have been extensively studied, the
relationship among them has not been fully in-
vestigated. In this work, we focus on a particu-
lar problem formulation called Multiple-Instance
Learning (MIL), and show that various learning
problems including all the problems mentioned
above with some of new problems can be reduced
to MIL with theoretically guaranteed generaliza-
tion bounds, where the reductions are established
under a new reduction scheme we provide as a by-
product. The results imply that the MIL-reduction
gives a simplified and unified framework for de-
signing and analyzing algorithms for various learn-
ing problems. Moreover, we show that the MIL-
reduction framework can be kernelized.

1 INTRODUCTION

In this study, we explore how a large class of learning
problems can be reduced to the Multiple-Instance Learning
(MIL) problem. This is strongly motivated by the results
of [Sabato and Tishby, 2012] and [Suehiro et al., 2020].
Suehiro et al. [2020] showed that some local-feature-based
learning problems can be reduced to a MIL problem, which
gave us an insight that MIL would have a high capability of
representing various learning problems. Indeed, the reduced
problem is too specific whereas Sabato and Tishby [2012]
proposed a much more general formulation of MIL, and
thus we believe that a wider class of learning problems can
be reduced to MIL.

We provide a MIL-reduction scheme and reveal that various

learning problems, such as multi-class learning, complemen-
tarily labeled learning, multi-label learning, and multi-task
learning, can be reduced to MIL. By the reduction, we im-
mediately derive generalization bounds from [Sabato and
Tishby, 2012], as well as learning algorithms. That is, our
reduction scheme greatly simplifies the analyses of gen-
eralization bounds as compared with the analyses in the
previous works [e.g., Lei et al., 2019, Ishida et al., 2017, Yu
et al., 2014, Pontil and Maurer, 2013]. Some of the obtained
generalization bounds are competitive or incomparable to
the existing results. In particular, for multi-label learning,
we derive an improved generalization bound, and for com-
plementarily labeled learning, we derive a novel learning
algorithm, which is the first polynomial-time algorithm in
a certain setting. Moreover, we propose three new learning
problems, multi-label learning with perfectionistic loss, top-
1 ranking learning and top-1 ranking learning with negative
feedback, and we demonstrate that they can be reduced to
MIL as well. The results imply that our MIL-reduction gives
a unified scheme for designing and analyzing algorithms for
various learning problems.

To provide the MIL-reduction scheme, we propose a general
reduction scheme among learning problems. Our scheme
has two remarkable features as described below. First, our
reduction transforms every instance-label pair (x, y) in the
given sample of the original learning problem to an instance-
label pair (x′, y′) to form a sample of the reduced learning
problem. In contrast, standard reduction schemes employ
an instance transformation and an label transformation sep-
arately, to construct x′ from x and y′ from y, respectively.
Therefore, our scheme enables us to design reduction al-
gorithms among a wider class of learning problems, e.g.,
learning-to-rank to classification, and supervised learning to
weakly supervised learning. Second, our reduction scheme
ensures that the Empirical Risk Minimization (ERM) of
the reduced problem implies the ERM of the original one,
while the empirical Rademacher complexity of the hypoth-
esis (composed with loss function) classes are preserved
through the reduction. This means that we can employ an
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existing ERM algorithm for the reduced problem to obtain
an ERM algorithm for the original problem with a theoreti-
cal guaranteed generalization bound, which is immediately
derived from a known generalization bound for the reduced
problem. We also show that the MIL-reduction scheme can
be kernelized.

The main contributions are summarized as follows:

• We propose a general reduction scheme based on the
ERM, which allows us to derive a generalization risk
bound of the original problem immediately.

• We demonstrate that several learning problems, from
traditional to new problems, can be reduced to MIL.
The results imply that our MIL-reduction gives a sim-
plified and unified scheme for the analyses for various
learning problems.

• We obtain novel theoretical results for some learning
problems.

• We show that the MIL-reduction scheme can be kernel-
ized.

Several proofs are shown in supplementary materials.

2 PRELIMINARIES

For an integer u, [u] denotes the set {1, . . . , u}. I(e) denotes
the indicator function of the event e, that is, I(e) = 1 if e is
true and I(e) = 0 otherwise.

A learning problem is represented by a pair (H, ℓ) of a
hypothesis class H ⊆ {h : X → Y} and a loss function
ℓ : X×Y×H → R for some input space X and output space
Y . A learner receives a sample S = ((x1, y1), . . . , (xn, yn))
where each input-output pair (xi, yi) is drawn i.i.d. ac-
cording to an unknown distribution D over X × Y . The
goal of the learner is to find, with high probability, a hy-
pothesis h ∈ H so that the generalization risk RD(h) =
E(x,y)∼Dℓ(x, y, h) is small. For a learning problem (H, ℓ),
we define a class of loss functions as Ĥ = {(x, y) 7→
ℓ(x, y, h) | h ∈ H} when the underlying loss function
ℓ is clear from the context. We give the definition of the
empirical Rademacher complexity, which is used to bound
the generalization risk.

Definition 1 (Empirical Rademacher complex-
ity [Bartlett and Mendelson, 2003]). Given a sample
S = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the empirical
Rademacher complexity RS(Ĥ) of a class Ĥ w.r.t. S is

defined as RS(Ĥ) = 1
nEσ

[
supg∈Ĥ

∑n
i=1 σig(xi, yi)

]
,

where σ ∈ {−1, 1}n and each σi is an independent
uniform random variable taking values in {−1,+1}.

Generalization risk bound [Mohri et al., 2018] Let
(H, ℓ) be a learning problem and S be a sample of size

n drawn according to a distribution D. Then, it holds with
probability at least 1− δ that for all h ∈ H,

RD(h) ≤ R̂S(h) + 2RS(Ĥ) + 3
√

log(2/δ)/2n,

where R̂S(h) =
1
n

∑n
i=1 ℓ(xi, yi, h) denotes the empirical

risk of h for sample S.

3 REDUCTION SCHEME FOR ERM

We propose a general reduction scheme for empirical risk
minimization and provide useful theoretical results.

Definition 2 (ERM-reduction). A learning problem (H, ℓ)
over input-output space X ×Y is ERM-reducible to another
learning problem (H′, ℓ′) over input-output space X ′ × Y ′

if there exist polynomial-time computable functions α : X ×
Y → X ′ × Y ′ and β : H′ → H such that for any (x, y) ∈
X × Y and for any h′ ∈ H′,

ℓ(x, y, h) = ℓ′(x′, y′, h′),

where (x′, y′) = α(x, y) and h = β(h′).

Here we show the remarkable relationship between the orig-
inal problem and the reduced problem.

Proposition 1. Suppose that (H, ℓ) is ERM-reducible to
(H′, ℓ′) with transformations α and β. For any sample S =
((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the following holds:

(i) (In)equality of the ERMs:

min
h∈H

R̂S(h) ≤ min
h∈Hβ

R̂S(h)

= min
h′∈H′

R̂S′(h′),

where Hβ = {β(h′) | h′ ∈ H′} and S′ =
((x′

1, y
′
1), . . . , (x

′
n, y

′
n)) with (x′

i, y
′
i) = α(xi, yi) for

i ∈ [n].

(ii) Empirical Rademacher complexity preserving:

RS(Ĥβ) = RS′(Ĥ′).

We can design a reduction scheme in a straightforward way
as follows. When given a sample S of the original problem,
we construct S′ of the reduced problem by α and obtain
h′ by solving the ERM of the reduced problem. Then, we
obtain the final hypothesis h by β.

We derive the following generalization risk bound using the
propositions on the empirical Rademacher complexity.

Corollary 2. Let S = ((x1, y1), . . . , (xn, yn)) be a sample
i.i.d. drawn according to unknown distribution D in an orig-
inal problem (H, ℓ). If (H, ℓ) is ERM-reducible to (H′, ℓ′),
for S′ = (α(x1, y1), . . . , α(xn, yn)) and h = β(h′), the
following generalization risk bound holds with a probability
at least 1− δ for all h ∈ Hβ:

RD(h) ≤ R̂S′(h′) + 2RS′(Ĥ′) + 3
√

log(2/δ)/2n.



That is, we can guarantee the generalization bound of the
original problem because of the preservation of the empirical
Rademacher complexity.

4 MIL-REDUCTION FRAMEWORK

This section is the highlight of this paper. We define the
ERM-reducibility to MIL and show the reducible condition.
Moreover, we show that some theoretical analyses can be
simplified. We use some symbols with prime (e.g., X ′) to
indicate that the MIL is the reduced problem.

4.1 PROBLEM FORMULATION OF MIL

Let Z ⊆ Rd′
be the instance space. X ′ ⊆ 2Z is an input

space and a bag x′ ∈ X ′ is a finite set of instances chosen
from Z . Let Y ′ = {−1, 1} be an output space. Following
the formulation by [Sabato and Tishby, 2012], we define,
for the rest of the paper, a MIL problem as a pair (H′, ℓ′) of
a hypothesis class H′ and a loss function ℓ′ of the form:

H′={h′ : x′ 7→ Ψp({f2(g(z)) | z∈ x′}) |g ∈ G}, (1)
ℓ′ : (x′, y′, h′) 7→ f1(y

′h′(x′)), (2)

where G ⊆ {g : Z → R}, f1 : R → [0, 1] is an a-Lipschitz
function, f2 : R → [−1, 1] is a b-Lipschitz function, and
Ψp : 2[−1,1] → [−1, 1] is a p-norm like function, which is
defined for any p ∈ [1,∞) as

Ψp(V ) =

(
1

m

m∑
i=1

(vi + 1)
p

)1/p

− 1

for every finite set V = {v1, v2, . . . , vm} ⊆ [−1, 1]. We
define Ψ∞ as limp→∞ Ψp. Note that Ψp is 1-Lipschitz for
any p [see, Sabato and Tishby, 2012]. In MIL tasks, Ψp is
a user-defined function and behaves as an aggregation of
some bag information. Typical Ψp are the max operator
(p = ∞) and average (p = 1).

The only difference in the hypothesis of [Sabato and Tishby,
2012] is f2. f2 appears redundant (because f2 ◦ g can be
replaced by a single function) but plays an important role in
the reduction (the examples are shown in Section 5).

Here we give the definition of ERM-reducibility in a straight-
forward way.

Definition 3 (MIL-reducibility). A learning problem (H, ℓ)
is said to be MIL-reducible if there exists a MIL problem
(H′, ℓ′) such that (H, ℓ) is ERM-reducible to (H′, ℓ′).

Hereinafter, the scheme for ERM-reduction to MIL is called
MIL-reduction scheme.

4.2 RADEMACHER COMPLEXITY BOUND

We show the empirical Rademacher complexity bound for
the MIL-reducible problems using our reduction scheme.
As aforementioned, the main advantage of our reduction
scheme is to allow us to apply the empirical Rademacher
complexity bound of the reduced problem to the original
problems. In this paper, we utilize the bound provided
by Sabato and Tishby [2012].

Theorem 3 (An application of Theorem 20 of [Sabato and
Tishby, 2012]). Let (H′, ℓ′) be a MIL problem defined in
Eq.(1) and (2). Let S′ = ((x′

1, y
′
1), . . . , (x

′
n, y

′
n)) be a sam-

ple with average bag size rS′ . Let Ĝ = {f2 ◦ g | g ∈ G}. If
there exist C, ρ ≥ 0 such that for all sufficiently large n,

RS′(Ĝ) ≤ C lnρ(n)√
n

,

then

RS′(Ĥ′) = O

 log
(
a2n2rS′

) (
aC
ρ+1 ln

ρ+1(a2n)
)

√
n

 ,

where Ĥ′ = {ĥ′ : x′ 7→ f1(y
′h′(x′)) | h′ ∈ H′}.

As mentioned in [Sabato and Tishby, 2012], we obtain the
following bound when G is a set of linear functions.

Corollary 4. Let G = {g : z 7→ ⟨w′, z⟩ | w′ ∈
Rd′

, ∥w′∥ ≤ C1} and assume that ∥z∥ ≤ C2. Then, the
following bound holds:

RS′(Ĥ) = O

(
log
(
a2n2rS′

) (
abC1C2 ln(a

2n)
)

√
n

)
.

The above bound is easily derived from the result of RS′

[see the proof of Theorem 20 of Sabato and Tishby, 2012])
and RS′(Ĝ) ≤ bRS′(G) ≤ bC1C2/

√
n = bC1C2 ln0(n)/

√
n

[see, e.g., Theorem 5.8 and 5.10 of Mohri et al., 2018].

Using Theorem 3 and Corollary 2, we obtain a generaliza-
tion risk bound for MIL-reducible problems.

4.3 LEARNING ALGORITHM

We show that, under mild conditions, the ERM of MIL
becomes a convex or a DC (Difference of Convex) program-
ming problem. Suppose that G is a set of linear functions:

G = {g : z 7→ ⟨w′, z⟩ | w′ ∈ Rd′
, ∥w′∥ ≤ C1}. (3)

Let S′ = ((x′
1, y

′
1), . . . , (x

′
n, y

′
n)). The ERM of MIL is

formulated as follows:

min
∥w′∥≤C1

λ∥w′∥2+
n∑

i=1

f1 (y
′
iΨp ({f2 (⟨w′, z⟩ | z ∈ x′

i)})) .

(4)



For the optimization problem (4), we show that the follow-
ing propositions hold.

Proposition 5. If y′i = −1 for any i ∈ [n] for sample S′, f1
is convex and nonincreasing 1, and f2 is a nondecreasing
convex function, and G is given as Eq.(3), then the ERM of
(H′, ℓ′) is a convex programming problem.

Proposition 6. If f1 is a nonincreasing convex 1 and f1(c) is
a homogeneous function of degree 1 for c ∈ [−1, 1]2, and f2
is a nondecreasing convex function, and G is given as Eq.(3),
then ERM of (H′, ℓ′) is a DC programming problem.

Generally, it is difficult to find a global minimum for a DC
programming problem; however, it is known that we can
find a solution with ϵ-approximation of local optima [see,
e.g., Le Thi and Dinh, 2018]. We introduce a standard DC
algorithm to solve (4) in Algorithm 1 in Sec. D.

The propositions indicate that, if (H, ℓ) is MIL-reducible to
(H′, ℓ′) and satisfies either of the above conditions, then the
solution h ∈ Hβ in the original problem can be obtained by
a unified learning algorithm.

5 MIL-REDUCIBLE EXAMPLES

In this section, we demonstrate that various learning prob-
lems can be reduced to MIL by the proposed reduction
scheme. The results imply that our MIL-reduction gives a
unified scheme for designing and analyzing learning algo-
rithms for various learning problems 3.

5.1 THE EXISTING PROBLEMS

5.1.1 Multi-class learning problem

Problem setting: Let X ⊆ Rd be an instance space, and
Y = [k] be an output space. The learner receives the set
of labeled instances S = ((x1, y1), . . . , (xn, yn)) ∈ (X ×
Y)n, where each instance is drawn i.i.d. according to some
unknown distribution D. The learner predicts the label of x
using the hypothesis h ∈ H = {x 7→ argmaxj∈[k]⟨wj , x⟩ |
∀j ∈ [k], wj ∈ Rd}. Let ℓ : (x, y, h) 7→ Γ(⟨wy, x⟩ −
maxj∈Y\y⟨wj , x⟩) be a loss function, where Γ : R → [0, 1]
is a convex, nonincreasing and a-Lipschitz function. The
generalization risk and empirical risk of h are defined as:

RD(h)= E
(x,y)∼D

ℓ (x, y, h) , R̂S(h)=
1

n

n∑
i=1

ℓ (xi, yi,h) .

1More precisely, the extended-value extension f1 also must be
nonincreasing (See details in [Boyd and Vandenberghe, 2004]).

2For example, hinge-loss function f(c) = max{0, 1 − c}
satisfies this condition.

3The reduction of multi-task learning and top-1 ranking learn-
ing negative feedback are shown in Sec.G and J owing to space
limitations.

We obtain the following by using MIL-reduction scheme:

Theorem 7. Multi-class learning problem is MIL-reducible.

Proof. For any (x, y), we define

η(x,y) = (0, . . . ,0, x︸︷︷︸
y−th block

,0, . . . ,0),

where 0 is a d-dimensional vector, the elements of which are
all 0. On the MIL-reduction scheme, suppose that p = ∞;
f1(c) = Γ(2cC1C2), f2(c) = c/2C1C2 (shifting func-
tion to [−1,+1]); α(x, y) = (x′

(x,y), y
′) where x′

(x,y) =

{η(x,j) − η(x,y) | ∀j ∈ Y\y}; y′ = −1; for any z ∈ Rkd,
G = {g : z 7→ ⟨(w′

1, . . . , w
′
k), z⟩ | w′

j ∈ Rd,∀j ∈
[k], ∥W ′∥ ≤ C1} where W ′ = (w′

1, . . . , w
′
k) and ∥W ′∥ =√∑k

j=1 ∥w′
j∥2; β(h′) : x 7→ argmaxj∈[k]⟨w′

j , x⟩. Then,
for any (x, y) and h ∈ H,

ℓ′(x′, y′, h′) = f1

(
y′Ψp

({
f2

(
g(z) | z ∈ x′

(x,y)

})))
= Γ

(
− 1

2C1C2
Ψ∞

({
2C1C2

(
g(z) | z ∈ x′

(x,y)

})))

= Γ

(
− 1

2C1C2
max

(
2C1C2

{(
g(z) | z ∈ x′

(x,y)

})))

= Γ

(
−2C1C2

2C1C2
max

({(
g(z) | z ∈ x′

(x,y)

})))
= Γ

(
−
(
max

{
⟨w′, η(x,j) − η(x,y)⟩ | ∀j ∈ Y\y

}))
= Γ

(
−
(
max
j∈Y\y

(⟨wj , x⟩ − ⟨wy, x⟩)
))

= ℓ(x, y, h)

The empirical Rademacher complexity is immediately de-
rived as follows by observing the reduction process.

Corollary 8. We assume that ∥xi∥ ≤ C2 for any i ∈ [n]. In
the reduced MIL problem from multi-class learning problem,
the empirical Rademacher complexity of Ĥ′ is given as:

RS′(Ĥ′) = O

(
log
(
â22n2(k − 1)

) (
2â ln(â2n)

)
√
n

)
,

where â = 2aC1C2 and we assume ∥w′∥ ≤ C1 in the
reduced MIL.

We used the fact that the bag size is (k − 1) for all x′
i (i.e.,

rS′ = k − 1) and R(Ĝ) ≤ 2/
√
n by setting f2(c) = c/C1C2.

Using Corollary 2, we can obtain the generalization risk
bound for the multi-class learning.

The learning algorithm is obtained by the following result.



Corollary 9. The reduced ERM of the MIL from multi-class
learning is a convex programming problem.

The proof of Theorem 7 shows that f2 is nondecreasing
convex and y′i = −1 for all i ∈ [n]. Therefore, by Proposi-
tion 5, if we consider Γ that is a nonicreasing and convex
function, the ERM of the reduced MIL problem is a convex
programming problem and solved in polynomial time.

5.1.2 Complementarily labeled learning problem

Complementarily labeled learning was proposed by Ishida
et al. [2017]. In this problem, some training instances are
complementarily labeled (e.g., instance xi is NOT yi). We
essentially follow the problem setting and some assumptions
provided by Ishida et al. [2017].

Problem setting: Let X ⊆ Rd be an instance space and
Y = [k] be an output space. Let D be an unknown distri-
bution over X × Y . We assume that the learner receives
a sample S drawn i.i.d. according to the distribution D′

which provides the true label with unknown probability
θ and the complementary label with unknown probability
1− θ. Moreover, we assume that the complementary label is
chosen with a uniform probability (i.e., all complementary
labels are equally chosen with the probability 1/(k − 1)). 4

More formally, we assume that the sample is given as
S = ((x1, y1, γ1) . . . , (xn, yn, γn)) which is drawn i.i.d.
according to the distribution D′ over D × {False,True},
where γi = True means that yi is the true label and
γi = False means that yi is the complementary label
(i.e., it indicates that xi is NOT yi). For any (x, y) ∼ D,
D′(x, y,True) = θ and D′(x, ȳ,False) = 1−θ

k−1 for any
ȳ ̸= y (i.e., the complementary label is chosen with a uni-
form probability). The other basic settings are the same
as those for the aforementioned multi-class learning. The
learner predicts the label of x using the hypothesis h ∈ H =
{x 7→ argmaxj∈[k]⟨wj , x⟩ | ∀j ∈ [k], wj ∈ Rd}. The final
goal of the learner is to find h ∈ H with a small multi-class
classification risk:

RMC
D (h) = E

(x,y)∼D
I (y ̸= h(x)) .

However, it is difficult to minimize the empirical multi-
class classification risk directly using the complementarily
labeled data. Therefore, we consider the following risk5.

RLC
D′ (h) = E

(x,y,γ)∼D′
[I (γ = (y ̸= h(x)))] .

This risk implies that when γ = True, the learner does
not incur a risk if it predicts the true label. When γ =

4This assumption was proposed by Ishida et al. [2017] as a
reasonable scenario in some practical tasks (e.g., crowdsourcing).

5Ishida et al. [2017] used a different surrogate risk. However,
they and we have a common goal: to minimize RMC

D (h).

False, the learner does not incur a risk if it predicts an
assigned nontrue label. Thus, the risk measure is defined
using the pair (y, γ) ∈ (Y × {False,True}). We can show
that achieving a small RLC

D′ (h) is consistent with achieving
small RMC

D (h) as follows:

Lemma 1. For any h ∈ H, RMC
D (h) = k−1

θ(k−2)+1R
LC
D′ (h)

holds.

Thus, minimizing RLC
D′ (h) is a reasonable way to achieve a

high multi-class classification accuracy.

Generally, there is no loss function ℓ((x, γ), y, h)
which is a convex upper bound on the zero-one loss
I (γ = (y ̸= h(x))) over the domain w. This is because
if I(γ = True) = 1 then max is convex w.r.t. w; how-
ever, if I(γ = True) = −1 then −max = min is con-
cave w.r.t. w. Therefore, we consider the convex upper
bounded loss only on the risk for complementarily labeled
data (i.e., the concave risk for the normally labeled data)
using Γ : R → [0, 1] as Γ

(
maxj∈Y\y⟨(wj − wy), x⟩

)
.

We then define the nonconvex risk ℓ(x, (γ, y), h) =
Γ
(
I(γ = True)×

(
maxj∈Y\y⟨(wj − wy), x⟩

))
. The em-

pirical risk is formulated as:

R̂LC
S (h) =

1

n

n∑
i=1

ℓ (xi, (γi, yi), h) .

The following is obtained by MIL-reduction scheme.

Theorem 10. Complementarily labeled learning is MIL-
reducible.

The difference from the reduction in multi-class learning is
that only y′ takes {−1, 1}. y′ behaves as a switch that turns
the loss of complementarily or normally labeled data.

The empirical Rademacher complexity is bounded as:

Corollary 11. We assume that ∥xi∥ ≤ C2 for any i ∈ [n].
In the reduced MIL problem from complementarily labeled
learning, the empirical Rademacher complexity of Ĥ′ is
given by:

RS′(Ĥ′) = O

(
log
(
â2n2(k − 1)

) (
2â ln(â2n)

)
√
n

)
,

where â = 2aC1C2 and we assume ∥w′∥ ≤ C1 in the
reduced MIL problem.

We use the same argument as in Corollary 8. Using Corol-
lary 2 and Lemma 1, we obtain the generalization bound for
the complementarily labeled learning.

The learning algorithm is derived by the following result:

Corollary 12. The reduced ERM of the MIL from comple-
mentarily labeled learning is a DC programming problem.
If the sample contains only complementarily labeled data,
the learning problem is a convex programming problem.



Generally, y′ ∈ {−1, 1} in complementarily labeled learn-
ing. Using the proof of Theorem 10 and by Proposition 6,
if we consider Γ(c) which is a nondecreasing and homoge-
neous function of degree 1 for c ∈ [−1, 1] such as hinge-
loss function, we can solve the problem by DC algorithm
as shown in Algorithm 1. Note that, if the sample contains
only complementarily labeled data (i.e., ∀i ∈ [n], yi = −1),
it becomes a convex programming problem.

5.1.3 Multi-label learning problem

Problem setting Let X ⊆ Rd be an instance space and
Y ∈ {−1, 1}k be an output space, and D be an unknown
distribution over X . Unlike the standard multi-class learning
setting introduced in Section 5.1.1, each instance may have
multiple labels (e.g., in text-categorization tasks, some texts
have multiple topics such as IT and business). yj denotes
the j-th element of yi. The learner receives a labeled sam-
ple S = (x1, y1), . . . , (xn, yn) ∈ X × Y which is drawn
i.i.d. according to the distribution D. The learner predicts
whether x belongs to class j ∈ [k] or not using the hypothe-
sis h ∈ H = {(x, j) 7→ sign(⟨wj , x⟩) | ∀wj ∈ Rd}. Let ℓ :
(x, y, h) 7→ 1

k

∑k
j=1 Γ(−yj⟨wj , x⟩) where Γ : R → [0, 1]

is a convex, nondecreasing and b-Lipschitz function 6. The
generalization and empirical risk of h are defined as:

RD(h)= E
(x,y)∼D

[ℓ(x,y,h)] , R̂S(h)=
1

n

n∑
i=1

ℓ(xi, yi,h).

Reduction to MIL

Theorem 13. Multi-label learning is MIL-reducible.

Proof. On the MIL-reduction scheme, suppose that p = 1;
f1 : f1(a) = −a for a ∈ R; f2 is Γ; α(x, y) =
(x′

(x,y), y
′) where x′

(x,y) = {(−y1x, 1), . . . , (−ykx, k)};
y′ = −1; G = {g : (z, j) 7→ ⟨w′

j , z⟩ | w′
j ∈ Rd,∀j ∈

[k], ∥W ′∥ ≤ C1} where W ′ = (w′
1, . . . , w

′
k); β(h′) :

(x, j) 7→ sign(⟨w′
j , x⟩). For any (x, y) and h ∈ H, we

have that

ℓ′(x′, y′, h′) =f1

(
y′Ψp

({
f2 (g(z)) | z ∈ x′

(x,y)

}))
=

1

|x′
(x,y)|

∑
(yjx,j)∈x′

(x,y)

Γ
(
−⟨wj , y

jx⟩
)

=ℓ(x, y, h)

The empirical Rademacher complexity is bounded as:

6Note that we use the negative score −yj⟨wj , x⟩ to employ a
nondecreasing Γ.

Corollary 14. We assume that ∥xi∥ ≤ C2 for any i ∈ [n].
In the reduced MIL problem, the empirical Rademacher
complexity of Ĥ′ is given as follows:

RS′(Ĥ′) = O

(
log
(
2n2k

)
(bC1C2 ln(n))√
n

)
,

where ∥w′∥ ≤ C1 in the reduced MIL.

We used the fact that the size of each bag is k. Using Corol-
lary 2, we obtain the generalization risk bound for the multi-
label learning.

The learning algorithm is obtained by the following result.

Corollary 15. The reduced ERM of the MIL from multi-
label learning is a convex programming problem.

The proof of Theorem 13 shows that, f1 is nonincreasing
and convex, and y′i = −1 for all i ∈ [n]. Therefore, by
Proposition 5, if we consider Γ that is nondecreasing and
convex, the reduced problem is a convex programming prob-
lem and it is solved in polynomial time.

5.2 APPLICATION TO THE NEW PROBLEMS

5.2.1 Multi-label learning with perfectionistic loss

Problem setting: In a standard multi-label learning (see
Sec.5.1.3), we consider the average prediction error (loss)
with the classes. On the other hand, we consider a perfection-
istic error in multi-label learning problem. More formally,
we consider the following loss in a multi-label learning:

ℓ : (x, y, h) 7→ max
j∈[k]

Γ(−yj⟨wj , x⟩),

where Γ : R → [0, 1] is a convex, nondecreasing and
b-Lipschitz function. This loss means that the learner in-
curs the risk unless the learner perfectly predict the cor-
rect labels. The generalization and empirical risks of h
are given as RD(h) = E(x,y)∼D [ℓ(x, y, h)], R̂S(h) =
1
n

∑n
i=1 ℓ(xi, yi, h), respectively.

Using MIL-reduction scheme, we obtain the following:

Theorem 16. Multi-label learning with perfectionistic loss
is MIL-reducible.

This can be derived by the same argument with multi-label
learning except for p = ∞ (see Sec.H).

The empirical Rademacher complexity is bounded as:

Corollary 17. We assume that ∥xi∥ ≤ C2 for any i ∈ [n].
In the reduced MIL problem, the empirical Rademacher
complexity of Ĥ′ is given as follows:

RS′(Ĥ′) = O

(
log
(
2n2k

)
(bC1C2 ln(n))√
n

)
,

where we assume ∥w′∥ ≤ C1.



Interestingly, we can have the same generalization risk
bound with the standard multi-label learning.

The learning algorithm is derived by the following result.

Corollary 18. The reduced ERM of the MIL from multi-
label learning with perfectionistic loss is a convex program-
ming problem.

This is easily obtained by observing the reduction process
shown in Sec.H and using Prpoposition 5.

A naive approach for the multi-label learning with perfec-
tionistic loss is to reduce to multi-class learning. That is, we
consider all combinations of the multi-label as multi-classes
and solve 2k-class learning problem with high computa-
tional cost. However, by the above corollary, multi-label
learning with perfectionistic loss can be solved efficiently.

5.2.2 Top-1 ranking learning

Learning to rank is a fundamental problem, and many ap-
plications, such as recommendation systems, exist. We con-
sider the following natural scenario in a recommendation
problem; a learner has a set that contains several items, and
it wishes to recommend an item to a target user from the set.

Problem setting: Let X ⊆ Rd be an instance space, and
s : X → R be a target scoring function. Set A is a fi-
nite set of instances selected from X . The learner receives
the sequence of the sets of items and the chosen item
S = (A1, x

∗
1), . . . , (An, x

∗
n), where each x∗

i ∈ Ai is the
highest-valued item determined by the target function s.
k denotes the average size of the item sets in S, that is,
k = 1

n

∑n
i=1 |Ai|. Each sample set of items is drawn i.i.d.

from X according to an unknown distribution D over 2X .
Assume that the learner predicts the item from the item set
using the hypothesis h ∈ H = {A 7→ argmaxx∈A⟨w, x⟩ |
w ∈ Rd}.7 Let ℓ(A, x∗, h) is a convex upper bound on
the zero-one loss function I(y ̸= ŷ). Equivalently, we con-
sider the zero-one loss I(⟨w, x∗⟩ −maxx∈A\x∗⟨w, x⟩ ≤ 0)
and its convex upper bounded loss ℓ : (A, x∗, h) 7→
Γ(⟨w, x∗⟩ −maxx∈A\x∗⟨w, x⟩) where Γ : R → [0, 1] is a
convex, nonincreasing and a Lipschitz function. The goal
of the learner is to find h ∈ H with a small misranking risk
w.r.t. the target s. Thus, the generalization and empirical
risks are formulated as follows:

RD(h)= E
A∼D

[ℓ (A, x∗, h)] , R̂S(h)=
1

n

n∑
i=1

ℓ (A, x∗
i, h) ,

where x∗ = argmaxx∈A s(x).

We obtain the following by using MIL-reduction scheme:

Theorem 19. Top-1 ranking learning is MIL-reducible.

7We consider an argmax with a fixed tie-breaking rule.

The reducible condition is satisfied when we set α(A, x∗) =
(x′, y′) where x′ = {x − x∗ | x ∈ A\x∗} y′i = −1 for all
i ∈ [n]. The details of the reduction process is in Sec.I.

The empirical Rademacher complexity bound is as follows:

Corollary 20. We assume that ∥x∥ ≤ C2 for any x ∈
Ai,∀i ∈ [n]. In the reduced MIL problem, the empirical
Rademacher complexity of Ĥ′ is given as follows:

RS′(Ĥ′) = O

(
log
(
â2n2(k − 1)

) (
â ln(2â2n)

)
√
n

)
,

where â = 2aC1C2 and we assume ∥w′∥ ≤ C1.

The generalization bound can be derived by applying rS′ =
k−1 and using the fact that ∥z∥ ≤ 2C2 for any z ∈ x′

i,∀i ∈
[n] in the reduced MIL. By using Corollary 2, we can obtain
the generalization risk bound for the Top-1 ranking learning.

The learning algorithm is designed by the following result:

Corollary 21. The reduced ERM of MIL from top-1 ranking
learning is a convex programming problem.

The corollary can be easily derived from the reduction pro-
cess detailed in I.

Extension: We consider top-1 ranking learning with nega-
tive feedback which is an extension of top-1 ranking learn-
ing. We show the details in Sec.J. Remarkably, the ERM
problem of the reduced MIL is a DC programming problem.

6 KERNELIZED EXTENSION

Although we consider a linear function set as G; in practice,
a nonlinear kernel is required for various learning tasks. A
straightforward method is to employ a kernel-approximation
technique [see, e.g., Sec.6.6 in Mohri et al., 2018], which
constructs feature vectors Φ(x) ∈ RD with the theoreti-
cal guarantee that ⟨Φ(x1),Φ(x2)⟩ ≈ K(x1, x2) for a user-
determined dimension D. However, we can use only a lim-
ited number of kernels via the approximation technique.
Therefore, we show the kernelized version of the reduction.

6.1 SETTINGS

We assume that an original problem is defined by H, ℓ,X ,Y ,
and Φ : X → H, where H is a reproducing kernel Hilbert
space associated to K(x1, x2) = ⟨Φ(x1),Φ(x2)⟩. Aside
from the computability, we can virtually consider the sam-
ple as S = ((Φ(x1), y1), . . . , (Φ(xn), yn)). The ERM-
reducible condition is that there exist (x′, y′) = α(Φ(x), y),
h = β(h′) and ℓ′ that satisfies ℓ(Φ(x), y, h) = ℓ′(x′

i, y
′
i, h

′)
for any (x, y) ∈ X × Y .



Let S′ = ((x′
1, y

′
1), . . . , (x

′
n, y

′
n)) and let G = {g : z 7→

⟨w′, z⟩ | w′ ∈ H′}. We assume that (H, ℓ) is MIL-reducible
to H′, ℓ′. The ERM of the reduced MIL is formulated as:

min
w′∈H′

λ∥w′∥H′ + Lw′ , (5)

where Lw′ =
∑n

i f1 (y
′
iΨp ({f2 (⟨w′, z⟩ | z ∈ x′

i)})).

6.2 COMPUTABILITY

We show that the representer theorem holds for the opti-
mization problem (5).

Theorem 22 (Representer theorem). An optimal solution
of the ERM problem (5) has the form w̃′ =

∑
z∈PS′ µzz,

where PS′ =
⋃n

i=1 x
′
i.

Thus, the ERM problem (5) is equivalently formulated as:

min
µ∈R|P

S′ |
λ
∑

z,ẑ∈PS′

µzµẑ⟨z, ẑ⟩+ Lµ,

where Lµ =
∑n

i=1 f1(yiΨp({f2(
∑

z∈PS′ µz⟨z, ẑ⟩) | ẑ ∈
x′
i})).

Therefore, if ⟨z1, z2⟩ is polynomial-time computable for
any z1, z2 ∈ x′ using the original kernel function K as
an oracle, the ERM of the MIL can be solved similar to
linear case according to the condition in Proposition 5 and
6 (DC algorithm for the kernel version is in Sec. L). For all
MIL-reducible problems introduced in the paper, ⟨z1, z2⟩ is
polynomial-time computable using K (see details in Sec.M).
Moreover, we can construct β in polynomial time.

7 DISCUSSION

7.1 RELATED WORK

Other reduction techniques: Several machine-learning re-
duction schemes exist [see, e.g., Beygelzimer et al., 2015],
and we found general reduction schemes, such as [Pitt and
Warmuth, 1990, Beygelzimer et al., 2005]. A major differ-
ence between the proposed scheme and existing approaches
is that we focus on the reduction of ERM. Various appli-
cations of machine learning reductions, such as reduction
from multi-class learning to binary classification [James and
Hastie, 1998, Ramaswamy et al., 2014], and from ranking to
binary classification [Balcan et al., 2008, Ailon and Mohri,
2010, Agarwal, 2014], exist. To the best of our knowledge,
the reduction to MIL has not yet been discussed.

Multi-Class Learning: Recently, Lei et al. [2019] achieved
log(k)-dependent generalization bound. The proposed gen-
eralization bound is competitive with the bound. However,
our derivation is highly simpler than the analysis of [Lei

et al., 2019] because the reduction allows us to apply the
existing MIL bound of [Sabato and Tishby, 2012].

Complementarily-labeled learning: Ishida et al. [2017]
provided the generalization risk bound in the case in which
the training sample contains only complementarily labeled
instances (i.e., θ = 0). The proposed generalization bound
is incomparable to the bound (see details in Sec.N). Ishida
et al. [2017] selected nonconvex loss functions and opti-
mized the empirical risks using a gradient-based algorithm
in practice. However, there is no guarantee of the optimal-
ity of the solution. We show that the learning problem can
be solved by DC algorithm and guarantee the local optima.
Moreover, in the special case that sample contains only com-
plementarily labeled data, the learning problem becomes
convex programming and we can obtain global optima. To
the best of our knowledge, the provided learning algorithm
is a first polynomial-time algorithm in the special case.

Multi-label learning: Various approaches and generaliza-
tion analyses have been provided [Yu et al., 2014, Bhatia
et al., 2015, Xu et al., 2016a,b]. However, to the best of
our knowledge, this paper is the first to propose a log(k)-
dependent generalization bound for the linear (or nonlinear
kernel) hypothesis class, where k is the number of classes.

Multi-task learning: A similar generalization bound was
reported by [Pontil and Maurer, 2013]. Their results suggest
the advantage of regularizing the weights w1, . . . , wT over
T tasks. However, our result is derived from an entirely
different argument from [Pontil and Maurer, 2013] and the
derivation is highly simplified.

Top-1 ranking learning: Top-1 ranking measure was origi-
nally discussed in [Hidasi and Karatzoglou, 2018]. However,
the basic problem setting is different from ours. They as-
sumed that the recommender has i.i.d. positive and negative
items as the sample. Moreover, they did not propose a gen-
eral form of the problem and theoretical analysis.

MIL: MIL was originally proposed by Dietterich et al.
[1997], which is known as weakly supervised learning and
there have been proposed many real applications [Gärtner
et al., 2002, Andrews et al., 2003, Zhang et al., 2013, Doran
and Ray, 2014, Carbonneau et al., 2018]. The generalization
bound and learning algorithm have been analyzed from the
theoretical perspective [Sabato and Tishby, 2012, Doran,
2015, Suehiro et al., 2020]. There have been several stud-
ies on the relationship between MIL with other learning
tasks. Zhou and Xu [2007] showed that a classical MIL can
be considered as specific semi-supervised learning. Zhang
et al. [2020] utilized MIL for extracting causal instances.
However, these works do not imply any type of reduction
in the sense of computation theory: if problem A is reduced
to B, then we should immediately obtain an algorithm for
A from any algorithm for B combined with the reduction
(input-output transformations) with a certain performance
guarantee. Suehiro et al. [2020] found that a local-feature-



based time-series classification problem can be reduced to
a MIL problem with a generalization risk bound. However,
the reduced problem is too specific. Our results first show
that various learning problems can be reduced to MIL.

7.2 PRACTICAL IMPLICATIONS

An important contribution of the paper in both the theoretical
and practical aspects is to provide a simple and general
reduction scheme among various learning problems with
theoretical guarantees on generalization bounds. This means
that when faced with a new learning problem A, we can
search for an existing ERM problem B that is reducible
from A. If succeeded, then we immediately obtain a learning
algorithm for A with a generalization bound. Usually, this
process is expected to be much easier than designing a
learning algorithm from scratch.

In particular, we demonstrate that various learning prob-
lems are reducible to a particular problem, MIL. That is, we
only have to improve ERM algorithms for MIL, which work
on the original learning problems as well. Moreover, we
show that ERM for MIL can be formulated as DC program-
ming problems in Section 4.3. Therefore, we can employ a
state-of-the-art DC programming package, which is rapidly
evolving these days [Le Thi and Dinh, 2018]. For instance,
complementarily labeled learning, which is only known to
have a non-convex optimization formulation [Ishida et al.,
2017, 2019], would enjoy the benefits from a promising DC
programming approach.

Experiments: We demonstrate that our theoretical results
are practically useful in the following experiment on com-
plementarily labeled learning tasks 8. We use three artificial
datasets and four benchmark datasets available in UCI ma-
chine learning repository 9. The details of artificial datasets
are described in Section O. For all datasets, all training
instances are complementarily labeled uniformly at ran-
dom. That is, the ERM problem which is derived from our
MIL-reduction scheme becomes a convex programming
problem (quadratic programming problem). On the other
hand, [Ishida et al., 2017] solves a nonconvex optimiza-
tion problem by using Adam [Kingma and Ba, 2014]. The
size of training sample is fixed to 1000 and we used the
remaining data as a test set. Although we did not tune the
optimization hyperparameters of [Ishida et al., 2017] (the
number of epochs is 200 and the learning rate is 0.01), we
stopped the learning at the epoch when the test accuracy
was the maximum. The loss of [Ishida et al., 2017] was fixed
to PC loss which was the best-performed loss [see Ishida
et al., 2017]. Our regularization parameter is chosen from
{0.01, 1, 100} and the regularization parameter of [Ishida

8The code is available in https://github.com/
suehiro93/MIL_reduction

9https://archive.ics.uci.edu/ml/

Table 1: Average test accuracy over 10 trials.

Dataset Class Dim. Ours Ishida+
artificial1 5 50 0.9999 0.9998
artificial2 10 50 0.808 0.646
artificial3 25 50 0.063 0.065
covertype 7 54 0.562 0.549
satimage 7 36 0.804 0.751
waveform 3 40 0.833 0.832
yeast 10 8 0.348 0.407

et al., 2017] is chosen from {0.01, 1, 100}. We evaluated
the average accuracy over 10 trials.

Table 1 shows that our method achieved higher classifica-
tion accuracy than [Ishida et al., 2017] on many datasets.
This result indicates that our MIL-reduction scenario for
complementarily labeled learning, which is derived from
the proposed MIL-reduction scheme, is useful in practice.
Moreover, our ERM algorithm does not require any hyperpa-
rameters for the optimization because the optimization prob-
lem is a convex programming problem (or DC programming
problem when the training sample contains both labeled and
complementarily labeled instances). On the other hand, the
learning algorithm provided by Ishida et al. [2017] solves a
nonconvex optimization problem and usually requires sev-
eral hyperparameters (e.g., learning rate and the number of
epochs) of the nonconvex-optimization solver.

7.3 CONCLUSION AND FUTURE WORK

We revealed that various learning problems can be reduced
to a MIL problem by our ERM-based reduction scheme.
The results imply that our MIL-reduction gives a simplified
and unified scheme for the analyses for various learning
problems. Moreover, we obtained novel theoretical results
for some learning problems. A practical concern is that the
applicable loss functions are limited in the current scheme.
For example, some loss functions without satisfying the
conditions of MIL-reducibility (e.g., square loss) cannot
be used. We explore the relaxation of the ERM-reducible
condition. An interesting open problem is how the class of
MIL-reducible problems is characterized. Our results imply
that MIL is one of the hardest problems in a certain class
C of learning problems. In other words, we could say that
MIL is a C-complete problem. We would like to investigate
how the class C is characterized.
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